Title

Quadratic complexes, singular varieties and moduli

Let G be the Grassmannian of lines in P3 embedded in P5 as the Plücker quadric Q. The intersection

Let G be the Grassmannian of lines in P3 embedded in P5 as the Plücker quadric Q. The intersection of Q with a second hypersurface of degree d is what is called a complex of lines of degree d. When we consider the intersection of Q with a second quadratic hypersurface in P5, P, we have a quadratic complex. Let X = Q ∩ P be a quadratic complex that, in this talk, we assume to be non-singular, meaning X is non-singular. The quadric Q contains a 3-dimensional family of planes parametrizing lines in P3, going through a point. These are known in the literature as α-planes. An α-plane, α(p), intersects the quadric P in a conic Kα(p). The singular surface S associated to the quadratic complex X is defined to be the p ∈ P3 such that the plane α(p) corresponding to p intersects the quadric P in a singular conic Kα(p). S = {p ∈ P3 such that rank(Kα(p)) ≤ 2} All this is very classical and can be read for instance in the book by Griffiths & Harris, Principles of Algebraic Geometry. In a joint paper with H. Lange, (D. Avritzer e H. Lange, Moduli spaces of quadratic complexes and their singular surfaces, Geom. Dedicata V. 127 (2007) p. 177-179.), we studied the moduli spaces associated to this objects not only when X is non-singular but also in the singular case. It turns out that there is an equivariant map defined that associates to a quadratic line complex X its singular surface S. The inverse image of a given singular surface S is what is called the Klein variety. In this seminar, I will explain these ideas and their relationship with the moduli space of vector bundles a result that goes back to a famous paper of Narasimhan & Ramanan and was proved independently by P. Newstead.

Date and Venue

Start Date
Venue
Room 1.09

Speaker

Dan Avritzer

Speaker's Institution

Universidade Federal de Minas Gerais, Brasil

Files

Area

Geometry and Topology