Generalized polynomial identities and $2 \times 2$ upper triangular matrices
Let $A$ be an associative algebra over a field $F$ of characteristic zero, $F\langle X \rangle$ be the free algebra generated by the countable set $X=\{x_1,x_2,\ldots \}$ and $W$ be a unitary algebra over $F$. Then $A$ is called $W$-algebra if it has a structure of $W$-bimodule with some additional conditions.