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Abstract

Various new identities, recurrence relations, integral representations, connection
and explicit formulas are established for the Bernoulli, Euler numbers and the values
of Riemann’s zeta function ζ(s). To do this, we explore properties of some Sheffer’s
sequences of polynomials related to the Kontorovich-Lebedev transform.
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1 Introduction and preliminary results

In 2009 the author [1] introduced a family of polynomials of degree n, which belongs to
Sheffer’s sequences (cf. [2]) and related to the Kontorovich-Lebedev transform. Precisely,
it has the form

pn(x) = (−1)nexAne−x, n ∈ N0, (1.1)

where

A ≡ x2 − x d
dx
x
d

dx
, (1.2)

is the second order differential operator having as an eigenfunction the modified Bessel
function Kiτ (x), τ ∈ R, (i is the imaginary unit ), i.e.

A Kiτ (x) = τ 2Kiτ (x). (1.3)
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The modified Bessel function Kiτ (x) is, in turn, the kernel of the Kontorovich-Lebedev
transform (see in [3], [4], [5])

(Gf)(τ) =

∫ ∞
0

Kiτ (x)f(x)
dx

x
, τ ∈ R+. (1.4)

As it is known, operator (1.4) extends to a bounded invertible map G : L2 (R+;x−1dx)→
L2(R+; τ sinhπτdτ) and this map is isometric, i.e.∫ ∞

0

τ sinhπτ |(Gf)(τ)|2dτ =
π2

2

∫ ∞
0

|f(x)|2dx
x
. (1.5)

Reciprocally, the inversion formula holds

f(x) =
2

π2

∫ ∞
0

τ sinhπτKiτ (x)(Gf)(τ)dτ, x > 0. (1.6)

The modified Bessel function Kiτ (x) has the asymptotic behavior [4]

Kν(z) =
( π

2z

)1/2
e−z[1 +O(1/z)], z →∞, (1.7)

and near the origin
Kν(z) = O

(
z−|Reν|) , z → 0, (1.8)

K0(z) = − log z +O(1), z → 0. (1.9)

Moreover it can be defined by the following integral representations

Kν(x) =

∫ ∞
0

e−x coshu cosh νudu, x > 0, (1.10)

Kν(x) =
1

2

(x
2

)ν ∫ ∞
0

e−t−
x2

4t t−ν−1dt, x > 0. (1.11)

Returning to the system of polynomials (1.1), we easily observe that all their coefficients
an,k, k = 0, 1 . . . , n are integers. It can be represented by the integral

pn(x) =
2(−1)n

π
ex
∫ ∞
0

τ 2nKiτ (x) dτ, (1.12)

and satisfies the differential recurrence relation of the form

pn+1(x) = x2p′′n(x) + x(1− 2x)p′n(x)− xpn(x), n = 0, 1, 2, . . . . (1.13)

In particular, we derive

p0(x) = 1, p1(x) = −x, p2(x) = 3x2 − x, p3(x) = −15x3 + 15x2 − x.



Bernoulli, Euler numbers and Riemann zeta - values 3

The leading coefficient an,n of these polynomials can be calculated by the formula

an,n = (−1)n(2n− 1)!! = (−1)n1 · 3 · 5 . . . · (2n− 1), n ∈ N. (1.14)

Moreover, recently we found the explicit formula of coefficients an,k (see [6])

an,k =
1

k!

k∑
r=0

(−1)r

2r

(
k

r

) k−r∑
j=0

(−1)j

2j

(
k − r
j

)
(r − j)2n, k = 1, . . . , n (1.15)

and as a consequence of the definition (1.1) an,k ∈ Z, i.e. the right- hand side of (1.15) is
an integer. The generating function Φ(x, t) for this sequence of polynomials is given by
the series

Φ(x, t) = e−2x sinh
2(t/2) =

∞∑
n=0

pn(x)

(2n)!
t2n, |t| < π

4
. (1.16)

Letting x = 0 in the latter equation, we find

pn(0) = 0, n = 1, 2, . . . .

A differentiation with respect to x in (1.16) yields the equality

∂Φ

∂x
= (1− cosh t) e−2x sinh

2(t/2) =
∞∑
n=0

p′n(x)

(2n)!
t2n. (1.17)

Decomposing the left-hand side of (1.17) as a product of series and equating coefficients
in front of t2n we come up with the following recurrence relation

p′n(x) = −
n−1∑
k=0

(
2n

2k

)
pk(x), n ∈ N. (1.18)

Putting x = 0 in (1.17) and using values p0(0) = 1, pk(0) = 0, k ∈ N we obtain
p′n(0) = −1, n ∈ N. Analogously, a differentiation with respect to t in (2.4) leads us to

∂Φ

∂t
= −x sinh t e−2x sinh

2(t/2) =
∞∑
n=1

pn(x)

(2n− 1)!
t2n−1. (1.19)

Similarly we derive the relation

pn+1(x) = −x
n∑
k=0

(
2n+ 1

2k

)
pk(x), n ∈ N0. (1.20)
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Moreover, differentiating through in (1.19), we call (1.17) and using simple relations for
binomial coefficients, we obtain the identity

x
n∑
k=0

(
2n+ 1

2k

)
p′k(x) =

n∑
k=1

(
2n+ 1

2k − 1

)
pk(x). (1.21)

Comparing (1.17), (1.19), we find that Φ(x, t) satisfies the following first order partial
differential equations

∂Φ

∂t
+ x sinh t Φ = 0, (1.22)

∂Φ

∂x
+ 2 sinh2

(
t

2

)
Φ = 0, (1.23)

x
∂Φ

∂x
= tanh

(
t

2

)
∂Φ

∂t
. (1.24)

Further, returning to representation (1.12) and employing the inversion formula (1.6) of
the Kontorovich-Lebedev transform, we obtain the equality

τ 2n−1

sinh πτ
=

(−1)n

π

∫ ∞
0

e−xKiτ (x)pn(x)
dx

x
, n ∈ N. (1.25)

In particular, it yields ∫ ∞
0

e−xK0(x)pn(x)
dx

x
= 0, n = 2, 3, . . . .

Integrating with respect to τ in (1.25), we call the value of the integral (2.4.3.1) in [7],
Vol. I ∫ ∞

0

τα−1dτ

sinhπτ
=

2α − 1

πα2α−1
Γ(α)ζ(α), Re α > 1, (1.26)

where Γ(α) is Euler’s gamma function and ζ(α) is Riemann’s zeta function (cf. [8], Vol. 1)
and relation (2.16.48.1) in [7], Vol. II to obtain the following representations of zeta-values
at even and odd integers, respectively,

22n − 1

22(n−1) (−1)n(2n− 1)!
ζ(2n)

π2n
=

∫ ∞
0

e−2xpn(x)
dx

x
, n ∈ N, (1.27)

(−1)n(2n)!
(
22n+1 − 1

) ζ(2n+ 1)

(2π)2n
=

∫ ∞
0

∫ ∞
0

τKiτ (x)e−xpn(x)
dτdx

x
, n ∈ N. (1.28)

Finally in this section we note that recently in [9] the family of polynomials (1.1) was
generalized on the sequence

pn(x;α) = (−1)nexx−αAne−xxα, n ∈ N0, (1.29)

involving an arbitrary parameter α, Re α > −1/2.
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2 Identities for the Bernoulli and Euler numbers

In this section we will derive a number of recurrence relations, finite sum, connection and
explicit formulas, series and integral representations, which are related to the Bernoulli
and Euler numbers. The Bernoulli numbers Bn, n = 0, 1, 2, . . . , can be defined via the
generating function (see in [8], Vol. I )

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
, |x| < 2π (2.1)

and Bernoulli polynomials Bn(x) by the equality

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
, |x| < 2π. (2.1)

In particular, we find the values, B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30 and Bn = 0
for all odd n ≥ 3. Furthermore, (−1)n−1B2n > 0 for all n ≥ 1. We list some important
properties of the Bernoulli numbers and polynomials, which will be employed below. All
details and proofs can be found in [8], Vol. I. The basic identity for Bernoulli numbers is

n−1∑
k=0

(
n

k

)
Bk = 0, n ≥ 2. (2.3)

Concerning the Bernoulli polynomials, it has the explicit formula,

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k. (2.4)

Hence, for instance,

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x, B4(x) = x4 − 2x3 + x2 − 1

30
. (2.5)

Evidently, Bn = Bn(0). The Bernoulli polynomials and their derivative satisfy the follow-
ing important relations

B′n(x) = nBn−1(x), (2.6)

Bn(x+ 1)−Bn(x) = nxn−1, (2.7)

Bn(1− x) = (−1)nBn(x), (2.8)
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Bn(mx) = mn−1
m−1∑
k=0

Bn

(
x+

k

m

)
. (2.9)

The remarkable Euler formula relates the Bernoulli numbers B2n and Riemann zeta- values
ζ(2n) (see, for instance, in [10] )

ζ(2n) = (−1)n−1
22n−1B2n

(2n)!
π2n. (2.10)

The Euler numbers En, n = 0, 1, 2, . . . , can be defined, in turn, by the equality (see in
[8], Vol. I )

1

cosh t
=
∞∑
n=0

En
tn

n!
, |t| < π

2
. (2.11)

As we see, E2n+1 = 0 and, in particular, E0 = 1, E2 = −1, E4 = 5, E6 = −61. The basic
relation for Euler numbers is

n∑
k=0

(
2n

2k

)
E2k = 0, n ≥ 1. (2.12)

In order to obtain new properties of the Bernoulli and Euler numbers, we will em-
ploy Sheffer’s sequences, which are associated with the Kontorovich-Lebedev transform
(1.4). Indeed, calling identity (1.27), we immediately derive the integral representation
of Bernoulli’s numbers B2n in terms of the sequence of polynomials (1.1), namely

B2n =
n

1− 22n

∫ ∞
0

e−2xpn(x)
dx

x
. (2.13)

For the numbers B4n we have the formula (see in [1])

B4n =
2n

1− 24n

∫ ∞
0

e−2xp2n(x)
dx

x
, (2.14)

which is the result of the equality∫ ∞
0

e−2xpn(x)
dx

x
=

∫ ∞
0

e−2xp2n(x)
dx

x
. (2.15)

But as it is proved in [1], a more general relation takes place∫ ∞
0

e−2xpn+m(x)
dx

x
=

∫ ∞
0

e−2xpn(x)pm(x)
dx

x
, (2.16)
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which holds for any n,m ∈ N0 such that at least one is nonzero. Hence, appealing to
(2.13), we derive the identity

B2(n+m) =
n+m

1− 22(n+m)

∫ ∞
0

e−2xpn−k(x)pm+k(x)
dx

x
(2.17)

being valid for any k = 0, 1, . . . , n.
Another definition of Euler’s numbers can be given in terms of Sheffer’s sequence of

polynomials qn(x) introduced in [1]

qn(x) = ex
∫ ∞
x

e−tpn(t)dt, n ∈ N0, (2.18)

which, in turn, is defined via the generating function F (x, t) = Φ(x, t)/ cosh t (see (1.16))

1

cosh t
e−2x sinh

2(t/2) =
∞∑
n=0

qn(x)

(2n)!
t2n, |t| < π

4
. (2.19)

Hence with the use of (2.11) and the integral representation of Euler numbers [1]

E2n =

∫ ∞
0

e−xpn(x)dx ∈ Z (2.20)

we find
E2n = qn(0), n = 0, 1, . . . .

Moreover, following [1], the sequence qn(x) has a relationship with pn(x). Indeed,

qn(x) =
n∑
k=0

p(k)n (x), n ∈ N0, (2.21)

qn(x) =
n∑
k=0

E2(n−k)

(
2n

2k

)
pk(x), (2.22)

where p
(k)
n (x) is the k -th derivative of pn(x) and relation (2.22) can be obtained employing

(2.18) and the binomial type identity for the sequence pn(x) (cf. [2])

pn(x+ y) =
n∑
k=0

(
2n

2k

)
pk(x)pn−k(y). (2.23)

For instance,
q0(x) = 1, q1(x) = −(x+ 1),
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q2(x) = 3x2 + 5x+ 5, q3(x) = −15x3 − 30x2 − 61x− 61.

Differentiating through in (2.21), we find

q′n(x) =
n∑
k=0

p(k+1)
n (x) =

n∑
k=1

p(k)n (x) = qn(x)− pn(x).

Thus, pn(x) = qn(x)− q′n(x) and since pn(0) = 0, n ∈ N, we get

E2n = q′n(0), n ∈ N.

Moreover,
p′n(x) = q′n(x)− q′′n(x)

and since p′n(0) = −1, n = 1, 2, . . . (see (1.18)), it yields

q′′n(0) = E2n + 1, n ≥ 1. (2.24)

Returning to (2.19), we easily derive analogs of the first order partial differential equations
(1.22), (1.23), (1.24) for the generating function F (x, t), namely

∂F

∂t
+ [x sinh t + tanh t]F = 0, (2.25)

∂F

∂x
+ 2 sinh2

(
t

2

)
F = 0, (2.26)

x
∂F

∂x
= tanh

(
t

2

)[
∂F

∂t
+ F tanh t

]
. (2.27)

To find the inverse of relation (2.22), we apply the product of series of cosh t and (2.19),
equating its coefficients in front of t2n with the corresponding terms of series (1.16). This
is indeed allowed within the interval of the absolute convergence |t| < π/4. As a result,
we deduce

pn(x) =
n∑
k=0

(
2n

2k

)
qk(x). (2.28)

But q′n(x) = qn(x)− pn(x). So, we have

q′n(x) = −
n−1∑
k=0

(
2n

2k

)
qk(x). (2.29)

Another source of identities for Bernoulli numbers is a formula related to p′n(x). To derive
it, we call the partial differential equation (1.24) and the Taylor series for the hyperbolic
tangent

tanh
(x

2

)
= 2

∞∑
k=0

(
22(k+1) − 1

)
B2(k+1)

(2(k + 1))!
x2k+1.
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Hence, substituting it in (1.24), making the product of series and equating the coefficients
in front of t2n, we obtain

x p′n(x) =
n∑
k=1

(
2n

2k − 1

)
22k − 1

k
B2k pn+1−k(x). (2.30)

In particular, dividing (2.30) by x and passing x to zero, we take into account the value
p′n(0) = −1, n ≥ 1 to derive the identity

n∑
k=1

(
2n

2k − 1

)(
22k − 1

)
k

B2k = 1. (2.31)

Further, employing (1.21), we get from (2.30)

n∑
k=1

(
2n+ 1

2k − 1

)
pk(x) =

n∑
r=1

(
2n+ 1

2r

) r∑
k=1

(
2r

2k − 1

)(
22k − 1

)
k

B2k pr+1−k(x).

Thus, multiplying both sides of the latter equality by e−x and integrating over R+, we
use (2.20) to find the identity

n∑
r=1

E2r

(2r − 1)!(2(n− r + 1))!
= 2

n∑
r=1

r∑
k=1

(
22k − 1

)
B2k E2(r−k+1)

(2k)!(2(n− r) + 1)!(2(r − k) + 1)!
. (2.32)

Returning to (2.17) and letting m = 0, we make a summation in the right-hand side
of (2.17) by k from zero to n

n

1− 22n

n∑
k=0

(
2n

2k

)∫ ∞
0

e−2xpn−k(x)pk(x)
dx

x

and employ the binomial type identity (2.23) to deduce

n∑
k=0

(
2n

2k

)∫ ∞
0

e−2xpn−k(x)pk(x)
dx

x
=

∫ ∞
0

e−xpn(x)
dx

x
.

Therefore, we obtain the identity

B2n

n∑
k=0

(
2n

2k

)
=

n

1− 22n

∫ ∞
0

e−xpn(x)
dx

x
. (2.33)

An interesting question is to express the finite sum in the left-hand side of (2.33) in terms
of the values p′′n(0). In fact, differentiating two times in (2.28) with respect to x, we let
x = 0 and use (2.12), (2.24) to obtain

p′′n(0) =
n∑
k=2

(
2n

2k

)
q′′k(0) =

n∑
k=0

(
2n

2k

)
− 2,
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or,
n∑
k=0

(
2n

2k

)
= p′′n(0) + 2, n ≥ 1. (2.34)

Moreover, differentiating two times in (2.30) and letting then x = 0, we get the following
recurrence relation for the values p′′n(0)

p′′n(0) =
1

2− n

n−1∑
k=2

(
2n

2k − 1

)
22(n−k+1) − 1

n− k + 1
B2(n−k+1) p

′′
k(0), n ≥ 1, n 6= 2, (2.35)

and p′′2(0) = 6.
Nevertheless, we are able to calculate explicitly the left-hand side of (2.34) due to

trigonometric and exponential series technique developed in [11] and where one can find
a great collection of many such formulas. Precisely, employing relation (3.7) in Vol. 6,
formula (3.7), it gives

n∑
k=0

(
2n

2k

)
= 22n−1, n ∈ N (2.36)

and therefore, p′′n(0) = 2
(
22(n−1) − 1

)
. Consequently, identity (2.33) becomes

B2n =
2n

22n − 24n

∫ ∞
0

e−xpn(x)
dx

x
. (2.37)

Substituting the value of p′′n(0) in (2.35), we obtain a possibly new identity

n−1∑
k=2

(
2n

2k − 1

)(
22(n−k+1) − 1

) (
22(k−1) − 1

)
n− k + 1

B2(n−k+1)

=
(
22(n−1) − 1

)
(2− n), n ≥ 1. (2.38)

Meanwhile,

pn(x) =
n∑
k=1

an,kx
k, n ≥ 1,

where an,k is defined by (1.15). Thus, substituting it into (2.13) and (2.36), after calcula-
tion of the elementary Euler integral and the use of (2.36), we find the following explicit
formulas for the Bernoulli numbers, respectively,

B2n =
n

1− 22n

n∑
k=1

1

2k k

k∑
r=0

(−1)r

2r

(
k

r

) k−r∑
j=0

(−1)j

2j

(
k − r
j

)
(r − j)2n, (2.39)
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B2n =
2n

22n(1− 22n)

n∑
k=1

1

k

k∑
r=0

(−1)r

2r

(
k

r

) k−r∑
j=0

(−1)j

2j

(
k − r
j

)
(r − j)2n (2.40)

and the equality of integrals∫ ∞
0

e−xpn(x)
dx

x
= 22n−1

∫ ∞
0

e−2xpn(x)
dx

x
, n ≥ 1. (2.41)

Concerning other identities and explicit formulas for Bernoulli’s numbers see, for instance,
a survey article [12] and in [13], [14]. Further, substituting the right-hand side of (2.41)
into (1.26), it becomes

ζ(2n) =
(−1)nπ2n

2(22n − 1)(2n− 1)!

∫ ∞
0

e−xpn(x)
dx

x
, n ∈ N. (2.42)

An explicit formula for the Euler numbers can be deduced similarly to (2.39), (2.40) with
the use of the integral (2.20). Hence, due to (1.15), we obtain for all n ∈ N

E2n =
n∑
k=1

k!
k∑
r=0

(−1)r

2r r!

k−r∑
j=0

(−1)j(r − j)2n

2j j!(k − r − j)!
.

Other explicit formulas for Euler numbers see, for instance, in [15]. The latter equality
can give another characteristic of the Euler numbers. In fact, we have

E2n =
d2n

dz2n

n∑
k=1

k∑
r=0

(−1)r

2r

(
k

r

) k−r∑
j=0

(−1)j

2j

(
k − r
j

)
ez(r−j)

∣∣∣∣∣
z=0

=
d2n

dz2n

n∑
k=1

(1− cosh z)k

∣∣∣∣∣
z=0

.

Therefore, we find the formula

E2n =
d2n

dz2n
(1− cosh z)(1− (1− cosh z)n)

cosh z

∣∣∣∣∣
z=0

, n ≥ 1.

Analogously, coefficients (1.15) of the polynomial sequence pn(x) take the form

an,k =
(−1)k2k

k!

d2n

dz2n
sinh2k

(z
2

) ∣∣∣∣∣
z=0

, k = 1, 2, . . . , n.
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In the meantime, equality (2.41) is quite important to derive connection formulas for
the Bernoulli and Euler numbers. In fact, the integral in the left-hand side of (2.40) is
calculated in [1] and we have∫ ∞

0

e−xpn(x)
dx

x
= −

n−1∑
k=0

(
2n− 1

2k

)
E2k, n ≥ 1.

Consequently, combining with (2.13) and (2.37), we established the connection formula
between the Bernoulli and Euler numbers.

Theorem 1. The following identity holds valid

B2n =
2n

22n(22n − 1)

n−1∑
k=0

(
2n− 1

2k

)
E2k, n ∈ N.

Calling (2.42), we get an immediate
Corollary 1. For all n ∈ N one has

ζ(2n) =
(−1)n+1π2n

2(22n − 1)

n−1∑
k=0

E2k

(2k)!(2(n− k)− 1)!
, n ∈ N.

Calling again (2.22), we differentiate through two times and let x = 0. Hence with
the use of (2.12) and (2.24) we derive a curious recurrence relation for the Euler numbers.
Indeed, it has

Theorem 2. The following identity holds

E2n = 1−
n−1∑
k=0

22(n−k)−1
(

2n

2k

)
E2k, n ∈ N.

As an application, we announce at the end of this section an interesting result about
the structure of the Bernoulli numbers B2n and the rational values ζ(2n)/π2n (see (2.10),
(2.42)), which is a immediate consequence of the Von Staudt- Clausen theorem [16] about
the fractional part of Bernoulli numbers and Fermat’s Little theorem.

Precisely, it has
Theorem 3. The Bernoulli numbers B2n and Riemann zeta-values ζ(2n) satisfy the

following properties, respectively,

2(22n − 1)B2n ∈ Z, n ∈ N, (2.43)

2
(
22n − 1

) ζ(2n)(2n− 1)!

π2n
∈ Z, n ∈ N. (2.44)

Meanwhile identity (2.13) leads to
Corollary 2. For all n ∈ N

2n

∫ ∞
0

e−2xpn(x)
dx

x
∈ Z.
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3 Riemann’s zeta-values

Our main goal here is to establish certain identities, integral and series representations for
the Riemann zeta function of positive argument. Concerning zeta-values at integers, as
we could see in the previous section, the Euler formula (2.10) gives a direct relationship
of ζ(2n), n ∈ N with the Bernoulli numbers. However, similar formula for the values of
zeta function at odd integers is unknown and probably does not exist. Our attempts to
find a finite relation between ζ(2n+ 1) are still unsuccessful. Nevertheless, we will derive
several integral and series representations, related to these numbers and general positive
numbers greater than one, involving our Sheffer’s sequences of polynomials. Some rapidly
convergent series for ζ(2n+ 1) see, for instance, in [17].

In fact, returning to (1.28) and substituting the modified Bessel function by its repre-
sentation (1.10), we employ the definition of the improper integral, integration by parts,
the absolute and uniform convergence and the Riemann- Lebesgue lemma to make the
change of the order of integration and motivate the following equalities

(−1)n(2n)!
(
22n+1 − 1

) ζ(2n+ 1)

(2π)2n
= lim

N→∞

∫ N

0

τ

∫ ∞
0

∫ ∞
0

e−2x cosh
2(u/2)pn(x) cos(τu)

dudxdτ

x

= lim
N→∞

∫ ∞
0

∫ ∞
0

e−2x cosh
2(u/2) sinhu pn(x)

1− cos(Nu)

u
dudx

=

∫ ∞
0

∫ ∞
0

e−2x cosh
2(u/2) pn(x)

sinhu

u
dudx =

∫ 1

0

∫ ∞
0

Kt(x)e−xpn(x)dxdt.

Consequently, we derived the identity for all n ∈ N

(−1)n(2n)!
(
22n+1 − 1

) ζ(2n+ 1)

(2π)2n
=

∫ 1

0

∫ ∞
0

Kt(x)e−xpn(x)dxdt. (3.1)

In the meantime, integrals (1.28), (3.1) have relationships with integrals, involving the
Bernoulli polynomials owing to the following representations proved in [1]

B2n+1

(
1− t

2

)
= −2n+ 1

22n+1π
sin πt

∫ ∞
0

Kt(x)e−xpn(x)dx, |t| < 1, (3.2)

B2n+1

(
1− iτ

2

)
=

2n+ 1

22n+1 πi
sinh πτ

∫ ∞
0

Kiτ (x)e−xpn(x)dx, τ ∈ R. (3.3)

Hence, integrating in (3.2) with respect to t ∈ (0, 1) and taking into account (3.1) we
derive the identity

(−1)n+1(2n+ 1)!
(
2− 2−2n

) ζ(2n+ 1)

(2π)2n+1
=

∫ 1

0

B2n+1

(
1− t

2

)
dt

sin πt
, n ≥ 1. (3.4)
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Moreover, using (2.6), (2.7), (2.8), after integration by parts with elementary substitutions
in (3.4) and elimination of the integrated terms, we write it in the form

(−1)n+1(2n)!
(
2− 2−2n

) ζ(2n+ 1)

22n+1π2n
=

∫ 1/2

0

B2n (t) log (cotπt) dt, n ≥ 1. (3.5)

One can find a similar identity, for instance, in [18]. The integral in (3.4) can be reduced
via properties for the Bernoulli polynomials to certain integrals considered recently in
[19]. Furthermore, appealing to the addition formula for the Bernoulli polynomials [8],
Vol. I

Bn(x+ y) =
n∑
k=0

(
n

k

)
Bk(x)yn−k (3.6)

the integral (3.4) can be represented as a linear combination of the moment integrals of
1/ sin t, which we denote by In following [19]

In =

∫ π/2

0

tn

sin t
dt, n ∈ N.

Hence,∫ 1

0

B2n+1

(
1− t

2

)
dt

sin πt
=

∫ 1/2

0

B2n+1

(
1− t

2

)
dt

sin πt
+

∫ 1/2

0

B2n+1

(
t

2

)
dt

sin πt

=
1

π

n∑
m=0

(2π)2(m−n)−1
(

2n+ 1

2m

)[
B2m −B2m

(
1

2

)]
I2(n−m)+1 −

2n+ 1

(2π)2n+1
I2n.

But

B2m

(
1

2

)
= −

(
1− 21−2m)B2m.

Consequently, taking this value into account, we substitute the previous sum into (3.4)
and after simplifications arrive at the Ramanujan- type identity (cf. [19]) for zeta -values
at odd integers (n ∈ N)

(−1)n+1(2n+ 1)!
(
1− 2−2n−1

)
ζ(2n+ 1) +

(
n+

1

2

)
I2n

=
n−1∑
m=0

(
2n+ 1

2m+ 1

)
B2(n−m)π

2(n−m)−1 (22(n−m) − 1
)
I2m+1. (3.7)

In particular, letting n = 1, 2 and using the well-known formula I1 = 2G, where G is the
Catalan constant, we get, respectively,

7

2
ζ(3) + I2 = 2πG,
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I4 −
93

2
ζ(5) = 2π(I3 − π2G).

Remark 1. We note, that the latter identities can be also obtained from corresponding
equalities in Example I in [19].

In the same manner one can obtain a finite sum representation of the zeta-values at
odd integers in terms of the moment integrals of 1/ sin2 t. In this case our starting point
will be Ito’s identity [18]

(−1)n(2n)!
ζ(2n+ 1)

(2π)2n
=

∫ 1

0

B2n (t) log (sinπt) dt, n ≥ 1. (3.8)

Indeed, with the use of (2.8) we have,∫ 1

0

B2n (t) log (sinπt) dt =

∫ 1/2

0

B2n (t) log (sinπt) dt

+

∫ 1/2

0

B2n (1− t) log (sinπt) dt = 2

∫ 1/2

0

B2n (t) log (sinπt) dt.

Hence, appealing to (2.4) in the right-hand side of the latter equality and integrating
twice by parts in the obtained integral, we find∫ 1

0

B2n (t) log (sinπt) dt = 2
n∑

m=0

(
2n

2m

)
B2m

∫ 1/2

0

t2(n−m) log (sin πt) dt

−2n

∫ 1/2

0

t2n−1 log (sin πt) dt =
π−2n M2n+1

2n+ 1
−

n∑
m=0

(
2n

2m

)
B2m π−2(n−m)−1 M2(n+1−m)

(2(n−m) + 1)(n−m+ 1)
,

where

Mn =

∫ π/2

0

tn

sin2 t
dt, n ≥ 2.

Thus combining with (3.8), we derived the identity (compare with (3.7))

(−1)n+1(2(n+ 1))! 2−2n−1ζ(2n+ 1) + (n+ 1)M2n+1

=
n∑

m=0

(
2(n+ 1)

2(m+ 1)

)
B2(n−m) π

2(n−m)−1 M2(m+1), n ≥ 1. (3.9)

Appealing to relations (2.5.4.7) in [7], Vol. I, we have the values

M2 = π log 2, M4 =
π3

2
log 2− 9π

4
ζ(3).
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Therefore, letting n = 1 in (3.9), we get, for instance,

21

8
ζ(3) +M3 =

3π2

4
log 2.

Further, returning to (3.3), we multiply its both sides by τ/ sinhπτ and integrate over
R+. Hence∫ ∞

0

τB2n+1

(
1− iτ

2

)
dτ

sinhπτ
=

2n+ 1

22n+1 πi

∫ ∞
0

∫ ∞
0

τKiτ (x)e−xpn(x)dxdτ

=
2n+ 1

22n+1 πi

∫ 1

0

∫ ∞
0

Kt(x)e−xpn(x) xdxdt, n ∈ N0. (3.10)

On the other hand, calling relation (1.20), we deduce from (3.1) and (3.10)

n∑
k=0

(
2n+ 1

2k

)
22k+1

2k + 1

∫ ∞
0

iτB2k+1

(
1− iτ

2

)
dτ

sinhπτ

=
1

π

n∑
k=0

(
2n+ 1

2k

)∫ 1

0

∫ ∞
0

Kt(x)e−xpk(x) xdxdt

= − 1

π

∫ 1

0

∫ ∞
0

Kt(x)e−xpn+1(x)dxdt = (−1)n(2(n+ 1))!
(
2− 2−2(n+1)

) ζ(2n+ 3)

π2n+3

or
n∑
k=0

22k

(2k + 1)!(2(n− k) + 1)!

∫ ∞
0

iτB2k+1

(
1− iτ

2

)
dτ

sinhπτ

= (−1)n(n+ 1)
(
2− 2−2(n+1)

) ζ(2n+ 3)

π2n+3
. (3.11)

Hence, recalling (3.6), the integral in (3.11) can be rewritten as follows

22k

∫ ∞
0

iτB2k+1

(
1− iτ

2

)
dτ

sinhπτ
=

k∑
m=0

(−1)k−m+1

(
2k + 1

2m

)(
22m−1 − 1

)
B2m

×
∫ ∞
0

τ 2(k−m+1) dτ

sinh πτ
= (2k + 1)!

k∑
m=0

(−1)m+1(m+ 1)

(
22(k−m) − 2

) (
22(m+2) − 2

)
B2(k−m)

(2(k −m))!

×ζ(2m+ 3)

(2π)2m+3
.
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Substituting the right-hand side of the latter equality in (3.11), we find the identity

(−1)n(n+ 1)
(
2− 2−2(n+1)

) ζ(2n+ 3)

π2n+3
=

n∑
k=0

k∑
m=0

(−1)m+1(m+ 1)

(2(n− k) + 1)!

×
(
22(k−m) − 2

) (
2− 2−2(m+1)

)
B2(k−m)

(2(k −m))!π2m+3
ζ(2m+ 3) =

n∑
m=0

(−1)m+1(m+ 1)
(
2− 2−2(m+1)

)

×ζ(2m+ 3)

π2m+3

(
n−m∑
k=0

(
22k − 2

)
B2k

(2k)!(2(n−m− k) + 1)!

)
. (3.12)

It would be a great achievement to have here a finite recurrence relation for zeta- values
at odd integers. However, unfortunately, this is not the case. In fact, (3.12) yields for all
n ≥ 1

n−1∑
m=0

(−1)m+1(m+ 1)
(
2− 2−2(m+1)

) ζ(2m+ 3)

π2m+3

(
n−m∑
k=0

(
22k − 2

)
B2k

(2k)!(2(n−m− k) + 1)!

)
= 0.

(3.13)
Theorem 4. For all n ∈ N the following identity holds for Bernoulli numbers

n∑
k=0

(
2n+ 1

2k

)(
22k−1 − 1

)
B2k = 0. (3.14)

Proof. In fact, recalling (2.3), we see that (3.14) is equivalent to the equality

n∑
k=0

(
2n+ 1

2k

)
22kB2k = 2n+ 1,

which yields
2n+1∑
k=0

(
2n+ 1

k

)
2k−2n−1Bk = 0.

But this is true, because the left-hand side is equal (see (2.4), (2.8)) to B2n+1(1/2) = 0.

Theorem 4 says that all coefficients in front of zeta-values ζ(2m+3) in (3.14) are equal
to zero. Hence such kind of equalities can be a source to obtain possibly new identities
for Bernoulli numbers.

Finally, we will get an integral representation of zeta-values at positive numbers, which
is a direct consequence of the formulas (1.3), (1.25), (1.26). Precisely, it has
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Theorem 5. Let α > 1, [α] be its integer part and {α} be its fractional part. Then
the following identities take place, when [α] is even or odd, respectively,

2α − 1

(2π)α−1
Γ(α)ζ(α) = (−1)[α]/2

∫ ∞
0

∫ ∞
0

τ {α}Kiτ (x) e−xp[α]/2(x)
dx

x
,

2α − 1

(2π)α−1
Γ(α)ζ(α) = (−1)([α]−1)/2

∫ ∞
0

∫ ∞
0

τ {α}−1Kiτ (x) e−xp([α]+1)/2(x)
dx

x
.
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