
HOPF SUBALGEBRAS AND TENSOR POWERS OF
GENERALIZED PERMUTATION MODULES

LARS KADISON

Abstract. By means of a certain module V and its tensor pow-
ers in a finite tensor category, we study a question of whether the
depth of a Hopf subalgebra R of a finite-dimensional Hopf algebra
H is finite. The module V is the counit representation induced
from R to H, which is then a generalized permutation module, as
well as a module coalgebra. We show that if in the subalgebra pair
either Hopf algebra has finite representation type, or V is either
semisimple with H pointed, projective, or its tensor powers sat-
isfy a Burnside ring formula over a finite set of Hopf subalgebras
including R, then the depth of R in H is finite. One assigns an non-
negative integer depth to V , or any other H-module, by comparing
the truncated tensor algebras of V in a finite tensor category and
so obtains an upper bound for depth of a Hopf subalgebra. For
example, relative Hopf restricted modules have depth 1.

1. Introduction and Preliminaries

Two modules are said to be similar if each module is isomorphic to
a direct summand of a multiple of the other: briefly formulated, each
module divides a multiple of the other. If the modules are finitely-
generated over a finite-dimensional algebra, similarity is equivalent by
the Krull-Schmidt theorem to their having the same constituent inde-
composables. A subalgebra B in an algebra A is said to have finite
depth if A⊗B (n+1) is similar to A⊗Bn for some n ≥ 0 as X-Y -bimodules
for any four choices of X, Y ∈ {B,A} [3, 22]: see below in this section
for the precise definition of depth and h-depth d(B,A) and dh(B,A).
It is rather easy to see that A⊗Bn divides A⊗B(n+1) for all n, whence
if A is finite dimensional and any one of Ae, Be, A ⊗ Bop or B ⊗ Aop

has finite representation type, the depth is finite, since the constituent
indecomposables of the tensor powers of A over B are increasing sub-
sets within a finite set of representative indecomposable modules from
isomorphism classes.
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The analogy for this in number theory is to ask if a sequence {an}∞n=1

of positive integers is affinely generated over the primes. For example,
this is the case if an = an for some integer a, but is not the case if
an = pn, a sequence of increasing primes. As a type of toy model for
what we do, say that the sequence {an} has depth m if am+1+j divides
a power of a1 · · · am+j for each j = 0, 1, 2, . . .. Then the sequence
an = an has minimum depth one, and the sequence an = pn has infinite
depth. As another example, the Fibonacci sequence {un} has infinite
depth, since upn is a subsequence of increasing primes [17, Theorem
179 (iv)]. A sequence {an} of minimum depth m for each m ≥ 1 may
be obtained from m natural numbers ui with gcd(u1, . . . , um) = 1 by
letting an = uq+1

r where n = mq+r for q ≥ 0, 1 ≤ r ≤ m. Of course the
analogy is far from perfect if we replace a ∈ N with a module in a finite
tensor category C [13] where it rarely has depth 1 (although relative
Hopf restricted modules are an exception, see below) and it is unclear
if it has finite depth in a category C of tame or wild representation
type.

In [3, Boltje-Danz-Külshammer] the depth of a finite group algebra
extensions K[H] ⊆ K[G], where K is a commutative ring, is shown
to be finite. The authors propose the problem of determining whether
depth of a Hopf subalgebra R in a finite dimensional Hopf algebra H is
finite [3, p. 259]. We take up this problem in this paper by showing that
any tensor power of the bimodule RHR is a functorial image of a smaller
tensor power of V := H/R+H where R+ is the augmentation ideal of
R; more precisely, H⊗Rn ∼= H ⊗ V ⊗n−1 as H-H-bimodules where the
unadorned tensor is the tensor in the finite tensor category MH , the
category of finite-dimensional right H-modules. We then define depth
of a module W in a finite tensor category C to be n if the truncated
tensor algebra Tn+1(W ) divides a multiple of Tn(W ). It follows that
Tn+m(W ) and Tn+m+1(W ) are similar in C for each integer m ≥ 0; let
d(W, C) denote the least such n. It is then shown that the depth of the
Hopf subalgebra d(R,H) ≤ 2 + 2d(V,MR). We note from this that
finite depth follows if V is projective, semisimple and H pointed, or V
is in a tensor category of finite representation type. In addition, the
result in [3] that finite group algebra extensions have finite depth is
recovered in Section 4, in the case of an arbitrary ground field. Along
the way, depth of relative Hopf restricted modules are shown to be 1
in Section 3, we extend a normality result of Masuoka in Section 2,
and depth of V as a G-module for a complex group algebra pair of a
corefree subgroup H ⊆ G is noted in Section 2 to be less than 2m + 1
where the permutation character takes m values in {0, 1, . . . , |G : H|}.
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1.1. Sketch of subalgebra depth. Let A be a unital associative al-
gebra over a field k. In this paper we will assume all algebras and
modules to be finite-dimensional vector spaces for the sake of staying
focused on the problem of Boltje et al, although much below remains
true without this assumption [22]. Two modules MA and NA are sim-
ilar (or H-equivalent) if M ⊕ ∗ ∼= qN = N ⊕ · · · ⊕ N (q times) and
N ⊕ ∗ ∼= rM for some r, q ∈ N . This is briefly denoted by M | qN and
N | rM ⇔ M ∼ N .

Let B be a subalgebra of A (always supposing 1B = 1A). Consider
the natural bimodules AAA, BAA, AAB and BAB where the last is a
restriction of the preceding, and so forth. Denote the tensor powers of

BAB by A⊗Bn = A⊗B · · ·⊗BA for n = 1, 2, . . . which again is a natural
bimodule over A and B in any one of four ways; set A⊗B0 = B which
is only a natural B-B-bimodule.

If A⊗B(n+1) is similar to A⊗Bn as X-Y -bimodules, one says B ⊆ A
has

• depth 2n+ 1 if X = B = Y ;
• left depth 2n if X = B and Y = A;
• right depth 2n if X = A and Y = B;
• h-depth 2n− 1 if X = A = Y .

valid for even depth and h-depth if n ≥ 1 and for odd depth if n ≥ 0.
For example, B ⊆ A has depth 1 iff BAB and BBB are similar [5, 22].

In this case, it is easy to show that A is algebra isomorphic to B⊗Z(B)

AB where Z(B), AB denote the center of B and centralizer of B in A.
Another example, B ⊂ A has right depth 2 iff AAB and AA ⊗B AB
are similar. If A = CG is a group algebra over finite group G and
B = CH a group algebra over subgroup H of G, then B ⊆ A has right
depth 2 iff H is a normal subgroup of G iff B ⊆ A has left depth 2
[20]; a similar statement is true for a Hopf subalgebra R ⊆ H of finite
index [4].

Note that A⊗Bn |A⊗B(n+1) for all n ≥ 2 and in any of the four natural
bimodule structures: one applies 1 and multiplication to obtain a split
monic, or split epi oppositely. For three of the bimodule structures, it
is true for n = 1; as A-A-bimodules, equivalently A |A ⊗B A as Ae-
modules, this is the separable extension condition on B ⊆ A. But A⊗B
A | qA as A-A-bimodules for some q ∈ N is the H-separability condition
and implies A is a separable extension of B [19]. Somewhat similarly,

BAB | q(BBB) implies BBB | BAB [22]. It follows that subalgebra depth
and h-depth may be equivalently defined by replacing similarity above
with A⊗B(n+1) | qA⊗Bn for some positive integer q [3, 21, 22].
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Note that if B ⊆ A has h-depth 2n − 1, the subalgebra has (left or
right) depth 2n by restriction of modules. Similarly, if B ⊆ A has depth
2n, it has depth 2n+ 1. If B ⊆ A has depth 2n+ 1, it has depth 2n+ 2
by tensoring either −⊗B A or A⊗B − to A⊗B(n+1) ∼ A⊗Bn. Similarly,
if B ⊆ A has left or right depth 2n, it has h-depth 2n + 1. Denote
the minimum depth of B ⊆ A (if it exists) by d(B,A) [3]. Denote the
minimum h-depth of B ⊆ A by dh(B,A). Note that d(B,A) < ∞ if
and only if dh(B,A) <∞; in fact, |d(B,A)− dh(B,A)| ≤ 2 if either is
finite.

For example, the permutation groups Σn < Σn+1 and their corre-
sponding group algebras B ⊆ A over any commutative ring K has
depth d(B,A) = 2n − 1 [7, 3]. Depths of subgroups in PGL(2, q),
twisted group algebras and Young subgroups of Σn are computed in
[15, 11, 16]. If B and A are semisimple complex algebras, the min-
imum odd depth is computed from powers of an order r symmetric
matrix of nonnegative entries S := MM t where M is the inclusion
matrix K0(B) → K0(A) and r is the number of irreducible represen-
tations of B in a basic set of K0(B); the depth is 2n + 1 if Sn and
Sn+1 has an equal number of zero entries [7]. Similarly, the minimum
h-depth of B ⊆ A is computed from powers of an order s symmetric
matrix T = M tM , where s is the rank of K0(A), and the power n at
which the number of zero entries of T n stabilizes [21]. It follows that
the subalgebra pair of semisimple complex algebras B ⊆ A always has
finite depth. In particular, a Hopf subalgebra of a semisimple complex
Hopf algebra has finite depth, since it is semisimple [26].

2. Tensor powers of bimodules and modules in tensor
categories

Let H be a finite-dimensional Hopf algebra over a field k with co-
product ∆, counit ε and antipode S. Suppose R is a Hopf subalgebra of
H. In this case ∆(R) ⊆ R⊗R and S(R) ⊆ R. Let R+ denote ker ε, the
counit restricted to R; e.g., r − ε(r)1 ∈ R+ for each r ∈ R. Note that
R+H is a coideal in H as well as right ideal. Form the module coalgebra
(and generalized quotient of a Hopf subalgebra) V := H/R+H where
h := h+R+H and ∆ induces the coproduct ∆(ha) = h(1)a(1)⊗h(2)a(2)
for every h, a ∈ H, an H-module morphism, as is the counit: V is a
coalgebra in the category MH = Mod−H. The next lemma is con-
cerned only with the right H-module structure on V (although the
given isomorphism is also a right comodule morphism).

Lemma 2.1. Let A be an algebra and M an A-H-bimodule. Then
M ⊗R H ∼= M ⊗ V as A-H-bimodules via m⊗R h 7→ mh(1) ⊗ h(2).
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Proof. Since rh = ε(r)h for every r ∈ R, this mapping is well-defined.
Of course the mapping is a left A-module mapping. Recall that in
the category of H-modules the tensor product of two modules U,W
has H-module structure given by (u ⊗ w)h = uh(1) ⊗ wh(2) for every
u ∈ U,w ∈ W,h ∈ H; the mapping in the lemma is a right H-module
morphism where this is the H-module structure on M ⊗ V .

Finally the mapping above has inverse mapping given by m ⊗ h 7→
mS(h(1)) ⊗R h(2), which is well-defined since S(r(1)h(1)) ⊗R r(2)h(2) =
S(h(1))⊗R ε(r)h(2) for all r ∈ R, h ∈ H. �

A lemma may be similarly established for a bimodule HNA where
H ⊗R N ∼= H/HR+ ⊗N via a mapping h⊗R n 7→ h(1) ⊗ h(2)n.

Note that dimV = dimH
dimR

by an application of the Nichols-Zoeller
freeness theorem; in fact, H ∼= R ⊗ V as left R-modules (for more
structure, see [26, Chap. 8]).

Lemma 2.2. The right H-module V = H/R+H ∼= tRH where tR is a
nonzero right integral in R.

Proof. Note the epimorphism V → tRH, h 7→ tRh. Let q = dimV
and h1, . . . , hq ∈ H be a basis for the free module RH. Suppose h =∑q

i=1 rihi and tRh = 0, equivalently
∑

i ε(ri)tRhi = 0, then ε(ri)tR = 0,
so ε(ri) = 0 for each i = 1, . . . , q. Then h ∈ R+H. It follows that
V → tRH is also injective. �

From this we (C. Lomp and I) note that if tR is a normal element
in H, i.e., tRH = HtR, then V is a trivial R-module, and our results
below, Def. 3.1 and Theorem 4.1, together with the characterization of
depth two Hopf subalgebras as ad-stable [4], shows that R is ad-stable
in H. As a corollary then is one direction of Masuoka’s theorem that
tR is central in a semisimple Hopf algebra H iff R is ad-stable in H.

At this point, it is informative to extend [22, Prop. 2.6] from its
hypothesis of unimodularity on H, with thanks to C. Young for the
ι-method.

Corollary 2.3. Suppose R ⊆ H is a Hopf subalgebra of h-depth 1.
Then R = H.

Proof. Assume that ι : H ⊗ V ↪→ qH is an H-H-bimodule monomor-
phism, which must exist since H ⊗R H | qH for some q ∈ N . Let tH
be a nonzero right integral in the space of integrals

∫ r
H

; let α ∈ H∗ be
its modular function, an augmentation of H defined by xtH = α(x)tH .
Then for each v ∈ V and h ∈ H, hι(tH⊗v) = ι(htH⊗v) = α(h)ι(tH⊗v),
which implies that ι(tH ⊗ V ) ⊆ q

∫ r
H

, since each of the q component
is an augmented Frobenius algebra (H,α) with 1-dimensional space of
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left integrals ktH [19]; it follows that q ≥ dimH
dimR

. Also ι(tH ⊗ v)h =

ι(tHε(h(1)) ⊗ vh(2)) = ι(tH ⊗ vh), then since ι(tH ⊗ V ) ⊆ q
∫ r
H

, it fol-
lows that ι(tH ⊗ vh) = ι(tH ⊗ vε(h)), whence vh = vε(h) for every
v ∈ V, h ∈ H. In particular, 1Hh = h = ε(h)1H for each h ∈ H, so
that dimV = 1. Hence dimR = dimH. �

In the two extreme cases of Hopf subalgebra, when R = H and
R = k1H , we have in the first case V = kε, which is simple (but not
projective unless H is semisimple), and in the second case, V = H,
which is free over H or R (and therefore not semisimple unless H or R
is so).

If R is normal, or ad-stable in H, then R+H = HR+ so V = H/HR+

is a trivial right R-module (given by the counit). Then taking M = H
in the lemma, H⊗RH ∼= H⊗V ∼= HdimV as H-R-bimodules, the right
depth two condition. The left depth two condition is similarly obtained
from the variant of the lemma just mentioned; the converse that a left
(right) depth two Hopf subalgebra is right (left) ad-stable is shown in
[4].

Note that V ∼= k ⊗R H, since the annihilator ideal of the R-module
k is R+. It follows that the H-module V is the induced module of the
one-dimensional trivial R-module; thus, VH is R-relative projective.

Example 2.4. Consider the group algebras R = k[H] and H = k[G]
where H ⊆ G is a subgroup of a finite group. Then V ∼= k[G/H]
the permutation module of right cosets (via g 7→ Hg). Suppose for
a moment that k = C ; the character of V is the induced principal
character η := 1H

G. This character is faithful if H is corefree in G,
i.e., there is a trivial intersection of conjugates of H [18]. In this
case, the Brauer-Burnside theorem [18, p. 49] guarantees that each
irreducible character ψ of G is a constituent of a power ηn where
0 ≤ n < m ≤ |G : H| and m is the number of distinct values
taken by η(g) as g ∈ G. Putting Prop. 2.7 together with Def. 3.1,
one obtains that ηm−1 contains each irreducible character as a con-
stituent, so the depth d(V,Mod−CG) ≤ m − 1. Applying the main
theorem 4.1, we then see that the depth of the corefree subgroup is
dC (H,G) ≤ 2m ≤ 2|G : H|.

Because of the example, we suggest referring to the right H-module
V as the generalized permutation module of the Hopf subalgebra pair
R ⊆ H.

Theorem 2.5. The right H-module V is projective if and only if R is
semisimple if and only if VR is projective.
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Proof. (⇐) If R is semisimple, then k is a projective R-module by
Maschke’s theorem. Since V = IndHRk, it follows that VH is projective.
(Alternatively, choose tR in the lemma above to be an idempotent.)

(⇒) If V is projective, then the short exact sequence

(1) 0→ R+H → H
π→ V → 0

splits, where π(h) = h; let σ : VH → HH satisfy π ◦ σ = idV . Consider
e := σ(1). Then e2 = e since h = h′ iff h − h′ ∈ R+H, e = 1 and
σ(1)e = σ(e) = σ(1). It follows that V ∼= eH via h 7→ eh. Note that
for every r ∈ R we have er = eε(r), since r − ε(r)1H ∈ R+H. Also
note that from e− 1 ∈ R+H it follows that ε(e) = 1.

Let {hi}, {fi : HR → RR} be dual bases for the free module HR.
Then for each i, fi(e) is a right integral of R, thus fi(e) = citR for
some scalar ci and a fixed nonzero right integral tR in R. Then e =∑

i hifi(e) = (
∑

i cihi)tR, so that ε(tR) 6= 0
Maschke⇒ R is semisimple.

Finally, if VH is projective, so is VR since HR is free. If VR is pro-
jective, then V ⊗R H is a projective H-module. But the natural epi-
morphism V ⊗R H → V is R-split, so H-split since V is R-relative
projective. Then VH is projective. �

For example, Lorenz has proven that if H is involutory and non-
semisimple Hopf algebra where char k = p, then p divides the dimension
of any projective H-module [25]: thus if H is a finite group algebra k[G],
then p||G|, and if a Hopf subalgebra k[H], where H ≤ G, has projective
permutation G-module V , then p| dimV = |G : H|; indeed consistent
with the proposition since k[H] is semisimple iff p does not divide the
order |H|.

Note that the short exact sequence (1) may be derived from the
induction functor, −⊗R H (where RH is faithfully flat) applied to the
R-module sequence:

(2) 0→ R+ → R
ε→ k → 0.

Let H ⊗R · · · ⊗R H (n times H) be denoted by H⊗Rn, a natural
H-H-bimodule for each n ≥ 1.

Proposition 2.6. For each integer n ≥ 2, H⊗Rn ∼= H ⊗ V ⊗(n−1) as
H-H-bimodules.

Proof. The statement is true for n = 2 by the lemma with M = H and
A = H. Then by induction with n > 2,

H⊗Rn ∼= H⊗R(n−1) ⊗R H ∼= (H ⊗ V ⊗(n−2))⊗R H ∼= H ⊗ V ⊗(n−1)

where we apply the lemma with the H-H-bimodule M = H ⊗ V ⊗(n−2)
in the last isomorphism. �
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The isomorphism in the proposition is given by

x⊗ y ⊗ · · · ⊗ z 7→ xy(1) · · · z(1) ⊗ y(2) · · · z(2) ⊗ · · · ⊗ z(n),
with inverse mapping given by

u⊗ v ⊗ w ⊗ · · · 7−→ uS(v(1))⊗R v(2)S(w(1))⊗R w(2) · · · .

Proposition 2.7. If W is a finite-dimensional right H-module coal-
gebra, or dually a left H-module algebra, then W⊗n |W⊗(n+1) for each
n ≥ 1 as H-modules (if H is semisimple, n ≥ 0). In particular, this
applies to V , which additionally satisfies kR |V .

Proof. Notice that the coproduct ∆W : W → W⊗W is a split monomor-
phism of H-modules with respect to the counit εW ; hence, ∆W ⊗
id⊗(n−1) : W⊗n → W⊗(n+1) is a split monic for each n. Note that
εW : W → k is an epi of H-modules, which is split if H is semisimple
(equivalently, kH is projective).

If W is a right H-module coalgebra, then observe that W ∗ is a left
H-module algebra via the dual algebra structure and the left H-module
structure 〈hw∗, w〉 = 〈w∗, wh〉 for all w∗ ∈ W , w ∈ W and h ∈ H. It
is not hard to show that (W ∗)⊗n ∼= (W⊗n)∗ from which is follows from
W⊗n |W⊗(n+1) that (W ∗)⊗n | (W ∗)⊗(n+1). Alternatively, the face and
degeneracy maps A⊗n → A⊗(n±1) of a left H-module algebra A are left
H-module arrows; in particular, A⊗n |A⊗(n+1).

Finally note that V is a right H-module (and right R-module) coal-
gebra, and the mapping k → V given by λ 7→ λ1 splits εV as an R-epi,
since r = ε(r)1 for each r ∈ R. �

If H is a right semisimple extension of R (i.e. all H-modules are
(H,R)-relative projective), then kH |VH , since kH is relative projective
and the image of the R-split epi εV : VH → kH . The next proposition
finds a projective cover and injective hull for the cyclic H-module V =
H/R+H.

Proposition 2.8. The projective cover of V is eH
π−→ V for some

idempotent e ∈ H with ε(e) = 1 and kerπ := C ⊆ eRadH; there
is equality of subsets if and only if VH is semisimple. There is an
idempotent f ∈ H such that the H-module fH is the injective hull of
V and contains tRH.

Proof. It is a result of a well-known theorem for projective covers (e.g.
[23]) which applied to π, results in a direct decomposition of H = eH⊕
(1− e)H for some idempotent e ∈ H, where (1− e)H ⊆ kerπ = R+H
(⊆ H+, so ε(e) = 1) and C, the kernel of the restriction of π to eH,
a small submodule. Then C is contained in Rad eH = eRadH. Then
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π : eH → V is the projective cover. Since RadV = Rad eH/C =
(eRadH)/C = 0 iff C = eRadH.

By Lemma 2.2, V ∼= tRH as right H-modules; but tRH ↪→ HH ,
which is projective and injective. By standard injective hull theory
(for example, large submodules and essential extensions [23]) there is an
injective submodule fH ⊆ H, where f 2 = f since it is also projective,
such that fH ⊇ tRH is an essential extension. �

3. A module’s depth in a tensor category

We define an object W ’s depth in a finite tensor category C that
is naturally isomorphic to a category MH of finite-dimensional right
modules over a finite-dimensional Hopf algebra H over any field k. (A
tensor category is an abelian category with a tensor that is distributive
over direct sums, and has a unit module, in this case kε. Following [13]
a tensor category D is a finite tensor category over an algebraically
closed field k̃ if every object has finite length, D has finitely many
simple objects, and each simple X has projective cover P (X). This is
equivalent to D ∼= Mod−A for some finite-dimensional algebra A over
k̃. If C has a fiber functor F : D → k̃−Vect, a Tannakian reconstruction
shows that D ∼= Mod−A where A is a finite-dimensional Hopf algebra.)
Proposition 2.6 provides a clue that defining a depth of W in MR

is useful for obtaining an upper bound on depth d(R,H) of a Hopf
subalgebra R ⊆ H. Note the unit object 1 = kε in MH . We make
use of the truncated tensor algebra of W , Tn(W ) := 1 ⊗W ⊕ (W ⊗
W ) ⊕ · · · ⊕W⊗n, since Tn(W ) clearly divides Tn+1(W ) in the abelian
category C for each n ≥ 0.

Definition 3.1. Say that the object W has depth n ≥ 0 in C if
Tn+1(W ), equivalently W⊗(n+1), divides a multiple of Tn(W ); briefly,
W⊗(n+1) | qTn(W ). Note that tensoring this by −⊗W shows that if W
has depth n in C, then it has depth n+ 1. Denote the minimum depth
of W , if it exists, by d(W, C). Write d(W, C) = ∞ if W has no finite
depth.

Note that for coalgebras and algebras in the category C we may
simplify the definition of depth n object with the equivalent condition
W⊗(n+1) | qW⊗n by making use of Proposition 2.7. Next are a series
of lemmas for computing depth of modules in finite tensor categories;
we switch back to our point-of-view in the module category MH of
a finite-dimensional Hopf algebra H. The following lemma may be
applied to either inclusions of Hopf subalgebras or epis to Hopf algebra
quotients.
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Lemma 3.2. Given a Hopf algebra homomorphism f : R → H, if
depth d(W,MH) ≤ n, then depth of its pullback or restriction along f ,
d((Wf ,MR) ≤ n.

Proof. We first note that the functor U 7→ Uf is a tensor functor from
MH → MR, since (U ⊗W )f = Uf ⊗Wf as R-modules follows from
the coalgebra morphism property of f , and 1f = 1R from εH ◦ f = εR.

If W⊗(n+1) |Tn(W ) for integer n ≥ 0, then Wf
⊗(n+1) |Tn(Wf ) follows

readily. �

For example, if R is an ad-stable Hopf subalgebra of H, and V its
generalized permutation module, then V = H/R+H = H, the quo-
tient Hopf algebra, which is a relative Hopf module over itself: these
have depth d(V,MH) ≤ 1 as noted below in Corollary 3.9. Then by
lemma applied to H → H, d(V,MH) ≤ 1, then applied to R ↪→ H,
d(V,MR) ≤ 1. On the other hand, R+H = HR+, so that V = H/HR+

is a trivial right R-module with depth 0.

Lemma 3.3. Given a module W in MH let Pn(W ) be the full set of
pairwise nonisomorphic constituent indecomposables of Tn(W ). Then

(1) Pn(W ) ⊆ Pn+1(W ), with equality iff W has depth n in C;
(2) If U |W in C, then d(W, C) ≤ n implies d(U, C) ≤ n+ |Pn(W )|.

Proof. The inclusion follows from Krull-Schmidt applied to Tn(W ) ⊕
W⊗(n+1) ∼= Tn+1(W ). The opposite inclusion Pn(W ) ⊇ Pn+1(W ) fol-
lows in the same way from Tn+1(W ) ⊕ ∗ ∼= qTn(W ) (indeed, equiva-
lently).

If U |W , then using distributive law, one obtains U⊗n |W⊗n for each
n ∈ N . It follows that Pn(U) ⊆ Pn(W ) = Pn+k(W ) for all k ≥ 0.
Then Pn+s(U) = Pn+s+1(U) for s = |Pn(W )|. �

Suppose s = |{ isomorphism classes of simples in MH}| = |{ iso-
morphism classes of projective indecomposables in MH}| = |{ iso-
morphism classes of injective indecomposables in MH}| (via bijection
X 7→ P (X)) [12].

Proposition 3.4. If W is a projective module in MH , then its depth
d(W,MH) ≤ s.

Proof. The nonzero tensor powers of W are projective modules inMH

([13, Prop. 2.1], also noted below for k not necessarily algebraically
closed). Therefore the indecomposable summands of W⊗n are projec-
tive indecomposables of which there are N different modules. Since
Pn(W ) ⊆ Pn+1(W ) for all n > 0, and these are bounded above by a
finite set of cardinality s+ 1, it follows that Ps(W ) = Ps+1(W ), so W
has depth s in C. �
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A Hopf algebra H has the Chevalley property, i.e., the tensor product
of two simple H-modules is semisimple iff the radical ideal of H is a
Hopf ideal [25]. If this is not the case, we must distinguish a proper
subset, the maximal nilpotent Hopf ideal Jω(H) ⊂ radH [8]. As a note
of caution for the next proposition, consider the special case where k
has characteristic p and H is a group algebra k[G]. It is noted in [8] that
Jω(H) = R+H for the Hopf subalgebra R = k[Op(G)], where Op(G)
is the largest normal p-subgroup of G, based on the result in [27] that
(nilpotent) Hopf ideals in H are of the form Hk[N ]+ for normal (p-)
subgroups N ≤ G. Thus for this Hopf subalgebra pair V ∼= H/Jω(H)
is the Hopf algebra k[G/Op(G)] a semisimple H-module iff Op(G) is
the Sylow p-subgroup iff k[G] has the Chevalley property.

Proposition 3.5. Suppose the radical ideal J of a Hopf algebra H is
a Hopf ideal (e.g., H is a pointed Hopf algebra [26, 5.2.8]). If W is a
semisimple H-module, then d(W,MH) ≤ s.

Proof. If the radical is just a coideal, it is in fact a Hopf ideal, in which
case the set of semisimple A-modules is closed under tensor product
[27, cor. 8]. Then W and its powers are semisimple modules made up
of s different simples. The rest of the proof proceeds as the proof of
the previous proposition. �

The paper [27] proves that if an H-module W has annihilator ideal
that contains no nonzero Hopf ideal of H, then the tensor H-module
algebra T (V ) is faithful as an H-module. The paper [24] classifies
pointed Hopf algebras H of finite corepresentation type over an alge-
braically closed field,; equivalently, classifies basic Hopf algebras H∗

of finite representation type. The paper [1] classifies triangular Hopf
algebras over C with the Chevalley property.

The generalized permutation module V = H/R+H is a semisimple
R-module in the following three circumstances:

• if R is an ad-stable Hopf subalgebra (as noted above);
• if the radical ideal J of R is left ad-stable in H (for a short

computation shows that HJ ⊆ JH, then V J = 0);
• if radR ⊆ radH and VH semisimple.

Finally suppose W is a module in the finite tensor category MH

having only a finite number of indecomposables, say t of these; i.e.,
the Hopf algebra H has finite representation type. In this case we
have the proposition below by an argument similar to the proofs in the
propositions directly above.

Proposition 3.6. If H has finite representation type, then a module
W has depth d(W,MH) ≤ t.
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Example 3.7. Let H = Uq(sl2(C )) at the 4’th root of unity q = i,
which is generated as an algebra by K,E, F where K2 = 1, E2 =
0 = F 2, EF = FE, KE = −EK, and KF = −KF . This is an 8
dimensional algebra with coalgebra structure given by ∆(K) = K⊗K,
∆(E) = E⊗1+K⊗E and ∆(F ) = 1⊗F +F ⊗K, from which the rest
of the Hopf algebra structure follows. Let R be the Hopf subalgebra
of dimension 4 generated by K,F (isomorphic to the Sweedler algebra
considered below in Example 4.3). Note that neither R nor J := radR
are ad-stable, and that H is a basic algebra, self-dual and pointed. We
denote the simples from H → H/J ∼= C 2 by S1, S2.

Consider V := H/R+H as an R-module, which is spanned by 1
and E, where 1K = 1, EK = −E, and F annihilates. From The-
orem 2.5, one notes that VR is not projective, also obtainable from
Doi’s observation: the module coalgebra V is projective iff there is a
right R-module map ψ : C → R such that εV ψ = εR [11]. Supposing
ψ(1) = a1 + bK + cF + dFK, we conclude from ψ(1)K = ψ(1) that
a = b, c = d, from ψ(1)F = 0 that a = 0 = b and from ε(ψ(1)) = 1
that 2a = 1, a contradiction.

The projective cover is eH where e = 1+K
2

and π : eH → V has
kernel C spanned by eF and eEF . Note that VH is not semisimple,
since C 6= eRadH. However, VR is a semisimple module, since the
radical ideal J in R (spanned by F and FK in R+) satisfies HJ = JH.
The number of R-simples is N = 2.

The injective hull of V ∼= tRH where tR = F (1+K) is W = (1−K
2

)H

(so the idempotent f = 1−K
2

in this application of Prop. 2.8). This is
because EF (1 − K) ∈ tRH spans a space that nontrivially intersects
nonzero submodules of W .

The composition series of eH and fH have length 4 and are non-
unique, the radical length is 3: eA ⊃ eJ ⊃ eJ2 ⊃ {0}. The Cartan map
K0(H) → G0(H) is given by [xH] 7→ 2[S1] + 2[S2] for both x = e, f .
By [24, 3.1], a Hopf algebra that is basic has finite representation type
(f.r.t.) if and only if it is a Nakayama algebra (i.e. each projective
indecomposable has a unique composition series [2]). It follows that H
does not have f.r.t.

3.1. Relative Hopf modules. Next we show that finite-dimensional
relative Hopf restricted modules have depth 1. Again let R ⊆ H be a
Hopf subalgebra pair. Recall that a vector space N is a right (H,R)-
Hopf module if N is a right R-module, and N is a right H-comodule
such that (nr)(0)⊗ (nr)(1) = n(0)r(1)⊗n(1)r(2) for all r ∈ R, n ∈ N ; if N
is moreover the restriction of an H-module, we refer to it as a relative
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Hopf restricted module. The next proposition extends [26, Lemma
3.1.4] for our purposes.

Proposition 3.8. Given a relative Hopf module N and right H-module
M , the following is an isomorphism of right R-modules:

(3) N. ⊗M ∼= N. ⊗M.

where the right-side is the tensor product in MR.

Proof. The forward mapping is given by n ⊗m 7→ n(0) ⊗mn(1). The

inverse mapping is given by n′ ⊗ m′ 7→ n′(0) ⊗ m′S(n′(1)), where S is
the composition-inverse of the antipode. �

Since H and Hn, for each free module over a Hopf algebra H, are
Hopf modules and relative Hopf modules (with respect to any Hopf
subalgebra), it follows from the Proposition that P ⊗M is projective
in MH for any projective P ∈MH for any ground field k.

Corollary 3.9. Suppose N is a right (H,R)-Hopf restricted module.
Then depth d(N,MR) ≤ 1.

Proof. Let M = N in the proposition, so that N ⊗N ∼= (dimN)N in
additive notation, a depth 1 condition in Mod-R. �

If one asks when the module V , formed from a Hopf subalgebra
R ⊆ H, is a relative Hopf restricted module, a necessary condition for
this is that VR is free, since relative Hopf modules are free by a result of
Nichols-Zoeller [26]. So a necessary condition for V to be relative Hopf
module is that dimH = (dimR)2r for some integer r ≥ 1, and that
R is semisimple by Proposition 2.5. If V is a relative Hopf module, it
follows from Theorem 4.1 below that the depth d(R,H) < 5. The next
proposition provides a sufficient condition for V to be a relative Hopf
module; the proof is straightforward and left to the reader.

Proposition 3.10. Given R ⊆ H a finite Hopf subalgebra pair, sup-
pose there is a module morphism φ : VR → HR of modules that is
simultaneously a coalgebra morphism. Then ρ := (V ⊗ φ) ◦∆V defines
a right H-comodule structure on V making V an (H,R)-Hopf module.

It follows from the injectivity of ρ and ∆V that φ must be injective.

Remark 3.11. It would be interesting to pursue the depth of the
left H- or R-module algebra V ∗ where V = H/R+H is a right H-
module coalgebra studied briefly in Section 2. As noted there, V ∗

has a left H-module algebra structure; there is also an augmentation
V ∗ → k defined by v∗ 7→ v∗(1H). Since one shows that(V ⊗n)∗ ∼= (V ∗)⊗n

as left H-modules, it follows that the depths are equal, d(V,MH) =
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d(V ∗,HM) (via usual duality for finite-dimensional algebra). It is also

clear that V ∗ ↪→ H∗ as the dual of the epi H
π→ V , so that the smash

product V ∗#H ↪→ H∗#H ∼= MdimH(k), embeds in the Heisenberg
double of H [26, Ch. 9].

4. Upper bounds for depth

Again suppose R is a Hopf subalgebra of a Hopf algebra H with V
denoting the right R-module H/R+H.

Theorem 4.1. The depths of a Hopf subalgebra and its module V are
related by d(R,H) ≤ 2d(V,MR)+2. If H is a semisimple Hopf algebra,
then dh(R,H) ≤ 2d(V,MH) + 1.

Proof. Given a bimodule HMR let T̂n(M) := M ⊕ · · · ⊕ M⊗Rn de-
note the truncated tensor algebra from degree 1 up to n. Suppose
d(V,MR) = n. Then Tn+1(V ) | qTn(V ) as right R-modules for some
q ∈ N . It follows from tensoring by HH. ⊗ − and Prop. 2.6 that
T̂n+2(HHR) | qT̂n+1(HHR). Note then that H⊗R(n+2) | qT̂n+1(HHR). But
H |H⊗R2 | · · · |H⊗R(n+1), so that H⊗R(n+2) | q(n+ 1)H⊗R(n+1) as H-R-
bimodules; this is the right depth 2n+ 2 condition.

If H is semisimple, it is a separable algebra, whence H |H⊗2 as
H-H-bimodules. Suppose d(V,MH) = n. Then arguing as in the
first paragraph, one arrives at H⊗R(n+2) | q(n + 1)H⊗R(n+1) as H-H-
bimodules, which is the h-depth 2n+ 1 condition. �

For example, if R is ad-stable in a finite-dimensional H, then V has
d(V,MR) = 0, whence d(R,H) ≤ 2 [20]. Another example: if radR is
ad-stable in a pointed Hopf algebra H, then d(R,H) < ∞, since V is
a semisimple R-module (see Section 3).

Example 4.2. The 4- and 8-dimensional Hopf subalgebra pair in Ex-
ample 3.7 has d(R,H) ≤ 6 since d(V,Mod-R) ≤ 2.

Example 4.3. Consider the Taft Hopf algebras H = Hn = 〈g, x | gn =
1, xn = 0, gxg−1 = qx〉 where q is a primitive n’th root of unity in the
ground field k. These are Hopf algebras, where g, x, is a grouplike,
skew primitive element, of dimension n2 (for each n the algebras are
examples of basic algebras, Nakayama algebras, pointed Hopf algebras,
algebras having finite representation and corepresentation type, as well
as monomial algebras [24]). Consider the cyclic group subalgebra R ∼=
kZ n affinely generated by g in H. The category Mod−R is semisimple
with n simples; thus the theorem computes the depth d(R,H) ≤ 2n+2
by an application of Prop. 3.5. We improve this by computing V and
its depth. Since V = H/R+H is n-dimensional, and R+ is spanned by
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1−gj for j = 1, . . . , n−1, V is spanned by xi where i = 0, 1, . . . , n−1.
The R-module action on V is given by 1gi = 1, xjgi = q−ijxj. (Thus V

is a free R-module via VR → RR, xn−i 7→ ei where ei = 1
n

∑n−1
j=0 (q−ig)j.)

We compute that V ⊗ V ∼= nV , since

xj ⊗ xk 7→ (0, . . . , x[j+k], 0, . . . , 0)

where the nonzero term occurs in the k+ 1’st coordinate and [j + k] is
congruent to j + k (mod n) and in the interval 0 ≤ [j + k] < n: this

follows from noting (xj⊗xk)gi = q−i(j+k)xj⊗xk. For example, if n = 2

1⊗ 1 7→ (1, 0) 1⊗ x 7→ (0, x)

x⊗ 1 7→ (x, 0) x⊗ x 7→ (0, 1)

It follows that T2(V ) | (n + 1)T1(V ), thus d(V,MR) = 1. Then by
theorem d(R,H) ≤ 4. It is computed by other means in [29] that

d(R,H) = 3. (As an H-module V ∼= e0H where e0 = 1+g+···+gn−1

n
is

projective (indecomposable) but not semisimple; cf. Prop. 2.5.)

Again let R ⊆ H denote a Hopf subalgebra. The ground field k is of
arbitrary characteristic.

Corollary 4.4. If either R or H has finite representation type (e.g.,
either is semisimple or Nakayama), then depth d(R,H) is finite.

Proof. If R has f.r.t. then the right R-module V = H/R+H has finite
depth by an application of Proposition 3.6. Then d(R,H) < ∞ from
the theorem above. If H has f.r.t. with n nonisomorphic indecompos-
ables in all, then the right H-module V has depth d(V,MH) = n, and
its restriction along R ↪→ H has depth d(V,MR) ≤ n by Lemma 3.2.
Thus d(R,H) ≤ 2n+ 2 by theorem. �

An example of a Hopf subalgebra R ⊆ H where neither R nor H has
f.r.t. and the generalized permutation module VH is neither semisimple
nor projective is char k = p, G a finite group with noncyclic Op(G) 6=
the Sylow p-subgroup of G, and R = k[Op(G)] ⊂ H = k[G]; see the
discussion above Prop. 3.5, Prop. 2.5 and [28]. However, this example
has finite depth for another (Burnside-Mackey-theoretic) reason, as we
see next.

Suppose a finite set of Hopf subalgebras Ri ⊆ H have induced mod-
ules Vi = H/R+

i H for i = 1, . . . , n, where the modules Vi enjoy a tensor
product theorem, or Burnside ring formula; then each depth d(Ri, H)
is finite, as we record below, noting the classical case where H is a
group algebra.
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Corollary 4.5. Suppose Vi ⊗ Vj ∼=
∑n

k=1⊕ akijVk for n3 nonnegative

integers akij. Then d(Ri, H) ≤ 2n+2 for each Hopf subalgebra Ri ⊆ H.
In particular, finite group algebra extensions have finite depth [3].

Proof. Since each Vi and its tensor powers V ⊗ni are direct sums of mul-
tiples (of the form akiia

r
kia

s
ri . . .) of V := {V1, . . . , Vn}, the chain of V-

constituents

· · · ⊆ {Vj ∈ V : Vj |Tr(Vi)} ⊆ {Vj ∈ V : Vj |Tr+1(Vi)} ⊆ · · ·

stops strictly increasing after at most n steps r = 1, . . . , n. Thus
Tn+1(Vi) | qTn(Vi) for some large enough q. Apply the theorem to con-
clude that d(Ri, H) ≤ 2n+ 2.

Let H1,H2 < G be two subgroups of a finite group. Consider the
group algebras k[Hi] ⊆ k[G] a Hopf subalgebra pair where the permu-
tation module Vi = IndGHi

k := (k|Hi
)G has dimension |G : Hi| (i = 1, 2).

The tensor product theorem (valid as well for a commutative ground
ring) [9, 10.18] applied to Vi gives

(4) V1 ⊗ V2 ∼=
∑

x−1y∈D

⊕(k|xH1∩yH2)
G

where D is a set of representatives of (H1,H2)-double cosets in G and
yHi denotes the conjugate subgroup yHiy

−1. Thus given a subgroup
H and its associated permutation module V , let I be the finite index
set of conjugate subgroups of H and their intersecting subgroups, i.e.
I = {xH ∩ · · · ∩ zH : x, . . . , z ∈ G}, n = |I| and Vi the permutation
modules associated with each these, beginning with V1 = V . Then the
formula (4) for V ⊗2 and its extension to Vi ⊗ Vj are indeed formulas
as in the hypothesis of the corollary. Thus, d(V,Mod−k[G]) ≤ n, then
apply Lemma 3.2 and Theorem 4.1. �

For example, if H�G, then |I| = 1; if G is a Frobenius group and H
is the complementary subgroup, then |I| = 2. Based on [7, Section 6],
one might show the depth of V ≤ the minimum number of conjugates
of H intersecting in the core of H.
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