Exotic monotone Lagrangian tori Read more about Exotic monotone Lagrangian tori Monotone Lagrangian submanifolds are important objects in symplectic geometry but unfortunately we l
On periodic orbits in complex planar billiards Read more about On periodic orbits in complex planar billiards A conjecture of Victor Ivrii (1980) says that in every billiard with smooth boundary the set of peri
Relações em Diff(C,0) e topologia de folhas na vizinhança de curvas invariantes Read more about Relações em Diff(C,0) e topologia de folhas na vizinhança de curvas invariantes Uma equação diferencial complexa e localmente dada por um campo de vectores da forma F(x,y)d/dx+G(
Symmetric powers of tautological bundles on Hilbert schemes of points on a surface Read more about Symmetric powers of tautological bundles on Hilbert schemes of points on a surface
(Non-)Displaceable Lagrangian Tori Read more about (Non-)Displaceable Lagrangian Tori Rigidity of Lagrangian intersections play a fundamental role in symplectic geometry and topology. In
Symplectic invariants and dynamics Read more about Symplectic invariants and dynamics I will present some recent results on symplectic invariants concerning the possibility of embedding
Domínio de Soluções para Equações Transversas a uma Fibração e Grupos Discretos Read more about Domínio de Soluções para Equações Transversas a uma Fibração e Grupos Discretos Um metodo recentemente introduzido em um trabalho com H. Reis permite medir a taxa de aproximação
Involutions on surfaces of general type with $p_g=0$ Read more about Involutions on surfaces of general type with $p_g=0$ Complex algebraic surfaces of general type with geometric genus $p_g=0$ have been studied by several
Lower bounds on Gromov width of coadjoint orbits through the Gelfand-Tsetlin pattern. Read more about Lower bounds on Gromov width of coadjoint orbits through the Gelfand-Tsetlin pattern. Gromov width of a symplectic manifold M is a supremum of capacities of balls that can be symplectica
Exponential families, Kahler geometry and quantum mechanics Read more about Exponential families, Kahler geometry and quantum mechanics Exponential families are a particular class of statistical manifolds which are important in statisti