The Narasimhan-Ramanan map on the moduli space of Higgs bundles
Let $\mathcal{N}$ be the moduli space of rank two holomorphic vector bundles with fixed determinant of degree one on a curve of genus two. In a classic paper from 1969, Narasimhan and Ramanan proved that $\mathcal{N}$ is isomorphic to a quadratic line complex, giving an identification of $\mathcal{N}$ with an intersection of two quadrics in $\mathbb{P}^5$.