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1. Background and motivation

Recall that a word u over a finite alphabet Σ is said to be a subword of a
word v ∈ Σ∗ if, for some n ≥ 1, there exist words u1, . . . , un, v0, v1, . . . , vn ∈
Σ∗ such that u = u1u2 · · ·un and

v = v0u1v1u2v2 · · ·unvn. (1.1)

The subword relation reveals interesting combinatorial properties and
plays a prominent role in formal language theory. For instance, recall that
languages consisting of all words over Σ having a given word u ∈ Σ∗ as a
subword serve as a generating system for the Boolean algebra of so-called
piecewise testable languages. It was a deep study of combinatorics of the
subword relation that led Simon [20,21] to his elegant algebraic characteriza-
tion of piecewise testable languages. Further, the natural idea to put certain
rational constraints on the factors v0, v1, . . . , vn that may appear in a decom-
position of the form (1.1) gave rise to the useful notion of a marked product
of languages studied from the algebraic viewpoint by Schützenberger [18],
Reutenauer [10], Straubing [23], Simon [22], amongst others.

Yet another natural idea is to count how many times a word v ∈ Σ∗ con-
tains a given word u as a subword, that is, to count different decompositions
of the form (1.1). Clearly, if one wants to stay within the realm of rational
languages, one can only count up to a certain threshold and/or modulo a
certain number. For instance, one may consider Boolean combinations of
languages consisting of all words over Σ having t modulo p occurrences of
a given word u ∈ Σ∗ (where p is a given prime number). This class of lan-
guages also admits a nice algebraic characterization, see [5, Sections VIII.9
and VIII.10] and also [25]. Combining modular counting with rational con-
straints led to the idea of marked products with modular counters explored,
in particular, by Weil [27] and Peladeau [7].

The most natural version of threshold counting is formalized via the no-
tion of an unambiguous marked product in which one considers words v ∈ Σ∗
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having exactly one decomposition (1.1) with a given subword u and given
rational constraints on the factors v0, v1, . . . , vn. Such unambiguous marked
products have been investigated by Schützenberger [19], Pin [8], Pin, Straub-
ing, and Thérien [9], amongst others.

Many known facts on marked products rely on rather difficult techniques
from finite monoid theory, namely, on bilateral semidirect product decom-
position results of Rhodes et al. [14, 16]. These results are proved using
Rhodes’s classification of maximal proper surmorphisms [11,15,6] via case-
by-case analysis of the kernel categories of such maps [14, 16]. The aim of
the present paper is to give easier and – we hope – more conceptual proofs of
several crucial facts about marked products by using matrix representations
of finite monoids as a main tool. In particular, we are able to prove the
results of Peladeau and Weil in one step, without any case-by-case analysis
and without using the machinery of categories. Rather we adapt Simon’s
analysis of the combinatorics of multiplying upper triangular matrices [22]
from the case of Schützenberger products to block upper triangular matri-
ces. We failed to obtain such a purely combinatorial argument for the case
of unambiguous products; we still need to use a lemma on kernel categories.
Nevertheless we have succeeded in avoiding the decomposition results and
case-by-case analysis.

In Section 2 we collect a few facts from the theory of matrix represen-
tations of finite monoids. Some of these facts are new; their proofs can be
found in the forthcoming paper by the authors [3]. The announced applica-
tions to marked products with modular counters and unambiguous marked
products are presented in Section 3.

2. Results from Representation Theory

The reader is referred to [4, Chapter 5] and [17] for the basic results of
monoid representation theory. All monoids in this paper are assumed to be
finite except for the monoid of matrices over an infinite field.

Let M be a monoid and K a field. A (matrix) representation of M over
K of degree n is a homomorphism ρ : M → Mn(K), where Mn(K) is the
monoid of all n × n matrices over K. Set V = Kn. Then a subspace W of
V is said to be M -invariant if (Mρ)W ⊆ W . The representation ρ is said
to be irreducible if the only M -invariant subspaces are {0} and V .

We denote by K[M ] the monoid algebra of M , that is, the K-algebra with
basis M , whose multiplication extends the multiplication of M . Clearly,
any representation ρ : M → Mn(K) uniquely extends to a K-algebra homo-
morphism K[M ] → Mn(K). This homomorphism defines a K[M ]-module
structure on the space V = Kn. The representation ρ is irreducible if and
only if the associated K[M ]-module is simple. Thus, by choosing a com-
position series of V , considered as a K[M ]-module, one can choose a basis
for V such that Mρ consists of block upper triangular matrices where the
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monoids formed by the diagonal blocks are images of M under certain irre-
ducible representations. These irreducible blocks are uniquely determined
by ρ and are called the irreducible constituents of ρ.

The regular representation of M is the representation ρM : M → M|M |(K)
on the vector space K[M ] extending the homomorphism that maps each
element m ∈ M to the left translation λm : m′ 7→ mm′ of the set M .
This is a faithful representation (meaning ρM is injective). Moreover, every
irreducible representation of M is an irreducible constituent of ρM .

If M is a monoid and K is a field, then we define the Rhodes radical
RadK(M) to be the congruence on M associated to the direct sum of all the
irreducible representations of M over K. Equivalently, it is the restriction
to M of the congruence on K[M ] associated to the Jacobson radical. Al-
ternatively, if we consider the regular representation, placed in block upper
triangular form, then the Rhodes radical is the congruence associated to the
projection to the block diagonal.

Recall that a pseudovariety of monoids (semigroups) is a class of finite
monoids (semigroups) closed under the formation of finite direct products,
submonoids (subsemigroups) and homomorphic images [1,5]. If V is a pseu-
dovariety of monoids, then LV denotes the pseudovariety of semigroups S
such that, for each idempotent e ∈ S, the monoid eSe belongs to V. Let
I denote the trivial pseudovariety and Gp denote the pseudovariety of p-
groups for p prime. If V is a pseudovariety of semigroups, a homomorphism
ϕ : M → N of monoids is called a V-morphism if, for each idempotent
f ∈ N , one has fϕ−1 ∈ V.

With this notation, Rhodes showed [12, 17] that if K has characteristic
0, then RadK(M) is the largest congruence ≡ on M such that the quotient
ϕ : M → M/≡ is an LI-morphism. The authors have generalized this [3]
to show that if K has characteristic p > 0 (a prime), then RadK(M) is the
largest congruence ≡ on M such that the quotient ϕ : M → M/≡ is an
LGp-morphism. Two proofs of these results are given in [3]. The first proof
uses the Wedderburn theory of finite dimensional algebras; the second proof
uses classical semigroup representation theory and follows along the lines
of [12,17]. One of the key algebraic results used in the first proof, and that
we shall use later, is the following, whose proof we include to give the flavor
of things. We shall use the fact that a semigroup S is locally a group (in
LG for G the pseudovariety of groups) if and only if it does not contain
a copy of the two element semilattice {e, f | e = e2 = ef = fe, f = f2};
in this case S is a nilpotent extension of a simple semigroup. By E(S) we
denote the set of all idempotents of a semigroup S.

Lemma 2.1. Let ϕ : A → B be a morphism of K-algebras with ker ϕ nilpo-
tent. Let S be a finite subsemigroup of A. Then if charK = 0, respectively
p, then ϕ|S is an LI-morphism, respectively LGp-morphism.

Proof. Without loss of generality, we may assume that S spans A and hence
that A is finite dimensional. Let e0 ∈ E(B) and U = e0ϕ|−1

S . First we
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show that U does not contain a copy of the two element semilattice. Indeed,
suppose that e, f ∈ E(U) and ef = fe = e. Then

(f − e)2 = f2 − ef − fe + e2 = f − e.

Since f − e ∈ ker ϕ, a nilpotent ideal, we conclude f − e = 0, that is,
f = e. As observed before the formulation of the lemma, this means that U
is locally a group.

Now let G be a maximal subgroup of U with identity e. Then g−e ∈ ker ϕ.
Since g and e commute, if the characteristic is p, then, for large enough n,

0 = (g − e)pn
= gpn − e

and so G is a p-group. Thus U ∈ LGp.
If the characteristic is 0, then we observe that (g − e)n = 0 for some n.

So by taking the regular representation ρ of G, we see that gρ is a matrix
with minimal polynomial of the form (x − 1)n; that is gρ is unipotent. A
quick consideration of the Jordan canonical form for such gρ shows that if
gρ is not the identity matrix, then it has infinite order. It follows that g = e
and so G is trivial. Thus U ∈ LI. �

We remark that if A is an algebra of block upper triangular matrices, B
is the diagonal block algebra, and ϕ is the projection to the diagonal block,
then the kernel is contained in the algebra of upper triangular matrices with
zero diagonal; this algebra is nilpotent and so Lemma 2.1 applies in this
context.

We recall that if V is a pseudovariety of semigroups and W is a pseu-
dovariety of monoids, then the Malcev product V©m W is the pseudovariety
generated by all monoids M with a V-morphism to a monoid in W. Given
our description of the Rhodes radical, it follows from results of Rhodes and
Tilson [6, 13, 26] that M ∈ LI©m W if and only if M/RadQ(M) ∈ W and
M ∈ LGp©m W if and only if M/RadFp(M) ∈ W, where Fp is the finite
field of order p.

3. Applications to Marked Products

In this section we present two applications of representation theory to
studying marked products. More can be found in [3].

Recall that Eilenberg established [5, Vol.B, Chap. VII] a correspondence
between pseudovarieties of monoids and so-called varieties of languages. If V
is a pseudovariety of monoids and Σ a finite alphabet, then V(Σ∗) denotes
the set of all languages over Σ that can be recognized by monoids in V.
(Such languages are often referred to as V-languages.) The operator V
that assigns each free monoid Σ∗ the set V(Σ∗) is said to be the variety of
languages associated to V. The syntactic monoid [5, loc. cit.] of a rational
language L will be denoted ML. It is known that L is a V-language if and
only if ML ∈ V.
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3.1. Products with Counter. Our first application is to prove the results
of Peladeau and Weil [7, 27] on products with counter.

Let L0, . . . , Lm ⊆ Σ∗, a1, . . . , am ∈ Σ and let n be an integer. Then
the marked product with modulo n counter L = (L0a1L1 · · · amLm)r,n is the
language of all words w ∈ Σ∗ with r factorizations modulo n of the form
w = u0a1u1 · · · amum with each ui ∈ Li. One can show that L is rational [27]
(see also the proof of Theorem 3.2 below). Using a decomposition result
of Rhodes and Tilson [14] (see also [16]) based on case-by-case analysis
of kernel categories of maximal proper surmorphisms (see [11, 15, 6]), Weil
characterized the closure of a variety V under marked products with modulo
p counter. This required iterated usage of the so-called “block product”
principle. But Weil missed that the Boolean algebra generated by V(Σ∗) and
marked products with modulo p counters of members V(Σ∗) is already closed
under marked products with modulo p counters; this was later observed by
Peladeau [7]. The difficulty arises because it is not so clear how to combine
marked products with modulo p counters into new marked products with
modulo p counters.

We use representation theory to prove the result in one fell swoop. Our
approach is inspired by a paper of Simon [22] dealing with marked products
and the Schützenberger product of finite monoids.

Lemma 3.1. Let V be a pseudovariety of monoids, ϕ : Σ∗ → M be a
morphism with M finite. Let K be a field of characteristic p and suppose
that M can be represented faithfully by block upper triangular matrices over
K so that the monoids formed by the diagonal blocks of the matrices in the
image of M all belong to V. Let F ⊆ M . Then L = Fϕ−1 is a Boolean
combination of members of V(Σ∗) and of marked products with modulo p
counter (L0a1L1 · · · anLn)r,p with the Li ∈ V(Σ∗).

Proof. Suppose M ≤ Mt(K) and t = t1 + · · ·+ tk is the partition of t giving
rise to the block upper triangular form. Let Mi be the monoid formed by the
ti×ti matrices over K arising as the ith diagonal blocks of the matrices in the
image of M . Given w ∈ Σ∗ and i, j ∈ {1, . . . , k}, define ϕi,j : Σ∗ → Mti,tj (K)
by setting wϕi,j to be the ti × tj matrix that is the i, j-block of the block
upper triangular form. So in particular wϕi,j = 0 for j < i. Also ϕi,i is a
morphism ϕi,i : Σ∗ → Mi for all i.

First we observe that we may take F to be a singleton {uϕ}. For each
1 ≤ i ≤ j ≤ k, let

Li,j = {w ∈ Σ∗ | wϕi,j = uϕi,j}.

Then clearly

uϕϕ−1 =
⋂

1≤i≤j≤k

Li,j .

Since Li,i is recognized by Mi, it suffices to show Li,j , where 1 ≤ i < j ≤ k,
can be written as a Boolean combination of marked products with modulo
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p counter of languages recognized by the Ml. Changing notation, it suffices
to show that if 1 ≤ i < j ≤ k and C ∈ Mti,tj (K), then

L(C) = {w ∈ Σ∗ | wϕi,j = C} (3.1)

is a Boolean combination of marked products with modulo p counter of
languages recognized by the Mi.

The following definitions are inspired by [22], though what Simon terms
an “object”, we term a “walk”. A walk from i to j is a sequence

w = (i0,m0, a1, i1,m1, . . . , ar, ir,mr) (3.2)

where i = i0 < i1 < · · · < ir = j, al ∈ Σ and ml ∈ Mil . There are only
finitely many walks. The set of walks will be denoted W. Given a walk w,
we define its value to be

v(w) = m0(a1ϕi0,i1)m1 · · · (arϕir−1,ir)mr ∈ Mti,tj (K).

If w is a walk, we define the language of w to be the marked product

L(w) = (m0ϕ
−1
i0,i0

)a1(m1ϕ
−1
i1,i1

) · · · ar(mrϕ
−1
ir,ir

).

If w ∈ Σ∗ and w is a walk of the form (3.2), we define w(w) to be
the multiplicity of w in L(w), that is, the number of factorizations w =
u0a1u1 · · · arur with ulϕil,il = ml; this number is taken to be 0 if there are
no such factorizations. If 0 ≤ n < p, we establish the shorthand

L(w)n,p =
(
(m0ϕ

−1
i0,i0

)a1(m1ϕ
−1
i1,i1

) · · · (armrϕ
−1
ir,ir

)
)

n,p
.

Notice that L(w)n,p consists of all words w with w(w) ≡ n mod p and is a
marked product with modulo p counter of V(Σ∗) languages.

The following is a variant of [22, Lemma 7].

Claim. Let w ∈ Σ∗. Then

wϕi,j =
∑
w∈W

w(w)v(w). (3.3)

Proof. Let w = b1 · · · br be the factorization of w in letters. Then the formula
for matrix multiplication gives

wϕi,j =
∑

(b1ϕi0,i1)(b2ϕi1,i2) · · · (brϕir−1,ir) (3.4)

where the sum extends over all il such that i0 = i, ir = j and il ∈ {1, . . . , k}
for 0 < l < r. Since vϕl,n = 0 for l > n, it suffices to consider sequences
such that i = i0 ≤ i1 ≤ · · · ≤ ir = j. For such a sequence, we may group
together neighboring indices that are equal. Then using that the ϕn,n are
morphisms, we see that each summand in (3.4) is the value of a walk w and
that w appears exactly w(w) times in the sum. �
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To complete the proof, we observe that L(C) (defined in (3.1)) is a
Boolean combination of languages of the form L(w)n,p. Let X be the set of
all functions f : W → {0, . . . , p− 1} such that∑

w∈W

f(w)v(w) = C.

It is then immediate from (3.3) and charK = p that

L(C) =
⋃

f∈X

⋂
w∈W

L(w)f(w),p

completing the proof. �

Theorem 3.2. Let L ⊆ Σ∗ be a rational language, V be a pseudovariety
of monoids and K be a field of characteristic p. Then the following are
equivalent.

(1) ML ∈ LGp©m V;
(2) ML/RadK(ML) ∈ V;
(3) ML can be faithfully represented by block upper triangular matrices

over K so that the monoids formed by the diagonal blocks of the
matrices in the image of ML all belong to V;

(4) L is a Boolean combination of members of V(Σ∗) and languages
(L0a1L1 · · · anLn)r,p with the Li ∈ V(Σ∗).

Proof. The equivalence of (1) and (2) follows from the results of [3] cited in
Section 2.

For (2) implies (3), take a composition series for the regular representation
of ML over K: it is then in block upper triangular form and, by (2) and
the comments from Section 2, the monoids formed by diagonal blocks of
matrices in the image of ML all belong to V.

(3) implies (4) is immediate from Lemma 3.1.
For (4) implies (1), it suffices to deal with a marked product with counter

L = (L0a1L1 · · · anLn)r,p. Let Ai be the minimal deterministic automaton
for Li. Let A be the non-deterministic automaton obtained from the disjoint
union of the Ai by attaching an edge labelled ai from each final state of
Ai−1 to the initial state of Ai. To each letter a ∈ Σ, we associate the matrix
aϕ of the relation that a induces on the states. Since aϕ is a 0, 1-matrix,
we can view it as a matrix over Fp. In this way we obtain a morphism
ϕ : Σ∗ → Mk(Fp) where k is the number of states of A. Let M = Σ∗ϕ.
Trivially, M is finite. We observe that M is block upper triangular with
diagonal blocks the syntactic monoids MLi (the partition of k arises from
taking the states of each Ai). Notice that M recognizes L, since L consists
of all words w such that (wϕ)s,f = r where s is the start state of A0 and f
is a final state of An. Applying Lemma 2.1 to the projection to the diagonal
blocks gives that M and its quotient ML belong to LGp©m V. �

The proof of (4) implies (1) gives a fairly easy argument that marked
products of rational languages with mod p counter are rational.
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Since the operator LGp©m ( ) is idempotent, we immediately obtain the
following result of [7, 27].

Corollary 3.3. Let V be a pseudovariety of monoids and W = LGp©m V.
Then

(1) W(Σ∗) is the smallest class of languages containing V(Σ∗), which is
closed under Boolean operations and formation of marked products
with modulo p counters.

(2) W(Σ∗) consists of all Boolean combinations of elements of V(Σ∗)
and marked products with modulo p counters of elements of V(Σ∗).

Some special cases are the following. If V is the trivial variety of monoids,
then LGp©m V = Gp and we obtain Eilenberg’s result [5, Section VIII.10]
that the Gp languages consist of the Boolean combinations of languages of
the form (Σ∗a1Σ∗ · · · anΣ∗)r,p. Notice that Gp consists of the groups uni-
triangularizable over characteristic p. The languages over Σ∗ associated to
LGp©m Sl (as observed in [2], this pseudovariety consists of the unitrian-
gularizable monoids over characteristic p) are the Boolean combinations of
languages of the forms

Σ∗aΣ∗ and (Σ∗
0a1Σ∗

1 · · · anΣ∗
n)r,p

where Σi ⊆ Σ.
We remark that Weil shows [27] that closing V(Σ∗) under marked products

with modulo pn counters, for n > 1, does not take you out of the LGp©m V-
languages.

3.2. Unambiguous Products. Our next application is to recover results
of Schützenberger, Pin, Straubing, and Thérien concerning unambiguous
products. Our proof of one direction is along the lines of [9] but our usage
of representation theory allows us to avoid using results relying on case-
by-case analysis of maximal proper surmorphisms and the block product
principle.

Let Σ be a finite alphabet, L0, . . . , Ln ⊆ Σ∗ be rational languages and
a1, . . . , an ∈ Σ. Then the marked product L = L0a1L1 · · · anLn is called
unambiguous if each word w ∈ L has exactly one factorization of the form
u0a1u1 · · · anun, where each ui ∈ Li. We also allow the degenerate case
n = 0.

We shall need to use a well-known and straightforward consequence of the
distributivity of concatenation over union (cf. [9]), namely, that if L0, . . . , Ln

are disjoint unions of unambiguous marked products of elements of V(Σ∗),
then the same is true for any unambiguous product L0a1L1 · · · anLn. We
also need a lemma about languages recognized by finite monoids of block
upper triangular matrices in characteristic 0.

Lemma 3.4. Let V be a pseudovariety of monoids, ϕ : Σ∗ → M be a
morphism with M finite. Let K be a field of characteristic 0 and suppose
that M can be represented faithfully by block upper triangular matrices over
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K so that the monoids M1, . . . ,Mk formed by diagonal blocks of matrices
in the image of M all belong to V. Let F ⊆ M . Then L = Fϕ−1 is
a disjoint union of unambiguous marked products L0a1L1 · · · anLn with the
Li ∈ V(Σ∗).

Proof. We induct on the number k of diagonal blocks. If there is only one
block we are done.

Now let k > 1. We can repartition n into two blocks, one corresponding to
the union of the first k−1 of our original blocks and the other corresponding
to the last block. The first diagonal block, call it N , is block upper triangular
with diagonal blocks M1, . . . ,Mk−1; the second is just Mk. By induction,
any language recognized by N is a disjoint union of unambiguous marked
products L0a1L1 · · · arLr with the Li ∈ V(Σ∗). Thus to prove the result, it
suffices to show that L is a disjoint union of unambiguous marked products
L0a1L1 · · · anLn with the Li recognized by N ×Mk. It is shown in [3] that
the projection from M to N×Mk has locally trivial kernel category (see [14]
for the definition). Then [9, Proposition 2.2] shows us that L is a disjoint
union of such unambiguous marked products. �

We ask whether there is a simple combinatorial proof of this lemma
that avoids the use of [9, Proposition 2.2] along the lines of the proof of
Lemma 3.1.

Theorem 3.5. Let L ⊆ Σ∗ be a rational language, V be a pseudovariety of
monoids and K a field of characteristic 0. Then the following are equivalent.

(1) ML ∈ LI©m V;
(2) ML/RadK(ML) ∈ V;
(3) ML can be faithfully represented by block upper triangular matrices

over K so that the monoids formed by the diagonal blocks of the
matrices in the image of ML all belong to V.

(4) L is a disjoint union of unambiguous products L0a1L1 · · · anLn with
the Li ∈ V(Σ∗).

Proof. The equivalence of (1) and (2) follows from the results of [3] quoted
in Section 2.

For (2) implies (3), take a composition series for the regular representation
of ML over K: it is then in block upper triangular form and by (2) monoids
formed by diagonal blocks of matrices in the image of ML all belong to V.

(3) implies (4) is immediate from Lemma 3.4.
For (4) implies (1), it suffices to deal with a single unambiguous marked

product L = L0a1L1 · · · anLn. Let Ai be the minimal trim [5] deterministic
automaton for Li and let A be the non-deterministic automaton obtained
from the disjoint union of the Li by attaching an edge labelled ai from
each final state of Ai−1 to the initial state of Ai. To each letter a ∈ A,
we associate the matrix aϕ of the relation that a induces on the states. In
this way we obtain a morphism ϕ : Σ∗ → Mk(Q) where k is the number of
states of A. Let M = Σ∗ϕ. We observe that M is block upper triangular
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with diagonal blocks the syntactic monoids MLi (the partition of k arises
from taking the states of each Ai). Notice that M recognizes L, since L
consists of all words w such that (wϕ)s,f > 0 where s is the start state of
A0 and f is a final state of An. First we show that M is finite. In fact,
we claim M contains only 0, 1-matrices (and hence must be finite). Indeed,
suppose (wϕ)i,j > 1 some i, j. Since each MLi consists of 0, 1-matrices, we
must have that i is a state of some Al and j a state of some Ar with l < r.
But (wϕ)i,j is the number of paths labelled by w from i to j in A. Thus
if u, v are words reading respectively from the start state of A0 to i and
from j to a final state of An (such exist since the Ai are trim), then uwv
has at least two factorizations witnessing membership in L, contradicting
that L was unambiguous. Since the collection of all block upper triangular
matrices is an algebra over Q, as is the collection of block diagonal matrices,
an application of Lemma 2.1 to the projection to the diagonal blocks gives
that M ∈ LI©m V and so, since M � ML, we have ML ∈ LI©m V. �

Since the operator LI©m ( ) is idempotent, we immediately obtain the
following result of [8, 9].

Corollary 3.6. Let V be a pseudovariety of monoids and W = LI©m V.
Then

(1) W(Σ∗) is the smallest class of languages containing V(Σ∗), which
is closed under Boolean operations and formation of unambiguous
marked products.

(2) W(Σ∗) consists of all finite disjoint unions of unambiguous marked
products of elements of V(Σ∗).

Recall that the Malcev product of the pseudovariety LI with the pseu-
dovariety Sl of semilattices (idempotent-commutative monoids) is equal to
the famous pseudovariety DA of all finite monoids whose regular D-classes
are idempotent subsemigroups (see [24] for a nice survey of combinato-
rial, logical and automata-theoretic characterizations of DA). Applying
the above corollary, one obtains the classical result of Schützenberger [19]
that DA(Σ∗) consists of disjoint unions of unambiguous products of the
form Σ∗

0a1Σ∗
1 · · · anΣ∗

n with Σi ⊆ Σ for all i. It is shown in [3], using repre-
sentation theory, that DA consists of precisely those monoids that can be
faithfully represented by upper triangular matrices with zeroes and ones on
the diagonal over Q.
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9. J.-E. Pin, H. Straubing and D. Thérien, Locally trivial categories and unambiguous
concatenation, J. Pure Applied Algebra 52 (1988), 297–311.

10. C. Reutenauer, Sur les variétés de langages et de monöıdes, Proc. GI Conf. [Lect.
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