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Abstract

In this paper we analyse the existence of a certain type of symmetry in the context
of discontinuous maps. The classical notions of symmetry cannot be applied due to the
existence of discontinuities and a broader version using a measure-theory perspective
is introduced. We show that a group structure is also present under the new type of
symmetry and derive results which are analogous in nature to results in the theory of
continuous maps. Our motivation stems from examples of symmetric patterns arising
in simulations with the Goetz map.
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1 Main Statements and Definitions

Neglecting sets of zero measure is a standard technique in Ergodic theory. Proving results
for Lebesgue-almost every point in a measure space or defining properties for Lebesgue-
almost every point implies disregarding sets of zero measure. In our paper, we make use,
once again, of this technique in order to generalise the concept of symmetry for discrete
dynamical systems. As far as we are aware, this has never been published nor has this
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been given a theoretical ground from which one can attempt to generalise the whole theory
of continuous symmetric maps. This is a first step in pursuing that goal.

First and foremost, let X denote some Euclidean space Rn and let λ denote the usual
n-dimensional Lebesgue measure. The maps which shall be considered in this paper have
the following structure. Let T : X∗ → X be a transformation defined and continuous on a
set X∗ ⊂ X whose complement - the singularity set, S := X\X∗- is assumed to have zero
Lebesgue measure. The case when X∗ = X implies that T is continuous everywhere. Since
we are primarily interested in the case when X∗ 6= X, the singularity set is simply the set
of points where T is discontinuous. Therefore, by definition of continuity, we conclude that
X∗ has to be open. Furthermore, its complement has to have empty interior (otherwise S
would not have zero measure) and thus, it has to be dense as well. For our purposes, T
must also satisfy the following condition: λ(Z) = 0 ⇒ λ(T−1(Z)) = 0 given Z ⊂ X (*),
where T−1(Z) := {x ∈ X : T (x) ∈ Z}.

Since X∗ is an open set, it must be made of countably1 many connected components2,
namely, X∗ = ∪n

k=0Pk, where each Pk is open and connected, and n ∈ N ∪ {∞}. This
partition, inherited from the structure of T , induces a coding map, χ, according to the
following rule: χ(x) = ω0ω1 . . . ωn . . . , with ωi ∈ N, for all i, if and only if Tn(x) ∈ Pωn .
Sets of points having the same coding will be called cells and shall be represented by Kω

if χ(x) = ω for every x ∈ Kω, where w is a right-infinite word. The collection of all cells
is denoted by K. Obviously, the coding map cannot be defined uniquely on points which
will eventually fall on the singularity set, namely those that belong to the exceptional set
E := ∪∞i=0T

−i(S). Hence, we consider χ not being defined on E which, in turn, has zero
Lebesgue measure as it follows from condition (*).

1.1 Symmetry in an almost-everywhere sense

Let us now define the concept of symmetry bearing in mind that T might possess a non-
empty set of discontinuities. All results concerning the issues raised in this section are
provided in Section 2.1.

Definition 1 We say that σ is an a.e.-symmetry of T if the complement of {x ∈ X :
Tσ(x) = σT (x)} has zero Lebesgue measure.

In order to define a.e.-reversing-symmetries we have to go through some subtleties.
First of all, we generalise the notion of invertibility so that it fits our context (see Section
2.1). We leave the details out so that readability is enhanced in this section. Afterwards,
one has to carefully deal with the equalities Tρ(x) = ρT−1(x) and ρT (x) = T−1ρ(x) which
are equivalent in the continuous case (see Lemma 4). Having done so, it is natural to define
the following:

1Note that Rn admits a topology spanned by a countable basis.
2Usually called atoms in this context.
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Definition 2 We say that ρ is an a.e.-reversing-symmetry of T if the complement of
either {x ∈ X : Tρ(x) = ρT−1(x)} or {x ∈ X : ρT−1(x) = Tρ(x)} has zero Lebesgue
measure.

From the definitions presented previously, it is natural to say that T is essentially
equivariant if it possesses an a.e.-symmetry and essentially reversible when it possesses an
a.e.-rev.-symmetry. One can then show (see Proposition 6) the set of a.e.-symmetries and
a.e.-reversing-symmetries forms a group.

Propositions 7 and 8 complete our analysis by establishing results concerning the sym-
metry properties of cells, codings and exceptional sets.

1.2 Examples of a.e.-symmetry from planar piecewise rotations

A piecewise rotation T is a piecewise continuous map acting on Rn in the following way.
Let P = {P0, . . . , Pm−1} be a collection of disjoint open polytopes such that Rn = ∪m−1

i=0 P i.
For every x ∈ Pi, let T (x) := Ri(x) := Ai(x−Ci) + Ci where Ai ∈ SO(n) is a orientation-
preserving matrix and Ci ∈ Rn is the centre of rotation.

In this section we are concerned with the special case of n = 2 and m = 2 which is
known as the Goetz map since it was first studied by Arek Goetz in his PhD thesis [Goetz,
1996].

1.2.1 The Goetz map

Here we describe all possible a.e.-(rev.)-symmetries for Goetz maps and the resulting
admissible symmetry groups. A Goetz map is defined for every z ∈ C (we use C instead
of R2 for simplicity of calculations) as follows,

G(z) :=
{

eiα0(z − C0) + C0, if Re(z) < 0
eiα1(z − C1) + C1, if Re(z) > 0

where α0, α1 ∈ [0, 2π[, C0 6= C1
3∈ C, and, as per usual, Re(x + iy) = x.

Proposition 1 If G is such that α0 = −α1 and C0 = −C1 then G is essentially-
equivariant for the a.e.-symmetry σ.z = −z (see Figure ??-left)). If G is such that α0 = α1

and C0 = −C1 then G is essentially-equivariant for the a.e.-symmetry σ.z = −z (see Fig-
ure ??-right).

Furthermore, there are no other cases of essential-equivariance with respect to Dn, for
Goetz maps.

Let ρa be the reflection on the line passing through both centres of rotation and ρb

the reflection on the line passing through the origin and perpendicular to the previous
one. We refer to Figure ?? (see Appendix) in which we give a geometric construction of
quasi-invertible Goetz maps.

3The case when C0 = C1 degenerates into a piecewise rotation on S1.
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Proposition 2 Every invertible Goetz map is essentially-reversible for ρa. Furthermore,
ρa and ρb are the only admissible a.e.-reversing-symmetries (see Figure ??).

Corollary The admissible groups of symmetry of a Goetz map are Z2 and D2 .

Case (i) includes maps with only one reversing-symmetry and other maps where there
is just one symmetry, whereas case (ii), concerns those maps with a group of symmetry
generated by one symmetry and one reversing-symmetry. Both of them generate normal
subgroups isomorphic to Z2.

1.2.2 Examples with Zn-symmetry

From the results obtained for the Goetz map we are led to believe that examples with
Zn-symmetry should be found considering maps with n atoms. However, the existence of
symmetries of order m (= #P) may prove to be quite restricting for a piecewise continuous
map T possessing a redundant atom, that is, an atom Pi such that Ti(Pi) ⊂ Pj for
some j.

Suppose σ is a symmetry of order m and Pi is a redundant atom. Thus, we can write
{ik}m−1

k=0 as a sequence of indices such that i = i0 and σ(Pik) = Pik+1
, for all k < m − 1.

Assume that T (Pi) ⊂ Pir . Then,

Ti1(Pi1) = Ti1σ(Pi0) = σTi0(Pi0) ⊂ σ(Pir) = Pir+1

Applying this successively we conclude that Tk(Pk) ⊂ Pir+k(mod m)
for all k and so

T is an trivial example since its coding map produces only one word which is periodic.
Therefore, in order to obtain examples with cyclic symmetry we must avoid redundant
atoms.

For this purpose we let Pn denote the collection of partitions of C into n cones with
vertex on the origin and angle at the vertex θ := 2π

n . Let z1 ∈ C and take zk := eikθ.z1.
We then define a piecewise rotation T on C with partition P := {P0, . . . , Pn−1} ∈ Pn and
induced rotations Rk := eiα(z − zk) + zk such that T (z) = Rk(z) if and only if z ∈ Pk,
where α ∈]0, 2π[ is a common angle of rotation.

It can be easily seen that any piecewise rotation constructed in this way is
Zn-equivariant. Let σ.z := eiθ.z and suppose z ∈ P1 ∈ P without loss of generality.
Thus,

σT.z = σR1.z = σ(eiα(z − z1) + z1) = ei(θ+α).z − eiα.z2 + z2

and,

Tσ.z = R2σ.z = eiα(σ.z − z2) + z2) = ei(θ+α).z − eiα.z2 + z2

since σ(Pk) = Pk+1(mod n) and σ.zk = zk+1(mod n) by construction. Check Figure ?? for
examples with Z4-symmetry 4.

4In order to simplify the codings we have considered only four atoms. Other partitions would have
increased the complexity of our programming considerably.



Discontinuous Maps exhibiting Symmetry 5

2 Proofs of all results

2.1 Properties of a.e.-symmetries

Given an element of O(n), say σ : Rn → Rn, let ΣT
σ := {x ∈ X : Tσ(x) = σT (x)} denote

the set of σ-equivariance of T .

Proposition 3 If σ is an a.e.-symmetry of T then ΣT
σ = X∗ ∩ σ−1(X∗).

proof: Let U(x) := Tσ(x) − σT (x). Obviously, U is continuous at every point
in X∗ ∩ σ−1(X∗), which is an open set since X∗ is open and σ−1 is linear. In partic-
ular, given x ∈ X∗ ∩ σ−1(X∗) there is an open ball B such that x ∈ B ⊆ X∗ ∩ σ−1(X∗)
and U|B is continuous. Since λ(X\ΣT

σ ) = 0, we conclude that B∩ΣT
σ must be dense on B.

By continuity of U|B and connectedness of B it follows that U|B ≡ 0 since U|B∩ΣT
σ
≡ 0.

In particular, x ∈ ΣT
σ .

For any point x in the complement of X∗∩σ−1(X∗) either T (x) or Tσ(x) is not defined
hence the inclusion ΣT

σ ⊂ X∗ ∩ σ−1(X∗) follows. �

In particular, we can conclude from Proposition 3 that the definition of a.e.-symmetry
coincides with the classical notion of symmetry in the setting of continuous maps since in
that case X∗ = X.

Let us now denote Ti := T|Pi
. We shall say that T is quasi-invertible whenever the

following conditions are satisfied:
(C1). Ti is an homeomorphism on its image, for every i;
(C2). Ti(Pi) ∩ Tj(Pj) = ∅, for every i and j 6= i;
(C3). λ(X\T (X∗)) = 0;
(C4). λ(Z) = 0 ⇒ λ(T (Z)) = 0, and Z ⊂ X.
Conditions (C1) to (C3) allow us to consider the map T−1 : T (X∗) → X, which assigns

T−1(x) := T−1
i (x) whenever x ∈ Ti(Pi) and satisfies the following properties:

1. The singularity set S−1 := X\T (X∗) has zero Lebesgue measure,
2. T (X∗) is open and its connected components are {Ti(Pi)}i∈N,
3. TT−1 ≡ Id and T−1T ≡ Id at every point in Y := T (X∗)∩X∗, whose complement

has zero Lebesgue measure.
Additional condition (C4) ensures that T−1 has the same properties as T , as defined

in the first paragraph of this section. It also implies that T−1 is a quasi-invertible map.
In the remainder, T will be taken as being quasi-invertible. Let ρ : Rn → Rn be a

linear isometry and let us define ΠT
ρ,1 := {x ∈ X : Tρ(x) = ρT−1(x)} and ΠT

ρ,2 := {x ∈
X : ρT−1(x) = Tρ(x)}.

Lemma 4 Given a quasi-invertible map T , λ(X\ΠT
ρ,1) = 0 if and only if λ(X\ΠT

ρ,2) = 0,
for any linear isometry ρ.

proof: Assume that λ(X\ΠT
ρ,1) = 0. Let y ∈ Π, where,

Π := X∗ ∩ T−1(ΠT
ρ,1) ∩ ρ−1T (X∗) ∩ T−1ρ−1(X∗) .
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Since y ∈ X∗∩T−1(ΠT
ρ,1) there must exist a unique x ∈ ΠT

ρ,1 such that T (y) = x. Therefore,

Tρ(x) = ρT−1(x) ⇔ TρT (y) = ρ(y) .

Moreover, since y ∈ T−1ρ−1(X∗) we know that ρT (y) ∈ X∗ which implies that
T−1TρT (y) = ρT (y). Finally, we can state that T−1ρ(y) is well defined since
y ∈ ρ−1T (X∗). Consequently,

TρT (y) = ρ(y) ⇔ ρT (y) = T−1ρ(y) .

Now, it suffices to show that λ(X\Π) = 0 because Π ⊆ ΠT
ρ,2 by the previous argument.

Obviously,

λ(X\Π) ≤ λ(X\X∗) + λ(X\T−1(ΠT
ρ,1)) + λ(X\ρ−1T (X∗)) + λ(X\T−1ρ−1(X∗)) .

By assumption, λ(X\X∗) = 0. In general, if a map f : X → X is invertible then
X\f(Z) = f(X\Z) for every Z ⊂ X. In our setting, given Z ⊂ X and a quasi-invertible
map T , it is true that X\T (Z) ∩ Y = T (X\Z) ∩ Y , where Y = X∗ ∩ T (X∗), as defined
previously. Therefore, X\T−1(ΠT

ρ,1)∩Y = T−1(X\ΠT
ρ,1)∩Y . Since λ(X\Y ) = 0, it follows

that λ(Z ∩ Y ) = λ(Z) which, in turn, implies that,

λ(X\T−1(ΠT
ρ,1)) = λ(T−1(X\ΠT

ρ,1)) .

It turns out, by condition (*), above, that λ(T−1(X\ΠT
ρ,1)) = 0 since λ(X\ΠT

ρ,1) = 0.
Similar arguments, using also the fact that both ρ and ρ−1 are isometries, show that
λ(X\ρ−1T (X∗)) = λ(X\T−1ρ−1(X∗)) = 0. Thus, λ(X\Π) = 0.

Analogously, we can prove that λ(X\ΠT
ρ,2) = 0 assuming that λ(X\ΠT

ρ,1) = 0. �

If ρ is an a.e.-rev.-symmetry of T then its ρ-reversibility set is ΠT
ρ := ΠT

ρ,1∩ΠT
ρ,2, which

is a set whose complement also has zero Lebesgue measure. Analogously to the equivariant
case we have the following result.

Proposition 5 If ρ is an a.e.-rev.-symmetry of T then ΠT
ρ = Y ∩ ρ−1(Y ).

proof: Let U1(x) := Tρ(x)− ρT−1(x) and U2(x) := ρT (x)− T−1ρ(x). Simply note that
U1 is continuous on X∗ ∩ ρ−1T (X∗) and U2 is continuous on T (X∗) ∩ ρ−1X∗. All other
arguments follow accordingly. �

Again, notice that the definition of a.e.-rev.-symmetry coincides with the classical
notion of reversing-symmetry in the setting of continuous maps as it follows from the
proposition above.

As in the continuous case, one can still generate a group of a.e.-symmetries.

Proposition 6 The set of a.e.-(reversing)-symmetries of a piecewise continuous map is
a group.
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proof: Let σ be a symmetry of T . Let x ∈ σ(Σσ) = σ(X∗) ∩ X∗ by Proposition 3.
Therefore, both T (x) and Tσ−1(x) are well defined. Moreover, there must exist y ∈ Σσ

such that x = σ(y) and σT (y) = Tσ(y). This implies that,

σTσ−1(x) = σT (y) = Tσ(y) = T (x) .

Hence, Tσ−1(x) = σ−1T (x) .Since the complement of σ(Σσ) has zero Lebesgue measure
we conclude that σ−1 is a symmetry of T . For the reversible case it suffices to consider
x ∈ T (X∗) ∩ ρ(T (X∗)) given a reversing-symmetry ρ.

Given two symmetries, σ and γ say, we choose x ∈ Σγ ∩ γ−1(Σσ). Thus,

σγT (x) = σTγ(x) since x ∈ Σγ

= Tσγ(x) because γ(x) ∈ Σσ .

Once again, Σγ ∩γ−1(Σσ) is a set whose complement has zero Lebesgue measure. The
remaining cases follow similar arguments. Therefore, the set of all (rev.)-symmetries is a
group. �

Given a symmetry of T of order r, that is, σr ≡ Id, we extend the singularity set
to Ŝ := ∪r

k=1σ
k(S). Not only the new singularity set is symmetric, i.e., σ(Ŝ) = Ŝ, but

also the new partition of X̂ := X\Ŝ = ∪n
k=0P̂k (where n ∈ N ∪ {∞}) has the property

that, for every i there must exist a j such that σ(P̂i) = P̂j . Hence, ΣT
σ = X̂, provided we

have extended the singularity set. In what follows, we assume that the singularity set is
extended (hence disregarding the hat notation).

Let E(m) := ∪m
k=0T

−k(S) denote the exceptional set of order m. We shall also write,
by slight abuse of notation, σ(i) := j whenever, σ(Pi) ⊂ Pj .

Proposition 7 Let σ be a symmetry of T . Then, the following statements hold:
(i) σ(E(m)) = E(m), for all m ∈ N;

(ii) σT k(x) = T kσ(x) for all k ∈ N if and only if x /∈ E;
(iii) χ(x) = ω0ω1 . . . if and only if χ(σ(x)) = σ(ω0)σ(ω1) . . . for every x /∈ E.

The proof of this result is a simplified version of the proof of Proposition 8.

Corollary In particular: σ(E) = E , σ(Kω) = Kσ(ω) for every cell Kω ∈ K and σ(O+
T (x)) =

O+
T (σ(x))5 if and only if x /∈ E .

Let us now consider the case of reversing symmetries. Given a rev.-symmetry of T
of order r, that is, ρr ≡ Id, we extend the singularity set to Ŝ := ∪r

k=1ρ
k(S ∪ S−1).

It then follows that ρ(Ŝ) = Ŝ and, moreover, ρ(P̂i) = P̂j where both P̂i and P̂j are
connected components of X̂ := X\Ŝ. Consequently, ΠT

ρ = Y , provided we have extended
the singularity set. In what follows, we assume that the singularity set is extended (once
again disregarding the hat notation).

5O+
T (x) denotes the forward orbit of x under the transformation T .
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We denote by E(−m) the exceptional set of order m for the transformation T−1. In
general, we assign a −1 exponent whenever we are referring to some object with respect
to the transformation T−1.

Proposition 8 Let ρ be a rev.-symmetry of T . Then, the following statements hold:
(i) ρ(E(m)) = E(−m) and ρ(E(−m)) = E(m) for all m ∈ N.

(ii) ρT k(x) = T−kρ(x) and ρT−k(x) = T kρ(x) for all k ∈ N if and only if x /∈ E∪E−1.
(iii) The coding under T of every x /∈ E is ω = ω0ω1 . . . if and only if the coding under

T−1 of ρ(x) /∈ E−1 is ρ(ω) := ρ(ω0)ρ(ω1) . . . . Also, the coding under T−1 of every x /∈ E−1

is ω = ω0ω1 . . . if and only if the coding under T of ρ(x) /∈ E is ρ(ω) := ρ(ω0)ρ(ω1) . . . .

proof: (i) We will proceed by induction. For m = 0 the assertion holds by definition
of ρ and by extending the singularity set. Suppose ρ(E(m−1)) = E(1−m), for some integer
m ≥ 2. Let x ∈ ρ(E(m)\S). In particular, x /∈ S and so, x ∈ ΠT

ρ = ΠT
ρ−1 since extending

S implies that T (X∗) = X∗ and, therefore, Y = X∗. Thus,

x ∈ ρ(E(m)\S) ⇔ ρ−1(x) ∈ E(m)\S ⇔ Tρ−1(x) ∈ E(m−1)

⇔ ρ−1T−1(x) ∈ E(m−1) ⇔ T−1(x) ∈ E(1−m) ⇔ x ∈ E(−m)\S .

Consequently, ρ(E(m)) = ρ(E(m)\S) ∪ ρ(S) = (E(−m)\S) ∪ S = E(−m).
(ii) Given k ≥ 1, take Λk := Λ(1)

k ∩ Λ(2)
k where Λ(1)

k = ΠT
ρ ∩ . . . ∩ T−k+1(ΠT

ρ ) and

Λ(2)
k = ΠT

ρ ∩ . . . ∩ T k−1(ΠT
ρ ). Let us define Π(k)

ρ := {x ∈ X : ρT k(x) = T−kρ(x) and

ρT−k(x) = T kρ(x)}. For every x ∈ Λ(1)
k , it follows that,

ρT k(x) = ρT (T k−1(x))
= T−1ρT k−1(x), since T k−1(x) ∈ ΠT

ρ

...
= T−kρ(x), since x ∈ ΠT

ρ .

Analogously, we prove that for every x ∈ Λ(2)
k ,

ρT−k(x) = T kρ(x) .

This proves that Λk ⊂ Π(k)
ρ . Also note that Λk = ∩k−1

i=1−kT
i(X∗) which implies that X\Λk =

∪k−1
i=1−kT

−i(S)
by def.

= E(k−1) ∪ E(1−k). Let Π(∞)
ρ := ∩∞n=1Π

(n)
ρ and Λ∞ := ∩∞n=1Λn. It then

follows that, X\Π(∞)
ρ ⊂ X\Λ∞ = X\(∩∞k=1Λk) = ∪∞k=−∞E(k) by def.

= E ∪ E−1. Conversely,

if x ∈ E(k) ∪ E(−k) then for some −k ≤ m ≤ k, Tm(x) ∈ S and obviously x /∈ Π(|m|+1)
ρ

since either T |m|+1(x) or T−|m|−1(x) is not defined. Consequently, X\Π(∞)
ρ = E ∪ E−1.

(iii) Given a positive integer k, we have that, T k(x) ∈ Pωk
if and only if ρT k(x) ∈

ρ(Pωk
). However, given any point x /∈ E we know from the proof in (ii) that ρT k(x) =
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T−kρ(x) for all k ∈ N. Therefore, T k(x) ∈ Pωk
if and only if T kρ(x) ∈ ρ(Pωk

) = Pρ(ωk) by
definition of ρ(ωk) since ρ(Pωk

) must equal some connected component Pi. The remaining
assertion follows analogously. �

Corollary In particular: ρ(E ∪ E−1) = E ∪ E−1, ρ(Kw) = K−1
ρ(w) ∈ K−1 for every cell

Kw ∈ K and ρ(O+
T (x)) = O+

T−1(ρ(x)) if and only if x /∈ E ∪ E−1.

2.2 The symmetry group of the Goetz map

Proposition 1 If G is such that α0 = −α1 and C0 = −C1 then G is essentially-
equivariant for the a.e.-symmetry σ.z = −z. If G is such that α0 = α1 and C0 = −C1

then G is essentially-equivariant for the a.e.-symmetry σ.z = −z. Furthermore, there
are no other cases of essential-equivariance with respect to Dn, for Goetz maps.

proof: This proof is divided into two cases: firstly σ is considered to be a reflection and
secondly, σ will be a rotation.
Case A: σ is a reflection in some mirror line L.

Firstly, we will assume that L is not the vertical axis. For simplicity, we consider that L
intersects the origin. Thus, we can find open sets (hence of positive measure) U ⊂ P0 and
V ⊂ P1 such that σ (U) and σ (V ) belong to the same atom, respectively. Consequently,
it has to be true for at least z ∈ U and ẑ ∈ V ,

R0σ.z = σR0.z ,R1σ.ẑ = σR1.ẑ .

Let γ be the angle that L makes with the real axis, measured counter-clockwise and
let h.z = eiγ .z which is defined so that h (L) is in fact the real axis. We can then write
σ(z) = h−1ϕh(z), where ϕ(z) = z and h−1(z) = e−iγ .z . More precisely, it follows that,

σ(z) = h−1ϕ(eiγ .z) = h−1(e−iγ .z) = e−iγ(e−iγ .z) = e−2iγ .z .

Computing R0σ and σR0 ,

R0σ.z = eiα0(e−2iγ .z − C0) + C0 = ei(α0−2γ).z + ... ,

σR0.z = e−2iγ(ϕ(eiα0 (z − C0) + C0)) = e−i(2γ+α0).z + ... ,

we can force the polynomial p(z) = R0σ.z− σR0.z = az + b, in the complex variable z, to
be null, which implies that both a and b must be zero.

Calculating a,
a = ei(α0−2γ) − e−i(2γ+α0),

we conclude that a = 0 if and only if α0 = 0 and α1 = 0, by applying the same calculations
to ẑ, which implies that G is, in fact, the identity map and hence commutes with any map.
In conclusion, no reflection whose mirror line is not the vertical axis is allowed as a.e.-
symmetry of a Goetz map.
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When L is the vertical axis, one has that σ(P0) = P1. Moreover, note that σ can be
written as σ.z = −z. Given z ∈ P1, we obtain,

R0σ.z = R0(−z) = eiα0 (−z − C0) + C0,

σR1.z = σ(eiα1 (z − C1) + C1) = −e−iα1
(
z − C1

)
− C1 ,

and so, Tσ = σT , for a given z ∈ P1, if and only if the polynomial p(z) = R0σ.z−
σR1.z = az + b, has null coefficients. Therefore,

a = −eiα0 + e−iα1 = 0 ⇔ α0 = −α1 ,

b = −eiα0C0 + C0 − eiα0C1 + C1 = (1− eiα0)(C0 + C1) ,

which implies that b = 0 if and only if α0 = 0 or C0 = −C1 = σ(C1). The case when
α0 = 0 implies α1 = 0 (since α0 = −α1).

It can be easily verified that when α0 = −α1, C0 = −C1 and σ.z = −z then, for every
z ∈ P0 ∪ P1, Gσ(z) = σG(z). Therefore, the only possibility of having a reflection as an
a.e.-symmetry of a Goetz map is when,

α0 = −α1 , C0 = −C1 and σ.z = −z .

The dynamical properties in these cases were explained in great detail in [Goetz, 1998].
Case B: σ is a rotation on some centre C.

We may write σ as σ.z = eiβ(z − C) + C. If β 6= 0 then clearly open sets (hence of
positive measure) can be found U ⊂ P0 and V ⊂ P1 such that σ(U)⊂ P1 and σ(V )⊂ P0

and consequently, in order to prove essential-equivariance, we must verify whether, for
z ∈ V and ẑ ∈ U the following equalities hold:

R0σ.z = σR1.z ,R1σ.ẑ = σR0.ẑ .

Computing R0σ and σR1,

R0σ.z = R0(eiβ(z − C) + C)
= eiα0(eiβ(z − C) + C − C0) + C0

= ei(α0+β)(z − C) + eiα0(C − C0) + C0 ,

σR1.z = eiβ(eiα1 (z − C1) + C1 − C) + C

= ei(β+α1) (z − C1) + eiβ (C1 − C) + C .

One may force, once again, the polynomial p(z) = R0σ.z − σR1.z = az + b, to have null
coefficients. So,

a = ei(β+α0) − ei(β+α1) = 0 ⇔ α0 = α1.
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Computing b,

b = −ei(β+α0)C + eiα0(C − C0) + C0 + ei(β+α1)C1 − eiβ (C1 − C)− C

= (ei(β+α0) − eiβ)(C1 − C) + (eiα0 − 1)(C − C0)
= (eiα0 − 1)(eiβ(C1 − C) + (C − C0)) .

We claim that b = 0 ⇔ α0 = α1 = 0 ∨ eiβ(C1−C) = C0−C. Applying the same arguments
to the second equivariance equality (in ẑ) we conclude that eiβ(C0−C) = C1−C. Therefore,
ei2β(C1 − C) = C1 − C which implies β = π, as it is not interesting considering the case
when C = C0 = C1 (degenerate case).

Consequently,
eiβ(C1 − C) = C0 − C ⇔ C0 = −C1 + 2C. (1)

If C is not on the vertical axis, then we can find a disc centred at C and contained in
one of the atoms, say P0. For this disc, one has to prove that,

R0σ.z = σR0.z ,

for otherwise there would not be essential-equivariance since the disc has positive measure.
On account of both R0 and σ being rotations, we conclude that C = C0, since two rotations
commute if and only if their centres are the same, unless both angles are null. Moreover,
by the above equality (1), C0 = C1. However, once more, this leads to the degenerate case.
Thus, C must belong to the vertical axis.

It can be easily verified that if α0 = α1, C0 = −C1 + 2C and σ.z = −z + 2C then, for
every z ∈ P0 ∪P1, Gσ(z) = σG(z). In conclusion, the only possibility of having a rotation
as an a.e.-symmetry of a Goetz map, up to translation of the origin along the vertical axis,
is when,

α0 = α1, C0 = −C1 and σ.z = −z.

�

Let ρa be the reflection on the line passing through both centres of rotation and ρb the
reflection on the line passing through the origin and perpendicular to the previous one.

In Figure ?? we give a geometric construction of quasi-invertible Goetz maps.

Proposition 2 Every invertible Goetz map is essentially-reversible for ρa. Furthermore,
ρa and ρb are the only admissible a.e.-reversing-symmetries.

proof: Firstly, notice from Figure ?? that a Goetz map is invertible if and only if both
angles of rotation equal some α (or π − α) and the line that connects both centres of
rotation makes an angle with the real axis (imaginary axis, respectively) equal to α/2.

We will consider the case when both angles of rotation are equal to α only, for the
remaining one is similar. The following sets are now defined:

P i
j = Pj ∩Ri(Pi) ; i, j = 0, 1 .
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It can be easily verified that ρa(P i
j ) = P j

i and that all rotations, R, are reversible with
respect to any reflection, ρ, whose mirror line goes through the centre of rotation, i.e.,
Rρ = ρR−1. Since that G is quasi-invertible, its inverse can be written as follows,

G−1(z) =
{

R−1
0 (z) if z ∈ R0 (P0)

R−1
1 (z) if z ∈ R1 (P1)

Therefore, in order to prove essential-reversibility, one has to show that Gρa = ρaG
−1.

Clearly, the sets {P i
j}i,j=0,1 form a partition of the phase space with zero measure com-

plement, or in other words, z ∈ P i
j almost surely for some i and j. Let z ∈ P i

j . Then
G−1.z = R−1

i .z and ρa(z) ∈ P j
i , which implies that Gρa(z) = Riρa(z). Consequently,

Gρa(z) = ρaG
−1(z) ⇔ Riρa(z) = ρaR

−1
i (z) ,

which is clearly true for all z ∈ ∪i,jP
i
j .

Suppose γ is another a.e.-reversing-symmetry. So, ρaγ must be an a.e.-symmetry. As
seen previously in Proposition 1, ρaγ = −Id since any Goetz map with C0 = −C1 cannot
be invertible. This last equality implies that γ = −ρa = ρb. �
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