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Abstract. The notion of kernel of a finite monoid relative to a pseudovariety of groups
can be used to define relative solvability of monoids in a similar way to that the notion
of derived subgroup can be used to define solvable group. In this paper we study the
solvability of certain inverse monoids relative to pseudovarieties of abelian groups.

1. Introduction

A pseudovariety of groups is a class of finite groups closed under the formation of
subgroups, homomorphic images and finite direct products. The notion of H-solvable
monoid, with H a pseudovariety of groups, was introduced by Fernandes and the second
author in [6]: a finite monoid is H-solvable if iterating the computation of the relative
H-kernel one eventually arrives to the submonoid generated by the idempotents. As the
Ab-kernel of a finite group is its derived subgroup, we get that a finite group is Ab-solvable
if and only if it is solvable in the usual sense. Generalizations of the main result given
in [6], so as related consequences, have been obtained in two subsequent papers [8, 7].
The most general result concerning H-solvability, obtained in [8], states that “a semigroup
S is H-solvable if and only if, for each idempotent e ∈ S, there is a subnormal series with
smallest element the maximal subgroup at e of the idempotent-generated subsemigroup of
S and largest element the maximal subgroup of S at e such that the successive quotients
belong to H”. At the pseudovariety level these notions (iterating the computation of
relative kernels or Mal’cev products) led to interesting consequences. For example, we
have that EA = A ω©mG.

There are monoids whose subgroups are not all solvable that are generated by its
idempotents. Therefore, the notion of “Ab-solvable monoid” does not coincide with the
notion of “monoid whose subgroups are solvable” which is sometimes referred in the
literature as “solvable monoid” [15]. That for inverse semigroups both notions coincide
follows from the result recalled above (in fact, it already follows from the (less general)
result stated in [6]).

The pseudovarieties of groups that we will be dealing with in this paper are decidable
pseudovarieties of abelian groups. These are in bijection with recursive supernatural
numbers. An algorithm to compute kernels of finite monoids relative to any of these
pseudovarieties was given by Steinberg [14]. (See also [3].) Concrete descriptions of
relative abelian kernels of some inverse transformation monoids have been given in a
joint work with Fernandes [1]. In some sense, that paper is continued here, since we
consider iterations of the relative abelian kernel operator. The key ingredient is stated
in Section 3 and says that any relative abelian kernel of a finite group is generated by its
derived subgroup and some appropriate powers. In [1] such a statement had been obtained
for pseudovarieties of abelian groups corresponding to finite supernatural numbers.

Section 2 contains notation and preliminaries to be used throughout the paper. No-
tation, so as results, concerning some inverse transformation monoids is left to the last
section, since it is just used there.
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The main result of this paper is proved in Section 3. It states that the kernel of a finite
group relative to a pseudovariety corresponding to a recursive supernatural number π is
generated by its derived subgroup and powers whose exponents are the greatest common
divisors of π and the order of the group.

In Section 4 we give some applications, by computing (iterations of) relative abelian
kernels of some groups.

Section 5 is dedicated to the solvability of some inverse monoids, so as to the length of
the chains of relative abelian kernels.

2. Notation and preliminary results

The notion of supernatural number (which may be seen as an extension of the notion of
natural number) is well known and used in various areas (see, for instance, [13] and [14]).
Due to its importance in this paper, we recall it in some detail in the first subsection. In
the other subsections are recalled definitions and some facts concerning abelian groups,
pseudovarieties of abelian groups an relative kernels.

2.1. Supernatural numbers. A supernatural number is a formal product of the form∏
p

pnp

where p ranges over all prime positive integers and np is either a natural number or +∞.
By extending the addition of natural numbers, we assign to N ∪ {+∞} the structure of
a monoid with zero (+∞ is the zero). By defining∏

p

pαp
∏
p

pβp =
∏
p

pαp+βp

we get assigned to the set of supernatural numbers a structure of commutative monoid
which, in view of the fundamental theorem of arithmetic, extends the corresponding
structure for positive integers.

We consider that +∞ is greater than any integer. Given a supernatural number π,
we denote by ep(π) the exponent np of the prime p occurring in π. Next we define some
notions that are are obvious generalizations of the corresponding notions for positive
integers.

We say that the supernatural number π divides the supernatural number ρ, and write
π | ρ, if ep(π) ≤ ep(ρ) for all prime p. Note that π | ρ if and only if there exists a
supernatural number γ such that ρ = πγ. We can use the notion of division to define
greatest common divisor and least common multiple of two supernatural numbers. Al-
ternatively, in analogy with what is commonly done when dealing with natural numbers,
we can define these notions using the following formulas:

(1)

{
gcd(π, ρ) =

∏
p p

min{ep(π),ep(ρ)}

lcm(π, ρ) =
∏

p p
max{ep(π),ep(ρ)}.

The set

supp(π) = {p | ep(π) > 0}
is said to be the support of π. A supernatural number of finite support such that all the
exponents of the primes occurring in it are finite will be called indistinctively a “positive
integer”, “natural number” or “finite supernatural number”. Note that in this context a
natural number can not be zero.
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Given a supernatural number π, we denote by div(π) the set of its finite divisors and
say that π is recursive if div(π) is recursive. For example, supernatural numbers of finite
support are recursive.

The following remark follows from the definitions.

Remark 2.1. If a, b ∈ div(π), then lcm(a, b) ∈ div(π).

Throughout this paper, π will always denote a (possibly infinite) recursive supernatural
number.

2.2. Finite abelian groups. The notation Cn will be used for the cyclic group Z/nZ
of order n. The following well known observation will be of use in this paper.

Remark 2.2. Let n and r be positive integers. If g is a generator of the cyclic group Cn,
then 〈gr〉, the cyclic subgroup generated by gr, has order n/ gcd(r, n).

The finite cyclic groups are the building blocks of the finite abelian groups as says the
next result, which is known as the Fundamental Theorem of Finite Abelian Groups. A
proof can be found in any basic algebra textbook (see, for instance, [11, 9]).

Theorem 2.3. Let G be a finite abelian group. Then G is isomorphic to a finite direct
product of finite cyclic groups

(2) Cm1 × Cm2 × · · · × Cmk ,

where mi | mi−1, with 2 ≤ i ≤ n.

We will refer the form (2) as the canonical form of the abelian group G given by
the fundamental theorem of finite abelian groups. The mi’s are known as the torsion
coefficients of G.

Using the fact that the direct product of two cyclic groups of coprime orders is a cyclic
group, we can combine cyclic factors of coprime orders and write the group in other
forms. One of them is

(3) Cp
n1
1
× Cp

n2
2
× · · · × Cp

nk
k

where the pi’s are primes, not necessarily distinct Note that the powers pn1
1 , p

n2
2 , . . . , p

nk
k

are unique.

2.3. Pseudovarieties of abelian groups. To a supernatural number π we associate the
pseudovariety of abelian groups Hπ of all finite abelian groups whose torsion coefficients
divide π (i.e. Hπ = 〈{Cm | m ∈ div(π)}〉). For example, to the supernatural number∏
p+∞, where p runs over all positive prime integers, is associated the pseudovariety Ab

of all finite abelian groups. Notice that the pseudovariety of abelian groups associated to
a natural number k is just 〈Ck〉, the pseudovariety generated by the cyclic group of order
k. It follows that Hπ is the least pseudovariety containing the pseudovarieties Hk, where
k runs over the natural divisors of π, that is, Hπ =

∨
k∈div(π) Hk.

The pseudovarieties of abelian groups associated to recursive supernatural numbers
are precisely those that are decidable. We refer the reader to Steinberg’s paper [14] for
details.
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2.4. Relative kernels. A relational morphism of monoids τ : M−→◦ N is a function
from M into the power set P(N) of N , such that τ(s1) 6= ∅ and τ(s1)τ(s2) ⊆ τ(s1s2),
for all s1, s2 ∈M . Moreover, 1 ∈ τ(1).

Let H be a pseudovariety of groups. The H-kernel of a finite monoid M is the set

KH(M) =
⋂

τ : M−→◦ G; G∈H

τ−1(1)

(the intersection is taken over all relational morphisms τ : M−→◦ G, with G ∈ H). It is
easily seen to be a submonoid of M containing the idempotents.

As an example, we have that, for a finite group G, KAb(G) = G′, the derived subgroup
of G. This is a consequence of the following result.

Proposition 2.4. [4, Proposition 9.6] Let G be a finite group and let H be a pseudovariety
of groups. The H-kernel of G is the smallest normal subgroup of G, such that G/KH(G) ∈
H.

Let M be a finite monoid. As the H-kernel of M is a submonoid, one can iterate the
process. This idea leads to the following recursive definition of Kn

H :

• K0
H(M) = M ;

• Kn
H(M) = KH(Kn−1

H (M)), for n ≥ 1.

We adopt the terminology introduced by Fernandes and the second author [6] and say
that a finite monoidM is H-solvable if, for some non-negative integer n, Kn

H(M) = 〈E(M)〉
where 〈E(M)〉 is the submonoid generated by the set E(M) of the idempotents of M .

Given a finite H-solvable monoid M , we define the H-kernel chain length of M as the
least natural number n such that Kn

H(M) = 〈E(M)〉 and denote it by `H(M). Note that
a finite group is Ab-solvable precisely when it is solvable in the usual sense, as follows
from the fact that the abelian kernel of a finite group is its derived subgroup. Note also
that, for a group G, `Ab(G) is nothing more than the derived length of G.

3. Relative abelian kernels of finite groups

Given a finite group G and a natural number k, denote by G[k] the subgroup of G
generated by the commutators of G (that is, the elements of the form xyx−1y−1, x, y ∈ G)
and by the k-powers of G (that is, the elements of the form xk, x ∈ G). In other words,
G[k] is the smallest subgroup of G containing the derived subgroup G′ and the k-powers.
Clearly, G[1] = G.

It is convenient to observe the following:

Lemma 3.1. Let G be a finite group of order n and let k be a positive integer. Then

G[k] = G[gcd(k,n)].

Proof. As gcd(k, n) divides k, it follows immediately that G[k] ⊆ G[gcd(k,n)].
To prove the converse inclusion we use the fact that there exist integers r and s such

that gcd(k, n) = rk + sn. Let ggcd(k,n) ∈ G[gcd(k,n)]. Then ggcd(k,n) = grk+sn = grk ∈ G[k].
It follows that there is a set of generators of G[gcd(k,n)] contained in G[k], and therefore
G[gcd(k,n)] ⊆ G[k]. �

The main result of this section (Theorem 3.11) extends to the supernatural setting a
result of Fernandes and the authors ([1, Proposition 1.17]) which, taking into account the
previous lemma, may be stated as follows:
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Proposition 3.2. For a finite group G and a natural number k, we have:

KHk(G) = G[gcd(k,|G|)].

Next we will work towards the proof of Theorem 3.11.

Lemma 3.3. Let a and b be positive integers and let m = lcm(a, b). The pseudovariety
generated by the cyclic groups Ca and Cb is precisely the pseudovariety Hm of abelian
groups generated by the cyclic group Cm, that is Ha ∨ Hb = Hm.

Proof. Let us consider factorizations a = pα1
1 p

α2
2 . . . pαkk and b = pβ1

1 p
β2

2 . . . pβkk of a and
b, where the pi are distinct primes, for i ∈ {1, . . . , k}. It follows from the fact that
the direct product of two cyclic groups of coprime orders is cyclic that, for a and b as
above, we have: Ca ' Cp

α1
1
× Cp

α2
2
× · · ·×Cp

αk
k
, Cb ' C

p
β1
1
× C

p
β2
2
× · · ·×C

p
βk
k

and

Cm ' C
p
max(α1,β1)
1

×C
p
max(α2,β2)
2

× · · ·×C
p
max(αk,βk)

k

. Thus Cm is a subgroup of Ca ×Cb and

therefore Hm ⊆ Ha ∨ Hb.
In order to prove the reverse inclusion, note that as a | m and b | m, we have that Ca and

Cb are subgroups of Cm. It follows that {Ca,Cb} ⊆ Hm and therefore Ha ∨ Hb ⊆ Hm. �

By induction, one immediately gets the following:

Corollary 3.4. Let a1, . . . , an be positive integers. Then∨
1≤i≤n

Hai = Hlcm(a1,...,an).

Proposition 3.5. The set V =
⋃
k∈div(π) Hk is a pseudovariety containing Hπ.

Proof. The set V is closed under taking subgroups and homomorphic images, since for
any group G ∈ V there exists k such that G ∈ Hk. Note that, as Hk is a pseudovariety,
subgroups and homomorphic images of G belong to Hk. In order to show that V is in
fact a pseudovariety, it remains to prove that V is closed under finite direct products.

Let G1, G2, . . . , Gn ∈ V. There exist k1, k2, . . . , kn ∈ div(π) such that Gi ∈ Hki , for
1 ≤ i ≤ n. By Corollary 3.4, G1 × · · · ×Gn ∈ Hlcm(k1,...,kn). From Remark 2.1, one easily
concludes that G1 × · · · ×Gn ∈ V, and therefore V is closed under finite direct products.

That V contains Hπ follows from the fact that it contains a set 〈{Ck | k ∈ div(π)}〉 of
generators of Hπ. �

Since Hk ⊆ Hπ, for any k ∈ div(π), it follows from previous proposition that Hπ =⋃
k∈div(π) Hk.
In order to state a sharper result, we introduce the notation ∆π,n to denote the set of

integers that are simultaneously divisors of the supernatural number π and multiples of
the natural number n.

Example 3.6. Let π = 2+∞ · 37 · 7+∞ and n = 23 · 34. Then

∆π,n = {2i+3 · 3j · 7k | 4 ≤ j ≤ 7; i, k ≥ 0}.

Corollary 3.7. Let n ∈ div(π). Then Hπ =
⋃
k∈∆π,n

Hk.

Proof. Since Hπ =
⋃
k∈div(π) Hk, we just have to show that

⋃
k∈div(π) Hk =

⋃
k∈∆π,n

Hk.
Clearly the right hand side is contained in the left hand side. The reverse inclusion
follows from the fact that, for k ∈ div(π), Hk ⊆ Hlcm(k,n). Note that, using Remark 2.1,
lcm(k, n) ∈ ∆π,n. �

For the next results of this section, we fix a supernatural number π, a finite group G
and use the notation d = gcd(π, |G|).
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Lemma 3.8. If k ∈ ∆π,d, then gcd(k, |G|) = d.

Proof. Note that if k ∈ div(π), then gcd(k, |G|) | d. Noting that |G| is a multiple of d, we
have that if k is a multiple of d, then d | gcd(k, |G|). We have observed that if k ∈ ∆π,d,
then d | gcd(k, |G|) and gcd(k, |G|) | d. The result follows. �

Corollary 3.9. If k ∈ ∆π,d, then G[k] = G[d].

Proof. By Lemma 3.1, we have that G[k] = G[gcd(k,|G|)]. The result follows from previous
lemma. �

Lemma 3.10. Let Vi(i ≥ 1) be pseudovarieties of groups such that V =
⋃
i≥1 Vi is a

pseudovariety. Then ⋂
i≥1

KVi(G) = KV(G).

Proof. As V contains each Vi (i ≥ 1), we have that KV(G) is contained in each KVi(G)
and, therefore, also in the intersection.

To prove the converse inclusion, observe that g ∈
⋂
i≥1 KVi(G) just means that g ∈

τ−1(1), for every relational morphism τ : G−→◦ H where H is a group in one of the Vi.
But this is nothing more than g ∈ KV(G). �

As ∆π,d is numerable, we can apply the previous lemma to Hπ =
⋃
k∈∆π,d

Hk (Corol-

lary 3.7), obtaining:

(4)
⋂

k∈∆π,d

KHk(G) = KHπ(G).

By Proposition 3.2 and Corollary 3.9, we have, for k ∈ ∆π,d:

KHk(G) = G[k] = G[d].

Thus, Equation (4) reduces to

(5) G[d] =
⋂

k∈∆π,d

(
G[d]
)

= KHπ(G).

We have proved the main result of this section.

Theorem 3.11. Let G be a finite group and let π be a supernatural number. Then

KHπ(G) = G[gcd(π,|G|)].

Remark 3.12. Note that gcd(π, |G|) only depends on |G| and the supernatural number
obtained from π by considering the primes that divide |G|. Therefore, we can restrict the
study of Hπ-kernels of finite groups to kenels of finite groups relative to pseudovarieties
corresponding supernatural numbers of finite support.

Suppose that G is a finite group whose order is divisible by a prime p. It is well known
(see Cauchy’s theorem in any basic Algebra textbook) that G has an element x of order
p. Suppose, in addition that p does not divide π. This implies that p does not divide
gcd(|G|, π), and therefore that xgcd(|G|,π) has order p. It follows that x and xgcd(|G|,π)

generate the same cyclic group, that is, 〈x〉 = 〈xgcd(|G|,π)〉. We have proved the following:

Proposition 3.13. Let G be a finite group and suppose that there is a prime p that
divides |G| but does not divide π. Then there exists an element x ∈ G of order p such
that 〈x〉 ⊆ KHπ(G).
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If G satisfies the conditions of previous proposition, then so does KHπ(G). We can
therefore conclude that Ki

Hπ
(G) contains 〈x〉 and has order divisible by p, for all i ≥ 1.

As a consequence we have the following:

Corollary 3.14. If G is a group of even order and π is odd, then G is not Hπ-solvable.

Another immediate consequence is:

Corollary 3.15. If G is a Hπ-solvable finite group, then all prime divisors of |G| divide
π.

The converse is not true in general. In fact, its truth would imply the solvability (i.e.
the Ab-solvability) of all finite groups. (Recall that Ab = HQ

p+∞ , where p runs over all
prime positive integers.)

4. Applications to abelian, dihedral and symmetric groups

Aiming to describe relative abelian kernels of certain finite monoids whose maximal
subgroups are cyclic, dihedral and symmetric groups, Fernandes and the authors have
computed in [1] relative abelian kernels of this kind of groups. We will give applications of
Theorem 3.11 by giving new proofs of these results, as well as computing relative abelian
kernels of abelian groups. Then we consider iterations of these computations. As we
shall observe, most of them rely on the iterations of the relative abelian kernels of cyclic
groups.

Recall that G[k] is the smallest subgroup of G containing the derived subgroup G′

and the k-powers. If G is abelian, then G[k] is generated by the k-powers, since the only
commutator of an abelian group is the neutral element. As in a abelian group the product
of k-powers is a k-power, it is clear that if A is a set of generators of an abelian group G,
then G[k] = 〈{gk | g ∈ A}〉.

Throughout this section, n > 1 is a fixed natural number.

4.1. Relative abelian kernels.

4.1.1. The case of a finite cyclic group. Let Cn = 〈g〉 be the cyclic group of order n,

generated by g, and let d = gcd(π, n). As Cn is abelian, we have that C[d]
n = 〈gd〉. It is a

cyclic group of order n/d, by Remark 2.2.

4.1.2. The case of a finite dihedral group. Let D2n = 〈h, g | h2 = gn = (gh)2 = 1〉 be the
dihedral group of order 2n and let d = gcd(π, 2n). Note that the parity of d coincides
with the parity of π.

As 〈g2〉 = D′2n (see, for instance, [9]), we have that 〈g2〉 ⊆ D
[d]
2n. It is easy to observe

that D2n satisfies the relation hgn−1 = gh, thus the elements of D2n may be written in
the form gi or hgi, with i ∈ {1, . . . , n}.

By induction on i, one can verify that, for i ∈ {1, . . . , n}, the equality (hgi)2 = 1 holds.
In fact, for i = 1, we have hghg = h2gn−1g = h2gn = 1. Supposing now that the equality
holds for i − 1, we have (hgi)2 = hgihgi = hgi−1ghgi = hgi−1hgn−1gi = hgi−1hgi−1 = 1,
as we wanted to prove. As a consequence, we have that, if d is even, then (hgi)d = 1.

Next we will consider two subcases, according to the parity of d.

Subcase 1. Suppose that d is even. Then (hgi)d = 1 and therefore D
[d]
2n = D′2n = 〈g2〉.

Subcase 2. If d is odd, then there exists r such that d = 2r + 1. Thus (hgi)d =
(hgi)2r+1 = hgi, for i ∈ {1, . . . , n}. In particular, taking i = n or i = 1, we get that

h, hg ∈ G[d]. This implies that g = h · hg ∈ D
[d]
2n and therefore D

[d]
2n = D2n.
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4.1.3. The case of a finite symmetric group. Let us consider the group Sn and let d =
gcd(π, n!). Observe that we are supposing that n > 1, n! is even. Therefore, as in the
case of the dihedral groups, we have that the parity of d coincides with the parity of π.
Recall that S ′n = An.

Subcase 1. If d is even and σ ∈ Sn, then σd ∈ An. As S ′n = An, we get that

S [d]
n = An = S ′n.

Subcase 2. If d is odd and σ ∈ Sn, then σd has the parity of σ. Thus, as we are
assuming n > 1, Sn[d] can not be contained in An. Since An is of index 2 in Sn, we have

that S [d]
n = Sn.

By Theorem 3.11, we have the following result, which gives a summary of the discussion
done so far in this subsection.

Theorem 4.1. Let π be a (possibly infinite) supernatural number and let Hπ be the
corresponding pseudovariety of abelian groups. Then

(1) KHπ(Cn) = 〈gd〉, with d = gcd(n, π). Furthermore, |KHπ(Cn)| = n/d.
(2) If π is even, then KHπ(D2n) = KAb(D2n) = D′2n = 〈g2〉.

If π is odd, then KHπ(D2n) = D2n.
(3) If π is even, then KHπ(Sn) = KAb(Sn) = An.

If π is odd, then KHπ(Sn) = Sn.

4.1.4. The case of an abelian group. Let G be a finite abelian group. By Theorem 2.3,
G is isomorphic to a direct product Cm1 × Cm2 × · · · × Cmt , where the Cmi are cyclic
groups of order mi generated by, say, gi (with 1 ≤ i ≤ t). A set of generators of G
is {(g1, 0, . . . , 0), . . . , (0, . . . , 0, gt)}. Let d = gcd(π, |G|). Since G is abelian and G[d] is

generated by the d-powers of a set of generators, it follows easily that G[d] is C[d]
m1
×C[d]

m2
×

· · · ×C[d]
mt , which, by Lemma 3.1, is C[d1]

m1
×C[d2]

m2
× · · · ×C[dt]

mt , where di = gcd(mi, π), with
1 ≤ i ≤ t.

Theorem 4.2. With the notation introduced, we have that KHπ(G) = 〈gd11 〉 × · · · × 〈gdtt 〉.

We may suppose that Cm1 × Cm2 × · · · × Cmt is the canonical form for the group G
given by the fundamental theorem of finite abelian groups. Recall that this means that,
for i ∈ {1, . . . , t−1}, mi+1 divides mi, that is, there exist qi such that mi = mi+1qi. Then
there exist a divisor q′i of qi such that di = gcd(mi, π) = gcd(mi+1qi, π) = gcd(mi+1, π)q′i =
di+1q

′
i. It follows that

mi

di
=
mi+1qi
di+1q′i

=
mi+1

di+1

· qi
q′i
.

As a consequence, we have the following:

Remark 4.3. The computation of KHπ(G), as performed by Theorem 4.2, gives directly
the canonical form for the group KHπ(G) given by the fundamental theorem of the finite
abelian groups, provided that G is also given through this form.

4.2. Iterating the relative abelian kernel operator.

4.2.1. A set of divisors of a supernatural number. Let n be a positive integer and let π
be an infinite supernatural number, or a natural number greater than 1. Let us consider
the sequence (di)i≥1, defined recursively as follows:

(6)

{
d1 = gcd(n, π)

di+1 = gcd
(

n
d1d2···di , π

)
, for i ≥ 1.
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Clearly, there exists j ∈ N such that for all i ≥ j, di = 1. Let i0 be the least such j and
denote

δπ,n = {d1, . . . , di0}.
It is a decreasing chain of divisors of π. Note that

∏
di∈δπ,n di divides n.

Example 4.4. (1) Let n = 25 · 32 · 53 · 11 · 13 and π = 2 · 3+∞ · 52 · 7+∞ · 113 · 13+∞.
(Notice that all the prime divisors of n also divide π.) Then

d1 = gcd(n, π) = 2 · 32 · 52 · 11 · 13
d2 = gcd(24 · 5, π) = 2 · 5
d3 = gcd(23, π) = 2
d4 = gcd(22, π) = 2
d5 = gcd(2, π) = 2
di = gcd(1, π) = 1, for i ≥ 6.

We have δπ,n = {2 · 32 · 52 · 11 · 13, 2 · 5, 2, 2, 2, 1} and n =
∏

di∈δπ,n di.

(2) Let n = 32 · 53 · 72 · 11 · 13 and π = 2 · 3+∞ · 52 · 113 · 13+∞. Note that there are
divisors of n that do not divide π. In this case we have δπ,n = {32 ·52 ·11 ·13, 5, 1}
and n >

∏
di∈δπ,n di.

This example motivates the following lemma.

Lemma 4.5. Let δπ,n be as defined above. All the prime divisors of n divide π if and
only if n =

∏
di∈δπ,n di.

Proof. If n =
∏

di∈δπ,n di, it is clear that all prime divisors of n divide π, since any element
of δπ,n divides π.

Conversely, if
∏

di∈δπ,n di < n, then there exists a factor q > 1 of n such that n =∏
di∈δπ,n di · q. But then q is a divisor of n that does not divide π. �

4.2.2. The case of a finite finite cyclic group. We make use of the sequence (6) intro-
duced in previous subsection. Note that KHπ(Cn) = 〈gd1〉. Iterating, we have Ks

Hπ
(Cn) =

〈gd1d2···ds〉. It follows that Cn is Hπ-solvable if and only if n =
∏

di∈δπ,n di. Using
Lemma 4.5, we can conclude that in the case of a cyclic group the converse of Corol-
lary 3.15 also holds:

Proposition 4.6. The cyclic group Cn is Hπ-solvable if and only if all the prime divisors
of n divide π.

Let Cn be a Hπ-solvable cyclic group of order n = pt11 p
t2
2 · · · ptss where the pi are primes

and the ti (1 ≤ i ≤ s) are positive integers. By the previous proposition π may be written
in the form pα1

1 p
α2
2 · · · pαsr · π1, where π1 is a supernatural number and the αi (0 ≤ i ≤ s)

are positive integers or +∞. Given integers t and α, we denote by
⌈
t
α

⌉
the least integer

non smaller than t
α

and use the convention
⌈

t
+∞

⌉
= 1. Recall that the notation `H(G) is

used for the H-kernel chain length of the group G. We have proved the following:

Theorem 4.7. With the notation introduced, `Hπ(Cn) = maxi≤i≤r

(⌈
tj
αj

⌉)
.

4.2.3. The case of a finite dihedral group. As a consequence of Corollary 3.14 or of The-
orem 4.1 (2), we have that if π is odd, then D2n is non Hπ-solvable. If π is even, then
KHπ(D2n) is cyclic (of order n or n/2, according to the parity of n), by Theorem 4.1.
Using Proposition 4.6, we have:
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Proposition 4.8. The dihedral group D2n is Hπ-solvable if and only if all prime divisors
of 2n divide π.

Since we can compute the Hπ-kernel chain length of a Hπ-solvable cyclic group, by
Theorem 4.7, we can also compute the Hπ-kernel chain length of a solvable dihedral
group.

Corollary 4.9. Let D2n be a Hπ-solvable dihedral group. The following holds:

`Hπ(D2n) =

{
1 + `Hπ(Cn) if n is odd;
1 + `Hπ(Cn/2) if n is even.

4.2.4. The case of a finite abelian group. In the remaining of this section, G denotes a
finite abelian group. We will assume that G = Cm1 ×Cm2 × · · · ×Cmt is in the canonical
form given by the fundamental theorem of finite abelian groups.

The simple observation that G[m] = 〈{gm | g ∈ A}〉, for a generating set A of G,
made at the beginning of this section, has important consequences. One of them is the
following:

Corollary 4.10. Let r1, . . . , rs be positive integers. Then (· · · (G[r1])[r2] · · · )[rs] = G[r1···rs].

Using Remark 4.3, we get easily the following result, which reduces the computation of
the Hπ-kernel chain length of a solvable abelian group to the computation of the Hπ-kernel
chain length of a solvable cyclic group, which we can do by using Theorem 4.7.

Corollary 4.11. Let Cm1 ×Cm2 × · · · ×Cmt be the canonical form for the finite abelian
group G given by the fundamental theorem of finite abelian groups and suppose that G is
Hπ-solvable. Then

`Hπ(G) = `Hπ(Cm1).

4.2.5. The case of a finite symmetric group. By Theorem 4.1(3) or by Corollary 3.14, if
π is odd, then Sn is non Hπ-solvable.

If π is even, then, by Theorem 4.1(3), we have that KHπ(Sn) = An. As, for n ≥ 5,
the alternating group An is simple, then KAb(An) = An and KAb(An) ⊆ KHπ(An), thus
K2

Hπ
(Sn) = KHπ(An) = An, showing that Sn is non Hπ-solvable.

Proposition 4.12. For n ≥ 5, the symmetric group Sn is non Hπ-solvable.

It remains to check what happens for n = 2, 3, 4.
We have S2

∼= C2, S3
∼= D6, thus the cases n = 2, 3 have already been studied. It

remains to check how the Hπ-solvability of S4 depends on π. As K2
Hπ

(S4) = KHπ(A4) =

A[gcd(12,π)]
4 , we should start by computing A[d]

4 , with d ∈ {2, 4, 6, 12}.
The alternating group An is generated by cycles of length 3. If σ is a cycle of length 3

and k is an integer not divisible by 3, then σk is also a cycle of length 3. Furthermore, any
cycle of length 3 may be written as the square (and consequently as the fourth power) of

a cycle of length 3. As a consequence, we have that A[2]
4 = A[4]

4 = A4.
The derived subgroup of A4 is V = C2 × C2 is the Klein viergroup. One way to check

it is by using GAP [12].

gap> a4 := AlternatingGroup(4);

Alt( [ 1 .. 4 ] )

gap> Size(n);

12

gap> da4:= DerivedSubgroup(a4);

Group([ (1,4)(2,3), (1,3)(2,4) ])
10



gap> Size(da4);

4

gap> List(Elements(a4), n->Order(n));

[ 1, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2 ]

On the other hand, taking into account the possible orders of the elements of A4 (also

checked in the GAP session above), we have that A[6]
4 = A[12]

4 = V . As V is abelian and
its elements have orders not greater than 2 we have that V [d] = 1 if d is even. Therefore,
S4 is Hπ-solvable if and only if 6 divides π.

5. On the Hπ-solvability of some inverse monoids

In this section we give upper bounds for the number of iterations of the relative abelian
kernel operator needed to reach the idempotents of some monoids of injective partial
transformations. It is inspired in part of the paper [5] by Fernandes and the second
author, where the question has been treated for the same monoids an the (non relative)
abelian kernel. .

Let n > 1 be a positive integer.

5.1. The inverse monoids POIn, PODIn, POPIn, PORIn and In. For a quick
survey on these monoids, we suggest the paper [10] by Fernandes or any of the papers
closely related to the present one: [5, 1]. References for a deeper understanding of these
monoids can be found there.

Let M ∈ {In,POIn,PODIn,POPIn,PORIn}. Then

M/J = {J0 ≤J J1 ≤J · · · ≤J Jn},
where, for each 0 ≤ k ≤ n, Jk is the J -class consisting of the transformations s such
that | Im(s)| = k. Concerning maximal subgroups, the monoid POIn is aperiodic, while
each H -class of an element s ∈ PODIn has exactly two elements (an order-preserving
one and another being order-reversing), unless the rank of s is one or zero, in which case
its H -class is trivial. On the other hand, for 1 ≤ k ≤ n, the H -class of an element
s ∈ POPIn of rank k has precisely k elements, being a cyclic group of order k if s is a
group-element. Finally, given s ∈ PORIn, if | Im(s)| = k ≥ 3, then the H -class of s has
2k elements and, if s is a group-element, it is isomorphic to the dihedral group D2k and
if | Im(s)| = 2 then H -class of s has precisely two elements, otherwise it has just one
element.

5.2. Hπ-solvability of POIn, PODIn, POPIn, PORIn and In. Recall that an in-
verse monoid M is H-solvable if and only if, for each idempotent e ∈ M , the maximal
subgroup He of M containing e is H-solvable.

Proposition 5.1. Let π be a (possibly infinite) supernatural number and let Hπ be the
corresponding pseudovariety of abelian groups. Then

(1) POIn is Hπ-solvable.
(2) POPIn is Hπ-solvable if and only if all the prime numbers not greater than n

divides π.
(3) If π is even, then PODIn is Hπ-solvable.

If π is odd, then PODIn is non Hπ-solvable.
(4) If π is even, then PORIn is Hπ-solvable, if all the prime numbers not greater

than n divide π.
If π is odd, then PORIn is non Hπ-solvable.

(5) If n ≥ 5, then In is non Hπ-solvable, independently of the parity of π.
11



Proof. By the above observation, the Hπ-solvability of POIn, PODIn, POPIn, PORIn
and In only depends on the Hπ-solvability of its maximal subgroups. These have been
studied in Subsection 4.2.

(1) The monoid POIn is aperiodic, thus its subgroups are trivial. Therefore POIn
is Hπ-solvable.

(2) All the subgroups of the monoid POPIn are cyclic. Their orders go from 1 to n.
Using Proposition 4.6, we conclude that POPIn is Hπ-solvable if and only if all
the prime numbers not greater than n are divisors of π.

(3) The subgroups of PODIn have orders not greater than 2, therefore are cyclic.
Using Proposition 4.6 again, we conclude that POPIn is Hπ-solvable if and only
if π is even.

(4) The maximal subgroups of PORIn are dihedral of order 2k, with k ∈ {1, . . . , n}.
By Proposition 4.8, if π is odd, none of the D2k is Hπ-solvable. If π is even, using
Proposition 4.8 again, we have that the maximal subgroups D2k are Hπ-solvable
exactly when all the prime divisors of k divide π. It follows that all the maximal
subgroups of PORIn are Hπ-solvable if and only all the primes not greater that
n divide π.

(5) The maximal subgroups of In are symmetric of order k, with k ∈ {1, . . . , n}, thus,
by Proposition 4.12, we conclude that, for n ≥ 5, In is non Hπ-solvable.

�

As a consequence of Proposition 5.1 (2) we have that if Hπ 6= Ab, the pseudovariety
POPI contains non Hπ-solvable monoids.

5.3. On the length of relative abelian kernel chains of a relatively solvable
monoid. We follow the notation introduced in [5]. For a non-trivial J -class J of M
denote by `(J) the maximum length of a ≤J -chain of non-trivial J -classes of M having
J as the ≤J -maximum. Denote by Ω(J) the subset of M/J of all non-trivial J -
classes I such that `(I) = `(J) and by λ(J) the maximum of the Hπ-kernel lengths of the
maximal subgroups of M contained in the members of Ω(J). Let

λ̃(J) =

{
1 if all the groups in J are trivial;
λ(J) otherwise.

The following result, which will allow us to give an upper bound for the length of the Hπ-
kernel chain of some inverse monoids, is a generalization of [5, Proposition 2.1], proved
by Fernandes and the second author. Its proof, consisting mostly of straightforward
generalizations of results from [5], can be checked in [2].

Proposition 5.2. Let M be a solvable inverse monoid and let {J1 ≤J J2 ≤J · · · ≤J

Jk} be a ≤J -chain of maximum size of non-trivial J -classes of M . Then `Hπ(M) ≤∑k
i=1 λ̃(J).

5.3.1. The case of the monoid POIn. As all the subgroups of POIn are trivial, we have
λ(Jk) = 0. Then, by Proposition 5.2, `Hπ(POIn) ≤ n− 1. Note that n− 1 is the number
of non trivial J -classes of POIn.

5.3.2. The case of the monoid PODIn. By Proposition 5.1, PODIn is Hπ-solvable ex-
actly when the supernatural number π is even. As PODIn has n non trivial J -classes
and the maximal subgroups contained in these J -classes are of order 2, we have that
λ(Ji) = 1, for any 1 ≤ i ≤ n. As a consequence we have that `Hπ(PODIn) ≤ n. Another
way to obtain the same upper bound is to use the fact (see [1]) that KHπ(PODIn) ⊆
POIn and the above result concerning the monoid POIn.
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5.3.3. The case of the monoid POPIn. Recall that, by Proposition 5.1, POPIn is Hπ-
solvable if and only if π is a supernatural number that is divisible by all the prime numbers
not greater than n. As usual, denote by Jk the J class consisting of the transformations
of rank k of POPIn.

Since the subgroups of Jk are cyclic of order k, Corollary 4.7 leads to the following:

Proposition 5.3. Let p1, . . . , pr be the primes not greater then n and let π = pα1
1 p

α2
2 · · · pαrr π1

be a supernatural number, with the αi positive integers, for 1 ≤ i ≤ r. For 1 ≤ k ≤ n, we
have k = p

tk,1
1 p

tk,2
2 · · · ptk,rr , for some non negative integers tk,i, with 1 ≤ i ≤ r. Then

a) λ(Jk) = maxi≤i≤r

(⌈
tk,j
αj

⌉)
.

b) `Hπ(POPIn) ≤
∑n

i=1 λ̃(Jk).

5.3.4. The case of the monoid PORIn. Recall that, by Proposition 5.1, PORIn is Hπ-
solvable if and only if π is an even supernatural number that is divisible by all the prime
numbers not greater than n. As usual, denote by Jk the J class consisting of the
transformations of rank k of PORIn.

Since the subgroups of Jk are dihedral of order k, Theorem 4.9 leads to the following:

Proposition 5.4. Let p1, . . . , pr be the primes not greater then n and let π = pα1
1 p

α2
2 · · · pαrr π1

be a supernatural number, with the αi positive integers, for 1 ≤ i ≤ r. For 1 ≤ k ≤ n, we
have k = p

tk,1
1 p

tk,2
2 · · · ptk,r , for some non negative integers tk,i, with 1 ≤ i ≤ r. Then

a) λ(Jk) =

{
1 + `Hπ(Ck) if k is odd;
1 + `Hπ(Ck/2) if k is even.

b) `Hπ(POPIn) ≤
∑n

i=1 λ̃(Jk).
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