Algebra, Combinatorics and Number Theory

Some recent developments in the study of fine rings

 

A ring (associative with identity) is called a fine ring if every nonzero element in it is the sum of a unit and a nilpotent element.  G. Cǎlugǎreanu and T.Y. Lam initiated the study of fine rings in  "Fine rings: a new class of simple rings.", J. Algebra Appl. (2016). In this talk, we review known results and discuss some new developments of this study.

On the stable equivalences between finite tensor categories

We aim to study Morita theory for tensor triangulated categories. For two finite tensor categories having no projective simple objects, we prove that their stable equivalence induced by an exact k-linear monoidal functor can be lifted to a tensor equivalence under some certain conditions.

---

Yuying Xu is currently a PhD student at Nanjing University and University of Stuttgart.

Existence of finitely presented intersection-saturated groups

(This is joint work with J. Delgado and M. Roy) For two subgroups of a group, $H_1, H_2\leq G$, we can look at the eight possibilities for the finite/non-finite generability of $H_1$, $H_2$, and $H_1\cap H_2$. For example, all eight are possible in a free non-abelian group except one of them, expressing the well-known fact that free groups are Howson: intersection of two finitely generated subgroups is again finitely generated.

$\mathcal{U}(\mathfrak{h})$-free modules and weight representations

The classification of simple modules for a simple Lie algebra $\mathfrak{g}$ seems beyond reach: it is complete only for $\mathfrak{sl}(2)$. However, some classes of simple $\mathfrak{g}$-modules are well understood, such the category of weight modules with finite dimensional weight spaces. Irreducible weight representations were classified due to the effort of S. Fernando and O. Mathieu.

On the strict topology of the multipliers of a JB$^*$-algebra

We introduce the Jordan-strict topology on the multipliers algebra of a JB*-algebra. In case that a C*-algebra $A$ is regarded as a JB*-algebra, the J-strict topology of $M(A)$ is precisely the well-studied C*-strict topology. We prove that every JB*-algebra A is J-strict dense in its multipliers algebra $M(A)$, and that the latter algebra is J-strict complete.

Application of Semi-Primitive Roots to the Computation of the Discrete Logarithm Modulo $2^{k}$

In 2004, Fit-Florea and Matula presented an algorithm for computing the discrete logarithm modulo  $2^{k}$ with logarithmic base 3. The algorithm is suitable for hardware support of applications where fast arithmetic computation is desirable.

Transposed Poisson structures on Block and Witt type Lie algebras

A transposed Poisson algebra  is a triple $(\mathcal{L},\cdot,[\cdot,\cdot])$ consisting of a vector space $\mathcal{L}$ with two bilinear operations $\cdot$ and $[\cdot,\cdot]$, such that

1. $(\mathcal{L},\cdot)$ is a commutative associative algebra;
2. $(\mathcal{L},[\cdot,\cdot])$ is a Lie algebra;
3. the "transposed" Leibniz law holds: $2z\cdot [x,y]=[z\cdot x,y]+[x,z\cdot y]$ for all 
$x,y,z\in \mathcal{L}$. 

Hom-algebra structures

In this talk, an overview will be presented about hom-algebra structures, with focus on foundations and recent advances on graded (color) quasi Lie algebras, quasi-hom Lie algebras, hom-Lie algebras and related hom-algebra structures. These interesting algebraic structures appear for example when discretizing the differential calculus as well as in constructions of differential calculus on non-commutative spaces.

Domino tilings in dimension 3

In dimension 2, a domino is a $2\times 1$ rectangle. Domino tilings of quadriculated regions have been extensively studied, with several deep and famous results.

The corresponding problems in dimension 3 (or higher) appear to be almost without exception much harder. In dimension 2, it is known, for instance, that for any quadriculated disk any two tilings can be joined by a finite sequence of flips: a flip consists in lifting two adjacent dominos and placing them back after a quarter turn rotation.