On the Watson Lo-theory for index transforms
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We establish Watson’s and Plancherel’s theorems for general index transforms in Lo. It
involves the familiar Kontorovich-Lebedev, Mehler-Fock, Olevskii transforms and other
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1 Introduction and auxiliary results

In 1933 Watson proved [5, 6, 7] that integral transformations

o) =5 [ )

Rl )

are automorphisms in Lo(R;dz) and have reciprocal inversion formulas for almost all

x € R, in the form
< B,
fa) =4 [ g 3)

T dr u

fle) =2 / RGO (4)

T dr u
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if and only if a continual analog of the biorthogonality for sequences

| o) = mine.m), )

holds. Moreover, in this case the Parseval type equality takes place

T a@a@dr = [ @) dw. (6)
| |

Definition 1. Let

k(x) _ E*(s) r 1
TELQ(R+7d$) and - € Ly 5—@00,5—#200 :
* 1 1
hiz) € Ly(Ry;dr) and h(s) €L, (— — 100, = +z'oo) :
T 1—s5 2 2

be reciprocal Mellin pairs in Ly (see [5]), where

1 2
SUP_ noctcno | K" (5 + it) < Cf < 00,

1 2
SUDP_ oo ctecoo | P <— + it> < O < oo.

Then conditions (5) and
1
k*(s)h*(1—s) =1, Res= 5 (7)

are equivalent and k,h are called the conjugate Watson kernels. In the case h = k
condition (7) becomes |k* (5 + it)| =1 and k is called the Watson kernel.

Transformations (1), (2) are the Watson transforms and this class contains classical
sine and cosine Fourier transforms, the Hankel transform, the Hilbert transform, etc.
(cf. [5, 7]). In this paper we will construct an analog of the Watson theory for the
index transforms [7, 8] basing on the Lo-properties of the Kontorovich-Lebedev transform.
Concerning mapping properties of the index transforms, their composition structure and
a relationship with the Mellin convolution type transforms see, for instance, in [9, 10, 11].

In 1949 Lebedev proved [2] the Plancherel theorem for the Kontorovich-Lebedev trans-
form, which says that integral transformation

o) =4 [ Kl ©
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K(z,7) ”ﬂx/ \I‘ i) dy, (z,7) € Ry x Ry, 9)

is an isometric isomorphism in Ls(R,;dx) = Ly(R,) and for almost all z € R, the
inversion formula

where

fla) = 5o [ R mg(ryin (10)

where

K. 7) = @ TG Ox Kir f”dy, (e,7) € Ry x Ry, (1)

| tapar = [ ispas, (12)

are fulfilled. From the definitions of the kernels (9), (11) we see that

/Kdex—/KdeT—[// |Fzy|\/_ydt'

Here I'(i7) is Euler’s gamma-function of the pure imaginary number i7 and K, () is the
modified Bessel function [1, Vol. II], which satisfies the differential equation

and the Parseval equality

d*u du
2 2 2
z 224—22 (2% 4+ p)u =0,

and has the asymptotic behaviour

Ko = (2) "oz, o (13)

and near the origin
2Rl K (2) = 207 () + o(1), 2 — 0, u# 0, (14)
Ko(z) = —log 2 + O(1), = — 0. (15)

By using the same technique as for the Watson transforms (see [5] and Section 2.3 in [7]),
it is not difficult to establish an equivalence between the Kontorovich-Lebedev transforms
(8), (10) as unitary operators in Ls(R; ) and the values of the following integrals for their
kernels (Watson’s equalities)

/0 "R, T)R (n, 7)dr = min(€, ), (16)
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/000 K(z,&)K(z,n)dz = min(§,n). (17)

These key formulas will be extended in the sequel to characterize Lo-properties of general
index transforms, which were introduced in [7, Chapter 7]. In particular, we will get
Watson’s theorems for the Mehler-Fock, Olevskii transforms, index transforms involving
Whittaker’s functions and Meijer’s G-functions. General index integrals with the product
of two G-functions will be calculated.

Finally in this section we give useful integral representations of the real-valued modified
Bessel function K, (z) in terms of the Mellin-Barnes integrals, which will be employed
below. Indeed, we have (see [7])

Ki(z) 1 [riee o s 1 ir s 1 ir 1

= — 2T — -4 T2~ — = )a7%ds, v> = 18

JT 2m'/woo 4772 ;"1 2)v s >g (8)
2

L) 1P (s Ly (s L
NZS NG 270 J oo 2 4 2 2 4 2

\)

s 1
ds, v> =, 19
AERI o
22 1 2 Y+ioco ; ;
VT efﬁﬁw>:jj/ i (Sl M\ p(s LT
cosh(77/2) NZ3 21 ) ioo 2 4 2 2 4 2
xF(——%)xsds,O<7<— (20)

2 Watson’s theorems for index transforms

We begin with
Definition 2. Let ®2 € Ly(R;) and % € L, (1 —ioo, L +1ic0) be its Mellin
transform, where k*(s) is bounded on the line Re s = 3. Let the Kontorovich-Lebedev

~

kernels K(z,y), K(z,y) be respectively defined by (9), (11). The functions

Wite.n) = 4 [ (e @1
i) = 5 [ K ar 2
d

Wiz, y) = — /Ooo I@(x,t)Mdt, (23)
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Qu(x,y) = % /0 h /&(x,t)@dt, (24)

where (x,y) € Ry x Ry are called General Kontorovich-Lebedev kernels (GKL-kernels).
We have
Theorem 1. The following relations take place

| wite iy = minte.n), (25)
| a0 nde = minte.), (26)
/0 W, ) Wa(n, w)dy = min(€, ), (27)
| a0 e = minie.), (28)

if and only if k, h are conjugate Watson’s kernels.

Proof. To prove the sufficiency we observe, that integrals (21), (24) can be consid-
ered as the Kontorovich-Lebedev transforms (8), (10) of functions @, @ € Ly(R,),
respectively. Hence via Parseval identity (12) and biorthogonality condition (5) we get

the chain of equalities

| wienminan = [ reonon

_ /0 " O, )0 (2, m)d = min(€, ),

which leads to (25), (28). Analogously, integrals (22), (23) represent Watson’s transforms
(see (1)) of the kernels (9), (11), which belong to Ly by the first and second variable,
respectively. So using (6) and (16), (17) we derive conditions (26), (27).

For the necessity we assume that (25), (26), (27), (28) hold. Hence from (25), (28)
we get equality (5). This yields immediately that k, h are conjugate Watson’s kernels. To
treat relation (26) we write its left-hand side by using the Mellin -Parseval equality [5]

1 %fioo

/0 T Qe ) (e = = Qp (s, €)2(1 — 5, 7)ds, (29)

2mi 1ico

e () - ()0 (-5

where
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and ®(s,y) is the Mellin transform in Ly(R,) of the Kontorovich-Lebedev kernel K(z,y),

namely
N

1
O(s,y) = Lim.y o0 //NIC(:E,y) 2* 1 dr, Re s = 3 (30)
1

The function ®(s,y) can be expressed directly by using the Mellin transform of the mod-
ified Bessel function (see (18)). So we have

25=2 (v s 1 du s 1 du du 1
B(s,y) = P 8 p (2= ) M Res——-. (31
() == | (2 4+2) (2 4 2)|r(z'u)|’ es=5 BU

Further, from (17), (29) and (30) we find

1., 1 .
1 5"!‘100 . . 1 5100
5 - Qi (s, ) (1 — s,m)ds — 57 - D (1—35,8)P(s,n)ds=0.
Hence,
1 %-H'oo
5 [E*(s)h* (1 —s) —1]® (1 —s,£) P (s,n)ds = 0. (32)
571'00

Fixing a positive 17 and observing that [k*(s)h*(1 —s) — 1]® (s,n) € Ly (5 — ico, 5 + ic0),
we return to the originals in (32) and differentiate then with respect to £. Thus it gives
the equation

d o0
. /0 H,(2)K (x, €)da = 0,
with

1 Lyir
Hy(z) = Limw—— | [K*(s)h*(1 — ) — 1]® (s,7) a~*ds € La(R,),

2mi 1
where its left-hand side is the Kontorovich-Lebedev transform (8) of the function H,(z).
Therefore H,(z) = 0 and reciprocally we get immediately the equality (7), which is
equivalent to (5) and proves that k, h are necessarily conjugate Watson kernels.
Analogously, we write the left-hand side of condition (27) in terms of the Mellin
transform

1 .
§+zoo

oo . 1 . .
/ W€, )W O, y)dy = —— Wi (e, s)Wi (0,1 — s)ds,
0

27T7/ %—Z'OO

Wi () Lo (=)

where
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and U(y, s) is the Mellin transform in Ly(R, ) of the Kontorovich-Lebedev kernel K(y, z)
with respect to z, namely

N

N 1
U(y,s) =Lim.y o //NIC(y,x) 5! dx, Re s = 5
1

Consequently, appealing to (16) we obtain
1 %-‘rioo
L R o ) — W (61— ) U () ds =0,

2w Ja1
2

—100

which leads to the zero Kontorovich-Lebedev transform (10)

d <.
T /0 1, (2)K (&, 2)da = 0,

of the function H, ()

H,(z) = l.i.m.TﬂooL /ﬁi [E*(s)h*(1 —s) = 1]¥ (n,s) x°ds € Ly(Ry),

27TZ %—iT

which is zero as well by the same discussions as above. Therefore condition (7) takes place
and k, h are conjugate Watson’s kernels. Theorem 1 is proved.

Let us consider for GKL- kernels (21), (22), (23), (24) the corresponding four pairs of
integral transformations in Lo(Ry) (the index transforms)

sy = 3 [ Wiy (33)
) = 3 [ Wi (34)
oW =1 | Qe @, (35)
oW =1 | e @ (36)

The Watson kernel £ is called absolutely continuous if

We are ready to prove Watson’s type theorems for these pairs of integral transforms.
Taking, for instance, pairs (33), (35) we have the following results.
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Theorem 2. Let k, h be conjugate absolutely continuous Watson’s kernels and l%, h be
bounded. Then index transforms (33) ezist for almost all x > 0, form automorphisms in
Ly(Ry) with reciprocal inversions (35) for almost all y > 0

1) = [ 9 0)ag (oo (37

and the Parseval equality

| atom@s = [ as

if and only if condition (26) holds.
Proof. Necessity. Taking

)1, ifyelo,g],
fely) = {07 ity (£, 00).

which belongs to Ls(R,) we have from (21), (22), (33)

{he }
13 h(:):t)
g{ﬁ} dm/ Wi (x ydy——/ K(t,€) Q{Z}(x,f).

Consequently, by Parseval equality we find

/000 Qp(x, ) (z, n)dx = /000 gi(m)gZ(x)dx

-/ " )y = min(é,n),

which proves (26).

Sufficiency. Let condition (26) be true. Considering f(y) from the dense set in Lo
of smooth functions with compact support belonging to some segment [0,Y], Y > 0, we
substitute the expression of the kernel (21) into (33) and after integration by parts we
obtain the representation

s == [ [ K “””}f '(y) dtdy. (38)

Our goal now is to put the operator -2 4 inside the integral sign in (38). In fact, by using

the inequality |K;,(t)] < Ko(t), y > 0 [1], asymptotic formulas (13), (15) for the modified
Bessel functions and the property for k£ to be bounded, we get the estimate

/ ‘K(t,y)l%(:ct)’dt<const./ KC(t,y)| dt
0 0
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< t. .
cons /0 |F@u|/ t1/2 < 00

Hence we see that kernels €2 {i}(x, y) are continuous on R, X suppf, since via (22)

(e, y) = d%/oooica,y)k(ft)dt:/Ooox(t,y)z%(m)dt

and the latter integral is absolutely and uniformly convergent on the set R, X suppf
(see the estimate above). Therefore the integral in the right-hand side of (38) with the
derivative inside converges absolutely and uniformly with respect to x € R, and we have

sy = | o, 0 W) (39)

Thus using (26) we deduce

/Oogk() dx—//Qkxu du/ O, 0) f'(v) dvda

/f du/ min(u, v) dv—/ f(u du/ f'(v) vdv
—/0 f'(u) f udu——2/ f(u udu-/o [f (u)]*du

and we prove the Parseval type equality. Further, changing the order of integration in
(38) by Fubini’s theorem and then integrating by parts in the inner integral with respect
to y, we take into account formula (9) to obtain

9ery () = gy [f](x) = d:zc Oo{h }\/7/

This means that integral transforms (33) are compositions of the Watson transforms
(1), (2) and the Kontorovich-Lebedev transform (10). Since the Watson transform is
an automorphism in Ly(R,), we appeal to the Lo-theory of the Mellin transform [5],
Definition 1 and Parseval’s identity (12) to establish the following inequalities for the
square of Le-norm of the composition (40)

y)dy dt. (40)

1B < [loy ]|, < 1B (41)

Let f € Lo(R;). Then there exists a sequence {f,} of smooth functions with compact
support such that ||f — fu|l]2 — 0, n — oo. Hence from estimates (41) we immediately
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obtain that { 9y }[ fn]} are Cauchy sequences, which have corresponding limits in Lo,

namely 9gry = Lim, {g{ﬁ}[fn]} Therefore,

o0

im [ gulful (@)gnlful (2)de = / " gu(@)gn(a)de

= Ooo[fn<y>12dy - / Uy,

So it is proved that the Parseval equality is true for any f € Ly(R, ). Moreover, via (41)
we show that (33) are automorphisms in Ly. Now,

x o0

lim gk[fn]( Jdz = lim Wi(z,y) fn(y)dy

n—oo n—oo 0

/ Wi(z,y)f )dy—/ gr(x)dx

and differentiating with respect to = we obtain formulas (33), which are valid for almost
all z > 0 and any f € Ly(R,). Further, taking

)1, ifue0,y],
vt = {o, ifu € (y.00).

we have (see (9), (21), (22))

d [ {k(xt)}
g{} dx/W{}IUdu_% K(t,y)

Hence,

Q{Z}(ffay)-

| = [ o @00

and by differentiation with respect to y we prove the reciprocal inversion formulas (35)
for almost all y > 0. Theorem 2 is proved.

Theorem 3. Under same conditions as in Theorem 2 index transforms (35) ewist
for almost all x > 0, form automorphisms in Ly(R,) with reciprocal inversions (33) for
almost all y > 0

d o0
1) = 5 [ Wi W)y

and the Parseval equality

| oty = [ 1w
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if and only if condition (25) holds.
Proof. Necessity. Similarly, taking

{1, if z € [0, ],

Je(x) = 0, ifze (& 00),

which belongs to Ly(Ry) we have from (21), (22), (35)

{ }
{,;} dy/ Qy (x,y d:c——/ KC(t h(gt) W{Z}(é,y).

Consequently, by Parseval equality we find

/ W, ) Wi, y)dy = / " )l )y

= /0 h fe(@) fy(z)dzr = min(€, n),

which proves (25).
Sufficiency. Assuming that (25) is valid be true, we take again f(z) from the set of
smooth functions with compact support and after integration by parts we write (35) in

the form
k(xt)

wesy v dy/ / ’””t} £(z) dtdz.

In this case, differentiating under the integral sign with respect to y, the kernel (21) can

be written as (see (9))
]2 [ Kyy(t) k(at)
Wi(z,y) = \/;/O T(iy)| 72 dt,

where the latter integral is convergent absolutely and uniformly on the domain [0, X] x
[0,Y], X,Y > 0 by virtue of the estimate

[ Ul e, X[ Kl

dt < oo.

< t.
Ty #2 © =N ray) Jy 0

Hence in the same manner as in Theorem 2 we derive the representation

s == [ Wi@nre e
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and the composition

o= [ Kt [ {igmﬁ;} flw)da dt,

which allow to finish the proof of the theorem by the same discussions as above. Theorem
3 is proved.

Corollary 1. Let k(x) = h(z). Then the Parseval identity like (12) holds for trans-
formations (33) and their reciprocities (35)

| to@pae= [ if@)pa,

| watoras = [ r@pas

which are unitary operators.

Proof. Indeed, since the Kontorovich-Lebedev kernel KC(z, y) is real-valued the result
follows just putting h(z) = k(x) in the generalized Parseval equality like (6). Corollary 1
is proved.

Now we are going to prove the Watson theorem for the pairs (34), (36) related to
GKL-kernels (23), (24). The proof will be slightly different because we will use definitions
of these kernels by integrals, which are convergent in the mean square sense. In fact, from

(23), (24) we find (see (11))

A

W{Z}(q:, y) = l.i.m.NHOOW{]\%}(x, v),

where

Wi, e,y) = /1 /C(w,t){%g}dt, (42)

/N

and the convergence is with respect to the norm in Ly(R,;dy),

~

Q{ﬁ}(x, y) = l.i.m.N_,OOQf{VZ}(x, Y),

e LEAGY e

and the convergence is with respect to the norm in Ls(R,;dx). The problem is that
according to Stirling’s asymptotic formula for gamma-functions [1, Vol. I] and asymptotic

where
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behavior of the modified Bessel functions with respect to a pure imaginary index under

restricted domain of the argument [8], we obtain

K (x) _
L'(it)

(1), t— 0.

Therefore integrands (42), (43) are, generally, not summable functions in the Lebesgue
sense. Nevertheless, we have

Theorem 4. Let k, h be conjugate absolutely continuous Watson’s kernels and l;:, h be
bounded. Then index transforms (34) exist for almost all x > 0, form automorphisms in
Lo(Ry) with reciprocal inversions (36) for almost all y > 0

d [ 4
1) = 5 [ sy @i (o) (44)

and the Parseval equality

| atoimrs = [ i@ as

if and only if condition (28) holds. Conversely, index transforms (36) exist for almost all
x > 0, form automorphisms in Ly(R) with reciprocal inversions (34) for almost ally > 0

d [~ . .
fly) = d_y/o W{Z}(:U,y)w{:}(x)dx

and the Parseval equality

| intyinaids = [~

if and only if condition (27) holds.

Proof. The necessity of conditions (27), (28) can be proved exactly as in Theorems
2,3. Let us prove the sufficiency. Suppose that condition (28) is valid. Considering f(y)
from the set of smooth functions with compact support we obtain, as in the proofs of
previous theorems, the following representations of operators (34)

(y1)
gyry(@ / / K(a {h(yt} f'(y) didy. (45)

(yt)
g{ } - dx/ //N {h(y } fy) didy, (46)

Denoting by
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we can put the differentiation inside the latter integral owing to the absolute and uniform
convergence. Hence taking into account (43), we write

~

@ == [ AN s ) dy
h suppf ‘"

Meanwhile, with the generalized Minkowski inequality and via the boundedness of the
Kontorovich-Lebedev operator (10) we have the estimate of the Ly-norm || ||o (M > N)

ity ol < [ e -9 ], 16 a
upp
i 2 1/2 k 2 1/2
) ) ,
< const. ———| dt + ——— dt |f' ()| dy
supps | \Jym | ¢ No| ot
) 1/2 1/27]
1/N
const. / yot + / yot —0,M >N — oo,
1/M N t

where ){h(yot }‘ vt

converges to some function ¢ ( }( ) Moreover, the use of Schwarz’s inequality, definition
h

(43) of the GKL-kernels and s‘éralghtforward computations show

}‘ . Therefore {gf,g}(a:)} is a Cauchy sequence, which
h

[T @i @ = [ et
:]\;eréo/ / QN (2, u) )du/ooo QN (z,v) f'(v) dvdx

/ / O, u) f )du/wﬂh(x v) f'(v) dvdx
:/0 £ (u) du/ min(u,v) f dv—/ f(u du/ F/(v) vdv
—/Ooof’(u) udu——2/ f(u udu—/o [f(w)]?du

and we prove the Parseval type equality. On the other hand, appealing to equalities (45),
(46) we get

= yt)}
. ~N .
Nh_r}rcl)O i g{:}(:v)da:/() Py y(@)dr = — / / f'(y) dtdy
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= /(f g{i}(x)da:, (47)

where the passage to the limit under the integral sign in (46) is possible via the following

estimate
o0 o0 R 2 ]./2
ay< [0 ([ ko] @)
0 0

[ e
X </O |k(t yt)" dt)l/zdy:xl/ (/O |k§)| dt)l/Q/Oooyl/2|f’(y)|dy<oo.

Hence differentiating with respect to  in (47) we immediately obtain that ¢« (z) =
h

K(x y”}f< )

g{k}(x) for almost all z > 0. Further, changing the order of integration in (45) by
h
Fubini’s theorem and then integrating by parts in the inner integral with respect to y, we

find
i) =2 [ K [ {:ﬁzg } F(0) du.

Consequently, we complete the proof of Theorem 4 by using boundedness properties of
the Kontorovich-Lebedev and Watson transforms similarly as we did above. Analogously
we prove the converse part of the theorem. Theorem 4 is proved.

Remark 1. Under condition k(z) = h(z) Corollary 1 is true for transformations (34)
and their reciprocities (36).

3 Index transforms with non Watson kernels

In this section we will consider transformations (33), (35) with another interpretation of
the corresponding GKL-kernels (21), (22), having functions k,h as non Watson kernels
in the sense of Definition 1. Namely, despite k*(s), h*(s) still satisfy equation (7), one of
them is unbounded on the line Res = 3.
Definition 3. Let functions

e ) (11
PERE) ¢ [y(R,; Lo (= —ioo, =
€ o(Ry;dr) and 15 €12(3 100, 5 100 |,

where
s =1 (5 = 5 ) o

¥ 1 1
ehix) € Ly(Ry;dx) and fhfsi € Lo (— — 00, = + ZOO) ,
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where

h*(s)
r(:+

)

Oh(s) =

N |»

be reciprocal Mellin pairs in Lo, where

(1 1 i\ L [(1
or <§ —l—zt)‘ = SUP_ oo ctcoo ‘F (5 + 5) k (5 — Zt)’ < Ap < o0,

n (L — i)
Iz +%)

Sup—oo<t<oo

SAh<OO.

o5 (5 + Zt) ‘ = SUP_o<t<oo

Supfoo<t<oo

Let also condition (7) hold. Then we call k, h the extended conjugate Watson kernels.

It follows directly from Definition 3 that p, 6 are conjugate Watson kernels. Re-
turning now to (21), (22) and taking into account representation (31) we can identify
GKL-kernels Wy (x,y), Qx(z,y) in the Watson case employing again the Mellin-Parseval
equality. Precisely, we have (see (30))

Wi(z,y) = d%l;QLm ;::0 O(s,y)k*(1 — s)%sds
:%%ﬂiﬁ%&%mu&?m (19)
m@wriiigéiféu—awm@ff}s
= %2%” /;::O %p};(s)fl—__lds. (49)

On the other hand, making use integral representation (19), we return to original functions
under the inverse Mellin transform and we write GKL-kernels (48), (49) in the form

Wile.) =5 [ Hieon ) T, (50)

m@wwiﬁémnwww@w%, (51)

where ,
et /8 Y Klu/g(t2/8)

V2t Sy D)

H(t,y) du (52)
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is the kernel of the modified Kontorovich-Lebedev transform. Analogously, basing on the
formula (20) we derive the following relations

Wi d 1 %qun he(s)
) = ot [ e s (s
d 1 1 tico 1 s pl-s
d(1 — 'i-+-=1)06 d 53
o [ e (343 ) G s (53)
d 1 l-&-ioo Il_s
0 B(1 — s, y)h"
n(2,y) = da 2mi )1, (1=sy)h (8)1 — st
d 1 [a+i 1 s xts
= d(1 — 'l =+=)0;(s)— 4
— o e (43 ) i (54
d [~ dt
wh<x,y>:d— | Ao a5 (55)
Y Jo t
d [~ dt
—— t,y)0, (xt) — 56
r) =5 [ e T (56)
where 8 )
Y Ky 0(t7/8
H(t,y) = 28, (57)

V2t Jo cosh(mu/2)|T (iu)|
is the conjugate modified Kontor0v1ch—Lebedev kernel. Our goal is to prove analogs of
Theorems 1, 2, 3 for the kernels (50), (51), (55), (56).

Consider, for instance, transformations (35) with kernels (51), (56). Hence taking into
account (49), (54) by the Mellin-Parseval equality integrals (35) can be written in the
form

anlo) =l ) = oL [ m%pka—sv (5)ds. 59

d 1 3Hioo 3

anlof) = oo (3 -3)ha-ares o)

dy 27i

—100

where f*(s) € Ly (3 —ioo, 1 + zoo) is the Mellin transform in Ly(R,). Hence coming
back to the original functlons and invoking (52), (57) we obtain the representations

d o0
-+ / H(t, ) gy (1), (60)

/) = % / TRt y)ga (1), (61)

17
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where g,, (1), gs,(t) are conjugate Watson transforms like (1), (2) given in the form of
Mellin “s integrals in Lo

: 12 (p _
g{gfb}(t) = l.l.m.N_,OOQ—m/%iN {Qh} (S)f (1 — S)t dS. (62)

So we have proved the composition of index transforms (35) in terms of the Watson
transforms, the modified Kontorovich-Lebedev transform

H(y, f) = % / M, ) f0)e (63)

and its conjugate
. d >
.5 =5 [ Hen s (69
Y Jo

A relationship of (63), (64) with the Kontorovich-Lebedev transform (8) can be given
appealing again to (30), (31) and the Mellin-Parseval equality. Thus after simple manip-
ulations we obtain,

H(y, ) = d% / T K(ty) (L7 )0t (65)
and its conjugate .
w.H =7 / K(t y)(Lf) (1), (66)

where (Lf)(x), (L7 f)(z) can be interpreted as a generalized Laplace transform and its
inverse [7], namely

(Lf)(z) = l.i.m.NHm% /;:;N r <411 + g) (1 —s)z™?ds, (67)
(L' f) () = 1.i.m.N%o% / jNN %x_sds (68)
and we assume that
e =g [ PG+ | ()|
:%/_Z f*(%+it>2cosh?%<oo’ (69)
L Il = 2%2 /Z [ (% + it) 2cosh (%) dt < . (70)
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In particular, for f € Ly(R,) the right-hand side of (67) becomes

1 PRELS 1 s - 2
(142) 0o [ o,
0

—1300

2wt J1
2

which is a modification of the Laplace transform. Moreover taking into account (68), we
have the equalities

-1 (-1 s e —s .
(L L)) = (L7 L)) = Limy / P = fa)

Hence, in a similar manner we use (12), (65), (66) to derive the following Parseval identity
for the modified Kontorovich-Lebedev transform and its conjugate

/O " H(y, DA, fdy = / TLHWO@ (et = / @R (71)
and the equalities of norms

1A Ollzaee) = L7 f a0,

1 (-, Pl o) = LS| 2a(ey)-

Theorem 5. For the extended conjugate Watson kernels k,h in the sense of Def-
inition 3 and any f1, fa, which satisfy condition (70) transformations (35) with kernels
(51), (56) define almost everywhere functions wi(y, f1), wn(y, f2) € La(Ry) and the gen-
eralized Parseval equality

/0 " oy, (s fo)dy = / (@) falw)de (72)

holds. The reciprocal inversions for almost all x > 0 are transformations (33) with kernels
(50), (55).

Proof. In fact, calling representations (60), (61), (62) the Parseval equality (71) and
the properties of Watson’s kernels we obtain

/O " oy, )y, fo)dy = / " o (D (Ot = / " (@) (),

which proves (72). Moreover, with the boundedness properties of the Kontorovich-
Lebedev and Watson transforms, relations (63), (64), (65), (66) we have the norm in-
equalities

VAL fill ey < Nl fOllzages) < VAL fillae), (73)
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VAL N ol oy < Nwn(s )l < VAR fol sy ) (74)

where the norm ||L f5||1, &, ) is finite via conditions of the theorem.
In order to prove the inversion formulas we call again (60), (65) and inversion formula
(10) for the Kontorovich-Lebedev transform. As a result we find the reciprocity

(L, / Kz, 7)n(r, f)dr (75)

Taking a sequence {x,(7)} of smooth functions with compact support, which approxi-
mates wi (7, f) in Ly we get via (73) that

~

up(x) = dim /000 K(z, 7)xn(T)dT

has the limit (L 'g,,)(2) in Ly. Hence differentiating with respect to = under the integral
sign and integrating by parts we deduce (see (9), (11))

up(x) = — /000 K(x,7)x,(T)dr.

Hence taking the L-operator from both sides of the latter equality, we change the order
of integration. Calculating the inner integral with respect to x we obtain (see (57))

(Luy)(z /HJ]TXn (1)dr.

Now applying the conjugate Watson transform gy, , using (55), (56) and integrating by
parts, we find the composition of operators

(90,0 L)) = 7 [ Wil mha ()i

which yields the equality

/Ox(ggh o Lun)(x)dz = /OOO Wi, 7)o (7)dr-

Hence passing to the limit when n — oo and taking into account the boundedness and
invertibility properties of the involved operators in Ly we get

T

tim [ (go, © Lun) (x)de = / (g8, 0 9p0) (@)d = Dx f()dz

n—oo 0

= /000 Wi (z, T)wi (T, f)dr
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or for almost all x > 0 we prove the inversion formula (33) with the kernel (55)

fa) =g [ Wi i

Analogously, calling representations (61), (66) and basing on estimations (74) in the same
manner we establish the inversion formula

f(z) = d%: /000 Wi (z, T)wp (7, f)dT

for the transform wy,(7, f). Theorem 5 is proved.
Remark 2. Similar results we can prove for other index transformations with the
extended Watson kernels.

4 Examples

In this final section we will pay our attention on the concrete cases of GKL-kernels and
the corresponding index transforms. Among them we will find familiar classical index
transformations.

For instance, taking the Watson kernel

2 2 [
ko(z) = \/jsinrx = \/j/ cosx dr,
T 7 Jo

we substitute it in (21). Then differentiating with respect to y under the integral sign we
appeal to the relation (2.16.14.3) in [3, Vol. 2] and we get the following GKL-kernel

: 2
2 e sin xt T ‘F(l-i—ﬂﬂ

= | Ky (t)odt = it
Mﬂ”>wwwwl A= R ITy)]

1 iy 1 iy 3
)oy [~ 4+ 2, ~ -2 2
21(4+274 2a27 LU),

which is written in terms of the Gauss hypergeometric function [1, Vol. I]. Differentiating
the kernel Wy, (z,y) with respect to x we find similarly

gz V@ y) = T | Ke St = g

ox
1 w1 w1 9
F-+% - W 2 2
><21(4+2’4 27 9 x)

i 2
9, 2 /OOKZ» cosat 1 [F(A+%)]
0

21
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Thus calling the relation (22) of the kernel €2, (z,y), Theorem 2, Corollary 1 and equality
(25) we obtain the following Watson- Plancherel type theorem for the Olevskii transform

(c.t. [7]).

Theorem 6. The index transform

N|F WP iy 1y 1
= LiM.N—co— = —F R i T d

is an isometric automorphism in Lo(R,) with the reciprocal inversion

1 PGE+2)° N 1 iy 1 iy 1

and the Parseval identity
| m@Pas = [ 1)
0 0

Moreover, this statement is equivalent to the following Watson equality

Gl N G 31 Loy 1oy 3 o) p (Lo 1o 3 L),
- 2471 927 9 241 A X n Y

272 J, T (iy)|? 4 274 4 27

= min (1, 1), & n>0.
& n
Remark 2. According to relation (2.16.14.3) in [3, Vol. 2] GKL-kernel Wy, (x,y) can
be reduced to the combination of the generalized Legendre functions. Namely, we have
the representation

T (iy— = z? + 1)V4 . x i x
Wi (2,y) = ( . ) ( ) p {Psl/lz (_ 2) _Pz%( 2)} :
2|T(iy)| cos ((1+ 2iy)F) Vit Vitz
The Watson kernel

h(z) = \/ga _ cosz) = \/g/o sinz da

via (22), (35) and a differentiation under the integral sign leads to the following Plancherel
theorem.
Theorem 7. The index transform

Vale g g R(2eY
T (iy)] 1/N2 ' 2

[\CRGV]

: —:v2> f(x)zdz

Wi, (y) = Li.m. N oo
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is an isometric automorphism in Lo(Ry) with the reciprocal inversion

NP (3 iy |2 . .
f(fﬂ) — llmNHooI\/ﬁ } (4 + 2)| 2F1 (§ y 3 Zy. g

, + =, = ; ;—:v2> wr, (y)dy
™ Jin T (iy)| 4 274 2

and the Parseval equality

| ntray = [P

On the other hand, calculating directly the kernel Wy _(z,y) by using a series repre-
sentation for the cosine function and relation (2.16.2.1) in [3, Vol.2], we find the result

2 > 1 — cosat 22 |T (§+i—y)‘2
Wi (2,y) = —— Ky (t dt = 42
) = S, KO = S

3 1w 3 iy 3 9
B2+ 2 W g, 2 9
X3 2<4+274 27 527 J l‘)

in terms of the hypergeometric function 3F». Hence we have
Theorem 8. The index transform

z? N ‘F (§+i—y)|2 3 iy 3 iy 3
z) = Li.m. N oo 4271 .F <—+—, -—=1; 2;—;c2> d

is an isometric automorphism in Lo(Ry) with the reciprocal inversion

; 2
: L r@E+9 ~ 3,y 3y 3
= [.1. M. N0 E — <z Z _ < 1._2._2 2
fly) = Lim.y 3 [Ty /1/1\/3 2 4+2, 1 o b5 %e gk () z°dx

and the Parseval identity

| to@Pas = [ 15 Pay

The statement of the theorem is equivalent to the following Watson equality

L ’ (4' 2)‘3F2 ° %7__ﬂ7 1,2 9. ¢
272 J, T (iy)|? 4 274 2 2

3 iy 3 iy 3 9 min (£, 7)
ol 242 Z 22 1.2 9. dy = ———~ > 0.
X3 2<4+27 4 27 a27 ) 7)) ) 52772 ) €a77
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More general Watson kernel is given involving the Bessel function J,(z). Precisely, we
have

k,(z) = /Ox\/i J,(t)dt, v > —1.

Using the relation (1.8.1.1) in [3, Vol. 2| the latter integral can be expressed in terms of
the hypergeometric function 1 F

xv+3/2 3 v 7T v 2
k,(x) = El-4+= -+ =, 1, —— ).
@) = T+ 1! 2<4+2 FRECE 4)

Thus the corresponding GKL-kernel is related to the Olevskii transform and appealing to
the relation (2.16.21.1) in [3, Vol. 2| we easily obtain the formula

0 2¢r 1 o
a—kay(:c,y) = \/;m/o Ky (t)J, (wt)dt

1 a0 (1 +v +y)/2) |22F1 (1 trtiy ltv—iy _x2) '

V271 I(v + DT (iy)] 2 2

Therefore we get a generalization of Theorem 7 on an arbitrary v > —1 having
Theorem 9. The index transform

(@) = Ly LA+ V£ )/2) [
’ = Jar  D(v+ 1)|C(i)|

N . .
I+v ay 1+v ay 9 1
X F Y B v1/2g
\/1/N2 1( 9 +27 9 2a +Va x f(x)x T

is an isometric automorphism in Lo(R,) with the reciprocal inversion
.Z'V+1/2

T(v+1)Vv2r

N . ) . .
D (1 +v+iy)/2)] <1+u iy 1+v iy )

X : o + = —— — 5 Ltvi—a7 | w, (y)dy

/l/N [T(iy) 2T e T )

and the Parseval equality

| e wbdy= [ i@

We note that Theorem 7 is an immediate consequence of the previous statement when
v = % Putting v = 0 we arrive at the Plancherel - Watson theorem for the Mehler-Fock
transform [4, 7, §].
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Theorem 10. The index transform

NG

g V3o 2)Gi)] s

Pliy-1)/2(1 +22°) f(2)V/x dz

is an isometric automorphism in Lo(R,) with the reciprocal inversion

e (iy—1y/2(1 + 22%)
o=t [ [ ) M

and the Parseval equality
| mEwpdy = [P
0 0

Further, a direct calculation of the kernel Wy, (z,y) yields

2 3/24v T v+ltiy |2
Wi, (z,y) = / bolot) 5y Vo I 2 )
\/_]F zy\ t3/2 VT2v+3) (1 +v)  |D(iy)
v+l+wy v+1—w v 3 3 9
F. -+ —:1 1, — .
X“( R Rt R e B B

Hence we have a generalization of Theorem 8 (v = 1).
Theorem 11. Let v > —1. The index transform

y \/§$3/2+V
91, () = LN oo S T )

N |p (vEltiy|? 1 1— 3 3
/ T ( 2 )’-3 2(V+ +zy71/+ & e 1+u,z+—+1;—x2) f(y)dy
v TGy) 2

2 24 2 4
is an isometric automorphism in Ly(R,) with the reciprocal inversion

_Lim Ve o)
fly) = Li. N m@u+3)T(1+v)  [D(iy)]

N
v+1+ay 1/+1—@yy 3 v 3 9 3
F. e I R T 2
/1/N3 2< 5 , 5 2+4 +u,2+4+, x° | gr, (x) x

| lo@pde = [ ispay

and the Parseval identity
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The statement of the theorem is equivalent to the following Watson equality

e )
0

m(2v + 3)%I2(1 4+ v) T (iy)|?
v+l+iy v+1—9y v 3 v 3 9
E —+ =1 4+t 41—
><32< 5 ; 5 ,2+4, +V,2+4+, '3

v+1+wy v+1—9y v 3 v 3
><3F2( Y y—+—;1+u,—+—+1;—n2)dy

2 ’ 2 "2 4 2 4
_ min (&,7)
= @ & n>0.

The case of the Wimp-Yakubovich index transform with the Meijer G-function (see
[7, Ch. 7]) can be obtained by considering the Watson kernel of type

ko(z) = 2 / G <t2
0

where

2n,2m

T (b 3) TIT (52— o)
= 1;:1 k:;z x %ds.
LTI (Ca+ 5) TIT (45 + 5
2 k=1 k=1

Under the assumptions
v _ -7 .
Rebj>—§,j—1,-~-,m, Reaj<T,]—1,---,n,O§7<—

we see that the latter integrand has no poles in the strip —y < Re s < 1 —~. Moreover,

when m—n > [liw] +1, then the contour of integration (% — 100, % + z'oo) can be replaced
2

by the vertical line (7 — ico,y + i00) and we obtain the representation

G ( o | (an +3) (—%)) y+ioo kl;llr (be + ) k];[l I (52— a) y
on,2m | T _ - 2 ] Y s
(bin), (% - bm) 4:7mv_lOO [IT (—ak + g) [[T ($ n bk)
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where the latter integral converges absolutely. Thus via (9), (21) and (30) we find the
expression for the partial derivative with respect to = of the GKL- kernel Wy, (z,y),
namely

0 m,n
a WkG z, y \/>‘F ’ GQan <(l’t)2

B 1 1 et

l—s5 1 ay 1—s5 1 ay _
r AN 2 W) (g
% (2 4+2) (2 4 2>(@ ds

1, w1

itei—% (et
A
5 — b

_ 1 m,n—+2 2
= VR ] e (4‘”

Theorem 12. The index transform

Wk (y) = L. m.N_mm

N 2
m,n—+
/ G2(n+1) om 4z’
1/N

is an isometric automorphism in Lo(R,) with the reciprocal inversion

f( )_lsz—wo\/—/ m:—:-f (41’2

and the Parseval equality

1 wy

1 1
4" 201

(b

| oy = [ 1r)as

Now we will consider an example of index transforms involving the extended Watson
kernels. This transform is associated with Whittaker’s functions and was investigated in
[12]. In fact, following Definition 3, we take

k*(s) = {r(z—g—m)}l, h*(s):F<i+g—z’)\), AeER.

4, (ot
) (5B

(
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These kernels evidently satisfy equation (7) and k£* is unbounded on the line Re s =
Hence the corresponding GKL- kernels (49), (54) can be written in the form (cf. [12])

d o2 1 [atie O(s,y)  a° 20 g2y 1

N |+

~ Oydx 2mi i T(3+5—1i)) s V7| (iy

d o2 1 [atie 3 s z*
) B(s,y)T (2= 2 —in) g
dy n(2,y) = Oydx 2mi J1 i, (5,9) (4 2 ! ) P

_V 22T (53 —i(A+y) T (% —i(A—y)) oEa) 1
V[l (iy)| A\ 422 )
where W), ,(2) is Whittaker’s function [1, Vol. IIJ.

Theorem 13. Let fi, fo satisfy condition (70). Index transforms with Whittaker’s
function

L V3
N = L )

N
7 1
G Il 7 VAN (N d
1/N€ i\iy (4.1'2) fl('x)\/5 X,

V2L (3 —i(A+9) T (3 —i(A —v))
V|L(iy)|

N gy 1
X/ e®%) Wi)\,iy (4_:152) fz@)\/5 dx,

1/N

92(y) = Lim.y oo

are defined in Ly(R) and reciprocal inversion formulas hold

2 —iA+y)T (5 —i(A—y))
) =1 s .
file) = Lim.n—oo\[ =2 //N T (iy)|
X€(8x2)71VVi)\,iy (%ﬁ) gl(y) dya

2x N 2)—1 1 dy
= L0 N oo — G Wi [
f2($’> t.m.n T /1/N6 Aty 412 92<y) |F(Zy)’

as well as the generalized Parseval equality (72).
Finally, as an application we take two Watson kernels k¢, , kg, as Meijer’s G-functions

(see above)
te(a) =2 | G, (t?
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ko) =2 [ Ga, (#
; 2n2,2ma (dony ), (% —dmz)

and we use the Parseval equalities for the Kontorovich-Lebedev and the Mellin transform.
As a result we come out with the value of a general index integral of the product of two

G-functions, which involves many particular formulas containing, for example, in [3, Vol.
2]

(an + %)7 (_Enz)) dt

1 o0
. mi, ni+2 2
2 7 sinh 7TTG2(n1+1)7 oy 4x

ma, na+2 2
XG2(n2+1), 2ma (43/

— [ e, (7
0 I
1

2
— _Gm1+n2, ma+ny (f)
4y 2(ma+n1), 2(mi1+n2) Y
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