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ABSTRACT

This paper further develops the theory of arbitrary semigroups acting on trees via
elliptic mappings. A key tool is the Lyndon-Chiswell length function L for the
semigroup S which allows one to construct a tree T' and an action of S on T via
elliptic maps. Improving on previous results, the length function of the action will
also be L.

1 Introduction

This paper substantially improves and extends the results in [22]. We consider the case
of expansions cut down to generators, which is more compatible with geometric semigroup
theory [17] and also allows the following major improvement over [22]. A Lyndon-Chiswell
function L for the semigroup S with generators X allows one to construct a tree T and
an elliptic action of S on T. The action also gives a unique length function L' on S. In
[22],L and L’ need not be equal. However, in this paper, by cutting to generators X and
performing a more refined construction, one obtains that L = L’. Unfortunately, this makes
the proofs sometimes more difficult and longer than in [22]. Our proofs here occasionally
correct some minor errors and misprints in [22] and also just refer to the arguments in [22]
when the proofs are the same. Applications of these results to the free Burnside semigroups,
see [15, 16, 17|, are indicated in Section 9. Full details of the elliptic actions of the free
Burnside semigroups will be given in a future paper.



2 Graphs and contractions

Throughout the paper, morphisms and contractions shall be written on the right. Other
mappings will be written on the left.
Given a nonempty set X and n € IN, let

Pu(X)={Y C X :|Y|=n).

As usual, we identify P;(X) with X to simplify notation.
We define a graph to be an ordered pair of the form G = (X, e) where

(G1) X is a nonempty set;
(G2) e: X — P1(X)UPy(X) is a one-to-one mapping satisfying

Ve,v e X (v E€e(x) = e(v) =0).

The elements of Vert(G) = e 1(P(X)) are the vertices of G and those of Edge(G) =
e 1 (Py(X)) are the edges. The mapping e fixes the vertices since

ev)=weX =el)=w=elw)=v=w=e)

by (G2) and injectivity of e, and associates to each edge its two adjacent vertices. Note
that this definition of (unordered) graph excludes loops and multiple edges due to the fact
of e being one-to-one.

A pathin G = (X, e) of length n € IN is a sequence p = (v, ..., vy) in Vert(G) such that
{vi—1,v;} € e(Edge(G)) for i = 1,...,n. We say that p is a path from vy to v,. Ilf n =0
the path is said to be trivial. The graph G is said to be connected if, for all v, w € Vert(G),
there exists a path in G from v to w.

A cycle in G is a path of the form (vg, ..., vp—1,v,) withn > 3, v, = vg and vg, ..., V1
all distinct. A connected graph with no cycles is said to be a tree.

Let G; = (X;, e;) be a graph for i = 1,2. A graph morphism ¢ : G; — G2 is a mapping
p : X1 — X9 such that

(GML) (Vert(Gy))p C Vert(Ga):
(GM2) (e1(z1))p = ea(z19) for every z1 € X;.

Note that ¢ can collapse vertices to edges: for example, every graph has a morphism onto
the trivial graph with a single vertex.

Given a connected graph G, we define a distance d on Vert(G) by taking d(v,w) to be
the length of the shortest path from v to w in G. Such a shortest path is said to be a
geodesic from v to w and d is the geodesic distance in G. We write Geo(G) = (Vert(G), d).
If G is a tree, there is a unique geodesic connecting v and w and Geo(G) is a hyperbolic
metric space as considered in [9].

Let G; = (X, e;) be a graph for i = 1,2 and let Geo(G;) = (Vert(G;),d;). A contraction
1 : Geo(G1) — Geo(G2) is a mapping v : Vert(G1) — Vert(G3) satisfying

Vo, w € Vert(G1) da(vip, wy)) < di(v,w).
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Proposition 2.1 [22, Fact 1.4] Let G; = (X;,e;) be a graph for i = 1,2. A mapping
Y1 Vert(G1) — Vert(Ga) is a contraction if and only if 1 can be extended to a morphism
¥ : G1 — Ga. In that case, the extension is unique.

Let G be a graph. From now on, given a graph G, we shall identify G with its underlying
set, and we shall assume that the one-to-one mapping is denoted by e and the geodesic
distance by dg. We denote by End(G) the monoid of all endomorphisms of G and by
Con(G) the monoid of all contractions of Geo(G) into itself.

The following result is a straightforward consequence of Proposition 2.1.

Corollary 2.2 The mapping
End(G) — Con(G)
Pl Vert(G)
s @ monoid isomorphism.

Proof. By Proposition 2.1, this mapping is a well-defined bijection. Since p(Vert(G)) C
Vert(G) for every ¢ € End(G), it follows that

((p(p/)‘Vert(G) = ‘P‘Vert(G)SD"Vert(G)

for all ¢, ¢’ € End(G). Since the restriction of the identity endomorphism is the identity
contraction, our mapping is indeed a monoid isomorphism. [

3 Elliptic M-trees

Let G be a graph and let M be a monoid with identity 1. A (right) action of M on G is a
monoid homomorphism
6 : M — End(G)

m 0,

The action is faithful if 6 is one-to-one.
To simplify notation, we write xm = x6,,. With this notation, the action can be
equivalently defined through the axioms:

A1) (Vert(G))M C Vert(G)

A2) (e(x))m = e(xzm)

(A1)
(A2)
(A3) z(mm/) = (zm)m’
(Ad) 21 =2

for all z € G and m,m’ € M.

Note that, in view of Corollary 2.2, the action could be equivalently defined as a monoid
homomorphism M — Con(G).

We are interested in the case of G being a tree, a rooted tree to be more precise. A
rooted tree is an ordered pair of the form (rg,7"), where T" is a tree and r9 € Vert(T). A



rooted tree admits a natural representation by levels 0, 1,2, ... where we locate at level (or
depth) n those vertices lying at distance n from ry. We write then

dep(v) = d(ro, v)
for v € Vert(T). Let IN = IN U {w}. The depth of a rooted tree is defined by
dep(rg, T) = sup{dep(v) ;v € Vert(T)} € IN.
Given v € Vert(T'), we define the degree of v in (rg,T) by

[z €Bdge(T) |vee()} ifv=r
deg(v) = {|{§c € Edge(T) |vee(x)} —1 otherwige,

that is, we count the number of outgoing edges if we orient them away from the root. A
vertex of degree 0 is called a leaf. If two vertices v and w are connected by an edge, we say
that
v is {a son of w if dep(v) = dep(w) + 1
the father of w if dep(v) = dep(w) — 1

Note that a father may have many sons, but the father is always unique. All vertices but
the root have a father.

We generalize this notion with the obvious terminology. If v; is a son of v;_1 for i =
1,...,k, we say that v is a descendant of vy and vy an ancestor of vy.

A very important example is given by rooted uniformly branching trees:

Example 3.1 Let ny,...,n; > 1. Up to isomorphism, the rooted uniformly branching tree
(ro, T(ny,...,n1)) is the rooted tree of depth | such that every vertex of depth i—1 has degree
n; (i=1,...,1). For example, (r9,T(3,2)) can be pictured by

VAN VAR

We can of course extend this definition to infinite cardinals in the obvious way, as
well as considering T'(...,ng,n1) for an infinite sequence. It is standard to represent

Vert(T'(ng,...,n1)) as
l

{rofu(lJxi... x x1)
i=1
with | X;| = n; for every i.
Let (ro,T), (r(,T") be rooted trees. An elliptic contraction ¢ : (ro,T) — (r(, 1) is a
depth-preserving contraction, that is, a contraction ¢ : Vert(T') — Vert(7") satisfying

Vv € Vert(T) dep(vp) = dep(v).

In view of Proposition 2.1, a bijective elliptic contraction extends to an isomorphism of
rooted trees.



Lemma 3.2 Let (r9,T) be a rooted tree and let ¢ : Vert(T) — Vert(T') be a mapping.
Then ¢ is an elliptic contraction from (ro,T) into (ry, T") if and only if

(i) rop = ro;
(ii) if v € Vert(T) is the father of w, then vy is the father of we.

Proof. Assume that ¢ is an elliptic contraction. Then (i) holds trivially and (ii) follows
from ¢ preserving depth and being the restriction of a tree morphism by Proposition 2.1.

Assume now that ¢ satisfies conditions (i) and (ii). We extend ¢ to @ : T — T" as
follows. Given x € Edge(T'), we may write e(x) = {v,w} and assume that v is the father
of w. By (ii), it follows that vy is the father of we and so there exists some 2’/ € Edge(T")
such that e(z’) = {vp, wp}. We define 2 = 2/

It follows from the definition that @ : T — T’ is a morphism. By Proposition 2.1, ¢ is
a contraction. By (i), ¢ preserves depth 0. By (ii) and induction, ¢ preserves depth n for
each n € {0,...,dep(ro,7)}. O

The set of all elliptic contractions on (rg,T") is denoted by Ell(rg,T"). This is a monoid
under composition and is termed the elliptic product on (ro,T).

Wreath products constitute as we shall see important examples of elliptic products. A
partial transformation monoidis an ordered pair of the form (X, M), where X is a nonempty
set and M is a submonoid of the monoid P(X) of all partial transformations of X. If M is
a submonoid of the monoid M (X)) of all full transformations of X, we say that (X, M) is a
transformation monoid.

Throughout the paper, given a direct product of the form X = X; x ... x X; and
i€{1,...,1}, we shall denote by m; : X — X, the projection on the ith component, and by
i1 0 X — Xi X ... x Xj the projection on the last i components.

Assume that X = Uﬁzl(Xi X...xXj). Fori=1,...,l, we define an equivalence relation
=; on X by
(Tj,...,21) = (@),...,2)) if (i<jk and x;=2a,...,21 =1)).

Given ¢ € P(X), we denote by domgp the domain of ¢.
A mapping ¢ € P(X) is said to be sequential if:

(SQ1) Vie {2,....1} ((zi,...,x1) € domyp = (zi—1,...,21) € domy);
(SQ2) Vie{1,...,l} Y(xs,...,z1) € domp (4,...,21)p € X; X ... x Xy;
(SQ3) Vie{l,...,1} Vo,2' € domy (z =; 2/ = zp =; 2/¢).

It is immediate that the composition of sequential partial transformations of X is still
sequential.
Adjoining a root ry provides a natural tree representation for UéleZ- X ...x X;. For



example, taking Xo = X7 = {0, 1}, we obtain the tree

N N

Given (ai,l,...,al) e X1 x...xX4 (Z S {1,...,[}), we have (-,ai,l,...,al)gmri S
P(X)).

Graphically, whenever yp = z for y = (a;—1,...,a1) and X; = {b1,..., by}, then we
have

——— -

yby ybo Ybim by zby 2bpm

in the tree representation and {ybi,...,ybm}te C {2b1,...,2by}. Then (-, a;—1,...,a1)em;
is the induced partial mapping {b1,...,bm} — {b1,...,bn} (not necessarily injective!).

If ,¢' € P(X) and (aj—1,...,a1)p = (a;_q,...,a}), it is easy to check [8, 23] that we
have

('7 Ai—1,--- 7a1)(9090/77i) = ((’ Qj—1,--- 7a1)9077i)(('7 a;flv v va’/l)@/ﬂ-i)' (1)

Given partial transformation monoids (X, M), ..., (X1, My), their wreath product is
defined by

(Xl,Ml)O...O(Xl,Ml) = (Xl X ... X Xl,MlO...OMl),
where M o...o M consists of all ¢ € P(X) satisfying

(W1) ¢ is sequential;
(WQ) P11 € M1
(W2) (-,ai—1,...,a1)pm € M; for all i € {2,...,1} and (a;_1,...,a1) € dome.

More informally, M; o ... o M; consists of those partial self-maps of X “in sequential form
with component action in the M;’s”. Note that M;o...o M; is a submonoid of P(X) since
the composition of sequential mappings is sequential and by (1): if (-, a;—1,...,a1)em; and
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(,a,_q,...,a})¢'m are both in M;, so is their composition (-, a;—1, .. .,a1)(¢¢'m;). Therefore

(Xl, Ml) .o (Xy, M) is a well-defined partial transformation m0n01d

(Xl,Ml), , (X1, M) are (full) transformation monoids, their wreath product is
a submonoid of M (X). In the case of a wreath product of two monoids with X; =
{ai,...,am}, it is common to use the notation (B1,...,0m)a (o € My,[; € Ms) to de-
note the element of Ms o M7 defined by

(I‘Q, ai)((ﬁl, e ,ﬁm)a) = (Cﬂgﬁi, CLZ'O[).

The wreath product of (partial) transformation monoids is associative, among other
properties. See [2, 8, 23] for more details about the wreath product.

Proposition 3.3 For all nonempty sets Xy, ..., X1, the monoids M(X;)o...o M(X1) and
Ell(ro, T(| Xy, ...,|X1])) are isomorphic.

Proof. We may write T'=T'(|.X|, ..., |X1|) with

l
Vert(T) = {ro} U (| Xi x ... x X3).
i=1
We consider
n: EH(’I“(),T) — M(Xl) c...0 M(Xl)
Q= ‘Xl><...><X1 .

Let ¢ € Ell(ro,T'). Since elliptic contractions preserve depth, n(¢) € M(X; x ... x X1).
It follows easily from Lemma 3.2(ii) that n(y) is sequential: if z =; 2/, then z,2’ are
descendants of zm[; 1} and so z, 2’ are descendants of T 11, yielding zp =; 2. Since
(W2) and (W3) are trivially satisfied due to Ui:l X; X ... x Xy C domy, n is well defined.

Also by Lemma 3.2, the image of each v € Vert(T') by ¢ determines the images of all its
ancestors, hence ¢ is determined by its restriction to the leafs of T, i.e., n(¢). Therefore 7
is one-to-one.

Next let ©p € M(X;)o...0o M(X;). We define ¢ : Vert(T') — Vert(T) by rop = 1o and

(T4, ..y z1) = (205 - -, 1) YT 1),

the domain extension described before for a sequential map. If (z;,...,z1) is a son of
(Tiz1,...,m1) (i = 2,...,1), then (z;,...,21)Y7; ) is a son of (zy,...,21)Y7m;_; 1) and so
(4, ...,21)¢ is a son of (x;—1,...,21)¢p. Since (z1)p = (x1,...,x1)Ym is always a son of

10, condition (ii) of Lemma 3.2 holds and so ¢ is an elliptic contraction. Since b = n(p),
we conclude that n is onto and therefore a bijection.

Since (X} x ... x X1)p C X; X ... x X7 for every elliptic contraction ¢, it follows that
7 is a monoid homomorphism and therefore an isomorphism. [J

An elliptic action of a monoid M on the rooted tree (rg,T") is a monoid homomorphism
0 : M — Ell(ro,T). The elliptic action is faithful if 6 is one-to-one.

We can generalize Proposition 3.3 to the case of arbitrary wreath products of transfor-
mation monoids:

Corollary 3.4 For all transformation monoids (X;, M), ..., (X1, M1), the monoid M; o
..o My embeds in Ell(ro, T(|Xi],...,|X1])).



Proof. Write T'=T'(|X;/,...,|X1|). We proved in Proposition 3.3 that

n:Ell(re,T) — M(X;)o...0o M(Xy)
Y= @ |Xl><...><X1 .

is a monoid isomorphism, its inverse being the mapping 7' that assigns to every 1 €
M(X;)o...oM(X;) its natural domain extension 1) : Vert(T) — Vert(T'). The restriction
of n~! to the submonoid Mjo...oMj of M(X;)o...0o M(X7) defines a faithful elliptic action
of Myo...oMj on Ell(rg,T) and so M o...o M; embeds in Ell(rg, T(|X|,...,|X1|)). O

However, not all submonoids of Ell(rg, T'), where T is a rooted uniformly branching tree,
can be obtained via wreath products of transformation monoids, as the next example shows.

Example 3.5 Let M be the submonoid of M ({1,2,3,4}) given by
M = {(1234), (2244), (3434), (3444), (4444)},

where ¢ = (ajagasayq) is defined by ip = a; fori = 1,...,4. Then M acts faithfully on
(ro,T(2,2)) by elliptic contractions according to the labelling

N\
/ AN

1 2 3 4

and so M embeds in Ell(rg,T(2,2)). However, M cannot be obtained as My o My with
My, M1 monoids of full transformations since

|Ma o My| = | Ma|?|M;]

and My, My < M({0,1}) implies | M|, |Ma| < 4.

Let (rg,T') be a rooted tree. Clearly, every v € (ro,T) is determined by the geodesic
a=@Ww=aq,...,a1,a9 =10).

We call such a geodesic a ray of (rg,T"). An infinite path of the form o = (..., a1, a9 = 19)
is also said to be a ray if dep(a;) =i for every i € IN. An infinite ray is also called an end.
We denote by Ray(rg, T') the set of all rays of (rg,T).

Given a = (ay, ..., a1,ap) € Ray(rg, T'), we write |a| = [ and doma = {0,...,I}. If o is
infinite, we write |a| = w and doma = IN. In any case, given o € Ray(rg,T') and i € doma,
we denote by «; the vertex of depth 7 in «.

We define a partial order on Ray(rg,T") by

a<pf if ol <] and o; = G; for every i € doma.



We say that a ray of (r9,T") is mazimal if it is maximal for this partial order. Clearly,
the maximal rays are either ends or correspond to the leaves of the tree. We denote by
MRay(r9,T") the set of all maximal rays of (ro,T).

We say that (rg,T) is uniform if all its maximal rays have the same length [ € IN.
In particular, if (rg,T") has finite depth [, it is uniform if all its leaves have depth [. If
(ro,T) has infinite depth, it is uniform if it has no leaves at all. The concept of maximal
ray constitutes the possible generalization of the concept of leaf to uniform trees of infinite
depth.

Assume that ¢ € Ell(rg,T'). We extend ¢ to a mapping @ : Ray(rg,T') — Ray(rg,T") by

Oé@ = ( -, 000, CYlQO)

It follows from Lemma 3.2 that i is well defined. Identifying finite rays with vertices as
usual, P can be seen as an extension of . We shall denote @ by ¢ when no confusion arises.

As a particular case, if M acts elliptically on (rg,T), we can extend this action to
Ray(ro,T) by

am = (...,agm,a1m) (a € Ray(rg,T), m € M).

Note that
al =a, a(mm') = (am)m’

for all @ € Ray(ro,T) and m,m’ € M, hence we can properly speak of an action of M on
Ray(ro,T).

Let (ro,T) be a uniform rooted tree and let & € MRay(ro,T'). An elliptic action of M
on (rg,T) is said to be a-transitive if

Vert(T) = aM = U ;M.

iedoma

If (ro,T) has finite depth [, it should be clear that the elliptic action of M on (rg,T) is
a-transitive if and only if oy M is the set of leaves of (19, T"). Indeed, since the action of M
is depth-preserving, only leaves can be sent to leaves. On the other hand, transitivity at
the deepest level clearly implies transitivity on the upper levels in view of Lemma 3.2.

An elliptic M -tree is a structure of the form x = (ro, T, «, 0), where

(E1) (r9,T) is a uniform rooted tree;
(E2) o € MRay(ro,T);
(E3) 6 : M — Ell(ro,T) is an a-transitive action.

We say that x is a faithful elliptic M-tree if 8 is one-to-one. We say x is a strongly faithful
elliptic M-tree if
am=am' =m=m' forall m,m € M.

We shall omit 6 from the representation of xy when no confusion arises from doing so.
Let x = (ro,T, ), X' = (r(,T",) be elliptic M-trees. A morphism ¢ : x — X' of
elliptic M-trees is an elliptic contraction ¢ : (r9,T) — (r(,T") such that:

(EM1) ap = a'y;



(EM2) Vv € Vert(T) Ym € M (vm)p = (vp)m.

If o is bijective, we say it is an isomorphism of elliptic M-trees.

Given a transformation monoid (X, M) and xg € X, we say that M acts transitively on
(X, x0) if oM = X. A pointed transformation monoid is a triple of the form (X, zo, M),
where M acts transitively on (X, zg).

Corollary 3.6 Let..., (X, x9, Ms), (X1, x1, M1) be pointed transformation monoids. Then
(ro, T(...,| Xal, | X1]), (..., x2,21)) is a faithful elliptic (...o My o My)-tree.

Proof. Axioms (E1) and (E2) are trivially verified. Let a = (..., z2,21). We observed
in the proof of Corollary 3.4 that the restriction of 7~! as defined in Proposition 3.3 to

the submonoid ... o My o M of ... o M(X3) o M(X;) defines a faithful elliptic action of
..0oMso M; on EI(T(...,|X2|,|X1])). A straightforward induction on ¢ proves that this

action is a-transitive: indeed, it is enough to show that, given (wj,...,w1) € X; x ... x X7,
there exists ¢; € M; o...o Mj such that (x;,...,21)¢; = (wi,...,wy1). The case i = 1
follows from M acting transitively on (X1, z1). Assume that (z;,...,21)p; = (wi,...,w1)

for some ¢; € M;o...o Mj. Since x;41& = w;y1 for some & € M;,1, we can define
©i+1 EMZ'_HO...OM1 by
Pit1 = (& -, i
It follows that
(Tig1, - 21)pi = (w1 & wi, - w) = (Wi, - -, w1)
and so (E3) holds as required. [J
Example 3.5 shows also that not all faithful elliptic M-trees on a rooted uniformly

branching tree can be obtained via wreath products, the action of M on (rg,7'(2,2)) being
obviously a-transitive for the ray defined by the leaf 1.

4 Length functions
Let M be a monoid. Let IN =NU {w} have the obvious ordering. A length function for M
is a function D : M x M — IN satisfying the axioms
(L1) D(m,m') = D(m’,m)
(L2) D(m/,m") < D(m,m)
(L3) D(m/,m") < D(m'm,m"m)
(L4) D(m,m”) > min{D(m,m’), D(m',m")} (isoperimetric inequality)
for all m,m’,m"” € M. B

Note that, by (L2), D has a maximum [ € IN and

D(m,m) =1 for every m € M. (2)

Moreover, for any submonoid M’ of M, the restriction of D to M’ x M’ is a length function
for M.

We recall that a quasi-ultrametric on a set X is a function d : X x X — R satisfying
the axioms

10



(Q1) d(z,2') =d(2/, x)
(Q2) d(xz,z) =0
(Q3) d(z,2") < max{d(z,2’),d(«',2")}

for all z, 2, 2" € X.
Bounded length functions can be related to quasi-ultrametrics as follows:

Proposition 4.1 Let M be a monoid and let D : M x M — IN be a bounded function with
maximum | € IN. Defined : M x M — IN by d(m,m') = 2l — 2D(m,m’). Then D is a
length function for M if and only if the following conditions hold:

(i) d is a quasi-ultrametric;
(it) d(m'm,m"m) < d(m’',m") for all m,m’,m" € M.
Proof. It is immediate that (Q1) < (L1), (Q2) & (L2), (Q3) < (L4) and (ii) & (L3). O

Let (ro,T) be a rooted tree and consider the partial order < defined on Ray(rg,T) in
Section 3. It is immediate that (Ray(rg,7"), <) is a A-semilattice and o A (3 is defined by

NG = « ifa=0
@ (g, a0) if k=max{i € N | o; = 3;}.

Thus (Ray(ro,T'), A) is a semilattice with zero (rp) (in the semigroup theory sense). Identify-
ing vertices with finite rays, we can say that Vert(7') is a A-subsemilattice of (Ray(ro,T), <),
considering the ancestor partial ordering on Vert(7T'):

v<w if v = w or v is an ancestor of w.

Lemma 4.2 Let (r9,T') be a rooted tree and o € Ray(ro, T). Write (o] = {8 € Ray(ro,T) |
8 < a}. Then:

(i) (a] is a chain;
(ii) if « is finite, (o] is finite.
Proof. (i) and (ii) follow from
(o] ={a} U{(aj,...,a0) | i =0,...,doma}.
O

Lemma 4.3 Let (ro,T) be a rooted tree. Then
la A Q| > min{|la A d], o’ Ad”|}
for all a, o/, & € Ray(rg,T).

Proof. We have a A o/,a/ A @’ < o/. Since (¢/] is a chain by Lemma 4.2(i) and A is
commutative, we may assume that a A o/ > o/ A @”. Thus

ahNd">and ANd" =(anNd )N (D Ad")=ad ANd

and so
la A | > ]a’ Ad”| > min{|a Ad|, o/ A "]}

as claimed. [J
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Proposition 4.4 Let x = (ro, T, ) be an elliptic M-tree and define a mapping Dy, : M x
M — IN by

Dy (m,m') = |am A am/|.
Then:
(i) Dy is a length function for M;
(i1) if dep(ro,T) =1 € IN, the quasi-ultrametric d associated to D, satisfies

d(m,m’) = dr(aym, cym’);

(i) if dep(rg,T) =1 € IN and x is strongly faithful, then d is an ultrametric.

Proof. (i) Since A is commutative, axiom (L1) is trivially satisfied.
Since a, am are maximal rays of (r9,7"), we have

D, (m/,m") = |am' A am”| < dep(ro,T) = |am|
=|am A am| = D,(m, m)

and so (L2) holds.
For all 8, 3" € Ray(ro,T), we have that

Bi =B fori=0,....k = Bim = Bim for i =0,... k.
Thus |8 A S| < |8m A 3'm]| and so
Dy(m/,m") =am’ A am”| < Jam'm A am”m| = Dy (m'm,m" " m).

Thus (L3) holds. Since (L4) follows fromm Lemma 4.3, D, is a length function for M.

(ii) Assume that dep(ro,7") = [ € IN. By (L2), [ is the maximum value of D,. By
Proposition 4.1, the associated quasi-metric is defined by d(m,m’) = 2l — 2D, (m,m’). Let
v be the deepest vertex of am A am’. Since v lies in the geodesics rg — aym, rg — oym’
and aym — agm/,

To

v
oym aym/

d(m,m’) =20 — 2D, (m, m’)
=dp(ro, qym) + dp(ro, ym’) — 2|am A am
= dr(ro, ym) — dr(ro,v) + dr(ro, cym’) — dr(ro, v)
=dyp(aym,v) + dp(cqym/,v) = dp(aym, oqym’).

we obtain

i

(iii) Assume that dep(rg,T) = I € IN and x is strongly faithful. Let m,m’ € M be
such that d(m,m’) = 0. By (ii), we have dr(aym,aym’) = 0 and so aym = aym’. Hence
am = am’ and so m = m/ since Y is strongly faithful. Therefore d is an ultrametric. [J
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In view of Corollary 3.6, it is interesting to analyze the particular case of wreath prod-
ucts. The canonical length function for two mappings ¢, ¢’ € M; o ... o M; measures the
maximum number of components (from right to left) where (zy,...,21)p and (2, ..., z1)¢’
coincide:

Corollary 4.5 Let ..., (X9, x9, M3), (X1, 21, M1) be pointed transformation monoids and
let x = (ro,T(...,|Xa|,|X1]), (... ,x2,21)) be the corresponding faithful elliptic (...o My o
M;)-tree. Then

Dy (¢, ¢') = max{i: (... 7l‘2,$1)907f[i,1] = (... >$2,$1)<P/7T[i,1]}-

Proof. We prove the finite case for pointed transformation monoids (Xj, z;, M;), ..., (X1, z1, My).
Let (z7,...,20), (z],...,2Y) € Vert(T(|Xy],...,|X1])) (we identify 9 with the empty se-
quence). Since
(2], ..., ) A (2], .. 2) = (2}, ..., 7))

where

k=max{i € {0,...,1}: (z},....,2}) = («,....2])},
we have

Dy (o, ¢") =z, ...,x1)0 A (21, ..., 21)¢|

=max{i € {0,..., 1} : (z,...,21)pmp 1 = (21, -, 21)Q" T 1) }-

O

Lemma 4.6 Let x, X’ be elliptic M-trees. Then Dy = D, if and only if x = x'.
Proof. Let x = (r0, T, ), X' = (r5,T",&’). Assume that D, = D,,. Note that

dep(rg, T) = maxD, = maxD,, = dep(r(,T").

Write [ = dep(ro, T).
We define a mapping
¢ : Vert(T') — Vert(T")

a;m— om

where ¢ € doma and m € M. Since the action of M on (rg,T') is a-transitive, we have
{v € Vert(T') | dep(v) =i} = a; M.

If oym = aym/, then
|&/'m A &'m/| = Dy (m,m') = Dy(m,m)
= |lam A am/| > i,

hence a,m = a/m/. Since
{v € Vert(T") | dep(v) = i} = a; M,

it follows that ¢ is well defined and onto. By symmetry, ¢ is also one-to-one.
Clearly, rop = (o - 1) = afy - 1 = 1. Assume that v is the father of w = a;m. Then
v = a;—1m since the action of M on (rg,T) is elliptical, hence vy = «o/_;m is the father
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of wy = am. By Lemma 3.2, ¢ is an elliptic contraction from (ry,7") onto (r(,1") and
therefore an isomorphism of rooted trees.
Since
ap=_(..,a1-Lag-Do=(...,a) La-1) =d

and
/

((aim)m’) = (asmm/)p = agmm’ = ((asm)p)m
for all m,m’ € M, axioms (EM1) and (EM2) are satisfied and so ¢ : x — X’ is an isomor-
phism of elliptic M-trees.

Conversely, assume that ¢ : Y — X’ is an isomorphism of elliptic M-trees. For all
m,m’ € M, we have

Dy (m,m') =|am A am/| = |(am)p A (am/)¢|
= |(ap)m A (ap)m/| = [a'm A o' m/|
=D,/ (m,m’),

hence D, = D,/ and the lemma holds. [J

A proof for the following theorem can be found in [22], but the important role played
by the Chiswell construction in it makes it worthwhile to include it here.

Theorem 4.7 [22, Theorem 1.12] Let M be a monoid and let D : M x M — NN be a
mapping. Then the following conditions are equivalent:

(i) D is a length function for M;
(it) D = D, for some elliptic M-tree x.
Moreover, if the conditions hold, x is unique up to isomorphism.

Proof. Assume that D is a length function for M. We adapt the important Chiswell
construction of [5] as follows. By (L2), there exists [ = maxD € IN. Let

p_ J{0. XM ifleN
T IINx M ifl=w

and define a relation ~ on P by
(k,m) ~ (K',m') if k =k and D(m,m’) > k.

We show that ~ is an equivalence relation on P.

In fact, ~ is reflexive by (2), and symmetric by (L1). Transitivity follows from the
isoperimetric inequality (L4). Let [k,m] denote the ~ equivalence class of (k,m). We
define a graph T by

Vert(T) = P/ ~,
Edge(T) = {[k,m| — [k + 1,m]; (k,m) € P, k <l}.

14



It follows from the definitions that
Vm,m' € M, (0,m) ~ (0,m).
Let 79 = [0, 1]. Since
[k,m| — ... — [1,m] — [0,m] =19 (3)

is a path in T for every (k,m) € P, T is a connected graph.
‘We show next that

[k,m]| — [k +1,m/] € Edge(T) < (k,m) ~ (k,m’) (4)

holds for all £ € {0,...,l — 1} and m,m' € M. Indeed, if [k, m] — [k + 1,m/] € Edge(T)
then [k,m] = [k,m"] and [k + 1,m'] = [k + 1,m"] for some m” € M. Hence D(m,m") > k
and D(m’,m") > k + 1, yielding

D(m,m’) > min{D(m,m”), D(m',m")} > k

by (L4). Thus (k,m) ~ (k,m’). The converse implication is trivial, therefore (4) holds.

We can prove now that 7" is a tree. Assume that 7" has a cycle C' and let [k, m] be a
vertex in C' with & maximum. Let [£',m/] and [k”,m”] be its adjacent vertices in C. By
maximality of k, we have ¥’ = k¥ = k — 1, hence (k — 1,m') ~ (k — 1,m) ~ (k — 1,m") by
(4) and so [K',m] = [k, m"], contradicting C being a cycle. Therefore T is a tree and so
(ro,T) is a rooted tree.

Clearly, (3) is a ray for every vertex [k, m]. If | € IN, then (rg,T') has finite depth [ and it
is uniform since MRay (7o, T') consists of all paths of the form ([, m],...,[1,m],[0,m] = 7o)
with m € M. If | = w, all rays must have infinite length since [k 4+ 1,m| — [k, m] is an
edge for every (k,m) € P, hence (rg,T) is uniform as well.

We define a mapping 7 : Vert(T') x M — Vert(T') by

n([k,m],m') = [k,m]m’ = [k,mm/].
Note that
[k,m] = [k,n] = D(m,n) >k = D(mm/,nm’) >k = [k,mm/] = [k, nm/]

by (L3) and so the mapping is well defined.
Clearly, rom = ro for every m € M. On the other hand, if [k — 1,m/] is the father of
[k, m/], then [k — 1,m/]m is the father of [k, m']m and so n induces a mapping

0: M — Ell(ro,T)
m (-, m)

by Lemma 3.2. Since 6 is a monoid homomorphism due to
[k,m]l =[k,m], [k,m](m'm") = ([k,m]m")m",

it follows that @ is an elliptic action of M on (ro,T).
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Let o € Ray(ro,T") be defined by
la| =1, «; =1]i,1] (i € doma).

Since [i, m] = a;m for every m € M, the action 6 is a-transitive. Thus x = (ro, T, «,0) is
an elliptic M-tree. We show that D = D, .

For all m,m’ € M, we have

D, (m,m') = |am A am/| = |([i, m]); A ([i, m']);| = sup{i € doma : [i,m] = [i, "]}
=sup{i € doma : D(m,m’) > i} = D(m,m’)

and so D = D,.. Therefore (ii) holds.

(ii) = (i). By Proposition 4.4.

The uniqueness of x up to isomorphism follows from Lemma 4.6. [J

We consider now the case of strongly faithful elliptic M-trees. A length function D :
M x M — NN is said to be strict if
(L5) D(m/,m") = D(m,m) = m' =m" for all m,m’,m" € M,
Corollary 4.8 Let M be a monoid and let D : M x M — IN be a mapping. Then the

following conditions are equivalent:

(i) D is a strict length function for M;

(i1) D = D, for some strongly faithful elliptic M-tree x.
Moreover, if the conditions hold, x is unique up to isomorphism.
Proof. (i) = (ii). Assume that (i) holds. By Theorem 4.7, D = D, for the elliptic M-
tree x = (ro, T, a,0) defined in its proof. We show that x is strongly faithful. Indeed, let
m,m’ € M. Suppose that am = am’. Then [k, m| = [k, m/] for every k € doma and so
D(m,m’) > k for every k € doma. It follows that D(m, m') = = maxD = D(m,m) and
so m =m/ by (L5). Thus y is strongly faithful.

(ii) = (i). Assume that (ii) holds for x = (rp, T, ). By Theorem 4.7, we only need to

show that D, satisfies (L5). Suppose that D(m/,m"”) = D(m,m) for some m,m’,m"” € M.
Hence
lam/ A am”| = Dy (m/,m") = D(m/,m") = D(m, m) = Dy (m,m)
= |am A am| = |am| = dep(ro,T")
and so am’ = am”. Since x is strongly faithful, we get m’ = m” and so (L5) holds.
The uniqueness of x up to isomorphism follows from Lemma 4.6. [

We end this section by associating a length function to any wreath product of partial
transformation monoids. To simplify notation, we present just the infinite case, the finite
one being absolutely similar.

Proposition 4.9 Let ..., (X9, M3), (X1, M1) be partial transformation monoids and let
(X,M) = ...O(XQ,MQ)O(Xl,Ml) = ( X X2 X Xl, ...OMQOMl)
be their wreath product. Let D : M x M — IN be defined by

D(‘P,d}) = sup{j €N | <P|Xj><...><X1 = ¢’Xj><...><X1}-
Then D is a strict length function for M.
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Proof. Axioms (L1), (L2) and (L5) hold trivially.

Let ¢, ¢, p € M. Since (X; x...x X1)0 C X; x...x X, forevery 6 € M, @’ij...xxl =
¢|ij...xX1 implies (@H)‘ij...xXl = (T/JH”ij...xXr Thus D(p, ) < D(pp,yp) and (L3)
holds.

Finally, @’ij...xXl 7& M|Xp<...><X1 implies either 90|Xj><...><X1 7& ¢‘XjX...XX1 or w|X]~><...><X1
# /’L|Xj><~--><X17 hence D(p, p) > min{D(gp, ¢)»D(¢»M)} and (L4) holds. O

5 Expansions

Let M denote the category of all monoids. A monoid expansion is a functor F' : M — M
preserving surjective morphisms such that there exists a natural transformation 7 from the
functor F' to the identity functor with n,s surjective for each M € M.

That is, F' assigns to each monoid M a monoid F'(M) and a surjective morphism 7,y :
F(M) — M, and to each monoid homomorphism ¢ : M — N a monoid homomorphism
F(p): F(M)— F(N) satisfying:

(E1) if ¢ is surjective, so is F(¢);

(E2) if ¢ = Idps, then F(p) = Idp;
(

(

)
)

E3) ifo: M — M, ¢ : M' — M" are morphisms, then F(py¢') = F(¢)F(¢');
)

E4) if ¢ : M — N is a morphism, then the following diagram commutes:
F
F(M) © . Fv
M nN
M " N

Semigroup expansions are defined analogously.

An element a € M is said to be aperiodic if a®T!' = a™ for some n € IN. A morphism
¢ : M — N is said to be aperiodic if, whenever a € N is aperiodic, all elements in ap~! are
also aperiodic. The expansion F' is said to be aperiodic if the morphism 7 is aperiodic for
every monoid M.

We define now the Rhodes expansion for monoids, omitting the expansion of morphisms.
The reader is referred to [26, 19, 4, 8, 18, 20, 23] for more details.

The L-preorder on a monoid M is defined by

a<pb if a€ Mb.
This preorder is clearly compatible with multiplication on the right:
VYa,b,m € M (a <, b= am < bm).
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The Green relation £ can of course be defined by
alb if a<gband b<.a.
The strict L-order on M is defined by
a<gb if a€Mbandb¢ Ma,

ie, < =<,\L.
The R- and J-versions are defined similarly. In particular,

a<gb if a€eMbM andb¢ MaM.
Given a finite chain of the form
o= (my <g...<gmi < mg)
in M, we define a chain
Im(o) = (M4, <g ... <gmi <g my,)
by keeping the leftmost term in each L-class of terms of o. Thus
o= (miy Lmi—1 L...Lmy;,_ 41 <gMiy_, ... Mig+1 <g Mig L ... L my).

We define the Rhodes expansion Rh(M) of M to be the set of all finite chains of the
form
me <g...<gmp <gmg=1

with £ > 0 and m; € M. The product of two chains

U:(mk<£...<gm1 <£m0:1), TZ(m2<£...<£m,1 <£m6:1)
is defined by

or =Im(mgm) <g ... <pgmim; <gmom;=mj <p ... <pmj <gmy=1).

Note that the product is well defined since <, is right compatible. It turns out that Rh(M)
is a monoid having the trivial chain (mg = 1) as identity.
The surjective morphisms 7y : Rh(M) — M are defined by

(my <z ... <gmi <gmo= 1)y = myg.

It follows from the definition of <, that the elements of Rh(M/) are precisely the finite
chains of the form

Th.. .20 <p Thq1...T201 <p ... <pXox] <p 21 <1l
with z1,...,2, € M. Moreover,

(Xf...wox1 <g...<gwamr1 <pgx1<gl)=(zp<gl)...(z2 < 1l)(x1 < 1), (H)
18



hence Rh(M) is generated (as a monoid) by the chains m <. 1.

Given a set Y, we define a Y-monoid to be an ordered pair of the form (M, ¢), where M
is a monoid and ¢ : Y* — M is a surjective morphism. Similarly, we define Y-semigroup.
A morphism from the Y-monoid (M, ) to the Y-monoid (M’,¢’) is a monoid morphism
0 : M — M’ such that the diagram

M/

commutes. Whenever possible, to simplify notation, we omit the morphism in the repre-
sentation of Y-monoids, that is, we view Y as a subset of M and ¢ as canonical.

Clearly, Y-monoids and their morphisms constitute a category, and we can consider
expansions in the category of Y-monoids just as we did for the category of monoids. We
define now the expansion Rhy in the category of Y-monoids, that can be described as the
Rhodes expansion cut-down to the generators Y.

Indeed, let M be an Y-monoid. We remarked before that Rh(M) is generated (as
a monoid) by the chains m <, 1. We define Rhy (M) to be the submonoid of Rh(M)
generated by the chains y <, 1 (y € Y). It is shown in [4] that Rhy defines an expansion
of Y-monoids. We omit the description of the expansion for morphisms.

The Rhodes expansion has many interesting properties that are subsequently inherited
by Rhy, such as the following:

Proposition 5.1 /26, 4]

(i) The Rhodes expansion is aperiodic.

(ii) The Rhodes expansion preserves reqularity.
(i1i) Yo € Rh(M) (o € E(RWM)) < ony € E(M)).

The expansion Rhy possesses analogous properties.

We introduce now another expansion with important properties. Let M be a semigroup
and let M denote the free semigroup on (the set) M. Hence

MJF:{(ml,---amk)‘kZl, mzeM}

Given (mq,...,my) € M™T, let
Fs(my,...,mg) ={(m1...mj;mip1...mj,mjp1...my) € M x M xM|0<i<j<k}.
Write

D3(M) = {F3(ma,...,my) | (ma,...,my) € M},
We define a multiplication on ®3(M) by
Fs(my,...,mg)F3(ml,...,m)) = Fy(my,...,mg,my,...,m)).
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By [4, Section 7.2], M — ®3(M) is part of a semigroup expansion (we omit here the
expansion of morphisms). The surjective morphisms 7y : ®3(M) — M are defined by

(F3(my,...,mg))npm = my ... mg.

We can also perform the cut-down to generators for this expansion [4]. Indeed, If M is a
Y-semigroup, we denote by ®3y (M) the subsemigroup of ®3(M) generated by the elements
of the form

F3(y):{(y7171)7 (17y7 1)’ (1717y)} (yEY)

Then the restriction of the morphism 7y to ®3y (M) is surjective and ®3y (M) is part of
an expansion of Y-semigroups [4].

We recall that a semigroup M is said to be finite J-above if {y € M |y > x} is finite
for every x € M.

The following properties make the expansion ®3 of great interest. Note that, since
$3 v (M) is a subsemigroup of ®3(M), these properties generalize immmediately to ®3y-.

Proposition 5.2 [4, Propositions 7.8 and 7.9]
(i) ®3(M) is finite J-above for every semigroup M ;
(i) @3 is aperiodic.

The expansion ®3y possesses analogous properties.

6 The Holonomy Theorem

Given a semigroup M, we denote by M the monoid obtained by adjoining a new identity
I to M (even if M is already a monoid), see [23, Chapter 1]. We shall consider the Rhodes
expansion Rh(M7) of the monoid M’ consisting of all finite chains of the form

me <g...<gmi<gmo=1

with k >0and m; e M (i=1,...,k).
We say that a mapping f : M — N between monoids is <z-preserving if

(JPL) f(1) =1
(JP2) a <7b= f(a) <7 f(b) for all a,b € M.

It follows that
aJb= f(a) J f(b) foralla,be M.

The important particular case arises for mappings f : M! — IN, where we consider
addition on IN. Note that, for all n,n’ € IN,

n <y n <n > n'.
Thus f: M! — IN is <j-preserving if and only if f(I) = 0 and

Vm,m/,m" € ML, f(m'mm") > f(m).
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Since IN is J-trivial, note that
aJb= f(a)=f(b) forall a,be M. (6)
Let
o=mp<g...<cmi<gmo=1), 7=(mj<g...<gmy<gmy=1I)

be elements of Rh(M7'). The mazimum L-point of agreement of o and 7 is defined by
o ANg T =m,, with

r =max{i € {0,...,min{k,l}} | mo =m{,...,mi—1 = m,_y,m; Lm}}.

We present now the Holonomy Theorem in its most abstract version:

Theorem 6.1 (Holonomy Theorem) Let M be a semigroup and let f : M! — IN be <;-
preserving. Let D : Rh(M') x R(M') — IN be defined by

v ={ {7057 Fals
Then
(i) D is a strict length function for Rh(M?);
(ii) D = D, for some (unique up to isomorphism) strongly faithful elliptic Rh(M?)-tree
X-

Proof. We show that D satisfies axioms (L1) — (L5).

(L1): Let o,7 € Rh(MY). Since (6 Az T) L (7 Az o), we have D(o,7) = D(,0) in view
of (6).

(L2) follows from the definition of D.

(L3): Let o,7,p € Rh(M?'). We start by showing that

(op N Tp) <c (o ApT). (7)
In view of (5), we may assume that p = (m < I). Write
o=mp<g...<cmi<gcmo=1), 7=(mj<g...<gm)<gmy=1)
and assume that o Ay 7 = m,. Then we may write
op=Ilm(mpm <g ... <gpmim < m <, I),

Tp:Im(mEm <r...<r m'lm <rm<g1I).

Clearly, m, £ m.. yields (m,m) £ (m]m) and we also have m;m = m}m fori € {0,...,r—1}.
Note that m,m may not be in op, but some mgsm €L,, ,,, will, and similarly for m/m. Hence
(7) holds.
Back to checking (L3), we may assume that op # 7p. Hence o # 7 as well. Since f is
< j-preserving and
(opAeTp) <g (0 ALT)
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by (7), we get
D(op,7p) = flop Ne7p) 2 flo A7) = D(o,7)

since f is <j-preserving and op # 7p. Thus (L3) holds.
(L4): Let o,7,p € Rh(M'). We show that

(cAp)<cloncT) NV (0Acp)<c(TALp). (8)
Write
o=mp<g...<cmi<gmo=1I), T=(mj<g...<pgm)<gmy=1I),

p=(my<g.. <gmj<gmg=1I),

(cAcp)=mp, (ocAcT)=ms, (TALp)= m:ﬁ

Suppose that m, €, ms and m, £, mj. Then r < s and m!! L m, £, m;, L m}
yields r < t as well. For i = 0,...,r, we have m; = m, = m/ since r < s,t. Moreover,
Mmypyq L m;H L m;’H since r + 1 < s, t, contradicting (o Az p) = m,. Therefore m, <, msy
or m, <z mj, and so (8) holds.

To prove (L4), we may assume that o, 7, p are all distinct. Without loss of generality,
we may assume by (8) that (o Az p) <z (o0 Az T), hence (o Az p) <7 (6 Az 7) and so

D(U7 :0) = f(o‘ Nc :0) > f(O‘ v 7_) = D(JaT) > min{D(U7 T)aD(T’ ,0)}

by (JP2). Thus (L4) holds.
(L5): Assume that D(7,p) = D(o, ) for some o, 7, p € Rh(M?') with 7 # p. It follows
that
l+supf = D(o,0) = D(7,p) = f(T Az p) €N,

a contradiction. Thus D(7, p) = D(o,0) imples 7 = p and (L5) holds.
Therefore D is a strict length function for Rh(M7) and so D = D, for some (unique up
to isomorphism) strongly faithful elliptic Rh(M7)-tree x by Corollary 4.8. O]

A preordered set (X, <) is said to be upper finite if every subset of the form [z) = {y €
X | y > x} is finite. In particular, if (X, <) is upper finite, every nonempty subset of X
must contain a maximal element.

To show how to obtain all <j-preserving mappings f : M! — IN when M is finite
J-above, we introduce the concept of weight function in a more general setting. Given an
upper finite partially ordered set (P, <) with maximum I, a weight function w: P — IN is
any function satisfying w(I) = 0. Given w: P — N, let hy, : P — N be defined by

hw(p) = max{z w(pi) | p=pn <...<p1 <po=11isachain in P}.
=0

Since (P, <) is upper finite, h,, is well defined.

Proposition 6.2 (Dedekind inversion). Let (P, <) be an upper finite partially ordered set
(P, <) with mazimum I. Then the correspondence p : w — hy, defines a bijection between
the set of all weight functions w : P — IN and all order-reversing mappings h : P — IN
satisfying h(I) = 0.
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Proof. Let w : P — IN be a weight function. Assume that ¢ < p in P. Since any chain
P=pp <...<p1 <po=1in P extends to a chain

q<p=pn<...<p1<po=1,

we get hy(q) > hy(p) and so hy, is order-reversing. Since the only ascending chain starting
at I is the trivial chain and w(I) = 0, we have hy(I) = 0. Thus p is well defined.

Suppose that w,w’ : P — IN are distinct weight functions. Take a maximal element p
from the set

{w € Pluw(z) £ w/(x)}.

Since P is upper finite, there exist such maximal elements. Assume that w(p) < w'(p).
Given a chain p = p, < ... < p; < po = I, we have w(p;) = w'(p;) for i =0,...,n — 1 by
maximality of p, hence

n

n—1 n
Y wp) =wp)+ > w'(p) <Y w'(p)
=0 =0

=0

and so hy(p) < hy(p). Thus p is one-to-one.
Finally, take h : P — IN order-reversing satisfying h(I) = 0. We define a weight function
w: P — IN as follows. Given p € P\ {I}, let

P ={q € P|p < q and there exists no r € P such that p < r < ¢}

denote the set of all elements of P covering p. Since P is upper finite, p is nonempty. We
define

w(p) = h(p) — max{h(q) | ¢ € P}-
Since h is order-reversing, w(p) > 0 and so w is a well-defined weight function. We show
that h = hy,.
Let p € P\ {I}. We show that

hw(q) = h(q) for every q € p = hy(p) = h(p). (9)

Indeed, assume the hypothesis and let p = p, < ... < p1 < po = I be a chain in P
with hy,(p) = D o w(p;). By maximality of > 1" jw(p;), we may assume that p,_; € P.
Moreover, hy,(pp—1) = Z?:_Dl w(p;) must be maximal among {h,(q) | ¢ € p}. It follows that

how(p) =31 w(pi) = hw(pn—1) + w(p)
=max{hy(q) | ¢ € P} + w(p)
=max{h(q) | ¢ € p} + w(p)
= h(p)

and so (9) holds.

Suppose that h # h,,. Since P is upper finite, we can take a maximal element p from the
set { € P | h(x) # hy(x)}. Since hy (1) = 0 = h(I), we have p # I. By maximality of p,
we must have h,,(q) = h(q) for every g € p. But then h,(p) = h(p) by (9), a contradiction.
Therefore h,, = h and so p is onto as required. [J
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Throughout the paper, we consider the set M/ J of all J-classes of a semigroup M
partially ordered by

To < T lfagjb

Corollary 6.3 Let M be a finite J-above semigroup. Then the <j-preserving mappings
f:M!'— 1IN are defined by

f(m) = hy(Tm)
for some weight function w: M!/ J— IN.

Proof. Clearly, (6) implies that the <j-preserving mappings f : M! — IN must be those
of the form

f(m) = h(Tm)
for some < j-preserving mapping h: M’/ J — IN. Since M!/ J is an upper finite partially

ordered set, the claim follows from Proposition 6.2. [

The following is a straighforward corollary from Theorem 6.1 and Corollary 6.3.

Corollary 6.4 Let M be a finite J-above semigroup and let w : MT/ J— IN be a weight
function. Let f, : M — IN be defined by

n
fw(m) = max{Zw(Jmi) |m=my, <g...<gmi <gmg=1Iis a chain in M"'}.
i=0

Let D : RR(M') x Rh(MT) — IN be defined by

S fwloNngT) ifo#T
Do, ) = {1 + supfy ifo=T.
Then
(i) D is a strict length function for Rh(M?);

(ii) D = Dy, for some (unique up to isomorphism) strongly faithful elliptic Rh(M?)-tree
X-

Example 6.5 [22, Ezample 2.8(a)] Let M be a finite J -above semigroup and let w : M/
J— IN be the null weight function. Then f, : M' — IN is the null function and so the
induced length function D : Rh(M') x RW(M') — IN is induced by the strongly faithful
elliptic M -tree x whose underlying tree can be depicted by

S

[1,01] 1, 02] [1, 03]

To

lth(MI) = {0'1,02,03, .. }
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Example 6.6 Let M be a finite J-above monoid and let w : M'/ J— IN be the weight
function defined by

C(1ifmJ1
w(Tm) = {0 otherwise.

Then fy, : MT — N is defined by

_JOifm=1
Ju(m) = {1 otherwise

and so the induced length function D : RM(M') x RM(M') — IN is induced by the elliptic
M -tree x whose underlying tree can be depicted by

//

1 m1 <£I [1,m2 <£I]

VN

(2, I] 2, 011] 2, 012] (2, 091] [2, 099]

where M/ L = {Lp,, Ly, ..} and {01, 042,...} denotes the set of all (... <pm) <gI) €
RW(M?T) with m/, £ m,;.

Proof. It is immediate that f,, must be of the claimed form since all m € M except I
satisfy m <7 1. Hence, for

:(mk<£...<£m1 <[;m0:I), T:(mg <£...<£mll <£m6:I)7
we have
2 ifo=r1

D(o,7) =< 1 if o # 7 and k,l >0 and m; L m)
0 otherwise

since D(o,7) =1 if and only if o # 7 and o Ap 7 # 1.
Following the Chiswell construction in the proof of Theorem 4.7, the underlying tree T
of the elliptic M-tree x induced by x has vertex set
Vert(T) = {ro} U{[i,0]; i = 1,2; 0 € Rh(M1)}.
We have [1,0] = [1,7] if and only if D(o,7) > 1, hence
{[171]7 [Lml <z I]’ [17m2 <z I]u . }

constitutes a full set of representatives for the classes [1,0]. Clearly, [2,0] = [2,7] if and
only if ¢ = 7 and so the tree is the claimed one. [
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Given a finite J-above semigroup M, we define a mapping h7 : M — IN by
hz(m) = max{k € IN : there exists a chain m =mo <7 ... <7 my in M}.

We say that h s is the (Dedekind) J -height function of M [3]. Since the J-class of I contains
only I and lies above all the others, it is immediate that M’ has also a Dedekind J-height
function h’;, satisfying
hg(m)+1 ifmeM
/ —
hJ(m)_{o ifm =1

Proposition 6.7 Let M be a finite J -above semigroup and let hy be the J-height function
of M. Then:

(i) hy is <7-preserving;
(1) hg = fo for the weight function w: M'/ J— IN defined by

_JlifmeM
w(j"L)_{o ifm=1

Proof. (i) Immediate.
(ii) We have hy(I) = 0 = hy(I). Given m € M,

h7(m)=max{k € IN : there exists a chain m = mqg <7 ... <7 my in M’}
=max{k € IN: there exists a chain m =mg <7 ... <7 my = I in M’}
:max{Zfzo w(Jpm,;) : there exists a chain m =mg <7 ... <7 my = I in M'}

= fw(m).

The mapping hs will play the most important role as a <gz-preserving mapping in
forthcoming sections.
We can use the expansion ®3 to avoid the finite J-above requirement in Corollary 6.4:

Corollary 6.8 Let M be a semigroup and let w : (®3(M))'/ J— IN be a weight function.
Let fo : (®3(M))! — IN be defined by

fuw(x) = mam{Zw(jxi) |z =12, <7...<g 21 <770 =1 1is a chain in (d3(M))'}.
1=0
Let D : Rh((®3(M))!) x Rh((®3(M))!) — IN be defined by

J fwloNngT) ifoFT
D(U’T)_{l—l—supfw if o =T.

Then
(i) D is a strict length function for Rh((®3(M)));

(ii) D = D, for some (unique up to isomorphism) strongly faithful elliptic Rh((®3(M))!)-
tree x;
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(iii) the canonical surjective morphism Rh((®3(M))T) — M is aperiodic.

Proof. (i) and (ii) follow from Corollary 6.4 since ®3(M) is finite J-above by Proposition
5.2(i).
For (iii), we can decompose the canonical morphism Rh((®3(M))!) — M as the com-

osition
P M@z (a))!

Rh((®3(M))") (B3(M))! —£-5(M) "0 11,

The morphisms 7(g, () and 77, are aperiodic by Propositions 5.1(i) and 5.2(ii). Since
is trivially aperiodic and the composition of aperiodic morphisms is aperiodic, the result
follows. [

7 Stable monoids and the Zeiger encoding

We start by introducing some well-known concepts and results. For details, the reader is
referred to [6, 23].
A semigroup M is said to be stable if the following conditions hold for all a,x € M:

(S1) ax J a=ax R a;
(S2) za J a= za L a.
It folows easily that [6, 23]
if M is stable, then <g C <y and < C <;. (10)
The following lemma will turn out to be quite useful:

Lemma 7.1 Let M be stable and let a,b,c € M satisfy a <p bR bc. Then a R ac < bc.

Proof. Clearly, a <, b yields ac </ be. Since
ac<ga<r bR bc,

it follows from (10) that ac <7 bc and so ac < be.
On the other hand, b R bc yields b = bcx for some x € M. Since a <, b, we get a = acx
and so a R ac. [J

Every finite J-above semigroup is stable, a fact that will be thoroughly used throughout
the paper.

Assume that M is stable. Then the Green relations J and D on M coincide. Given a
J-class J of a monoid, we can always define a semigroup structure (J, ) on J° = J U {0}
by taking

eb— ab if a,b,ab € J
4*P= 90 otherwise.

If the monoid is stable, the semigroup J° defined above is completely O-simple and can
thus be given a Rees matrix coordinatization: there exist nonempty sets A, B, a group G
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and a (B x A)-matrix C' with entries in G U {0} such that J° = M%(G, A, B,C), where
MY(G, A, B,C) = (A x G x B)U{0} is the semigroup with zero defined by

b (a,gC(bd)g' V) if C(b,d) € G

(a,g,b)(a7g,b)—{0 1fC’(b,a’):O
The Green relations in M°(G, A, B, C) are characterized by
(a,g,b) R (d/,¢ V)& a=d,
(a,g,b) L (d',¢,b)=b=1V.

We shall need the detailed construction of the Rees matrix semigroup, so we present it
briefly. For more details, see [6, 23].

We fix a H-class H in J and hg € H. Let A (respectively B) be the set of R-classes
(respectively L-classes) in J. For every a € A, we fix @ € a N Ly,. For every b € B, we fix
also b€ bnN R, Finally, we fix eq, 4, fp, f € M such that

eal = ho, Eho=a, Dbfy=ho, hofy=D.
Let Stab(H) = {x € M | Hx = H} and define an equivalence relation on Stab(H) by
[z] = [y] if hox = hoy.

Then the quotient
G ={[x] | x € Stab(H)}

is the Schiitzenberger group of H. For each h € H, we fix some h € M such that hoﬁ = h. By
the well-known Green’s Lemma [6, 23], h € Stab(H). Then there exists some (B x A)-matrix
C' with entries in G U {0} such that

JO — MY(G, A, B,C)

(Ru= a, [eatifo), Lu=1b) ifueJ
0 ifu=20

u+—

is a semigroup isomorphism.

Throughout this section, we assume that M is a fixed stable semigroup. Hence M7 is a
stable monoid. We fix a coordinatization (assuming equality to simplify notation)

jnOl: MO(Gm7 Am7 Bm7 Cm)

for every m € M!. We assume that 1 denotes the identity in every group and 1 €
Apny By, for every m € ML, If m J m', we assume of course that (G, Ay, B, Cm) =
(Gm’a Am’a Bm’a Cm’)
We fix mappings
M — Mt M — MT
m—m* m— m#

defined as follows. If m = (a, g,b) € J9, m*, m" satisfy
mm* = (a,1,1), (a,1,1)m* =m.
The existence of such elements follows from (a,g,b) R (a,1,1). Note that I* = [# = I.
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Lemma 7.2 For all m,m' € M,
(i) mm*m? = m;
(ii) m R m' & mm* =m'm’".

Proof. (i) is trivial. Assume now that m R m’. Then we may write m = (a,g,b), m' =

(a,g',b') as elements of the same J-class. Thus mm* = (a,1,1) = m/m’*. Conversely,
assume that mm* = m/m’*. By (i), we get m = mm*m?* = m/m/*m#* and so m <p m'.
By symmetry, it follows that m R m’ and so (ii) holds. O

We define F.7(M7) to be the set of all finite chains of the form
ng <g...<gm <jn0:I

with k£ > 0 and n; € M L.
Lemma 7.3 Given (my, <g ... <gmg <gmy <g mo=1) € Rh(M?), let

xo=1I, m=mm;_;(i=1,...,k).
Then:
(i) x; R m; fori=0,...,k;
(11) i <g xix}_q fori=1,...k;
(iti) x; <g xi—1 fori=1,... k;
(iv) m; = :L‘imz#_l fori=1,... k.

Proof. We have 29 = I = mg. Let i € {1,...,k}. Since m; <g m;_1, we may write
m; = ym,;_1 for some y € M. Now m;j_1 R mi—1m;_, yields

* *
Ty =Mmym;_1 = ymi—1m;_; R ym;—1 =m,.

Thus (i) holds.

Since m; <z m;—1, we have m;m;_| < m;—_1m;_;. Since
* *
m;m;_q §j m; <g m;—1 R mi;—1m;_q
by (10), we obtain m;m} ; <g m;—1m;_; and so
*

* *
Ty =My <g Mi—1My;_| = Ti—1T;_q

by (i) and Lemma 7.2(ii). Thus (ii) holds.
Since z;—1x}_; R x;i—1, (ii) implies (iii) in view of (10). Finally, m; = ym;_; yields

mi = ymi—1 = ymiflm;(—lmil = mim;‘k—lmil = $imﬁ1
and (iv) holds as well. OJ
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Lemmas 7.2 and 7.3 will be used so thoroughly for the remainder of the paper that we
shall often omit a specific reference to them.
We can now define a mapping ¢ : Rh(M') — F7(M7T) by

e(mk<£...<£m1 <Lm0:I):(xk<j...<jx1 <JQJ0=I)

taking g = I and x; = m;m;_; fori =1,... k.
Note that € is sequential in the sense that if

6(mk<£...<£m1 <£m0:I):(l‘k<j...<jIL‘1 <j:E0:I)
and k > 0, then
E(mk,1 <r£...<gcmq <£m0:I):(ack,1 <g...<gx*1 <j1’0:I).

The mapping € is known as the Zeiger encoding map and plays an essential role in the next
section to ensure the Zeiger property of the wreath product.

Proposition 7.4 The mapping € : RM(M') — F7(M?") is one-to-one.
Proof. By definition, € preserves chain length. Take
a:(mk <z ...<gmy <£m0:I), 7':(771;€ <[;...<[;m’1 <£mf):I)
such that
€lo)=(rx <g...<gx1 <gmg=1)=6(T).

We show that m; = m] for i = 0,...,k by induction on i. The case i = 0 being trivial, as-
sume that s € {1,...,k} and m;—; = m/_;. By Lemma 7.3(ii) and the induction hypothesis,
we get

— # / Y
m; = aimi = xi(mi_y)" =m;.

It follows that o = 7 and so € is one-to-one. [J

The next result will reveal in the next section the adequacy of the encoding map € to
deal with the product in Rh(M?7).

Theorem 7.5 Let 0,7 € RM(M?') with
a:(mk <r...<gpmq <Lm0:I), UT:(m; <£...<£m/1 <£m6=I),

co)=(rp<7...<gm <gzo=1), elor)=(2)<g...<g72)<gxy=1).
Assume that mi R m;. If

a':(mkﬂ, <g...<gmi<gmo=1I), E(J/):($k+p <g...<gm<gzo=1),

then
E(U/T):(Jck+p <g- .- <J Tks1 <jl‘2 <j...<j$,1 <j236=[).
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Proof. Let y € M' denote the leftmost term in 7. Then m; = myy. Since m; R my, we
can apply successively Lemma 7.1 to get

o'r = (mkﬂ?y <z ... <gcmpry <g m; <rg...<p 'm6)

and
My R mpy; (8 =0,...,p). (11)
Since € is sequential, we obtain
e(0'7) = (Mpgpy(Miyp—1y)* <7 .. <g mppy(miy)” <g 21 <g ... <7 20)-

Now (11) and Proposition 7.2(ii) yield

M i1y (Mirio1y)™ = Mppiimpy; 1 (E=1,...,p).
Thus my4; <g mi4i—1 yields

mk+iy(mk+ply)* = mkﬂ'mzﬂ;l = Tk+i

for i =1,...,p and the lemma is proved. [

We complete the section with a straightforward consequence of Green’s Lemma [6, 23],
to be used in the next section.

Proposition 7.6 Let J be a J-class of a stable monoid M with J° = M°(G, A, B,C). Let
u=(a,g,b) € J and v € M be such that uv R u and let
p:G—G
h— ((a, h,b)v)ms.
Then ¢ is bijective and there exists some go € G such that hp = hgg for every h € G.

. reen mma, Wi A\ ijection
Proof. By Green’s Lemma, we have a bijectio
Hy — Huw
u' — v,

hence ¢ is well defined. Let H be the fixed H-class in the construction M%(G, A, B, C) and
consider all the distinguished elements introduced there. Our Rees matrix representation
restricts to bijections

Hy — G Hyw — G

u' — [equ! fp] v [equ'v fiy]

where a = Ry = Ryy, b = L, and V' = L,,,,. Hence we obtain a diagram

Hu HU’U

IS
:\
<

G leqtt! fo] lequ/v fi] G
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We must show that the mapping

—_~

@ ¢ et fo] = leat’v fi],

a composition of bijections, can be defined by right multiplication. We show that ho f,v fy €
H and

leauv fiy] = [eat fo)[ho fyv fi] (12)

for every u' € H,. Indeed, take ug € H, such that e ugf, = ho. Since equg = equg fyfp, We
have

hofyvfy = eauofofyvfy = equovfy € H.

Moreover, we have

Vh € HYw e M (hw € H = [hw] = [h][how)). (13)

Indeed, we have how € H b~y ~ Green’s Lemma. Since lz/oi;az/u = how, we obtain hm = hw
and so (13) follows from hohhow = hhow = hw = hohw.
Finally, making h = e v/ f, and w = fyvfy in (13), we get

—_—~— —_—~—
—_~—

leat'v fiy] = [eatt fy - o0 fir] = [eatt fo)[ho F5v f]

and so (13) holds as claimed. [

8 From elliptic M-trees to wreath products

Let (r9,T') be a rooted tree and let X be a nonempty set. Given v € Vert(T'), let Sons(v)
denote the (possibly empty) set of sons of v. A mapping f : Vert(T)\{ro} — X is said to
be locally injective if, for every v € Vert(T), f|SODS(v) is injective.

Fori=1,2,..., let Vert;(T) denote the set of all v € Vert(T") having depth i.
Theorem 8.1 Let M be a semigroup and assume that 0 : M' — Ell(ro,T) is a faithful
elliptic action of M! on a uniform rooted tree (ro,T). Let f : (Vert(T))\ {ro} — Ui>1X;
be locally injective with f(Vert;(T')) C X; fori > 1. Then:

(i) if (ro,T) has finite depth 1, then M' embeds in the wreath product

(Xl, P(Xl)) c...0 (XQ,P(XQ)) o} (Xl, P(Xl)),

(i3) if (ro, T) has infinite depth, then M embeds in the infinite wreath product

...0 (Xg, P(Xg)) 9] (XQ, P(Xg)) 9] (Xl, P(Xl))

Proof. We prove the finite depth case, the infinite case being analogous.
Write X = Uézl(Xi X ... x X1). Associating vertices with rays as usual, we define a
mapping
¢ Ray(ro, T) \ {(ro)} — X
(Vis - v1,m0) = (f(vi), - .o, f(v1).
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Suppose that (v;,...,vi,v0 = ro), (v},...,v},v0 = ro) € Ray(ro,T') are distinct. Let

k=min{j € {1,...,i} : v; # v}}.

By minimality of k, v and v}, must have vy = v}_, as their common father. Since f is
locally injective, it follows that f(vi) # f(vy,), thus (vi,...,v1,70)¢ # (v},...,v], o)1 and
so 1 is one-to-one.

Let
UM — (X, P(X)))o...0(X1,P(X1))
me— Y,
be defined by
ST 21000 if me M (x € X).
mn x ifm=1

Clearly, ¥,,, € P(X). To show that ¥,, € (X;, P(X;))o...0 (X1, P(X1)), we only need
to check that W,, is sequential. We may assume that m € M. Since domW¥,,, = im, (SQ1)
holds. Since 6 is an elliptic action, (SQ2) holds as well.

Let (zj,...,21), (2}, ..., 2}) € dom¥,, = imy and suppose that (z;,...,z1) = (z,...,z])
with 1 <1 < 5, k. Write

(xj,...,21) = (vj,...,01,70)¢Y = (f(v5),..., f(v1))
(s -5 27) = (Vs - 01, m0)0 = (fvg)s -5 ().

Since (zj,...,x1) = (2},...,2}), we have f(v;) = f(v]),..., f(v1) = f(v]). Since f is
locally injective, we obtain successively v; = v{,...,v; = v). Thus (vj,...,v1,70)0m =it1
(v}, ..., V], 70)0m and so (vj,...,v1,70)0mY =i (v}, ..., V], 70)0me, that is,

—

(xj,...,21) ¥ = (x5, ... ,xl)w_lﬁmw = (Th,- - ,x'l)w_lﬁm@b = (Thy - T V.

Thus (SQ3) holds. Therefore W, is sequential and so ¥,,, € (X;, P(X;))o...o (X1, P(X1)).
We show next that ¥ is a monoid homomorphism. It suffices to show that ¥, =
U, U, for all m,m’ € M. Since 6 is an action and 1 is injective, we obtain

Vo = ¢_19mm/1/1 = 1/)_19m9m/¢ = ¢_19m¢¢_19m/¢ =V V.

Thus ¥ is a monoid homomorphism.
It remains to show that ¥ is one-to-one. Let m, m’ € M!. We show that

m A m = 0 £ O 0. (14)

Indeed, since 6 is one-to-one, m # m' implies that there exists some v € Vert(T') such
that v, # v8,,. Taking the geodesic (v = wv;,...,v1,70) € Ray(ro,T), it follows that
(Viy ..oy 01,70)0m # (Viy ..., 01,70)0n . Let

(.%'i, .. .,.’L’l) = (’UZ', e ,’Ul,’l”o)w.
Then

(24, . .. ,xl)z/)_lﬁm = (Viy..,01,70)0m # (Viy. .., 01,70)0m = (T, . .. ,$1)¢_19m/.
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Since 1 is one-to-one, we obtain (z;,...,21)Y 0t # (zi,...,21)0 10,09 and so (14)
holds.

Assume that m # m’. Now (14) implies that ¥,,, # U,,,» if m, m’ € M. For the remaining
cases, we may assume that m = I. If ¢ is onto, then W = 11074 and so (14) also implies
that U7 # W¥,,,. Otherwise, we have W; # W, since dom¥; = X D imy = domV,,.
Therefore ¥ is one-to-one. [

By Theorem 8.1, we know that when a monoid M/ acts faithfully by elliptic contractions
on a uniform rooted tree, then M’ embeds into a (possibly infinite) wreath product ... o
(X2, M) o (X1, M) of partial transformation monoids. The question is how small can the
M;’s be made (where small is used in the sense of division). We start with a series of
lemmas.

Lemma 8.2 Let o,7,p € RW(MT).
(i) If hg(od AeT) = hg(o Az p), then (o6 ApT) = (0 Az p).
(ii) (po Ng pT) <z (0 AL T).
Proof. (i) Assume that hy(oc Az 7) = hg(o Az p). If (6 Ae 7T) # (0 Az p), we may
assume that (o Az 7) <z (0 Az p) and so (o Ap 7) <7 (0 Az p) by (10), contradicting
hg(oc Az T) =hg(o Az p). Therefore (o Ap 7) = (0 Az p).
(ii) Write
o= mg<g...<gmgo=1), T:(mg <L ... <£m6:I).
In view of (5), we may assume that p = (n <, I). Hence
po =lm(nmy <p mp <g ... <z mo),
pr =1Im(nm) <pmj <z ...<gmg).

The claim follows at once. [J

Next we define
V(MT) = {(o,7) € Rh(MT) x Rh(M') | Vp € Rh(MT)
(po Ae pT) L (0 AeT) = (po Az pT) R (pT Az po)}.

Note that (o,7) € V(M) implies in particular that (o Az 7) R (T Az o).
Next we define
WMy ={me M" |L,, = Hmn}.

Lemma 8.3 W(M?') is a union of J-classes of M.

Proof. Let m € W(M]) Since our monoid M is finite [J-above, we have J = D and so it
suffices to show that £, U R,, C W (MT).

Assume that m’ £L m. Then m' € L,, = H,, and so L,y = L, = Hy = H,y. Thus
m' € W(M?).

Finally, assume that m’ R m and take u € L,,. Write m' = mxz and m = m/y.
Then m' £ u yields m'y £ wuy and so uy € L,, = H;. By Green’s Lemma, we get
uwyr H mx = m'. Since u L m’ = m'yx yields uyz = u, we obtain u H m’' and so
m' e W(M'). O
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The next lemma provides an alternative characterization of V (M7):

Lemma 8.4 Let 0 = (my, <g ... <g mgp), 7 = (m] <g ... <g mg) and (0 Ag 7) = m;.
Then (o,7) € V(M?Y) if and only if m; R m, and one of the following conditions holds:

(V1) i=k=1;

(V2) i < k,1;

(V3) i=k <1 and m; € W(M");
(V4) i=1<k and m; € W(MT);

Proof. Since (0 Az 7) = m;, we have (1 Az o) = m}. Taking p = (I) in the condition
defining V (M7), it becomes clear that m; R m/, is a necessary condition for (o, 7) € V/(M?).

Assume that m; R m/ and one of conditions (V1)-(V4) holds. Write p = (n, <¢ ... <g
no) and assume that (po Az p7) L (0 Az 7). We have

po = lm(npmk <c.. . Z<enmp <gmg <g...<gmgp),

pT = lm(npmg <r...<r nlm; <r m; <r...<g m6)

It should be clear that if (V2) holds, then (po Az pT) = m; and (p7 Az po) = m}, hence
(o,7) € V(MT).

Since (po Az p1) L (o Az 7) if and only if (p7 Az po) £ (T Az o), it follows that V(M)
is a symmetric relation. Thus we may assume that ¢ = k. Let

j=max{r €{0,....p} | npmyp L my}.

Since (po Az p1) L (0 Az T) = my, we have (po Az pT) = njmy,.
Assume first that k < [ (case (V3)). Then my, € W(M?') and so (poAzpT) L (0ALT) =
my, yields
(po Az pT) H my R m), = (pT Az po).

Hence (o,7) € V(MT).

It remains to be considered the case k =1 (case (V1)). Then mj ‘H my, and so njmy L
my, yields nym) L mj. By symmetry, we obtain (p7 Az po) = n;m). Since m}, H my
implies njmy R njm}, it follows that (o, 7) € V(MT) also in this case.

To prove the converse implication, we assume that the necessary condition m; R m,
holds but none of the conditions (V1)—(V4) is satisfied. By symmetry, we may assume that
i =k <land my ¢ W(MT). Then there exists some n € Ly, \ Hm,, say n = zmy. Let
p = (x <g I). It follows easily that (po Az p7) = amy, = n and (pr Az po) = mj,. Since
m), R my, and n R mg, we get (po Az pr) R (p7 Az po) and so (o,7) ¢ V(M) as required.
O

Corollary 8.5 Let 0,7 € RW(M?) be such that (o Ag7) € W(MT). Then (o,7) € V(M?).

Proof. Let 0 = (my, <g ... <g mq), 7 = (m); <g ... <g my) and (0 Az 7) = m;. Then
(1 Az o) =ml. Since m} £ m; € W(M?), it follows that m/ H m;. Hence also m/ € W(MT)
by Lemma 8.3. Now we obtain (o, 7) € V(M) by Lemma 8.4. O
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We define a mapping H : Rh(M?!) x Rh(M') — IN by

2suphg + 2 ifo=r71
H(o,7) =X 2hg(c ApT) +1 if 0 # 7 and (0,7) € V(M)
2hg(o Az T) otherwise.

If M is an Y-semigroup, then M7 is an Y-monoid. We denote by Hy the restriction of H
to Rhy (M7) x Rhy (M7).
Lemma 8.6 Let M be a finite J-above Y -semigroup. Then
(i) H is a strict length function for Rh(M?');
(ii) Hy is a strict length function for Rhy (M?);
(iii) Hy = D, for some (unique up to isomorphism) strongly faithful elliptic Rhy (M")-tree
X-

Proof. (i) We show that H satisfies axioms (L1) — (L5). By Corollary 6.4 and Proposition
6.7, we may consider the length function D : Rh(M!) x Rh(M') — IN defined by

suphy+1 ifo=r7
hg(o Az T) otherwise.

Do) = {

Clearly, H'(o,7) = 2D(0,7) defines also a length function for Rh(M7'). We shall make use
of H' and perform the necessary adaptations.

Axiom (L1) follows from V(M) being a symmetric relation (see the proof of Lemma
8.4). Axioms (L2) and (L5) can be verified for H straightforwardly as in the proof of
Theorem 6.1. We concentrate our efforts on (L3) and (L4).

(L3) Let o,7,p € Rh(M') and assume that o # 7. By (5), we may assume that
p=(m<,I). By (7), we have (cp Ar 7p) <7 (6 A 7). If (op Az Tp) <7 (0 Ap T), then

H(op,7p) > 2hg(op A Tp) >2hg(0 A7)+ 1> H(o,T).

Thus we may assume that
(cpAeTp) T (0 A T). (15)

It suffices to show that
(o,7) € V(M) = (op,mp) € V(MT). (16)
Assume that (o,7) € V(M?) and write
oc=mp<g...<gcmi<gmo=1), T=(mj<g...<gml<gmy=1I).

Then
op=lm(mpm < ... <pmim <gm < I),
mp=Im(mim <, ... <pmim <gcm <, I).
We use Lemma 8.4. In particular, we know that (o Az 7) H (T Az o).
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Suppose first that (o, 7) satisfies (V1). Then (0 Az 7) = my H mj, = (7 Az o) and
mrm L mjm yields (cpAp7Tp) = mpm and (TpAgop) = mjm. Now (15) yields mpm J my,
and therefore mim R my, by (S1). Similarly, mjm R m)_. It follows that mym R m)m and
(op, 7p) satisfies (V1), thus (16) holds in this case.

Suppose next that (o, 7) satisfies (V2). Then (o Az 7) = m; implies (op Ag Tp) = mym.
Indeed, It is clear that (cpAsTp) = m;m for some j > i since mym L m)m and m,m = m,m
for r < i. However, if j > i, then (10) yields m;m <7 m; <z m;, contradicting (15). Hence
(op Az Tp) = mym. Similarly, (7p Az op) = mim. Similarly to the preceding case, we get
mim R m; R m; R mim. Moreover, (op,7p) satisfies (V2), thus (16) holds in this case
as well.

Finally, we assume that (o, 7) satisfies (V3) (the case (V4) is dual). Similarly to the
preceding cases, we get (op Az 7p) = mym, (Tp Az op) = mim and mpm R mjm. Now
(15) is equivalent to mgpm J my, and so my € W (M?') yields mpm € W(M') by Lemma
8.3, hence (op, 7p) satisfies (V3). Thus (16) holds and (L3) is satisfied.

(L4): Let o,7,p € Rh(M!). We may assume that o, 7, p are all distinct. Since H' is a
length function, we have

H'(o,p) > min{H'(co,7), H'(1,p)}.

Since H(x,y) = H'(z,y) or H(z,y) = H'(z,y) + 1 for all x,y € Rh(M'), we may assume
that
H'(o,p) = min{H'(o,7), H (1, p)} (17)

By (L1), we may further assume that
H'(o,p) = H (0, 7). (18)
If H(o,7) = H'(0,7) we are done, hence assume also that H(o,7) = H'(0,7) + 1, that is,
(o,7) € V(MT).
Similarly, we may assume that
H'(a,p) = H'(r,p) = (1,p) € V(M"), (19)

otherwise H (o, p) > H(T,p). In view of (17), to prove (L4) it suffices to show that (o, p) €
V(MT).

Assume first that H'(o,p) = H'(r,p). By (19), we have (1,p) € V(M?'). Moreover,
H'(o,p) = H'(0,7) = H'(1, p) and Lemma 8.2(i) yield

(cNhep)=(NeT) R (TALo)=(TNAp) R (pAcT)=(pAzo).

We discuss now the cases (V1)—(V4).

If (o, 7) satisfies (V1), then (7, p) must satisfy either (V1) or (V3), and so (o, p) satisfies
(V1) or (V3) accordingly in view of Lemma 8.3.

If (o, 7) satisfies (V2), then (7, p) must satisfy either (V2) or (V4), and so (o, p) satisfies
(V2) or (V4) accordingly.

If (o,7) satisfies (V3), then (7, p) must satisfy either (V2) or (V4). In the first case,
(0, p) satisfies (V3). In the latter, (o, p) satisfies (V1) or (V3).
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Finally, if (o, 7) satisfies (V4), then (7, p) must satisfy either (V1) or (V3). In the first
case, (o, p) satisfies (V4) by Lemma 8.3. In the latter, (o, p) satisfies (V2). This completes
the discussion of the case H'(o,p) = H'(, p).

It remains to be considered the case H'(o, p) < H'(7,p). By (18) and Lemma 8.2(i), we
have

(0 Az p)=(oALT) (20)

and so

(tAzo)L(pAro). (21)
Since H'(1,0) = H'(0,7) = H'(0,p) < H'(7,p), T Az o must be a term of p with 7 Az o >,
p Az 7. Hence (21) yields

(T Ago)=(pAro). (22)
Since (o,7) € V(M?), it follows from (20) and (22) that

(0 Azp) R (pAzo).

We discuss now the cases (V1)—(V4).

Clearly, H'(o,p) < H'(t,p) implies that (o, 7) must satisfy either (V2) or (V3). It is
easy to see that (o, p) satisfies necessarily the same condition, hence (o, p) € V(M) and so
(L4) holds.

Therefore H is a strict length function for Rh(M7).

(ii) Since Rhy (M) is a submonoid of Rh(M7), the restriction of H to Rhy (M7') x
Rhy (M7) is a length function for Rhy (M7).

(iii) We get Hy = D, for some (unique up to isomorphism) strongly faithful elliptic
Rhy (M7T)-tree x by Corollary 4.8. O

Throughout the remaining part of this section, we assume that M, Hy = D, for
x = (r0,T,,6) are fixed. Moreover, we may assume that x is obtained by the Chiswell
construction according to the proofs of Theorem 4.7 and Corollary 4.8.

We say that [n,m; <z ... <g mo = I] =v is a minimal representation of v € Vert(T) if
v# [nym; <g ... <g myg| for every i < [.

The following lemma helps to establish that an £-chain belongs to Rhy (M7):

Lemma 8.7 Let (m; <gmy_1 <g ... <g mg) € Rhy (M7).
(i) For everyi <1, (m; <c ...<g mg) € Rhy (M7).
(i) If m) £ my, then (m) <gm_1 <g ... <g mg) € Rhy (MT).
Proof. (i) If (my <g ... <gcmo) = (yr < I)...(yh <c I), then
(m; <g...<gcmo)=(ys <cI)...(5n <c I (23)

for s =max{j <7 |y;...y1 £ m;}.
(ii) Write

o= (m<g...<cmg), T=(mj<gm_1<c...<gmo).
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Since m} £ my, we have m) = y, ...yymy for some y1,...,y, € Y. Since o € Rhy (M7), it
follows that

Im(y, . ..y1my <g yr—1--y1my Zg oo Spyimy Spmy <g ... <g mo)
= (y, <c I)...(y1 <¢ I)o € Rhy (MP).

Since m; =y, ... y1my £ my, we obtain
Im(y, ...y < Yr1-cyimy Zg oo Spyimy gy <g ... <gmg) =T

and so 7 € Rhy (M7). O

Lemma 8.8 (i) Let v = [2k,m; < ... <g mg = I] € Vert(T) and i € {0,...,1 — 1}.
Then v = 2k, m; < ... < mg| if and only if hy(m;) > k.

(it) Let v = 2k + 1,m; <g ... <g mg = I] € Vert(T) and i € {0,...,1 — 1}. Then
v=_[2k+1,m; < ... <g mo] if and only if hy(m;) >k or

hy(mi) =k and m; € W(M?).

Proof. Let
U:(ml <£...<£mo), T:(mi <[;...<[;mo).

Then (o Ag 7) =m; = (T Az o).
(i) We have

[2k, 0] = [2k, 7] & Hy(o,7) > 2k < 2h7(m;) > 2k < hy(m;) > k.
(ii) Assume first that m; € W(M?). Then
Hy(o,7) =2hg(c Ae 7) +1=2hg(m;) +1
and so
2k +1,0] =[2k+1,7] & Hy(o,7) > 2k+ 1< 2hy(m;) +1>2k+ 1< hy(m;) > k.
If m; ¢ W(M'), then Hy(o,7) = 2h7(m;) and so

[2k+1,0]:[2k+1,T]<=>Hy(J,T) Z2k+1<:>2hj(mi) 22k+1<:>hj(mi) > k.

We immediately obtain
Corollary 8.9 (i) v = [2k,m; < ... <g mg = I] € Vert(T) is in minimal representa-
tion if and only if hy(my—1) < k.
(i) v=1[2k+1,m < ... <gmo=1I] € Vert(T) is in minimal representation if and only

if hg(my_1) < k or
hy(mi_1) =k and my_y ¢ W(M?).
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Given m € M, let
Yo ={yeY |ym <, m}.

For every y € Y,,, there exists a unique b € By, such that (1,1,b) £ ym. We denote by
Qm the set of all such b when y takes values in Y.

Lemma 8.10 For every m € M, Y, = Yym- and

T2 Qm — Qmm>
b ((17 1,b)m*)7T3

1$ a bijection.

Proof. Let m € M!. We always have ym <, m and ymm* <, mm*. Since m = mm*mf,
it is immediate that ym £ m if and only if ymm™* £ mm™, hence Y, = Ym=.

Let b € Q. Then (1,1,b) £ ym for some y € Y, and so (1,1,b)m* L ymm*. Since
y € Yo, = Yiume, it follows that ¢(b) € Qpum+. Thus ¢ is well defined.

Suppose now that p(b) = ¢(c). Then (1,1,b)m* £ (1,1,¢)m* and so (1,1,b)m*m? L
(1,1, c¢)m*mt. Since (1,1,b) <z m, we get (1,1,b)ym*m? = (1,1,b). Similarly, (1,1, c)m*m? =
(1,1,¢) and so (1,1,b) £ (1,1,¢). Thus b = ¢ and ¢ is one-to-one.

Finally, let ¢ € Qum=*. Then (1,1,¢) £ ymm* for some y € Y» = Y. It follows
that (1,1,¢)m? £ ymm*m? = ym. Write b = ((1,1,¢)m?)7r3. Then b € Q,,. We show that
@(b) = c. Tt suffices to show that (1,1,b)m* £ (1,1,¢). Now (1,1,b) £ (1,1,c)m? yields
(1,1,b)m* £ (1,1,¢)mfm*. Since (1,1,¢) £ ymm*, we get (1,1,¢)mim* = (1,1,¢) and so
(1,1,b)m* L (1,1,¢) as required. Thus ¢ is onto and therefore a bijection. [

Given m = (a, g,b) € M', define
Ay = {d € Ay | Vi # 0.
For every k € IN, let
Uo(k

={m e W(M!):hs(m) =k and |A,,| > 1},

a(
k) ={me MI\W(M!): hg(m) =k and |Ap| + |A},| > 1},
g(m) =k and |Gm|(1 +[Qml) > 1},
1) thg(m) =k and |G| > 1},

Us

)
Ur(k)
Us(k) = {m € W(M') : h
(k) = {m e M"\ W(M
(k) =

S

k) ={mec MI\W(M"):hz(m) =k and |G| - |Qm| > 1}.

Lemma 8.11 U;(k) is a union of R-classes of M' fori=0,2,3,4.

Proof. The claim follows from Lemmas 8.3 and 8.10 and

mRm = A, = A . (24)

We prove that (24) holds. Indeed, assume that m = (a,g,b) and m’ = (a,q’,V') are R-
related. By Lemma 8.10, we have Yy g3 = Y g 4) for every a € A, = A,y. Hence
Al = A, and (24) holds as required. O
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We discuss now the cases when a vertex has more than one son. For every m € M! with
Y,, # 0, we fix an arbitrary element ~,, € Y,,m.
Lemma 8.12 Let v = [2k,my < ... <g mo = I] € Vert(T) be in minimal representation
and 2k < dep(ro,T). Then |Sons(v)| > 1 if and only if my € Uy(k) UU1(k). In that case, if
m; = (a,g,b), then

[ Sonsi(v) if my € Up(k)
Sons(v) = {Sonsi (v) U Sonsa(v) if mj € U(l)(k)

with

Sonsi(v) ={[2k +1,(d’,9,b) <gmy_1 <g ... <gmgl; d € Ap,},
Sonsz(v) = {[2k + 1, Y gp) <c (a’,9,0) <gc my_1 <g ... <gmol; @’ € A7, }

and the represented elements are all distinct in each case.

Proof. Write 0 = (m; <, ... <z mg). Since 2k < dep(rg,T), we have [Sons(v)| > 1. Tt
follows from (4) that |Sons(v)| = 1 if and only if

2k, 0] = [2k, 7] = [2k +1,0] = [2k + 1, 7] (25)

for every 7 € Rhy (M71).
Suppose first that h7(m;) < k. Since

2hg(oAeT)+1<2hz(my)+1<2(k—-1)+1< 2k,

then [2k, o] = [2k, 7] implies o = 7 and so (25) holds. Thus |Sons(v)| = 1.

Suppose now that hy(m;) > k. Assume that [2k,o0] = [2k,7] with ¢ # 7. Then
2hg(oc ApT)+ 1> Hy(o,7) > 2k. Since [2k, 0] is a minimal representation, it follows that
hg(mi—1) < k and so (¢ Az 7) = my. Thus

Hy(o,7) > 2hg(0c Ae7) =2hg(my) > 2k + 2

and so [2k + 1,0] = [2k + 1, 7]. Therefore (25) holds and |Sons(v)| = 1.

Therefore we assume that hy(m;) = k and write m; = (a, g,b).

Suppose first that m; € W (M?). We show that Sons(v) = Sons (v). For every a’ € Ay,
we have (a’,g,b) L (a,g,b) = my. Let 7 = ((d/,9,b) <g my_1 <z ... <g mgp). By Lemma
8.7(ii), 7 € Rhy (M?). On the other hand, (o Az 7) = m; and so Hy (o,7) > 2h7(my;) = 2k.
Hence [2k, 7] = v and we conclude by (4) that [2k + 1, 7] € Sons(v).

Conversely, assume that [2k 4+ 1,{] € Sons(v) is in minimal representation. We show
that [2k + 1,(] is of the claimed form and we may assume that ¢ # o. By (4), we have
[2k, 0] = [2k, (] and so Hy (c,() > 2k. Hence (o Az ¢) = my € W(M?') and so (¢ Ag o) =€
W (M) by Lemma 8.3. By Corollary 8.9(ii), we get ¢ = (m} <z my_1 <z ... <z mg) with
my L my. If m; = (d',¢',V'), it follows that b’ = b and we may (if ¢’ # g) replace ¢’ by g
to get ' = ((d/,9,b) <g my_1 <g ... <g myg) since (a’,g,b) R (d’,¢',b) and case (V1) of
Lemma 8.4 imply (¢,¢') € V(M?). Hence

Hy (¢, (") =2hg((d',g',0)) +1 =2k +1
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and so [2k + 1,¢] = [2k + 1,¢’]. Thus Sons(v) = Sons; (v).
Finally, given p = ((a”,g,b) <g my_1 <g ... <g mg) with a” # o, then

(T Yy p) = (CL,,g, b) R (a”797 b) = (p Ag T)

and so Hy (7, p) = 2hz((d’, 9,b)) = 2k. Thus [2k + 1, 7| # [2k + 1, p] and so the elements in
Sons; (v) are all distinct. In particular, [Sons(v)| = |A,,| and so [Sons(v)| > 1 if and only
if m; € Uo(k).

Assume now that m; ¢ W (M7'). We show that Sons(v) = Sons; (v) U Sonsa(v). We pass
the inclusion Sons; (v) U Sonsz(v) C Sons(v), a straightforward adaptation of the preceding
case, and move straight to the converse inclusion. Let [2k+ 1, (] € Sons(v) and assume that
¢ # 0. By (4), we have [2k, 0] = [2k, (] and so Hy (o,() > 2k. Hence (o Az () = my and so
by Corollary 8.9(ii) we must have

C=(mp<gm_1<g...<gcmp) or C=(my <gmy<gmy_1<g...<gmg)

with m; £ mj = (¢ Az o). The discussion of the first case is analogous to the case m; €
W(M?), hence we assume that ¢ = (mj,; <¢ m] <g m_1 <g ... <g mg) and m] =
(a',¢',b). Let

¢"= (Var,gp) <c (d',9,0) <gmy_y <g ... < mo).

Since ¢ € Rhy (M), it follows from the maximality of s in (23) that Yoy # (. Since
m; R (da’,g,b), it follows from Lemma 8.10 that Yy 4 # 0 and so o’ € Aj,. Thus
[2k + 1,{'] € Sonsy(v). Finally, either hy (¢ Az (') > k, or (( Az (') = mj and so ((,{') €
V(M?T) through case (V2) of Lemma 8.4. In any case, it follows that Hy (¢,¢’) > 2k + 1
and so [2k + 1,¢] = [2k + 1,{’] € Sonsa(v). Thus Sons(v) = Sons; (v) U Sonsg(v).

For uniqueness, we only have to care about distinguishing [2k + 1, ] from [2k + 1, (] for

C=((d',9,b) <cmi—1 <g ... <cmo), = Vagp <c(d9,0) <cmi1<g...<gmo),

the remaining cases following the same argument of the case m; € W (M7).
Since m; ¢ W (MT), then (a’,g,b) ¢ W (M) by Lemma 8.3 and so ({,¢') ¢ V(M) by
Lemma 8.4. Hence

H(C,¢') =2hg(C AL C) =2hg((d, g,b)) = 2k

and so [2k + 1,(] # [2k + 1,¢’]. Thus the elements in Sons;(v) U Sonsg(v) are all distinct.
In particular, [Sons(v)| = [Am,| + |Aj,,| and so [Sons(v)| > 1 if and only if m; € Uy (k). O

Note that v = [2k,m; <g ... <g mo = I] with m; € Up(k) U Ui(k) implies 2k <
dep(ro,T") and so |Sons(v)| > 1.
Lemma 8.13 Let v =2k + 1,m; <, ... <g mg = I] € Vert(T) be in minimal represen-
tation and 2k + 1 < dep(ro,T). Then |Sons(v)| > 1 if and only if m; € Uz(k) U Us(k) or
my_1 € Uyg(k). In that case,

Sonsi(v) U Sonsa(v) if my € Ua(k)
Sons(v) = ¢ Sons(v) if my € Us(k)
Sonss(v) if mi—q € Uy(k)
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with

Sonsi(v) ={[2k + 2,m) <g my_1 <z ... <g mol; m; € Hm, },

Sonsy(v) ={[2k +2,(1,1,0") <gmy <gmu_1 <g ... <g mol; mj € Hpm,, V' € Qpr}
Sonsz(v) ={[2k +2,(1,1,0') <gmj_y <gmy_o <g ... <gmo); mj_; € Hpy, ,, V' € ngil}

and the represented elements are all distinct in each case.

Proof. Write 0 = (my <z ... <z mg). Since 2k + 1 < dep(ro,T), we have |Sons(v)| > 1.
By (4), |Sons(v)| = 1 if and only if

2k+1,0]=[2k+1,7] = [2k+ 2,0] = 2k + 2, 7] (26)

for every 7 € Rhy (M7).

The case hg(my;) < k is discussed analogously to the proof of Lemma 8.12.

Assume next that hz(m;) = k and m; € W(M'). We show that Sons(v) = Sons; (v) U
Sonss (v).

Let m) € Hy,, and write 7 = (m) <g my_1 <g ... <g mg). By Lemma 8.7(ii),
7 € Rhy (M7). Since (o0 Az 7) = my € W(M?), we get (0,7) € V(M') by Corollary 8.5,
hence Hy (0, 7) = 2h7(my) +1 = 2k + 1. By (4), we conclude that [2k + 2, 7] € Sons(v).

Assume now that 0’ € Q. Then (1,1,b") £ ym; for some y € Y such that ym; <, m;.
Write

p= ((l,l,b,) <r m; <gmi_1 <g...<gmg), p/ = (ym; <r m; <gmip_1 <g...<gmg).

It is immediate that o' = (y <¢ I)7 € Rhy (M?). Since (1,1,8') £ ym;, it follows from
Lemma 8.7(ii) that p € Rhy (M) as well. Now we have (7 Az p) = m] € W(M!) by Lemma
8.3 and so Corollary 8.5 yields

Hy (7,p) = 2h7(m)) + 1 = 2h7(m;) + 1 = 2k + 1.

Hence [2k + 1, p] = 2k + 1,7] = [2k + 1, 0] and so [2k + 2, p] € Sons(v) as well.

Conversely, let [2k+2, (] € Sons(v) be a minimal representation. We show that [2k+2, (]
is of the claimed form and we may assume that ( # o. By (4), we have [2k+1, 0] = [2k+1, (]
and so Hy (o,() > 2k + 1. It follows that (o Az ¢) = my. Let mj; = (( Az o). Then m; H m
since m; € W(MT), and ¢ = (...m} <g my_1 <g ... <g mp). If m} is the leftmost term of ¢,
we are done. Otherwise, it follows from Corollary 8.9(i) and h7(m;) = k that { = (m;,, <¢
my <g mi—1 <g ... <g mg) for some m;_ ;. Assume that ¢ = (y, <g I)...(y1 <c¢ I) with
Y1,---,Yr € Y. Then

(M <gcmp<gmi—1<g...<gmo)=Im(y,...01 <gyro1...y1 <z ... <gy1 <gI).

Let s = max{j < 7 | y;j...y1 = my}. Then ye1...91 <z Ys...y1 since otherwise, by
maximality of s, m; would not be the leftmost element in its L-class. Moreover, ys1m) =

Yst1---Y1 L Yr..on :m;_H. Let
(= Wst1 <c D)oo <c D)= (Ysrmy <c mj <gmy—1 <g ... <g mo)
and write ys11m) = (a’, ¢, V'),
"= ((1,1,Y) <gcmp <gmy_1<g...<gmo).
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Clearly, ¢’ € Rhy(M’) and so ¢ € Rhy(M') by Lemma 8.7(ii). Moreover, mj , L
Ysyrmy L (1,1,0) yields

HY(C? C”) > 2h\7(m2+1) > 2k + 2

and so [2k +2,(] = [2k 4+ 2,("]. Since ys11 € Y,y and b e @y, this completes the proof of
Sons(v) = Sons; (v) U Sonsa(v).

Finally, suppose that [2k + 2, 7] and [2k + 2, p| are two sons of the described form with
7 # p. Then (1 Az p) = mj for some m) H my. It follows that

Hy (1,p) < 2h7(m)) +1=2hz(my) +1=2k+1

and so [2k + 2, 7] # [2k + 2, p]. Thus the claimed elements of Sons(v) are all distinct.

By Lemma 8.10, we have [Sons(v)| = |G, |(1 4+ |Qm,|) and so [Sons(v)| > 1 if and only
if my € Uz(k}).

Assume next that hz(m;) = k and m; ¢ W (M'). We show that Sons(v) = Sons; (v).

Let m; € Hy,, and write 7 = (m; <g my_1 <g ... <g mp). By Lemma 8.7(ii),
7 € Rhy (M7). Since (0 Az 7) = my R m) = (7 Az o), we are in case (V1) of Lemma 8.4
and so (o,7) € V(M?). Hence Hy (0, 7) = 2h7(m;) + 1 = 2k + 1. By (4), we conclude that
[2k 4+ 2, 7] € Sons(v).

Conversely, let [2k+2, (] € Sons(v). We show that [2k+2, (] is of the claimed form and we
may assume that ( # o. By (4), we have [2k + 1, 0] = [2k + 1,(] and so Hy (o,() > 2k + 1.
It follows that (o Az ¢) = my and (0,¢) € V(MT). Since m; ¢ W(M?), it follows from
Lemma 8.4 that (o, () must be in case (V1),and so { = (m) <g my_1 <z ... <g mg) with
my; R my. Since my = (o Az 7) L (T Az o) = mj, we get [2k + 2, (] € Sons; (v).

Proving that the elements of Sonsi(v) are distinct is similar to the preceding case.
Therefore |Sons(v)| = |Gy, | and so [Sons(v)| > 1 if and only if m; € Us(k).

We consider now the case hy(m;) > k. Suppose first that hy(m_1) < k and take
2k + 1,0] = [2k + 1,7] with 0 # 7. then 2hy(0c Az 7) + 1 > Hy(o,7) > 2k + 1 and so
(0 Az 7) =my. Thus

Hy(o,7) > 2hg(0c Az 7) =2hg7(my) > 2k + 2

and so [2k + 2, 0] = [2k + 2, 7]. Therefore (26) holds and |Sons(v)| = 1.

Since v is in minimal representation, we may assume now by Corollary 8.9(ii) that
hz(mi_1) =k and m;_, ¢ W(M?'). We show that Sons(v) = Sonss(v).

Let mj_; € Hp, , and V' € Q- Then (1,1,') £ ymj_, for some y € Y such that
ymy_y <g my_,. Write

p= ((17171)/) <r mf_l <rmij_o<p...<p mo),
p, = (ym?,l <r mE,l <rmi_o <p...<p mo).

It is immediate that

p=y<cI)(mj_y <cms<g...<pgmp)€ Rhy(MI).

Since (1,1,') £ ym]_,, it follows from Lemma 8.7(ii) that p € Rhy (M) as well. The
case (o Az p) = my is straightforward, hence we assume that (o Az p) = my_;. Thus
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(pAc o) =m]_ | Hm_1 and we are in case (V2) of Lemma 8.4, yielding (o, p) € V(MT). Tt
follows that Hy (o, p) = 2hz7(mi—1) + 1 =2k + 1 and so [2k + 1, p] = [2k + 1, 0]. Therefore
[2k + 2, p] € Sons(v).

Conversely, let [2k + 2, (] € Sons(v) be in minimal representation. We show that [2k +
2,(] € Sonsz(v). By (4), we have [2k + 1,0] = [2k + 1,¢] and so Hy(0,() > 2k + 1. Tt
follows that (o Az ¢) = my; or else

(cAzC) =m_; and (0,¢) € V(MY). (27)

Suppose that (27) holds. Let m;_, = (( Az o). Then my_y Hm;_, and ( = (...m;_; <¢
my_g <z ... <g mg). If mj_, is the leftmost term of ¢, then (o, () would be in case (V4)
of Lemma 8.4 and so m)_, € W (M), contradicting m;_, ¢ W(M?) in view of Lemma 8.3.
On the other hand, since [2k 4 2, (] is in minimal representation, it follows from Corollary
8.9(1) and hy(mj_,) =k that ( = (m) <gmj_; <g my_2 <z ... <g mg) for some m;. Now
the proof that [2k + 2, (] € Sonssz(v) is completely analogous to the case hz(m;) = k and
my € W(MY'), and is therefore omitted. The same arguments hold for the case (0 Az() = my,
which is actually simpler. Therefore Sons(v) = Sonss(v).

Proving that the elements of Sonsi(v) are distinct is similar to the preceding case.
By Lemma 8.10, we have [Sons(v)| = |Gpm,| - |Qm,| and so |Sons(v)| > 1 if and only if
my—1 € Us(k). O

Note that v = [2k+1,m; <g ... <z mo = I| with m; € Uz(k) implies 2k+1 < dep(ro,T')
and so |Sons(v)| > 1.

Lemma 8.14 Let v = [i,m; < ... <g mg = I| € Vert(T) be in minimal representation
and let 0 = (my, < ... <g mqg) be such that mym;, R m; for some j € {0,...,1—1}. Then
vo = [i,(m; <g ... <g mg)o] is in minimal representation.

Proof. By successive application of Lemma 7.1, we get
(my <g...<gmp)o = (mlm; <r...<r mjm; <r...)

and my_ym;, R my_1. Hence hg(mj_1mj) = hg(m;—1). By Lemma 8.3, we also have
my—1 € W(M') if and only if my_ym/, € W(MT). Thus [i,(m; <z ... < mg)o] is in
minimal representation by Corollary 8.9. [J

Assume that § = dep(rg, 7). For commodity, we assume for the remaining part of this
section that § € IN, the infinite case being absolutely similar. We take two new symbols
1, *. For every k € IN such that 2k + 1 < §, let

X =130 U Au( U (A x {=)).
meUo(k)UU1 (k) meU (k)

For every k € IN such that 2k +2 < §, let

Xokt2 = {1} U (Unevy k) (Gm X ({*} U Qmm+)))
U (UmEUg(k:) (Gm X {*})) U (UmEU4(k) (Gm X Qmm*))

A very important remark: in view of Lemma 8.10 and (24), we assume the union over
m € Ui(k) to be disjoint over distinct R-classes, e.g.: if m,m’ € Uy(k) are R-related, i.e.
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mm* = m/(m')*, then Gy, X ({¥} U Qumm+)) = Gy X ({¥} U Qpy(mry+)). Otherwise, they are
disjoint.

If M is finitely generated, then the X; turn out to be finite:
Lemma 8.15 IfY is finite, then all X; are finite.

Proof. It is enough to show that each set
Ey,={me M| hs(m)=k}

is finite. Since M is finite J-above, this follows easily by induction on k from Ey = {I} and

k—1
Bcly U & (28)

=0 2€Y E; 4

Indeed, if m = ys...y1 € B, with y; € Y, take

r=max{j € {0,...,s} | m<sy;...u1}

Let n =y, ...y1. Then n € E; for some i € {0,...,k—1} and m € Jy, , ,n, hence (28) holds
and so does the lemma. [

In view of Lemmas 8.12 and 8.13, we define a mapping f : (Vert(T)) \ {ro} — U_,X;
as follows. Let v € Vert(T') and let w € Sons(v).

(F1) If Sons(v) = {w}, let f(w) =].

(F2) If v = [2k,m; < ... <g mg] with m; = (a,g,b) € Up(k) UU(k) and w = [2k +
1,(d,g,b) <gmy_1 <g...<gmg,let f(w)=2d

(F3) If v = [2k,my < ... < mo] with m; = (a,g,b) € U1(k) and w = 2k + 1,y g) <z
(a/ag>b) <cmp-1<g...<¢ mO]a let f(w) = (ala *)

(F4) If v = 2k + 1,my <g ... <g mo = I| with m; = (a,g,b) € Us(k) U Us(k) and
w=[2k+2,(a,g,b) <gm_1<g...<gmgl, write

e((a,g’,b) <crmp_1<g...<g mo) = (a;l <g..-<g l’o).
If 2; = (a1, 91,01), let f(w) = (g1,%).

(F5) f v = 2k + 1,my < ... <g mo = I] with m; = (a,g,b) € Us(k) and w = [2k +
2,(1,1,0) <z (a,g',b) <gmy_1 <g ... <g mgl, write

6((17171)/) <r (a,g/,b) <cmj_1<g...<g mo) = (xl+1 <g- -.-<g .730).
If z; = (a1,91,b1) and z;41 = (az, g2,b2), let f(w) = (g1, b2).

(F6) If v = 2k + 1,my <g ... <g mop = I] with my_1 = (a,g,b) € Us(k) and w =
2k +2,(1,1,0) <z (a,q',b) <g my_2 <g ... <z mgl, write

6((1’ ]-ab,) <z (avglab) <gcmy—2<g...<g mO) = (CL‘l <g---<g :EO)'

If ;-1 = (a1,91,b1) and z; = (ag, g2, b2), let f(w) = (g1,b2).
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Note that w = [i,0] = f(w) € X; in all cases: this holds trivially if |Sons(v)| = 1. If
i=2k+1and v =[2k,m < ... <g mo| with m; € Up(k), then f(w) € Ap, € Xop11 = Xi;
if my € Ur(k), then f(w) € Apm, U (A7, X {*}) € Xopy1 = X;.

Finally, assume that i = 2k+2 and v = 2k+1,m; < ... <g mo = I] with m; € Ua(k).
If e(o) =[x <g ... <g o], then f(w) € Gy, x {*} = Gy, x {*} by Lemma 7.3(i). Thus
f(w) € X2/€+2 = X;.

Assume now that €¢(o) = [xj41 <7 ... <g z0 = I|, 1 = (a1,91,b1) and z;4; =
(a2, g2,b2). Then f(w) = (g1,b2). Clearly, g1 € G, = G, by Lemma 7.3(i). We show that
be € leml*. By Lemma 8.13, we may assume that

o = ((1,1,()/) <r mf <rmij1<g...<p mo)

with mj € Hy,, and b’ € Q. Hence (1,1,0') £ ym; <g my for some y € Y and
so (1,1,0")(m))* L ymj(m))* = ymym; by Lemma 7.2(ii). Thus (1,1,b2) £ x41 =
(1,1,6")(m))* L ymymf. Since m; R mym}, ym; < my; implies ymym; <g mym; by
Lemma 8.10 and 80 by € Qumy- Thus f(w) € Xopio = X; as claimed.
The discussion of the cases arising from Us (k) and Uy (k) is analogous and can be omitted.
Clearly, for all o € Rhy (M) and v € Vert(T), the elliptic action @ induces a mapping

62 : Sons(v) — Sons(vo)
W — wo.

Lemma 8.16 Let v = [2k,m; < ... <g mqg = I] with m; € Ur(k) and let 0 = (m;, <
... <cmp=1) € Rhy(M!). Then

(i) f|Sons(v) is one-to-one;
(i1) f(Sons(v)) = Ap, U (A:ﬂl x {x});

(i4) |(Sons(v))a| > 1 if and only if mym;, R my; in this case f(wo) = f(w) for every
w € Sons(v) and 0 is a permutation;
)

() |(Sons(v))o| =1 if and only if mym;, <z my; in this case 0y is constant.
Proof. Writing m; = (a, g,b), then

SOHS('U) - {[2k + 17 (Cl,/,g,b) <gmy-1<g...<g mU]; S Aml}
U {2k + 1, Y@ g0) <c (@',9,0) <gmu—1 <g ... <gmol; a' € A7, }

by Lemma 8.12 and these elements are all distinct. Since
f(2k+1,(d’,9,b) <cmy—1 <g ... <cmo]) = d,

2k + 1,y gp) <c (@', 9,b) <cmy_y <g ... <gmg]) = (d,%),
(i) and (ii) follow.

We may write
(ml <rg...<rp mo)U = (mlm;, < <c...<p no)
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for some ng, ...,ns € M. Since (da’,g,b) £ my, we get (@, g,b)m;, L mym;, and so
2k +1,(d,9,b) <c ... <g molo = [2k+1,(d’,g,b)m, <g n¢ <g ... <c no).
Writing ¢ = (Va0 <c (@', 9,0) <¢ ... <g mg), we get also
2k +1,¢]o = [2k + 1, 1m (s g 0ymy, <r (a',g,0)my, <g ng <g ... <g n9)].

Suppose that mym;, R my. Since mymy, <7 my, it follows from (10) that mym;, <7 my
and so hg(mymy,) > k. Then (d’, g,b)m;, L mymy, yields hz((a', g,b)m;) > k and it follows
easily that |(Sons(v))o| = 1.

Conversely, assume that mym
(d’,g,b) and so

!/

» R my. Since (d',g,b) £ my, we get (a/,g,b)m;, R

p

f(2k+1,(d',g,b) <z ... <gcmglo) =d = f([2k+1,(d,g,b) < ... < mo))-
Moreover, if a’ € A}, and w = [2k + 1,¢], Lemma 7.1 yields
wo = [2k + 1,7y g pymy, <z (a',g,0)my, <gng <g ... <g nol.

Assume that mymy, = (a,¢',0') so that vo = [2k, (a,¢',b") <g ny <g ... <g ng)]. Since
wo € Sons(vo), it follows from Lemma 8.12 that

wo =2k +1,(d', ¢, V') <gny <c ... <g no for some a’ € Ay g ) (29)
or
wo = 2k + 1,y gy <c (a'sg', V) <cne <g ... <g o for some a’ € A, 1y (30)
If (29) holds, then
Hy(y(a@%b)m; <r (a’,g,b)m; <cmi<g...<gmng,(d,g V) <cng<g...<gmng)>2k+1
and so this pair belongs to V(M7), yielding (a/, ¢/,¥') € W(M?') by Lemma 8.4. Since
(a,g' V) L (a,g',0) = mymy, Rmy ¢ W (M),

this contradicts Lemma 8.3. Hence (30) holds and so f(wo) = (a/,%) = f(w). Thus
(Sons(v))o| > 1 and also f(wo) = f(w) for every w € Sons(v). Since Ay, = Apym; and
AL, = AL by (24), we have a commutative diagram

my,

Sons(v) b Sons(vo)

Ay U (A7, < {%})

my

where fi and fy are the corresponding restrictions of f. Since f; and fo are bijective by (i)
and (ii), 82 must be bijective as well. Thus (iii) holds.

We have mym;, <7 my. By (iii) and (S1), |(Sons(v))o| = 1 if and only if mymy, J my
and therefore mym;, <7 my. It is straightforward to check that 6} is constant. [J
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The proof of the following lemma is a simplification of the preceding one and is therefore
omitted.

Lemma 8.17 Let v = [2k,my < ... <g mg = I| with m; € Uy(k) and let o = (m;) <r
... <cmp=1) € Rhy(M!). Then

(i) f|50ns(v) is one-to-one;
(ii) f(Sons(v)) = Am,;

(i) |(Sons(v))o| > 1 if and only if mym;, R my; in this case f(wo) = f(w) for every
w € Sons(v) and 07 is a permutation;

(i) |(Sons(v))o| =1 if and only if mym;, <z my; in this case 0y is constant.

Lemma 8.18 Let v = [2k +1,m; < ... <g mo = I] with my € Ua(k) and let = (m;, <
... <cmp=1)€ Rh(M'). Then

(i) f|50ns(v) s one-to-one;
(ii) f(SOTLS(U)) = sz X ({*} U lem;);

(ii) |(Sons(v))C| > 1 if and only if mym;, R my; in this case f(Sons(v()) = f(Sons(v))
and 023 18 a permutation;

(iv) |(Sons(v))C| =1 if and only if mym;, <z my; in this case 6¢ is constant.

Proof. Writing m; = (a,g,b), it follows from Lemma 8.13 that Sons(v) = Sons;(v) U
Sonsa(v) with

Sons; (v) ={[2k + 2,7 <gmy_1 <g ... <g mol; 7 € Hum, },
Sonsy(v) ={[2k + 2, (1, 1,V) <gcr <gmy_1 <z ... <g mgl; 7 € Hp,, b/ € Qr}

and these elements are all distinct.
Let
o= (r<gmi_1<c...<gmy) € Sonsi(v).

If e(o0) = (&1 <g ... <g xzo = I) and z; = (a1,91,b1), then f([2k + 2,0]) = (g1,%) €
Gy, x{*}. Note that z; R r H my by Lemma 7.3(i) and so f([2k+2,0]) € G, x{*} C Xop+2.
By Green’s Lemma, the mapping

Hml - Hm;mfﬁ 1

P rmiy
is a bijection and so f|Sons1(u) is one-to-one and
f(Sonsy (v)) = G, % {*}. (31)
Next let

T=(1,1,0)<gr<gm_1<g...<gmg) € Sonsy(v)
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with r € Hy,, and b € Q. If €(7) = (z131 <y ... <g 20 = I), 21 = (a1,91,b1) and
zi41 = (1,1,0)r* = (ag, g2, b2), then f([2k + 2,7]) = (g1,b2). We fix r € H,,, and write

Sonsy,(v) = {[2k +2,(1,1,V) <gr <gmy_1<g...<gcmo); V' € Qr}.

In view of the preceding case, to complete the proof of (i) and (ii) it suffices to show that
f |Son32 (v) is one-to-one and

f(Sonsy r(v)) = {g1} X Qumymy - (32)

Indeed, since r* = mymj by Proposition 7.2(ii), the mapping
2 Qr - lem;‘
b— ((1,1,b)r*)ms
is a bijection by Lemma 8.10. Thus (32) holds and so

f(SOIlSQ(’U)) = Gml X lemf (33)

In view of (31), (32) and the partial injectivity results obtained, (i) and (ii) hold.

Assume now that |(Sons(v))¢| > 1. Suppose that hgz(mym;) > k. Then hg(rm;)
> k for every r € Hyy, due to rmy, £ mymy,. Since the rm;, would then be all L-equivalent,
we would get |(Sons(v))¢| = 1, a contradiction. Thus hz(mymy,) = k = hz(m;) and so
mymy, J my. By (S1), we get mym;, R my.

Conversely, assume that mlml’n R my. Then m; = mlm;,z for some z € MY. Taking a
minimal representation

v = [Qk—f—l,mlm;7 <cm <g...<g ng

for some ng,...,n; € ML, it follows easily from m; = mlm;,z that the elements [2k +
2,rmy, <g ne <g ... <g no] and [2k + 2, (1,1,0")m;, <g rm;, <g ne <g ... <g no] of
(Sons(v))¢ are all distinct, hence |(Sons(v))(| = |Sons(v)| > 1. Moreover, applying (i) and
(ii) to v and v(, we have

Sons(v)| = |G| - (1 + |Quymr ),

[Sons(vQ)| = |Gymy | - (1 + ‘lem;(mzm;)* )-

Since mym; R my, we get Gym;, = Gm, and also mymy,(mymg,)* = mym; by Proposition
7.2(ii). Thus |Sons(v()| = [Sons(v)| > 1. Still applying (i) and (ii) to v and v, we get

f(Sons(vQ)) = Gimy X ({#} U Quymy) = f(Sons(v)).

Furthermore, we have a commutative diagram

Sons(v) % Sons(v()

Gy X ({*}U szml*)
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where f1 and fy are the corresponding restrictions of f. Since f; and fo are bijective by (i)
and (ii), 0f must be bijective as well.
The proof of (iv) is analogous to the proof of Lemma 8.16(iv). O

The proofs of the following two lemmas constitute straightforward adaptations of the
proof of Lemma 8.18 and can therefore be omitted.

Lemma 8.19 Let v = 2k + 1,m; < ... <g mo = I] with m; € Uz(k) and let { = (my, <
... <cmp=1)€ Rh(M?!). Then

(i) f‘Sons(v) is one-to-one;
(11) f(Sons(v)) = G, x {*};

(i4) |(Sons(v))¢| > 1 if and only if mymy, R my; in this case f(Sons(v()) = f(Sons(v))
and 02’ 18 a permutation;

(iv) |(Sons(v))C| =1 if and only if mym;, <z my; in this case 6¢ is constant.

Lemma 8.20 Let v = 2k + 1,my <g ... <g mg = I] with my_1 € Uy(k) and let ¢ =
(mj, <g ... <gmy=1)€ Rh(M"). Then

(i) f|Son3(v) is one-to-one;
(i) f(Sons(v)) = Gm,_y X Qm,_ymz s
(ii) |(Sons(v))C| > 1 if and only if my_ymj, R my_y1; in this case f(Sons(v()) = f(Sons(v))

and 92’ 18 a permutation;
() [(Sons(v))C| =1 if and only if my_1m;, <g my_1; in this case 6¢ is constant.
Given a set X, we write
S(X)={p e M(X) : ¢ is a permutation of X}.
K(X) = {p € P(X) : [Xo| < 1}.

It is immediate that both S(X)UK(X) and {Idx } U K (X) constitute submonoids of P(X).
In the main result of the paper, we construct an embedding

¢ : Rh(MT) =TI (X;, M;) = ... 0 (Xo, Ma) o (X1, M)

0'!—)900.

into an iterated wreath product of partial transformation semigroups where Moy 1 is a
submonoid of {Idx,, ,} U K(Xory1) and Moo is a submonoid of S(Xogi2) U K(Xogi2).
Furthermore, we shall prove that this embedding has the Zeiger property: if

(5, Z2%t1s - - 1) PoTop+2 € S(Xoky2) \ K(Xogt2),

then any local mapping of the form (-, z4—1,...,21)psmy for 2k+2 < g—1 < § must be the
identity.

o1



Theorem 8.21 Let M be a finite J-above Y -semigroup and let 6 = 2+ 2sup{hz(m) | m €
MY € IN. Then there exists an embedding o of Rhy (M?) into the iterated wreath product
of partial transformation semigroups 2_,(X;, M;) = ... o (Xa, Ma) o (X1, My) such that:

(i) Moy is a submonoid of {Idx,, ., } U K(Xopy1) for 2k +1 < 0.

(7i) Mogio is a submonoid of S(Xokyo) UK (Xogt2) for 2k+2 < 5; if {Rx | A € A} is the
set of all R-classes of M contained in Uy(k) U Us(k) U Uy(k), then

Moo N S(Xart2) = ©reaGh, (34)
where G\ is a subgroup of Gy.
(iii)  has the Zeiger property.

Moreover, if Y is finite, then the X; (and consequently the M;) are all finite.

Proof. For commodity, we assume that § € IN, the infinite case being absolutely similar.

We consider the length function Hy and we assume that Hy = D, for x = (9, T, o, 0),
x being obtained by the Chiswell construction. Let X; and f be defined as before for
t=1,...,6. Write X = U?Zl(Xi X ... x Xj). By Theorem 8.1 and Lemmas 8.16-8.20(i),
there exists an injective monoid homomorphism

P Rhy(MI) — (X(;,P(X(;)) 0...0 (Xl,P(Xl))

o— U,

defined by
o — w10, if o # (1) (x € X).
S if o = (I),

where

¥ : Ray(rg,T) — X
(Viy ooy v1,m0) = (f(0i), -y f(01)

Given o € Rhy (M) \ {I}, we extend ¥, to a mapping ¢, € P(X) by taking

domep, = imp U (U_,{ (i, f(viz1),..., f(v1)) € X : (vi—1,...,v1) € Ray(rg, T)
and |(Sons(v;—1))o| > 1})

and
(zis f(vi-1), -, f(01)po = (@i, (f(Vie1), -, fv1))¥0)

if (@i, f(vi—1), ..., f(v1)) ¢ imy. Since 1) is one-to-one, ¢, is well-defined. Being an exten-
sion of W, it is easy to see that ¢, inherits some of its properties, namely being sequential.
Moreover, it follows from Lemmas 8.16-8.20(iii) that

(domy, \ imY)p, N imy = 0. (35)
Taking ¢y = ¥; = Idx, we define

¢ : Rhy (M!) — P(X)

0 Qg.
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We show that ¢ is a monoid homomorphism.
Since (7 is the identity and dome,, C dome,, we only have to take o, 7 € Rhy (M1)\{I}
and show that
LPocPr = TPor (36)

holds for every x € domyp,. Since ¥, C ¢, is a homomorphism, (36) holds for x € imz).
Assume now that

z = (i, f(vi-1), -, f(v1)) € domy, \ imy.
Hence |(Sons(v;—1))o| > 1. Write (f(vi—1),..., f(v1))¥s = (f(vi_y),..., f(v])). In partic-

ular, v;_j0 = v}_;.

Assume first that |(Sons(v_;))7| < 1. Then v;—j0 = v,_; yields (Sons(vi—1))o C
Sons(v]_,) since the action is elliptical and so |(Sons(v;_1))or| < 1 as well. Thus = ¢
domep,-. On the other hand, z¢, = (z, f(v,_y),..., f(v])) ¢ imy by (35) and so zp, ¢
dome,. Thus (36) holds in this case.

Finally, assume that |(Sons(v]_;))r| > 1. Write

(f(Wiz1), -, f01) W Ur = (f(vjy), ... f(01)¥r = (f(vil1), .-, F(0]))-

Then
TPcPr = (ZL‘, f(Uz/'—l)a R f(vi))SOT = (SL’, f(vzl’l—l)a ) f(vlll))

by (35). On the other hand, in view of Lemmas 8.16-8.20(iii), |(Sons(v;—1))o| > 1 and
|(Sons(v]_4))7r| > 1 together yield |(Sons(v;—1))or| > 1. Since z ¢ imy and ¥ is a homo-
morphism, we obtain

LPor = (377 (f(vi—1)7 BRI f(vl))\PUT) - (IL’, f(v£L1)7 R f(Ui/)) = TPoPr

and so (36) holds as well in this case. Thus ¢ is a monoid homomorphism.

We show next that ¢ is one-to-one. Given distinct 0,7 € Rhy (MT)\ {I}, we have
U, # U, by Theorem 8.1. Since dom¥, = imy) = domV,, it follows that ¢, # @, as
well. To show that ¢, # 5, it suffices now to show that ¥, is not one-to-one. Indeed,
using the Chiswell construction and by Lemma 8.13, we have |Sons(v)| > 1 for v = [1, ]
since hy(I) = 0 and Q7 # 0. However, for 0 = (n, < ... <g ng) with p > 0, we have
In, =ny, <z I and so 67 is constant by Lemma 8.18(iv). Thus ¥, is not one-to-one and
so ¢ is indeed one-to-one.

We proceed now to discuss the local mappings. Let (z;—1,...,21) € X;—1 X ... x X3
and write £ = (-, zj—1,...,71)ps € P(X;). We assume o # (I). Assume that £ ¢ K(X;).
In particular, £ is not the empty map and so (x;—1,...,21) = (f(vi—1),..., f(v1)) for some

(vi—1,...,v1) € Ray(rg,T). Let ¢ = {limy- It follows from the definition of ¢, that
|Sons(vi—1)o| > 1, otherwise & = ¢ € K(X;). By Lemmas 8.16-8.20, it follows that
¢ € S(X]) for some X! C X; and so £ € S(X;) by definition of ¢,-.

If i is odd, then & = Idx, by Lemmas 8.16(iii) and 8.17(iii), thus we can take M; to be
a submonoid of {Idx,} U K(X;) and (i) holds.

Assume now that i = 2k 4 2 is even. We can take M; to be the submonoid of S(X;) U
K(X;) generated by the local mappings . Write 0 = (m;, < ... <¢ mg = I) with
vie1 = [2k+ 1,m; <g ... <g mp] in minimal representation. Since { ¢ K(X;), then
|Sons(v;—1)| > 1 and so, by Lemma 8.13, either m; € Us(k) U Us(k) or my—1 € Ua(k).
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We consider first the case m; € Us(k). By Lemma 8.19(iii), ¢’ permutes Gy, x {*}. We
show that there exists some gg € Gy, such that

(h,*)€ = (hgo, *) for every h € Gp,. (37)
Indeed, by Lemma 7.3(i) we may write m; = (a, ¢,b) and z; = (a, g1, b1). Write also
(my <g...<c mo)U:(mlm; <gme <z ... <gmno). (38)

Given h € Gyy,, take r = (a,h,bl)mﬁ_l, T=0r<gcmp_1<c...<gmp)and w = [2k+2, 7).
We claim that
w € Sons(v;—1) and f(w) = (h,x*). (39)

Indeed, (a,h,b;) H z; yields r L xlmﬁl = my by Lemma 7.3(iv). On the other hand,
(a, h, bl)mfil Lm; Rz H (a,h,by) yields r R (a,h,b1) by (S1) and so r R x; R my;. Thus
r € H,,,. Moreover,

rmj_, = (a, h, bl)mf_lm}k_l = (a, h,by)

since (a, h,b1) L z; and xlmﬁlmﬁl = mym;_; = x; by Lemma 7.3(iv). Thus (39) holds.
Now, since mymj, L rmy,, it follows from (38) that 7o = (rmj, <z n¢ <¢ ... < no) and so

e(to) = (rmyn; <z ...). (40)

Thus
(h7 *)5 = ((Tm;)n;fk)”r% *) = (((a7 h7 bl)mz#_lmlpn:)ﬂ% *)
Let y = m#_lm;nz‘. Since

#Ho ok #H ok Ik
(a’vgl7bl)ml_1mpnt = $lml_1mpnt = mlmpnt

and mymyn; R mym;, R m; R x; = (a, g1,b1) by Lemma 7.3(i) and (40), it follows from
Proposition 7.6 that there exists some gy € G, such that

Vh € Gm” ((a, h, bl)y)ﬂ'Q = hgg.

Thus (37) holds.
We consider next the case m;_1 € Uy(k). By Lemma 8.20(iii), & permutes G,,,_, X
szam?,l' We show that there exists some gg € G, , such that

(h,c)&" = (hgo,c) for all h € Gyy,_, and c € Qmy_ym;_, - (41)

Since m;_1m;, R my_1 by Lemma 8.20(iii), m; < my_1 yields mym;, R m; by Lemma 7.1
and so we may assume that

(my <z ...<gmp)o = (mlm; <r ml_lm; <gng<g...<gng). (42)
Let h € Gm,_, and ¢ € Qpy_ymy |- Let 7= (a, h, bl)mg_2 and (1,1,b) £ (1,1,¢)rf. Let

=1, 1L,0)<cr<gcmo<g...<gmg)
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and w = [2k + 2, 7]. We claim that
w € Sons(v;—1) and f(w) = (h,c). (43)

Indeed, the proof of (39) can be easily adapted to show that » H m;_1 and f(w) = (h,...)
(if indeed w € Sons(v;—1)). Since ¢ € Qm,_ymy , We have (1,1,¢) £ ymy_1m]_; for some
RS le—lmf_l' Hence

(1,1,) £ (1,1,¢)r* L yml_lmf_lrﬂ = yrr*rt = yr.

Since yr £ r would imply ym;_ym; | £ my_ymj_; in view of r R my;_ym;_,, contradicting
Y € Yo _ymr , we get yr <g r and so y € Y;. Thus b € @, and so w € Sons(v;_1) by
Lemma 8.13. Now

(1, 1,6)r* Lyrr* =ymy_1mj_4 £ (1,1,¢),
hence f(w) = (h,c) and so (43) holds.

Now (1,1,b) <g r L my_y yields (1,1,0")my, <z rm;, by Lemma 7.1. Similarly to the
preceding case, it follows easily from (42) that

TO = ((17 17b/)m;) <z Tm/p <rmp<p...<r no)

and so

e(to) = ((1,1,0")ymy,(rmy,)* <z rmyn; <z ... <z I).
Since (1,1,V') < r, we may write (1,1,b') = zr for some z € M. Since my_1mj, R my_,
and r £ my_1, we get rm;, R 7 and so Lemma 7.2(ii) yields

(1,1, ymy,(rmy,)* = zrmy(rmy,)* = zrr® = (1,1,0")r".

Hence the leftmost term in e(7o) is the same as in €(7) and so (h,c)¢’ = (...,¢). A
straightforward adaptation of the proof of (37) completes the proof of (41).
Similarly, in the case m; € Ua(k) we show that there exists some gg € G, such that

(h, )¢ = (hgo,c) for all h € Gy, and ¢ € {x} U Qmym - (44)

Indeed, by (31) and (33), ¢ is the (disjoint) union of a permutation & of G,,, x {*} with a
permutation &, of G, X Qmyms - A straightforward combination of the two preceding cases
yields (44).
Write
Gml X ({*} U lem;) if my € UQ(k)
K = Gy, x {*} if m; € Us(k)
sz_1 X leilmz:l if mi—1 € U4(k)

By (37), (41) and (44), each local map & € M; N S(X;) can be decomposed as a disjoint
union of permutations £ = & U £” where

¢ K—K
(h7 C) = (hg()a C),
for some gy € Gy, (Gmy,_, if my—1 € Us(k)), and £” is the identity mapping on X; \ K.
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For every A € A, take m € Ry and

G % ({+} U Qume) if m € Us(k)
Ky =< G x {} if m € Us(k)
G X Qums if m € Uy(k).

Note that K is well defined in view of Lemmas 8.3, 8.10 and 8.11. Write

Sx(Xok+2) = {9 € S(Xak+2) | @lxoy 0\, = 1d}

Since the sets K, are disjoint subsets of Xok1o, we can view S)(Xop12) as a direct sum of
its subgroups S)(Xag+2). We show that

Moy 42N S(Xopg2) = Drer (Magg2 N SN (Xor12))- (45)

Indeed, the union

X2k+2 = {l} U (UmeUg(k)(Gm X ({*} U Qmm*)))
U (Unevs ) (Gm X {#1) U (Unev, ) (Gm X Qmm=))-

is supposed to be disjoint over distinct R-classes, and the decomposition & = &' U £” shows
that every local map £ belongs indeed to a unique Sy(Xakt2). Since Magyo is by defini-
tion generated by the local maps &, it follows that Mogio N S(Xokt2) € Paca (Mogro N
Sx(Xok12)). The opposite inclusion is trivial, hence (45) holds.

It follows from the decomposition { = & U ", (37), (41) and (44) that we can take
Mojyo N S)(Xak42) = G for some subgroup G of G, hence

Mogro NS (Xogio) = @/\GAG//\

and (ii) holds.

Finally, we prove that ¢ has the Zeiger property. Let o = (mj, <¢ ... <g mg) €
Rhy (M7T). We may assume that p > 0. Suppose that & = (-, f(vars1), - - -, f (V1)) PoTop 42 €
S(X2k+2) \ K(X2k+2) and (Uqfl, - ,Ul,To) € Ray(ro,T) with 2k +1 < g—1 < 6. Let
& = (-, fvg=1),..., f(v1))pomy. We show that & is the identity mapping by induction on
g. Assume the claim holds for ¢’ whenever 2k +1 < ¢ —1 < q— 1.

Let v;—1 = [2k + 1,7] in minimal representation, with 7 = (m; <, ... <z mg). Since
€ € S(Xogt2) \ K(Xogt2), we have either m; € Ua(k) U Us(k) or my—y € Ug(k) by Lemma
8.13. Let

d— {l if my EUQ(kZ)UUg(k‘)
[—1if mp—1 € U4(/€)

By Lemmas 8.18-8.20(iii), we have mgmj, R mq. Write v,—1 = [¢ — 1, p] in minimal
representation. Since vy—; must be a descendant of vop1, it follows from (4) that H (7 A
p) > 2k + 1 and so either h7 (7 Az p) > k or (7,p) € V(M!). Hence

p=np <g...<gng<pgmg-1<g...<gmg) (46)

for some n;. By Lemma 8.4, we have ng = (p Az 7) H (7 Az p) = mq. Since mdm;, R my,
Lemma 7.1 yields
njmy, Rn; (j=d,....I'), (47)

o6



pU:(nl/m;) <r...<r ndm;, <L) (48)

Assume first that |Sons(vg—1)| = 1. Then we must have dom{’ = {|}. Suppose that
|Sons(vg—10)| > 1. Suppose further that I’ = d. Then

vg-10 =[q—1,p0] = [q— 1,ngm;, < ...].

Since hg(ngmy,) = hz(ng) = hg(mg) = k and 2k +2 < g — 1, it follows from Lemmas 8.12
and 8.13 that |Sons(vs—10)| = 1, a contradiction. Hence I’ > d. By (47), (48) and Lemma
8.14, v4—1 = [¢—1, p] being in minimal representation implies that so it is vy_10 = [¢—1, po].
It follows that for ¢ odd (respectively even) we have nymj, € Up(k") U Uy (k') for k' = 1
(respectively nym;, € Ua(K') U Us(K') or ny_ym;, € Uy(K') for k' = 2.

Suppose first that nymy, € Up(k'). Then hg(nym;) = k' and |Ap,m | > 1. Since
nym;, R ny by (47), we get hy(ny) = k' and |A,,| > 1 and so ny € Up(k'). By Lemma
8.12, this contradicts [Sons(vs—1)| = 1. The case nymy, € Up(k’) is analogous.

Assume now that nymj, € Us(k'). Then hy(nym;,) = k' and |Gy, |(1 4 Qs |) > 1.
By Lemma 8.10, we have

) ’Q?’Ll/| = |in’n;/ | (49)

’in/m; | = in/m; (nyrmi,)*

Since nymy, R ny by (47), we get nymy,(nymy,)* = nynj, hence hy(ny) = k' and (49)
yields |Gp,|(1 4+ |Qn,|) > 1 and thus ny € Us(k'). By Lemma 8.13, this contradicts
|Sons(vg—1)| =1 as well.

The cases nymy, € Uz(k') and ny_ym;, € Uy(k') are analogous and can be omitted.
Therefore we may conclude that [Sons(v,—10)| =1 and so | & =].

We assume now that [Sons(vy—1)| # 1. Since ¢ — 1 < 6, it follows that [Sons(vg—1)| > 1.
Clearly, if I' = d, then hy(ny) = hgy(mg) = k and so, since ¢ — 1 > 2k + 2, vy has a
unique son by Lemmas 8.12 and 8.13, a contradiction. Therefore I" > d. Now (47) yields
nymy, R ny, which implies |(Sons(vy—1))o| > 1 by Lemmas 8.16-8.20(iii). Thus &’ € S(X;)
by definition of ¢,. If ¢ is odd, we obtain & = Id by Lemmas 8.16(iii) and 8.17(iii), hence
we may assume that ¢ = 2k’ + 2 with k < &'

Since &' is the identity anyway for all the other cases, it suffices to prove that

(f(vg)- s F(01)) g = (f(vg), -, f(v1))

whenever (vg,...,v1) € Ray(ro, T), that is,

(UQJ R Ul)ﬂb = (f(vq)> B f(vl))

By the induction hypothesis, we have

(f(vqfl)’ s af(vl))spa = (f(’UQ*l)’ s af(vl))’

hence it is enough to show that

f(vgo) = f(vg). (50)
Since |Sons(vg—1)| > 1, it follows from Lemma 8.13 that either ny € U (k') U Us(K') or
ny_1 € U4(k‘l).
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We consider first the case ny € Ua(k’). Since hy(ny) = k', we may replace in (46) ny
by any element in its H-class. Indeed, if

n=Ur<cny1<g...<gcng<pmg_1<g...<gmp)

with 7 H ny, then (p,n) € V(M) by Lemma 8.4 (case (V1)) and so H(p,n) = 2h7(ny)+1 =
2k’ + 1 yields [q — 1, p] = [g — 1,7].
Thus we may assume by Lemma 8.13 that either

vg=1[2k"+2,p] or v,=[2k"+2,p]

with
p, = (nl’+1 <y <g...<gNg<gpmg—1<g...<g mo).

Write
e(p) = (wv <7 ... <g w), €lpo) = (& <g ... <g 3p).

Assume first that v, = [2k" + 2, p]. Writing ny = zny_q, it follows from I’ > d, (48) and
(47) that

r / Nk / AT * . * .
zy = (npmy,)(ny—1my,)" = znp_ymy(ny—1my,)* = 2np_ny_q = npny_y =y,

hence f(v40) = (g,%) = f(v,) for the same g € Gy, Assume now that v, = [2k' 42, p'].
Since € is sequential, we may write

E(p/) = (ﬂjl’-&-l <gxy <g...<g xo)
for some ;1 € M. Since ny R nym;, by (47), it follows from Theorem 7.5 that
e(po) = (zp41 <g 7y <g ... <7 20)-

Since zf; = xy as before, it follows that f(v,0) = (g,b) = f(vgo) for the same g € Gy, and
b € Qmymy,- Therefore (50) holds in this case.

The case ny € Us(k') being actually a simplification of the preceding case, we may
assume now that ny_; € Uy(K). Since hy(ny_1) = k/, we may replace in (46) ny_q by any
element in its H-class. Indeed, if

n=mp <gr<cgnpo<g...<pn<gmp_i1<g...<gmp)

with r H ny, then (p,n) € V(M) by Lemma 8.4 (case (V2)) and so H(p,n) = 2h7(ny)+1 =
2k’ + 1 yields [q — 1, p] = [¢ — 1,7].
Thus we may assume by Lemma 8.13 that v, = [2k" + 2, p/] with

p=<cnp_1<c...<gng<pgmg_1<g...<gmp).
Let p/ = (np_1 <g ... <gng<gmg_1 <g...<gmg) and
(") = (@1 <y ... <z a0), c(f'o)=(c) <z ... <sb).

Since h7(ny_1) = K>k=h ng), we have '—1>d.
J J
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Similarly to the preceding case, we have
nym, Rn; (j=d,...,I' = 1),

// / / /
plo = (ny_1m, <gnp_omy, <cg...<gngm, <c...).

and
/ / ! ! /
po= (rmp <g ny_amy, <g np_omy, <g ... <g ngmy, <c cl).

Now we get x, = xp_1 as in the preceding case. Since € is sequential, we now repeat the
argument of the preceding case to reach (50) as well. Therefore (iii) is proved.
The final claim follows from Lemma 8.15. [J

We can show that, by computing the length function naturally associated by Proposition
4.9 to the wreath product in Theorem 8.21, we recover the original length function Hy. We
need a further lemma.

Lemma 8.22 For all o,7,p € RW(M?), H(po, pr) > H(o,T).

Proof. Let o,7,p € Rh(M') and assume that ¢ # 7. By Lemma 8.2(ii), we have (po Az
p7) <r (o Ae 7). If (po Ap p7) < (0 Az T), then

H(po,pr) = H'(po, pr) > H'(0,7)
yields H(po, pt) > H(o,7). Hence we may assume that
(po Az pT) L (0 AL T) (51)
It suffices to show that
(o,7) € V(M) = (po, pr) € V(MT). (52)

Indeed, let i € Rh(M?) and assume that (upo Az ppt) £ (po Az pr). Then (upo Az ppt) £
(0 Az 7) by (51). Since (o,7) € V(M?), it follows that (upo Az upt) R (upT Az ppo) and
so (pa, pr) € V(MT). Thus (52) holds and so does the lemma. [J

Corollary 8.23 Let D : TI9_, (X;, M;) x TI9_, (X, M;) — IN be the length function defined
by
‘D(/’LJ V) = SUp{j | M|Xj><...><X1 = V‘XjX...XXl}*

Then D(¢q,0r) = Hy(0,7) for all 0,7 € Rhy (M?).
Proof. Write 5(; = X; x ... x Xj. Note that

—

X; = (X5 Nimy) U (X \ imp). (53)
We show by induction on j that

(100'|_§(; = SOT|_§(\J ~ @U|X;ﬂlm¢ = 907'|)/(\]mm1/} (54)
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holds for all o,7 € Rhy (M') and j € IN. The case j = 0 being trivial, assume that j > 0
and (54) holds for j — 1. Let = (zj,...,21) € X; \ imy and assume that

900"5(\3-0111’11/1 = SOT|)/(;ﬂlm¢ (55)

We must show that either x ¢ domep, U domep; or else z¢, = z¢;.

Suppose first that z € domep, \imy. Then (xj_1,...,21) = (f(vj-1),..., f(v1)) for some
(vj—1,...,v1,70) € Ray(ro,T) such that |(Sons(vj_1))o| > 1. Then (f(vj_1),..., f(v1)) €

imy and since ¢,,p; are sequential, (55) yields (PU’E-,\mim v = ng\X/—j:mim " and
(Sons(vj—1))o = (Sons(vj—1))7. Hence |(Sons(vj_1))7| = |[(Sons(vj—1))o| > 1 and
zpr = (@5, (Tj-1, .-, 21)pr) = (5, (Tj—1, ., 21)P0) = TPo-
The case x € imy follows directly from (55). By symmetry, we get ¢,|¢ = ¢7|¢ . Thus
J J
(54) holds.
Now it suffices to show that
eolg = orlg, & Hy(0.7) 2 ] (56)

Indeed, ‘PU’)?jmimq/; = ‘pT‘)?jmimw if and only if (vj,...,v1,70)0,¢ = (vj,...,v1,70)0-¢ for
every (vj,...,v1,70) € Ray(rg,T). Since 1 is one-to-one, this is equivalent to

V(vj,...,v1,70) € Ray(ro, T) (vj,...,v1,70)05 = (vj,...,v1,70)07. (57)

The vertices of T with depth j are precisely those of the form [j, p] with p € Rhy (M7).
Since 6, and 6, are sequential, (57) is equivalent to

¥p € Rhy (M") [5, plo = [j, pl7
and so to
Vp € Rhy (M) Hy (po, pr) > j.
By Lemma 8.22, the latter is equivalent to Hy (o, 7) > j and so (56) holds as required. [J

We present now some further corollaries of Theorem 8.21.

Corollary 8.24 Let M be a Y -semigroup and let 6 = sup{hs(u) | u € ®3y (M)} € IN.
Then there exists an embedding ¢ of Rh((®3y (M))!) into an iterated wreath product of full
transformation semigroups TI0_, (X;, M;) = ... o (Xa, M) o (X1, My) such that:

(i) Moy is a submonoid of {Idx,, , } U K(Xopy1) for 2k +1 < 0.
(i1) Mogio is a submonoid of S(Xokyo) UK (Xogt2) for 2k +2 < 0; if {Rx | A € A} is the
set of all R-classes of @3y (M) contained in Us(k) U Us(k) U Uy(k), then
Mopyo N S(Xokt2) = BrenGh,
where G\ is a subgroup of Gy.
(iii) ¢ has the Zeiger property.

Furthermore, if Y is finite, then the X; (and consequently the M;) are all finite, and the
canonical morphism n : Rh((®3y (M))!) — M is aperiodic.

Proof. The existence of ¢ and its properties follow from Proposition 5.2(i) and Theorem
8.21. The aperiodicity of n follows from Propositions 5.1(i) and 5.2(ii) since the composition
of aperiodic morphisms is clearly aperiodic. [
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Let G = (A) be an infinite group generated by A = AU A~!. The Cayley graph T'(G, A)
is the directed labeled graph defined by

V(I(G, 4)) = G;
E(T(G,A)) ={(g9,a,h) € Gx AX G| ga=h}.

The Munn-Margolis-Meakin expansion Ms(G, A) (see [13, 21, 23] is defined by
Ms(G,A) ={(v,9); v is a finite connected subgraph of I'(G, A) and 1,9 € v}.

With the binary operation
(7.9, 9) =Ygy, 99),
M3(G, A) is a E-unitary inverse A-monoid [13]. Moreover, the morphism

a: M3(G,A)—G
(v.9)—g

provides the maximal group homomorphic image of M3(G, A).

Since a finite graph can have only finitely many subgraphs, it is easy to see that M3(G, A)
is finite J-above as well.

We recall that a semigroup M is orthodoz if it is regular and the subset E(M) of all

idempotents of M constitutes a subsemigroup of M. A monoid M is said to be an orthodox
covering of a group G if M is orthodox and there exists an onto homomorphism ¢ : M — G
such that 1p~! = E(M).
Corollary 8.25 Let Let G = (A) be an infinite group. Then Rha(Ms3(G, A)) is an orthodox
covering of G and there exists an embedding ¢ of Rha(Ms(G,A)) into an iterated wreath
product of full transformation semigroups 113, (X;, M;) = ... o (Xg, M) o (X3, My) such
that:

(1) M; is a finite submonoid of {1x,} U K(X;) for i odd.

(i) M; is a finite submonoid of S(X;) U K(X;) for i even; the local groups are then finite
subgroups of G.

(iii)  has the Zeiger property.
Proof. Note that (M3(G, A))\{({1},1)}is an A-semigroup and (M3(G, A)) = (M3(G, A))\
{({1},1)})!. Since G is infinite, it follows easily that M3(G, A) has arbitrarily long J-chains
and so sup{hs(u) | u € M3(G,A)} =w. Since M3(G, A) is finite J-above, the existence of
o and its properties follow from Theorem 8.21 and its proof, since any local group must be
the Schiitzenberger group of some J-class and therefore a (group) H-class since M3(G, A)
is inverse. It follows that such a group must be a finite subgroup of G (see [13] for more
details).

By Proposition 5.1(ii), Rha(M3(G, A)) is regular. We consider the canonical morphisms

n : Rha(M3(G, A)) — M3(G,A) and o : M3(G,A) — G. Clearly, la=! = E(M3(G, A)).
By Proposition 5.1(iii),

L(na)™! =1a7 ™ = (E(M3(G, A)n~" = E(Rha(Ms5(G, A)))
and so Rhy(M3(G, A)) is an orthodox covering of G. OJ
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9 Free Burnside monoids

Given p,q > 1, let B(p, q) denote the variety of semigroups defined by the identity zP™% = xP.
Given a set X, we denote by Bx(p,q) the free B(p, q)-semigroup on X. Clearly, Bx(p,q)
can be defined by the semigroup presentation

(X | uPTl =P (ue XT)). (58)

We say that Bx(p, q) is a free Burnside semigroup. The corresponding free Burnside monoid
BL(p, q) can be obtained by adjoining an identity to Bx(p,q). For details on Bx(p, q), the
reader is referred to [15, 17, 16], [7] and [10].

Lemma 9.1 For all p,q > 1, B%(p,q) & Rhx(B%(p,q)).

Proof. Take the canonical surjective morphism 7 : Rhx(B%(p,q)) — BL(p,q). Since
Bx(p, q) is presented by (58), it suffices to show that o?T¢ = o for every o € Rh(B%(p, q)).
Let

U:(ml <£...<£m0:I)

and write o = (m} <z ny <z ... <z ng). Then
oPTe = lm(mfrq <p.o<eml <gmne <g ... <gng).

Since m ™ = m}, it follows that o?™¢ = o” as required. [J

Proposition 9.2 [15] For allp,q > 1, Bx(p, q) is finite J -above and its mazimal subgroups
are cyclic.

Clearly, if | X| < 1 then Bx(p, q) is finite. From now on, we assume that | X| > 1. Then
Bx(p, ¢) has infinite J-chains [15, 16]. Now Theorem 8.21 yields

Theorem 9.3 Let p,q > 1 and X be a finite set with |X| > 1. Then there exists an
embedding ¢ of Bg((p, q) into an iterated wreath product of finite partial transformation
semigroups 1190, (X, M;) = ... o (Xo, Ma) o (X1, M1) such that:

(i) Moay1 is a finite submonoid of {Idx,, , } U K (Xoxi1) for every k.

(ii) Mogio is a finite submonoid of S(Xogt2) U K(Xokyo) for every k; if {Rx | A € A} is
the set of all R-classes of M contained in Us(k) U Us(k) U Uy(k), then

Moap12 N S(Xopi2) = ®reaGh, (59)
where G'\ is a subgroup of Gx. Therefore Moy 9N S(Xogy2) is a finite Abelian group.
(iii) ¢ has the Zeiger property.

A future paper will apply the results of this paper to elliptic actions of the free Burnside
semigroups.
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