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Dpt. d’Estad́ıstiques i Inv. Operativa, Universitat d’Alacant,
Apartat de correus 99, 03080-Alacant, Spain

e-mail: xaro.soler@ua.es

Enric Ventura

Dept. Mat. Apl. III, Universitat Politècnica de Catalunya,
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ABSTRACT

The Stallings construction for f.g. subgroups of free groups is generalized by in-
troducing the concept of Stallings section, which allows an efficient computation of
the core of a Schreier graph based on edge folding. It is proved that those groups
admitting Stallings sections are precisely f.g. virtually free groups, through a con-
structive approach based on Basse-Serre theory. Complexity issues and applications
are also discussed.

1 Introduction

Finite automata became over the years the standard representation of finitely generated
subgroups H of a free group FA. The Stallings construction constitutes a simple and efficient
algorithm for building an automaton S(H) which can be used for solving the membership
problem of H in FA and many other applications. This automaton S(H) is nothing more
than the core automaton of the Schreier graph (automaton) of H in FA, whose structure can
be described as S(H) with finitely many infinite trees adjoined. Many features of S(H) were
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(re)discovered over the years and were known to Reidemeister, Schreier, and particularly
Serre [16]. One of the greatest contributions of Stallings [17] is certainly the algorithm to
construct S(H): taking a finite set of generators h1, . . . , hm of H in reduced form, we start
with the so-called flower automaton, where petals labelled by the words hi (and their inverse
edges) are glued to a basepoint q0:

•
h1

00

h2

��

hm

PP

Then we proceed by successively folding pairs of edges of the form q
a←−p a−→r until no more

folding is possible (so we get an inverse automaton). And we will have just built S(H). For
details and applications of the Stallings construction, see [1, 7, 13].

Since S(H) turns out to be the core of the Schreier graph of H ≤ FA, this construction
is independent of the finite set of generators of H chosen at the beginning, and of the
particular sequence of foldings followed. And the membership problem follows from the
fact that S(H) recognizes all the reduced words representing elements of H... and the
reduced words constitute a section for any free group.

Such an approach invites naturally generalizations for further classes of groups. For
instance, an elegant geometric construction of Stallings type automata was achieved for
amalgams of finite groups by Markus-Epstein [12]. On the other hand, the most general
results were obtained by Kapovich, Weidmann and Miasnikov [8] for finite graphs of groups
where each vertex group is either polycyclic-by-finite or word-hyperbolic and locally quasi-
convex, and where all edge groups are virtually polycyclic. However, the complex algorithms
were designed essentially to solve the generalized word problem, and it seems very hard to
extend other features of the free group case, either geometric or algorithmic. Our goal in the
present paper is precisely to develop a Stallings type approach with some generality which
is robust enough to exhibit several prized algorithmic and geometric features, namely in
connection with Schreier graphs. Moreover, we succeed on identifying those groups G for
which it can be carried on: (finitely generated) virtually free groups.

Which ingredients shall we need to get a Stallings type algorithm? First of all, we need
a section S with good properties that may emulate the role played by the reduced words
in the free group. In particular, we need a rational language (i.e. recognizable by a finite
automaton). We may of course need to be more restrictive than taking all reduced words,
if we want our finite automaton to recognize all the representatives of H ≤f.g. G in S. To
get inverse automata, it is also convenient to have S = S−1

Second, the set Sg of words of S representing a certain g ∈ G must be at least rational,
so we can get a finite automaton to represent each of the generalized petals.

Third, the folding process to be performed in the (generalized) flower automaton (com-
plemented possibly by other identification operations) must ensure in the end that all rep-
resentatives of elements of H in S are recognized by the automaton. And folding is the
automata-theoretic translation of the reduction process w → w taking place in the free
group. So we need the condition Sg1g2 ⊆ Sg1Sg2 , to make sure that the petals (correspond-
ing to the generators of H) carry enough information to produce, after the subsequent
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folding, all the representatives of elements of H. And this is how we were led to our
definition of Stallings section.

It is somewhat surprising how much we can get from this concept, that turned out to be
more robust than one would expect. Among other features, we can mention independence
from the generating set (so we can have Stallings automata for free groups when we consider
a non canonical generating set!), or a generalized version of the classical Benois Theorem.
We present some applications of the whole theory, believing that many others should follow
in due time, as it happened in the free group case.

The paper is structured as follows. In Section 2 we present the required basic concepts.
The theory of Stallings sections is presented in Section 3. In Section 4, we discuss the
complexity of the generalized Stallings construction in its most favourable version. In
Sections 5 and 6 we show that existence of a Stallings section is inherited through free
products with amalgamation over finite groups and HNN extensions over finite groups,
respectively. In Section 7, we prove that those groups admitting a Stallings section are
precisely the finitely generated virtually free groups. In Section 8, we show that we can
assume stronger properties for Stallings sections with an eye to applications, namely the
characterization of finite index subgroups. Finally, we present some examples in Section 9.

2 Preliminaries

Given a finite alphabet A, we denote by A∗ the free monoid on A, with 1 denoting the
empty word. A subset of a free monoid is called a language.

We say that A = (Q, q0, T, E) is a (finite) A-automaton if:

• Q is a (finite) set;

• q0 ∈ Q and T ⊆ Q;

• E ⊆ Q×A×Q.

A nontrivial path in A is a sequence

p0
a1−→p1

a2−→ · · · an−→pn

with (pi−1, ai, pi) ∈ E for i = 1, . . . , n. Its label is the word a1 · · · an ∈ A+ = A∗ \ {1}. It is
said to be a successful path if p0 = q0 and pn ∈ T . We consider also the trivial path p

1−→p
for p ∈ Q. It is successful if p = q0 ∈ T . The language L(A) recognized by A is the set of all
labels of successful paths in A. A path of minimal length between two vertices is called a
geodesic, and so does its label by extension.

The automaton A = (Q, q0, T, E) is said to be deterministic if, for all p ∈ Q and a ∈ A,
there is at most one edge of the form (p, a, q). We say that A is trim if every q ∈ Q lies in
some successful path.

Given deterministic A-automata A = (Q, q0, T, E) and A′ = (Q′, q′0, T
′, E′), a morphism

ϕ : A → A′ is a mapping ϕ : Q→ Q′ such that

• q0ϕ = q′0 and Tϕ ⊆ T ′;

• (pϕ, a, qϕ) ∈ E′ for every (p, a, q) ∈ E.
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It follows that L(A) ⊆ L(A′) if there is a morphism ϕ : A → A′. The morphism ϕ : A → A′
is:

• injective if it is injective as a mapping ϕ : Q→ Q′;

• an isomorphism if it is injective, T ′ = Tϕ and every edge of E′ is of the form (pϕ, a, qϕ)
for some (p, a, q) ∈ E.

The star operator on A-languages is defined by

L∗ =
⋃
n≥0

Ln,

where L0 = {1}. A language L ⊆ A∗ is said to be rational if L can be obtained from
finite languages using finitely many times the operators union, product and star (admits a
rational expression). Alternatively, L is rational if and only if it is recognized by a finite
(deterministic) A-automaton A = (Q, q0, T, E) [3, Section III]. The definition generalizes to
subsets of an arbitrary monoid in the obvious way.

We denote the set of all rational languages L ⊆ A∗ by RatA∗. Note that RatA∗,
endowed with the product of languages, constitutes a monoid.

In the statement of a result, we shall say that a rational language L is effectively con-
structible if there exists an algorithm to produce from the data implicit in the statement a
finite A-automaton A recognizing L.

It is convenient to summarize some closure and decidability properties of rational lan-
guages in the following result (see [3] e.g.). The prefix set of a language L ⊆ A∗ is defined
as

Pref(L) = {u ∈ A∗ | uA∗ ∩ L 6= ∅}.

A rational substitution is a morphism ϕ : A∗ → RatB∗ (where RatB∗ is endowed with
the product of languages). Given K ⊆ A∗, we denote by Kϕ the language ∪u∈Kuϕ ⊆ B∗.
Since singletons are rational languages, monoid homomorphisms constitute particular cases
of rational substitutions.

Proposition 2.1 Let A be a finite alphabet and let K,L ⊆ A∗ be rational. Then:

(i) K ∪ L,K ∩ L,A∗ \ L,Pref(L) are rational;

(ii) if ϕ : A∗ → RatB∗ is a rational substitution, then Kϕ is rational;

(iii) if ϕ : A∗ → M is a monoid homomorphism and M is finite, then Xϕ−1 is rational
for every X ⊆M .

Moreover, all the constructions are effective, and the inclusion K ⊆ L is decidable.

Given an A-automaton A and L ⊆ A∗, we denote by A u L the A-automaton obtained
by removing from A all the vertices and edges which do not lie in some successful path
labelled by a word in L.

Proposition 2.2 Let A be a finite A-automaton and let L ⊆ A∗ be a rational language.
Then A u L is effectively constructible.
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Proof. Write A = (Q, q0, T, E) and let A′ = (Q′, q′0, T
′, E′) be a finite A-automaton recog-

nizing L. The direct product

A′′ = (Q×Q′, (q0, q′0), T × T ′, E′′)

is defined by
E′′ = {((p, p′), a, (q, q′)) | (p, a, q) ∈ E, (p′, a, q′) ∈ E′}.

Let B denote the trim part of A′′ (by removing all vertices/edges which are not part of
successful paths in A′′; this can be done effectively). Then A u L can be obtained by
projecting into the first component the various constituents of B. �

Given an alphabet A, we denote by A−1 a set of formal inverses of A, and write Ã =
A ∪ A−1. We say that Ã is an involutive alphabet. We extend −1 : A → A−1 : a 7→ a−1 to
an involution on Ã∗ through

(a−1)−1 = a, (uv)−1 = v−1u−1 (a ∈ A, u, v ∈ Ã∗) .

An automaton A over an involutive alphabet Ã is involutive if, whenever (p, a, q) is an
edge of A, so is (q, a−1, p). Therefore it suffices to depict just the positively labelled edges
(having label in A) in their graphical representation.

An involutive automaton is inverse if it is deterministic, trim and has a single final
state (note that for involutive automata, being trim is equivalent to being connected). If
the latter happens to be the initial state, it is called the basepoint.

The next result is folklore. For a proof, see [1, Proposition 2.2].

Proposition 2.3 Given inverse automata A and A′, then L(A) ⊆ L(A′) if and only if
there exists a morphism ϕ : A → A′. Moreover, such a morphism is unique.

Given an alphabet A, let ∼ denote the congruence on Ã∗ generated by the relation

{(aa−1, 1) | a ∈ Ã} . (1)

The quotient FA = Ã∗/∼ is the free group on A. We denote by θ : Ã∗ → FA the canonical
morphism u 7→ [u]∼.

Alternatively, we can view (1) as a confluent length-reducing rewriting system on Ã∗,
where each word w ∈ Ã∗ can be transformed into a unique reduced word w with no factor
of the form aa−1. As a consequence, the equivalence

u ∼ v ⇔ u = v (u, v ∈ Ã∗)

solves the word problem for FA. We shall use the notation RA = Ã∗.
We close this section with the classical Benois Theorem, which relates rational languages

with free group reduction:

Theorem 2.4 [2] If L ⊆ Ã∗ is rational, then L is an effectively constructible rational
language.

5



3 Stallings sections

Let G be a (finitely generated) group generated by the finite set A. More precisely, we
consider an epimorphism π : Ã∗ → G satisfying

a−1π = (aπ)−1 for every a ∈ A. (2)

A homomorphism satisfying condition (2) is said to be matched. Note that in this case (2)
holds for arbitrary words. For short, we shall refer to a matched epimorphism π : Ã∗ → G
(with A finite) as a m-epi.

We shall call a language S ⊆ Ã∗ a section (for π) if Sπ = G and S−1 = S. For every
X ⊆ G, we write

SX = Xπ−1 ∩ S.

We say that an effectively constructible rational section S ⊆ RA is a Stallings section
for π if, for all g, h ∈ G:

(S1) Sg is an effectively constructible rational language;

(S2) Sgh ⊆ SgSh.

Note that (S2) yields immediately

Sg1···gn ⊆ Sg1 · · ·Sgn (3)

for all g1, . . . , gn ∈ G. Moreover, in (S1) it suffices to consider Saπ for a ∈ A. Indeed, by
(3), and since S−1 = S and Sgπ = g for every g ∈ G, we may write

S(a1···an)π = Sa1π · · ·Sanπ ∩ S

and Sa−1
i π = S−1aiπ for all ai ∈ Ã. Then, by Proposition 2.1 and Theorem 2.4, Sg is a rational

language for every g ∈ G; furthermore, it is effectively constructible from Sa1π, . . . , Sanπ.
Note that if S is a Stallings section, then S ∪ {1} is also a Stallings section. Indeed,

it is easy to see that conditions (S1) and (S2) are still verified: namely, if gh = 1, then

1 ∈ SgS−1g = SgSh and so Sgh ∪ {1} ⊆ SgSh as required.
The next result shows that the existence of a Stallings section is independent from the

finite set A and the m-epi π : Ã∗ → G considered:

Proposition 3.1 Let π : Ã∗ → G and π′ : Ã′
∗
→ G be m-epis. Then G has a Stallings

section for π if and only if G has a Stallings section for π′.

Proof. Let S ⊆ RA be a Stallings section for π. There exists a matched homomorphism

ϕ : Ã∗ → Ã′
∗

such that ϕπ′ = π. Write S′ = Sϕ. By Proposition 2.1(ii) and Theorem 2.4,
S′ is an effectively constructible rational subset of RA′ . We claim that

S′g = Sgϕ (4)

holds for every g ∈ G.
Indeed, let u ∈ S′g. Then u = vϕ for some v ∈ S and vπ = vϕπ′ = vϕπ′ = uπ′ = g.

Hence v ∈ Sg and so S′g ⊆ Sgϕ.
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Conversely, let v ∈ Sg. Then vϕ ∈ Sϕ = S′ and vϕπ′ = vϕπ′ = vπ = g, hence vϕ ∈ S′g
and so (4) holds.

Since
(S′)−1 = (Sϕ)−1 = (Sϕ)−1 = S−1ϕ = Sϕ = S′,

it follows from (4) that S′ is a section for π′. Moreover, (S1) is inherited by S′ from S by
Proposition 2.1(ii) and Theorem 2.4. Finally, for all g, h ∈ G, we get

S′gh = Sghϕ ⊆ (SgSh)ϕ = (SgSh)ϕ

= (Sgϕ)(Shϕ) = (Sgϕ)(Shϕ) = S′gS
′
h,

hence (S2) holds for S′ and so S′ is a Stallings section for π′. By symmetry, we get the
required equivalence. �

Proposition 3.2 Free groups of finite rank and finite groups have Stallings sections.

Proof. Let A be a finite set and consider the canonical m-epi θ : Ã∗ → FA. Let S = RA =

Ã∗, which is rational by Theorem 2.4. Since Sg = g for every g ∈ FA, it is immediate that
S is a Stallings section for θ.

Assume now that G is finite and π : Ã∗ → G is a m-epi. We show that S = RA is a
Stallings section for π. For every g ∈ G, we have Sg = gπ−1 ∩ RA = gπ−1. Since both
gπ−1 and RA are effectively constructible rational languages, so is their intersection and
so (S1) holds. Finally, let u ∈ Sgh and take v ∈ Sh. Then (uv−1)π = ghh−1 = g and so

uv−1 ∈ gπ−1 = Sg. Hence u = uv−1v = uv−1v ∈ SgSh and (S2) holds as well. Therefore
RA is a Stallings section for π. �

Given a m-epi π : Ã∗ → G and H 6 G, we define the Schreier automaton Γ(G,H, π) to
be the Ã-automaton having:

• the right cosets Hg (g ∈ G) as vertices;

• H as the basepoint;

• edges Hg
a−→Hg(aπ) for all g ∈ G and a ∈ Ã.

It is immediate that Γ(G,H, π) is always an inverse Ã-automaton, but it is infinite unless
H has finite index in G. Moreover, L(Γ(G,H, π)) = Hπ−1.

We will prove that Γ(G,H, π)uS is an effectively constructible finite inverse automaton
when S is a Stallings section for π. The following lemmas pave the way for the construction
of Γ(G,H, π) u S:

Lemma 3.3 Let π : Ã∗ → G be a m-epi. Let A be a trim Ã-automaton and let p
a−→q be

an edge of A for some a ∈ Ã. Let B be obtained by adding the edge q
a−1

−→p to A. Then
(L(B))π ⊆ 〈(L(A))π〉.

Proof. Write A = (Q, q0, T, E). We can factor any u ∈ L(B) as u = u0a
−1u1 · · · a−1un,

where the a−1 label each visit to the new edge. We show that uπ ∈ 〈(L(A))π〉 by induction
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on n. The case n = 0 being trivial, assume that n ≥ 1 and the claim holds for n−1. Writing
v = u0a

−1u1 · · · a−1un−1, we have a path in B of the form

q0
v−→q a

−1

−→p un−→t ∈ T.

Since A is trim, we have also a path

q0
w−→p a−→q z−→t′ ∈ T

in A. By the induction hypothesis, we get (vz)π ∈ 〈(L(A))π〉 and so

uπ = (va−1un)π = ((vz)(z−1a−1w−1)(wun))π ∈ 〈(L(A))π〉

as claimed. �

Lemma 3.4 Let π : Ã∗ → G be a m-epi. Let A = (Q, q0, T, E) be a trim Ã-automaton and
let B be obtained by identifying q0 with some t ∈ T . Then (L(B))π ⊆ 〈(L(A))π〉.
Proof. Let u ∈ L(B). We can factor it as u = u1 · · ·un, where pi

ui−→qi is a path in A with
pi, qi ∈ {q0, t} (i = 1, . . . , n). In any case, there exist paths

q0
vi−→pi, qi

wi−→t ∈ T

in A with vi, wi ∈ L(A) ∪ {1}. Since viuiwi ∈ L(A), we get uiπ = (v−1i (viuiwi)w
−1
i )π ∈

〈(L(A))π〉 for every i and so uπ ∈ 〈(L(A))π〉 as well. �

Lemma 3.5 Let π : Ã∗ → G be a m-epi. Let A be an involutive Ã-automaton and let
p

w−→q be a path in A with wπ = 1. Let B be obtained by identifying the vertices p and q.
Then L(A) ⊆ L(B) and (L(B))π = (L(A))π.

Proof. The first inclusion is clear. Since A is involutive, we have also a path q
w−1

−→p in A
and w−1π = 1. Clearly, every u ∈ L(B) can be lifted to some v ∈ L(A) by inserting finitely
many occurrences of the words w,w−1, that is, we can get factorizations

u = u0u1 · · ·un ∈ L(B), v = u0w
ε1u1 · · ·wεnun ∈ L(A)

with ε1, . . . , εn ∈ {−1, 1}. Since uπ = vπ, it follows that (L(B))π ⊆ (L(A))π. The opposite
inclusion holds trivially. �

Since (aa−1)π = 1 for every a ∈ Ã, this same argument proves that:

Lemma 3.6 Let π : Ã∗ → G be a m-epi. Let A be a finite involutive Ã-automaton and
let B be obtained by successively folding pairs of edges in A. Then L(A) ⊆ L(B) and
(L(B))π = (L(A))π.

The next lemma reveals how the automaton Γ(G,H, π) u S can be recognized.

Lemma 3.7 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let H 6f.g. G.

Let A be a finite inverse Ã-automaton with a basepoint such that

SH ⊆ L(A) ⊆ Hπ−1, (5)

there is no path p
w−→q in A with p 6= q and wπ = 1. (6)

Then Γ(G,H, π) u S ∼= A u S.
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Proof. Since A and Γ = Γ(G,H, π) are both inverse automata with a basepoint, and
L(A) ⊆ Hπ−1 = L(Γ), it follows from Proposition 2.3 that there exists a morphism ϕ :
A → Γ. Suppose that pϕ = qϕ for some vertices p, q in A. Take geodesics

q0
u−→p, q0

v−→q

in A, where q0 denotes the basepoint. Since pϕ = qϕ, we have uv−1 ∈ L(Γ) = Hπ−1. Let
s0 ∈ S(uv−1)π ⊆ SH . Then s0 ∈ L(A) by (5) and so there is a path p

u−1s0v−−−→q in A. Since
(u−1s0v)π = (u−1uv−1v)π = 1, it follows from (6) that p = q. Thus ϕ is injective.

It is immediate that ϕ restricts to an injective morphism ϕ′ : AuS → ΓuS. It remains
to show that every edge of Γ u S is induced by some edge of A u S. Assume that H

s−→H
is a (successful) path in Γ with s ∈ S. By (5), we have s ∈ L(A) and the path q0

s−→q0
is mapped by ϕ′ onto H

s−→H. Since every edge of Γ u S occurs in some path H
s−→H, it

follows that ϕ′ is an isomorphism. �

Lemma 3.8 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let H 6f.g. G.

Let A be a finite inverse Ã-automaton with a basepoint such that SH ⊆ L(A) ⊆ Hπ−1. It
is decidable, given two distinct vertices p, q of A, whether or not there is some path p

w−→q
in A with wπ = 1.

Proof. Let p, q be distinct vertices of A and let q0 denote its basepoint. Take geodesics
q0

u−→p and q0
v−→q, and let s ∈ S(uv−1)π. We claim that there is a path p

w−→q in A with
wπ = 1 if and only if s ∈ L(A).

Indeed, assume that p
w−→q is such a path. Then uwv−1 ∈ L(A) and so sπ = (uv−1)π =

(uwv−1)π ∈ H. Thus s ∈ SH ⊆ L(A).
Conversely, assume that s ∈ L(A). Then there is a path p

u−1sv−−−→q in A. Since
(u−1sv)π = (u−1uv−1v)π = 1, the lemma is proved. �

Theorem 3.9 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let H 6f.g.
G. Then Γ(G,H, π) u S is an effectively constructible finite inverse Ã-automaton with a
basepoint such that

SH ⊆ L(Γ(G,H, π) u S) ⊆ Hπ−1. (7)

Proof. Assume that H = 〈h1, . . . , hm〉. For i = 1, . . . ,m, let Ai = (Qi, qi, ti, Ei) be a finite
trim Ã-automaton with a single initial and a single terminal vertex satisfying

Shi ⊆ L(Ai) ⊆ hiπ−1 (8)

(in the next section we shall discuss how to define such an automaton with the lowest
possible complexity). Let B0 be the Ã-automaton obtained by taking the disjoint union of
the Ai and then identifying all the qi into a single initial vertex q0.

Suppose that qi
u−→qi is a path in Ai. Take v ∈ L(Ai). Then uv ∈ L(Ai) ⊆ hiπ

−1 and
so uπ = (uvv−1)π = hih

−1
i = 1. It follows easily that (L(B0))π ⊆ (Sh1 ∪ · · · ∪ Shm)π ⊆ H.

Let B1 be the finite trim involutive Ã-automaton obtained from B0 by adjoining edges
(q, a−1, p) for all edges (p, a, q) in B0 (a ∈ Ã). It follows from Lemma 3.3 that (L(B1))π ⊆
〈(L(B0))π〉 ⊆ H.
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Next let B2 be the Ã-automaton obtained from B1 by identifying all terminal vertices
with the initial vertex q0. By Lemma 3.4, we get (L(B2))π ⊆ 〈(L(B1))π〉 ⊆ H.

Finally, let B3 be the finite inverse Ã-automaton with a basepoint obtained by complete
folding of B2. By Lemma 3.6, we have (L(B3))π = (L(B2))π ⊆ H and so L(B3) ⊆ Hπ−1.
Moreover,

Sh1 ∪ · · · ∪ Shm ⊆ L(A1) ∪ · · · ∪ L(Am) ⊆ L(B0) ⊆ L(B3)

and S−1 = S yield

(Sh1 ∪ · · · ∪ Shm ∪ Sh−1
1
∪ · · · ∪ Sh−1

m
)∗ ⊆ L(B3)

since B3 is involutive and has a basepoint, and therefore

(Sh1 ∪ · · · ∪ Shm ∪ Sh−1
1
∪ · · · ∪ Sh−1

m
)∗ ⊆ L(B3)

since B3 is inverse (the language of an inverse automaton is closed under reduction since
a word aa−1 must label only loops). In view of (3), it follows that Sh ⊆ L(B3) for every
h ∈ H and so SH ⊆ L(B3). Therefore (5) holds for B3.

However, (6) may not hold. Assume that the vertex set Q′ of B3 is totally ordered. By
Lemma 3.8, we can decide if that happens, and find all concrete instances

J = {(p, q) ∈ Q′ ×Q′ | p < q and there is some path p
w−→q in B3 with wπ = 1}.

Let B4 be the finite inverse Ã-automaton with a basepoint obtained by identifying all pairs
of vertices in J followed by complete folding. Since the existence of a path with label in
1π−1 is preserved through the identification process, it follows from Lemmas 3.5 and 3.6
that B4 still satisfies (5).

Suppose that there exists a path p′
w′−→q′ in B4 with p′ 6= q′ and w′π = 1. We can lift p′

and q′ to vertices p and q in B3, respectively. It is straightforward to check that the path
p′

w′−→q′ can be lifted to a path p
w−→q in B3 by successively inserting in w′ factors of the

form:

• aa−1 (a ∈ Ã) (undoing the folding operations);

• z ∈ 1π−1 (undoing the identification arising from r
z−→s ).

Since w′π = wπ, it follows that either (p, q) ∈ J or (q, p) ∈ J , and so p′ = q′, a contradiction.
Therefore B4 satisfies (6). Now the theorem follows from Proposition 2.2 and Lemma 3.7.
�

We call Γ(G,H, π) u S the Stallings automaton of H (for a given Stallings section S).
Note that Γ(FA, H, θ)uRA is the classical Stallings automaton of H ≤f.g. FA when we take
RA as Stallings section (for the canonical m-epi θ).

Stallings automata provide a natural decision procedure for the generalized word prob-
lem:

Corollary 3.10 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let
H 6f.g. G. Then the following conditions are equivalent for every g ∈ G:

(i) g ∈ H;
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(ii) Sg ⊆ L(Γ(G,H, π) u S);

(iii) Sg ∩ L(Γ(G,H, π) u S) 6= ∅.

Therefore the generalized word problem is decidable for G.

Proof. (i) ⇒ (ii). If g ∈ H, then Sg ⊆ SH ⊆ L(Γ(G,H, π) u S) by Theorem 3.9.
(ii) ⇒ (iii). Immediate since Sg 6= ∅ due to S being a section.
(iii) ⇒ (i). Since Sg ∩ L(Γ(G,H, π) u S) ⊆ gπ−1 ∩Hπ−1.
Now decidability follows from (S1) and Theorem 3.9. �

We can also prove the following generalization of Benois Theorem:

Theorem 3.11 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let L ⊆ Ã∗
be rational. Then SLπ is an effectively constructible rational language.

Proof. Let ϕ : Ã∗ → Rat Ã∗ be the rational substitution defined by aϕ = Saπ, for a ∈ Ã
(note that 1ϕ = {1} and, for u = a1 · · · an (ai ∈ Ã), uϕ is not Suπ but just Sa1π · · ·Sanπ).
We claim that

Suπ = S ∩ uϕ (9)

holds for every u ∈ L \ {1}. Let u = a1 · · · an ∈ L (ai ∈ Ã). Then by (3) we get

Suπ = S(a1π)···(anπ) ⊆ Sa1π · · ·Sanπ = (a1ϕ) · · · (anϕ) = uϕ

and so Suπ ⊆ S ∩ uϕ.
Since aϕπ = Saππ = aπ holds for every a ∈ Ã, the inclusion S ∩ uϕ ⊆ Suπ follows from

uϕπ = uϕπ = uπ. Therefore (9) holds.
Now it becomes clear that

SLπ = S ∩ (∪u∈Luϕ) = S ∩ Lϕ

if 1 /∈ L and
SLπ = (S ∩ Lϕ) ∪ S1

if 1 ∈ L.
Now Lϕ is an effectively constructible rational language by (S1) and Proposition 2.1(ii),

and so is Lϕ by Theorem 2.4. Since S and S1 are rational, it follows from Proposition 2.1(i)
that SLπ is rational and effectively constructible. �

A natural question to ask at this stage is if we can identify a Stallings automaton for a
given Stallings section S. In the classical case of a free group FA with S = RA this is an
elementary thing to do: in this case, an Ã-automatonA is of the form Γ(FA, H, π)uRA = SH
for some H 6f.g. FA if and only if A is inverse, has a basepoint, and has no vertex of
outdegree one except possibly the basepoint.

Proposition 3.12 Let S ⊆ RA be a Stallings section for a m-epi π : Ã∗ → G. It is
decidable, given a finite Ã-automaton A, whether or not A ∼= Γ(G,H, π) u S for some
H 6f.g. G.
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Proof. We may assume that A is inverse and has a basepoint. Write A = (Q, q0, q0, E).
The equality A = A u S is an obvious necessary condition, decidable by Lemma 2.2. Thus
we may assume that A = A u S (in particular, A is trim).

Since S ⊆ RA and A is trim, it follows that only the basepoint may have outdegree
1, and so A ∼= S(K) ∼= Γ(FA,K, θ) u RA for some K 6f.g. FA [1, Proposition 2.12]: the
standard algorithm [1, Proposition 2.6] actually computes a finite subset X ⊆ RA projecting
onto a basis Xθ of K. Let K ′ = 〈Xπ〉 6f.g. G. We claim that A ∼= Γ(G,H, π)u S for some
H 6f.g. G if and only if A ∼= Γ(G,K ′, π)uS, a decidable condition in view of Theorem 3.9.

The converse implication being trivial, assume that A = Γ(G,H, π)uS for some H 6f.g.
G. Since words of 1π−1 can only label loops in Γ(G,H, π), it follows from Lemma 3.7 that
we only need to show that

SK′ ⊆ L(A) ⊆ K ′π−1. (10)

Since A ∼= Γ(FA,K, θ) uRA, it follows from Theorem 3.9 that

X ⊆ RA ∩Kθ−1 ⊆ L(A) ⊆ Kθ−1.

Since Kθ−1 ⊆ K ′π−1, we get L(A) ⊆ K ′π−1. Finally, X ⊆ L(A) ⊆ Hπ−1 yields Xπ ⊆ H
and so K ′ 6 H. Hence

SK′ ⊆ SH ⊆ L(A)

by (7) and so (10) holds. Thus A ∼= Γ(G,K ′, π) u S and we are done. �

4 Complexity

In this section we discuss, for a given Stallings section, an efficient way (from the viewpoint
of complexity) of constructing the automata Ai in the proof of Theorem 3.9 and compute an
upper bound for the complexity of the construction of the Stallings automata Γ(G,H, π)uS.

We say that an Ã-automaton is uniterminal if it has a single terminal vertex. It is easy
to see that there exist rational languages which fail to be recognized by any uniterminal
automaton (e.g. RA, since regular languages recognizable by uniterminal automata and
containing the empty word must have a basepoint and so they are submonoids). However,
we can prove the following:

Lemma 4.1 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let g ∈ G.
Then there exists a finite trim uniterminal Ã-automaton Cg satisfying

Sg ⊆ L(Cg) ⊆ gπ−1.

Proof. Let C = (Q, i, T,E) be the minimum automaton of Sg (or any other finite trim
automaton with a single initial vertex recognizing Sg) and let Cg be obtained by identifying
all the terminal vertices of C. Clearly, Cg is a finite trim uniterminal automaton and Sg =

L(C) ⊆ L(Cg) yields Sg = Sg ⊆ L(Cg). It remains to be proved that (L(Cg))π = g.
Let u ∈ L(Cg). Then there exists a factorization u = u0u1 · · ·uk such that

i
u0−→t0, s1

u1−→t1, . . . , sk
uk−→tk
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are paths in C with sj , tj ∈ T . Take a path i
vj−→sj in C, for j = 1, . . . , k. Then vj , vjuj ∈

L(C) and so vjπ = (vjuj)π = g. Hence ujπ = (v−1j vjuj)π = g−1g = 1 and so uπ =

(u0u1 · · ·uk)π = u0π = g since u0 ∈ L(C) = Sg. Thus (L(Cg))π = g and so L(Cg) ⊆ gπ−1 as
required. �

We introduce next a multiplication of (finite trim) uniterminal automata: given (fi-
nite trim) uniterminal Ã-automata A = (Q, i, t, E) and A′ = (Q′, i′, t′, E′), let A ∗ A′ =
(Q′′, i, t′, E′′) be the (finite trim) uniterminal Ã-automaton obtained by taking the disjoint
union of the underlying graphs of A and A′ and identifying t with i′.

Lemma 4.2 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let g, g′ ∈ G.
Let A and A′ be finite trim uniterminal Ã-automata satisfying

Sg ⊆ L(A) ⊆ gπ−1, Sg′ ⊆ L(A′) ⊆ g′π−1.

Then
Sgg′ ⊆ L(A ∗ A′) ⊆ (gg′)π−1.

Proof. Since L(A)L(A′) ⊆ L(A ∗ A′), we get in view of (S2)

Sgg′ ⊆ SgSg′ ⊆ L(A)L(A′) ⊆ L(A ∗ A′).

Now let u ∈ L(A ∗ A′). Then u labels a path in A ∗ A′ of the form

i
u0−→p u1−→p u2−→ · · ·

uk−1−→p uk−→t′,

where we emphasize all the occurrences of the vertex p obtained through the identification of
t and i′. Now it is easy to see that there exist paths i

u0−→t in A and i′
uk−→t′ in A′. Moreover,

for each j = 1, . . . , k− 1, there exists either a path t
uj−→t in A or a path i′

uj−→i′ in A′. Now,
in view of (L(A))π = g and (L(A′))π = g′, we can use the same argument as in the proof
of Lemma 4.1 to show that ujπ = 1 for j = 1, . . . , k − 1. Hence uπ = (u0u1 · · ·uk)π =

(u0uk)π = gg′ and so L(A ∗ A′) ⊆ (gg′)π−1 as required. �

In view of the preceding two lemmas, we can now set an algorithm to construct the
automata Ai in the proof of Theorem 3.9. All we need for a start are the minimum automata
of Saπ for each a ∈ A (or any other finite trim automaton with a single initial vertex
recognizing Saπ; this can be effectively constructed by (S1)). Following the argument in the
proof of Lemma 4.1, we may identify all the terminal vertices to get finite trim uniterminal
Ã-automata Caπ satisfying

Saπ ⊆ L(Caπ) ⊆ aππ−1.

Note that, since S−1 = S, we get finite trim uniterminal Ã-automata Ca−1π satisfying

Sa−1π ⊆ L(Ca−1π) ⊆ a−1ππ−1

by exchanging the initial and the terminal vertices in Caπ and replacing each edge p
b−→q by

an edge q
b−1

−→p.
Now, given hi ∈ G, we may represent it by some reduced word a1 · · · an (ai ∈ Ã), and

may compute
Ai = ((· · · (Ca1π ∗ Ca2π) ∗ Ca3π) ∗ · · · ) ∗ Canπ.
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By Lemma 4.2, Ai is a finite trim uniterminal Ã-automaton satisfying

Shi ⊆ L(Ai) ⊆ hiπ−1.

What is the maximum size of Ai relatively to |hi|? What is the time complexity of
the algorithm for its construction? Note that we start with only finitely many “atomic”
automata Caπ (a ∈ A). Hence the number of vertices (edges) in Ai is a bounded multiple
of |hi|, therefore is O(|hi|), and the time complexity of the construction (disjoint union
followed by identification of two vertices, |hi| − 1 times) is also clearly O(|hi|). This is why
we gave ourselves (and the reader) the trouble of constructing the Ai this way instead of
just taking the minimum automaton of Shi , whatever that may be!

But what is the time complexity of the full algorithm leading to the Stallings automaton
Γ(G,H, π)uS? It is also useful to discuss the complexity of the important intermediate B3
in the proof of Theorem 3.9 since B3 suffices for such applications as the generalized word
problem: indeed, since B3 satisfies (5), we may replace Γ(G,H, π) u S by B3 in Corollary
3.10.

Let n = |h1|+ · · ·+ |hm|. It follows easily from our previous discussion of the time com-
plexity of the construction of the Ai that B0 (and therefore B1 and B2) can be constructed
in time O(n). Since we get to B3 through complete folding, the complexity of constructing
B3 is that of the classical Stallings construction in the free group. Touikan proved in [18]
that such complexity is O(n log∗ n), where log∗ n denotes the least integer k such that the
kth iterate of the log function of n is at most 1 (for most practical purposes, O(n log∗ n) is
similar to O(n)). Therefore B3 can be constructed in time O(n log∗ n).

We shall now discuss the complexity of the construction of the Stallings automata:

Theorem 4.3 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let H =
〈h1, . . . , hm〉 6f.g. G. Then Γ(G,H, π) u S can be constructed in time O(n3 log∗ n), where
n = |h1|+ · · ·+ |hm|.

Proof. We go back to the proof of Theorem 3.9, starting at B3.
The number of vertices of B3 is O(n) and therefore we have O(n2) candidate pairs to J .

For each one of these pairs, we must decide whether or not they belong to J . This involves
bounding the complexity of the algorithm described in the proof of Lemma 3.8.

Let p, q be distinct vertices of B3 and let q0 denote its basepoint. Take geodesics q0
u−→p

and q0
v−→q. Clearly, g = (uv−1)π can be represented by a word of length O(n). It follows

from the previous discussion on the complexity of the construction of Ai that we may
construct a finite trim uniterminal Ã-automaton Cg satisfying

Sg ⊆ L(Cg) ⊆ gπ−1

in time O(n). Performing a complete folding on Cg (in time O(n log∗ n)), we get a finite

inverse Ã-automaton Dg satisfying

Sg ⊆ L(Dg) ⊆ gπ−1.

Since S is a constant for our problem, we can compute an element s ∈ S ∩ L(Dg) = Sg in
time O(n) and check if s ∈ L(B3) in time O(n). Therefore, by the proof of Lemma 3.8, we
can decide whether or not (p, q) ∈ J in time O(n log∗ n). Since we had O(n2) candidates to
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consider, we may compute J in time O(n3 log∗ n). It is very likely that this upper bound
can be improved.

Since B4 is obtained from B3 by identifying the pairs in J followed by complete folding,
and B3 has O(n) vertices, then B4 can be constructed in time O(n3 log∗ n) in view of
Touikan’s bound.

For the last step, we must discuss the time complexity of the algorithm in the proof of
Proposition 2.2. Note that B4 has O(n) vertices and therefore (since the alphabet is fixed)
O(n) edges. Since S is a constant for our problem, we can build the direct product of B4
by some deterministic automaton recognizing S in time O(n) and compute its trim part
in time O(n) (we have O(n) vertices and O(n) edges), and the final projection can also be
performed in linear time. Therefore Γ(G,H, π)uS can be constructed in time O(n3 log∗ n),
which means very close to cubic complexity. �

We should stress that the above discussion of time complexity was performed for a fixed
Stallings section of a fixed group. But the computation of a Stallings section for a (virtually
free) group can be in itself a costly procedure, particularly if it is supported by Bass-Serre
theory as in the present case. This will become more evident throughout the next two
sections.

5 Amalgamation over finite groups

Given groups H, G1 and G2, and isomorphisms ϕj : H → Hj ≤ Gj (j = 1, 2), the free
product with amalgamation (amalgam for short) of G1 and G2, relative to ϕ1 and ϕ2, is
defined as the quotient of the free product G1 ∗ G2 by the normal subgroup generated by
the elements of the form (hϕ1)(h

−1ϕ2) (h ∈ H). It is usually denoted by G1∗HG2, whenever
a specific reference to the homomorphisms ϕj can be omitted.

The groups Gj embed canonically into G1 ∗H G2, and we shall actually view them as
subgroups of their amalgam. In particular, we view H1 = H2 as a subgroup of G = G1∗HG2.

A factorization g = w1 · · ·wn is said to be a reduced form for g ∈ G1 ∗H G2 if:

(i) w1 ∈ G1 ∪G2;

(ii) w1 /∈ H1 ∪H2 if n > 1;

(iii) wi ∈ Gj \Hj ⇒ wi+1 ∈ Gj+1 \Hj+1

hold for all i ∈ {1, . . . , n− 1} and j ∈ {1, 2} modulo 2.
Every element of G1 ∗HG2 can be represented by a reduced form, but the representation

is not in general unique. However, this representation can be strictly controlled (see e.g [11,
Chapter IV]):

Proposition 5.1 Let u = u1 · · ·um and v = v1 · · · vn be reduced forms of G1 ∗H G2. Then
u = v holds in G1 ∗H G2 if and only if one of the following conditions holds:

(i) m = n = 1 and u1 = v1 ∈ G1 ∪G2;

(ii) m = n = 1 and u1 = hϕj, v1 = hϕj+1 for some h ∈ H and j ∈ {1, 2} modulo 2;
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(iii) m = n > 1 and there exist z1, . . . , zn−1 ∈ H and j ∈ {1, 2} modulo 2 such that

u1 = v1(z1ϕj) in Gj ,

u2 = (z−11 ϕj+1)v2(z2ϕj+1) in Gj+1,
· · ·

un−1 = (z−1n−2ϕj+n−2)vn−1(zn−1ϕj+n−2) in Gj+n−2,

un = (z−1n−1ϕj+n−1)vn in Gj+n−1.

The main theorem of this section is

Theorem 5.2 Let G1 and G2 be groups with Stallings sections and let H be a finite group.
Then G1 ∗H G2 has also a Stallings section.

Proof. Let S (respectively T ) be a Stallings section for the m-epi π1 : Ã1
∗
→ G1 (respec-

tively π2 : Ã2
∗
→ G2). We assume that Ã1

∗
∩ Ã2

∗
= 1 and write A = A1 ∪ A2. Let H

be a finite group and consider isomorphisms ϕj : H → Hj ≤ Gj (j = 1, 2). We denote by

G = G1 ∗H G2 the amalgam of G1 and G2 relative to ϕ1 and ϕ2. Let π : Ã∗ → G be the
m-epi induced by π1 and π2.

Let B = {bh | h ∈ H} be a new alphabet and let ψ : B∗ → H be the homomorphism
defined by bhψ = h (h ∈ H). Let ξ : B∗ → Rat Ã∗ be the rational substitution defined by

bhξ = Shϕ1 ∪ Thϕ2 ⊆ hϕ1π
−1 = hϕ2π

−1.

We define
L = 1ψ−1ξ.

In the next lemma, we collect some important properties of L:

Lemma 5.3 (i) L is an effectively constructible rational language;

(ii) 1 ∈ L and Lπ = 1;

(iii) L2 = L = L−1;

(iv) (bhξ)L(bh−1ξ) ⊆ L for every h ∈ H.

Proof. (i) Since H is finite, 1ψ−1 and L are rational and effectively constructible by Propo-
sition 2.1.

(ii) Indeed, if (bh1 · · · bhn)ψ = 1, then h1 · · ·hn = 1 and so

(bh1 · · · bhn)ξπ ⊆ ((h1ϕ1π
−1) · · · (hnϕ1π

−1))π = (h1 · · ·hn)ϕ1 = 1.

(iii) The equality L2 = L follows from (1ψ−1)2 = 1ψ−1. Now let u ∈ L. We may write
u ∈ (bh1 · · · bhn)ξ with (bh1 · · · bhn)ψ = 1. It follows that (bh−1

n
· · · bh−1

1
)ψ = 1. Since S−1 = S

and T−1 = T , we get

bh−1ξ = Sh−1ϕ1
∪ Th−1ϕ2

= S−1hϕ1
∪ T−1hϕ2

= (bhξ)
−1

for every h ∈ H and so

u−1 ∈ ((bh1ξ) · · · (bhnξ))−1 = (bhnξ)
−1 · · · (bh1ξ)−1

= (bh−1
n
ξ) · · · (bh−1

1
ξ) = (bh−1

n
· · · bh−1

1
)ξ ⊆ 1ψ−1ξ = L.
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Thus L−1 ⊆ L and so also L = (L−1)−1 ⊆ L−1. Therefore L = L−1.
(iv) Assume that (bh1 · · · bhn)ψ = 1 and u ∈ (bh1 · · · bhn)ξ. Then h1 · · ·hn = 1 and so

hh1 · · ·hnh−1 = 1. It follows that

(bhξ)u(bh−1ξ) ⊆ (bhbh1 · · · bhnbh−1)ξ ⊆ L.

�

Let
S′ = S \

⋃
h∈H

Shϕ1 , T ′ = T \
⋃
h∈H

Thϕ2 .

Since H is finite and S, T are both Stallings sections, then S′, T ′ are both effectively con-
structible rational languages. We define

V = LSL ∪ LTL ∪ (1 ∪ LS′)(LT ′LS′)∗(L ∪ LT ′L). (11)

Since L, S, T, S′, T ′ are all effectively constructible rational languages, so is V , in view of
Proposition 2.1 and Theorem 2.4. Since S and T are sections for π1 and π2, and 1 ∈ L, it
follows from the representation of amalgams in reduced form that V is a section for π. In
particular, note that (S′)−1 = S′, (T ′)−1 = T ′ and so V −1 = V . It remains to be proved
that V satisfies axioms (S1) and (S2).

Now let g = g1 · · · gn be a reduced form of G. We claim that

Vg = LW
(1)
g1 · · ·LW

(n)
gn L, (12)

where W (i) = S if gi ∈ G1 and W (i) = T if gi ∈ G2. In particular, Vg = LSgL = LTgL if
g ∈ G1 ∩G2 = H1 = H2.

We prove two cases, the others are similar:

Case n = 1 and g1 ∈ G1:

We must prove that Vg = LSg1L. Indeed, it is immediate that LSg1L ⊆ V and LSg1Lπ =
(LSg1L)π = Sg1π = g1 = g, hence LSg1L ⊆ Vg. Conversely, if u ∈ Vg, it is clear from
Proposition 5.1 and Lπ = 1 that we must have u ∈ LSL ∪ LTL. If u ∈ LSxL for some
x ∈ G1, then g1 = g = uπ = x and so u ∈ LSg1L. Hence we assume that u ∈ LTyL for
some y ∈ G2. It follows that g1 = g = uπ = y and so g ∈ G1 ∩ G2 = H1 = H2. We can
then write g1 = hϕ1 and y = hϕ2 for some h ∈ H. By Lemma 5.3, we get

u ∈ LThϕ2L ⊆ LThϕ2Sh−1ϕ1
Shϕ1L ⊆ L2Shϕ1L = LSg1L

and so (12) holds in this case.

Case n = 2k and g1 ∈ G1 \H1:

We must prove that
Vg = LSg1LTg2 · · ·LSg2k−1

LTg2kL.

Indeed, it is immediate that LSg1LTg2 · · ·LSg2k−1
LTg2kL ⊆ V and

LSg1LTg2 · · ·LSg2k−1
LTg2kLπ = (LSg1LTg2 · · ·LSg2k−1

LTg2kL)π
= (Sg1Tg2 · · ·Sg2k−1

Tg2k)π = g1 · · · g2k = g,
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hence LSg1LTg2 · · ·LSg2k−1
LTg2kL ⊆ Vg. Conversely, if u ∈ Vg, it is clear from Proposition

5.1 and Lπ = 1 that we must have u ∈ LSg′1LTg′2 · · ·LSg′2k−1
LTg′2kL where

g′1 = g1(h1ϕ1),

g′2 = (h−11 ϕ2)g2(h2ϕ2),
· · ·

g′2k−1 = (h−12k−2ϕ1)g2k−1(h2k−1ϕ1),

g′2k = (h−12k−1ϕ2)g2k

for some h1, . . . , h2k−1 ∈ H. Since S and T satisfy (S2) and by Lemma 5.3(iv), we get

u∈ LSg′1LTg′2 · · ·LSg′2k−1
LTg′2kL

⊆LSg1Sh1ϕ1LTh−1
1 ϕ2

Tg2 · · ·Th2k−2ϕ2LSh−1
2k−2ϕ1

Sg2k−1
Sh2k−1ϕ1LTh−1

2k−1ϕ2
Tg2kL

⊆LSg1LTg2 · · ·LSg2k−1
LTg2kL

and so Vg = LSg1LTg2 · · ·LSg2k−1
LTg2kL as claimed.

The other cases are absolutely similar, therefore (12) holds. Since S and T satisfy (S1),
and by Proposition 2.1, Theorem 2.4 and Lemma 5.3(i), Vg is an effectively constructible
rational language for every g ∈ G. Therefore (S1) holds for V .

As a consequence of (12), we have

Vg = Vg1···giVgi+1···gn

whenever g = g1 · · · gn is a reduced factorization. In particular, Vgg′ = VgVg′ holds if
g = g1 · · · gn and g′ = g′1 · · · g′m are reduced factorizations with gn ∈ G1\H1 and g′1 ∈ G2\H2,
or vice-versa. We shall refer to this case as the favourable case.

Given g ∈ G, let ||g|| denote the number n of components in a reduced form g1 · · · gn of
g. Let g, g′ ∈ G. We prove that

Vgg′ ⊆ VgVg′ (13)

by induction on k = ||g||+ ||g′||.
If ||g|| = ||g′|| = 1, we may assume that g, g′ ∈ G1 or g, g′ ∈ G2, otherwise we have the

favourable case and we are done. Without loss of generality, we may assume that g, g′ ∈ G1.
Then (12) and (S2) for S yield

Vgg′ = LSgg′L ⊆ LSgSg′L ⊆ LSgL2Sg′L = VgVg′ .

Therefore (13) holds for k = 2.
Assume now that ||g|| + ||g′|| > 2 and (13) holds for smaller values of ||g|| + ||g′||. Let

g = g1 · · · gn and g′ = g′1 · · · g′m be reduced decompositions of g and g′.
We do not have to consider the favourable case, hence we may assume that gn, g

′
1 ∈ G1 or

gn, g
′
1 ∈ G2. By symmetry, we may assume that gn, g

′
1 ∈ G1 and n > 1. Write x = g1 · · · gn−1

and y = gng
′
1 · · · g′m. Then ||x||+ ||y|| < ||g||+ ||g′|| and so the induction hypothesis yields

Vgg′ = Vxy ⊆ VxVy.

Suppose first that m = 1. Then (S2) for S yields

Vy = LSgng′1L ⊆ LSgnSg′1L ⊆ LSgnL
2Sg′1L = LSgnLVg′
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and so in view of (12) we get

Vgg′ ⊆ VxVy ⊆ VxLSgnLVg′ = VgVg′ .

Now suppose that m > 1. Then Vy ⊆ Vgng′1Vg′2···g′m by the induction hypothesis and so

Vgg′ ⊆ VxVy ⊆ VxVgng′1Vg′2···g′m ⊆ VxVgnVg′1Vg′2···g′m = VgVg′

by the favourable case. Thus (13) holds and so (S2) holds for V . Therefore V is a Stallings
section for π and the theorem is proved. �

6 HNN extensions over finite groups

Given a subgroup H of a group K and a monomorphism ϕ : H → K, the HNN extension
HNN(K,H,ϕ) is the group defined by the relative presentation

〈K, t | tht−1 = hϕ (h ∈ H)〉,

that is, is the quotient of the free product K ∗ F{t} by the normal subgroup generated by
the elements of the form tht−1(h−1ϕ) (h ∈ H). For details, the reader is referred to [11,
Chapter IV].

We use the standard notation H1 = H and H−1 = Hϕ. A given factorization of g,
g = w0t

ε1w1 · · · tεnwn, is said to be a reduced form for g ∈ HNN(K,H,ϕ) if:

(i) wi ∈ K;

(ii) εi ∈ {−1, 1};

(iii) εi+1 = −εi ⇒ wi /∈ Hεi

hold for every possible i. In particular, 1 is a reduced form.
Every element ofHNN(K,H,ϕ) can be represented by a reduced form, but the represen-

tation is not in general unique. However, this representation becomes clear as a consequence
of the classical Britton’s Lemma, which we choose to present in the following form:

Proposition 6.1 Let g = u0t
ε1u1 · · · tεnun be a reduced form of HNN(K,H,ϕ). The

alternative reduced forms for g in HNN(K,H,ϕ) are obtained by replacing each occurrence
of t by some element of ∪h∈H(hϕ)th−1.

In particular, 1 is the unique reduced form for the identity and so both K and F{t}
embed canonically into HNN(K,H,ϕ).

Theorem 6.2 Let K be a group with a Stallings section and let ϕ : H → K be a monomor-
phism for some finite subgroup H of K. Then HNN(K,H,ϕ) has also a Stallings section.

Proof. Let S be a Stallings section for the m-epi η : Ã∗ → K. Write G = HNN(K,H,ϕ),
B = A ∪ {b} and let π : B̃∗ → G be the m-epi defined by aπ = aη (a ∈ Ã) and bπ = t.

Let C = {ch | h ∈ H} be a new alphabet and let ψ : C∗ → H be the homomorphism
defined by chψ = h (h ∈ H). Let ξ : C∗ → Rat B̃∗ be the rational substitution defined by
chξ = Sh ∪ b−1Shϕb. We define

L = 1ψ−1ξ = {(ch1 · · · chn)ξ | h1 · · ·hn = 1}.

The next lemma summarizes some important properties of L:

19



Lemma 6.3 (i) L is an effectively constructible rational language;

(ii) 1 ∈ L and Lπ = 1;

(iii) L2 = L = L−1;

(iv) (chξ)L(ch−1ξ) ⊆ L for every h ∈ H;

(v) L ⊆ ((Hη−1)b−1(Hϕη−1)b)∗(Hη−1).

Proof. Since
chξπ = (Sh ∪ b−1Shϕb)π = Shπ = Shη = h

for every h ∈ H, the proof of Lemma 5.3 can be used with straightforward adaptations to
prove (i)-(iv).

On the other hand, since 1 ∈ Hη−1 we have

L = 1ψ−1ξ ⊆ C∗ξ ⊆ ((Hη−1) ∪ b−1(Hϕη−1)b)∗ ⊆ ((Hη−1)b−1(Hϕη−1)b)∗(Hη−1)

and so (v) holds as well. �

Now let
N = (Sb̃)∗S \ B̃∗(bSHb−1 ∪ b−1SHϕb)B̃∗

denote the set of all words in (Sb̃)∗S representing reduced forms of G. Let α : B̃∗ → Rat B̃∗

be the rational substitution defined by aα = a (a ∈ Ã) and bα = bL, b−1α = L−1b−1 = Lb−1.
We claim that

V = Nα

is a Stallings section for π.
By Theorem 3.11 and Lemma 6.3, the languages S, SH , SHϕ and L are all rational and

effectively constructible. By Proposition 2.1 and Theorem 2.4, so are N , Nα and V . Since
Nπ = G and 1 ∈ L, it follows that V π = G. Note that S−1 = S yields N−1 = N , and
together with L−1 = L, this yields V −1 = V . Thus V is a section for π.

Let g = u0t
ε1u1 · · · tεnun be a reduced form of G. We claim that

Vg = (Su0b
ε1Su1 · · · bεnSun)α. (14)

Since Lπ = 1, we have απ = π and so

(Su0b
ε1Su1 · · · bεnSun)απ = (Su0b

ε1Su1 · · · bεnSun)π = u0t
ε1u1 · · · tεnun = g,

hence
(Su0b

ε1Su1 · · · bεnSun)α ⊆ V ∩ gπ−1 = Vg.

Conversely, let w ∈ Vg. Then there exists a reduced form v0t
δ1v1 · · · tδmvm of G such

that w ∈ (Sv0b
δ1Sv1 · · · bδmSvm)α. Then

g = wπ = v0t
δ1v1 · · · tδmvm
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and it follows from Proposition 6.1 that m = n, δi = εi for i = 1, . . . , n, and v0t
ε1v1 · · · tεnvn

can be obtained from u0t
ε1u1 · · · tεnun by replacing each occurrence of t by some element

of ∪h∈H(hϕ)th−1. Assume that tεi is replaced by ((hiϕ)th−1i )εi . For i = 1, . . . , n, write

xi =

{
hi if εi = −1
hiϕ if εi = 1

yi =

{
hi if εi = 1
hiϕ if εi = −1

and also y0 = xn+1 = 1. Then
vi = y−1i uixi+1

for i = 0, . . . , n.
Moreover, we claim that

(Sxib
εiSy−1

i
)α ⊆ bεiα. (15)

Assume that εi = 1. Then

(Sxib
εiSy−1

i
)α = SxibLSy−1

i
= ShiϕbLSh−1

i
= bb−1ShiϕbLSh−1

i
⊆ b(chiξ)L(ch−1

i
ξ) ⊆ bL = bεiα

by Lemma 6.3(iv).
Similarly, (15) holds for εi = −1. Hence

w ∈ (Sv0b
ε1Sv1 · · · bεnSvn))α

= (Su0x1b
ε1Sy−1

1 u1x2
· · ·Sy−1

n−1un−1xn
bεnSy−1

n un
)α

⊆ (Su0Sx1b
ε1Sy−1

1
Su1Sx2 · · ·Sy−1

n−1
Sun−1Sxnb

εnSy−1
n
Sun)α

⊆ (Su0b
ε1Su1 · · · bεnSun)α

and so (14) holds.
Since K has a Stallings section, has decidable generalized word problem and so we can

effectively compute a reduced form for any given element of G. Therefore (S1) follows from
(14).

If g ∈ G has a reduced form g = w0t
ε1w1 · · · tεnwn, we write ||g|| = n. We show that

Vgg′ ⊆ VgVg′ for all g, g′ ∈ G by induction on ||g||+ ||g′||.
Let g = w0t

ε1w1 · · · tεnwn and g′ = w′0t
ε′1w′1 · · · tε

′
mw′m be reduced forms. If

gg′ = w0t
ε1w1 · · · tεnwnw′0tε

′
1w′1 · · · tε

′
mw′m (16)

is a reduced form, then

Vgg′ = (Sw0b
ε1Sw1 · · · bεnSwnw′0

bε
′
1Sw′1 · · · b

ε′mSw′m)α

⊆ (Sw0b
ε1Sw1 · · · bεnSwnSw′0b

ε′1Sw′1 · · · b
ε′mSw′m)α

⊆ (Sw0b
ε1Sw1 · · · bεnSwn)α(Sw′0b

ε′1Sw′1 · · · b
ε′mSw′m)α = VgVg′ ,

hence we may assume that (16) is not a reduced form and Vg1g2 ⊆ Vg1Vg2 whenever ||g1||+
||g2|| < ||g||+ ||g′||. In particular, n,m > 0 and either

εn = −ε′1 = 1, wnw
′
0 ∈ H (17)
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or
εn = −ε′1 = −1, wnw

′
0 ∈ Hϕ.

The second case being analogous, we assume that (17) holds. Let h = wnw
′
0. Then

gg′ = (w0t
ε1w1 · · · tεn−1wn−1)((hϕ)w′1t

ε′2w′2 · · · tε
′
mw′m).

Since g1 = w0t
ε1w1 · · · tεn−1wn−1 and g2 = (hϕ)w′1t

ε′2w′2 · · · tε
′
mw′m are both reduced forms,

the induction hypothesis yields

Vgg′ = Vg1g2 ⊆ Vg1Vg2 = (Sw0b
ε1Sw1 · · · bεn−1Swn−1)α(S(hϕ)w′1b

ε′2Sw′2 · · · b
ε′mSw′m)α

⊆ (Sw0b
ε1Sw1 · · · bεn−1Swn−1ShϕSw′1b

ε′2Sw′2 · · · b
ε′mSw′m)α.

Now

Shϕα = Shϕ ⊆ b(b−1ShϕbSh−1)Shb−1 ⊆ bLShLb−1 = (bShb−1)α ⊆ (bSwnSw′0b
−1)α

yields

Vgg′ ⊆ (Sw0b
ε1Sw1 · · · bεn−1Swn−1ShϕSw′1b

ε′2Sw′2 · · · b
ε′mSw′m)α

⊆ (Sw0b
ε1Sw1 · · · bεn−1Swn−1b

εnSwnSw′0b
ε′1Sw′1b

ε′2Sw′2 · · · b
ε′mSw′m)α = VgVg′

and so (S2) holds. Therefore V is a Stallings section for π. �

7 Virtually free groups

Recall that a pushdown A-automaton is a sextuple of the form A = (Q, q0, T,D, d0, δ), where
Q and D are finite sets, q0 ∈ Q, T ⊆ Q, d0 ∈ D and δ is a finite subset of

Q× (A ∪ 1)×D ×Q×D∗.

A configuration of A is an element of Q×D∗. The pair (q0, d0) is the initial configuration.
If (q, a, d, p, u) ∈ δ, we write

(q, vd)|−−
a

(p, vu)

for every v ∈ D∗. We call this relation an elementary transition. If we have a sequence

(q0, w0)|−−
a1

(q1, w1)|−−
a2

· · · |−−
an

(qn, wn)

for some n ≥ 0, we write
(q0, w0)

∗
|−−−−−
a1···an

(qn, wn)

and we refer to it as a transition. The language accepted by A (by final states) is defined
by

L(A) = {w ∈ A∗ | (q0, d0)
∗
|−−
w

(t, u) for some t ∈ T and u ∈ D∗}.
A language L ⊆ A∗ is context-free if L = L(A) for some pushdown A-automaton A. For
details on pushdown automata, the reader is referred to [6, Chapter 6].

Recall that a group is virtually free if it has a free subgroup of finite index. Some recent
papers involving virtually free groups include [5, 9, 10].

We can now prove the main theorem of the paper:

Theorem 7.1 A finitely generated group has a Stallings section if and only if it is virtually
free.
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Proof. It is known that finitely generated virtually free groups are, up to isomorphism,
the fundamental groups of graphs of groups where the graph, the vertex groups and the
edge groups are all finite [15, Theorem 7.3]. Moreover, they can be obtained from finite
groups by finitely many successive applications of free products with amalgamation over
finite groups and HNN extensions over finite groups [4, Chapter 1, Example 3.5 (vi)]. Since
finite groups have Stallings sections by Proposition 3.2, it follows from Theorems 5.2 and
6.2 that every finitely generated virtually free group has a Stallings section.

Conversely, assume that S is a Stallings section for the m-epi π : Ã∗ → G. We show
that the word problem submonoid 1π−1 is context-free. By Muller and Schupp’s Theorem
[14], this implies that G is virtually free.

By the remark following the definition of Stallings section in Section 3, we can assume
that 1 ∈ S1.

For every a ∈ Ã, let Aa = (Qa, qa0 , T
a, Ea) be a finite automaton recognizing Saπ.

We define a pushdown Ã-automaton A = (Q, q0, t,D, d0, δ) by Q = (∪
a∈ÃQ

a) ∪ {q0, t},
D = Ã ∪ {d0} and

δ = {(q0, 1, d0, t, 1)} ∪ {(q0, a, d0, qa0 , d0) | a ∈ Ã}
∪ {(pa, 1, d0, qa, d0b) | (pa, b, qa) ∈ Ea, a, b ∈ Ã}
∪ {(pa, 1, c, qa, cb) | (pa, b, qa) ∈ Ea, a, b, c ∈ Ã}
∪ {(ta, b, d, qb0, d) | ta ∈ T a, a, b ∈ Ã, d ∈ D}
∪ {(ta, 1, d0, t, 1) | ta ∈ T a, a ∈ Ã}.

We shall prove that 1π−1 = L(A). First of all we note that (pa, b, qa) ∈ Ea implies

(pa, d0v)|−−
1

(qa, d0vb)

for all b ∈ Ã and v ∈ RA, hence

If pa
u−→qa is a path in Aa, then (pa, d0v)

∗
|−−
1

(qa, d0vu) (18)

holds for all a ∈ Ã and v ∈ RA.
Assume now that a1 · · · an ∈ 1π−1, with a1, . . . , an ∈ Ã. We may assume that n > 0.

Then 1 ∈ S1 = S(a1···an)π ⊆ Sa1π · · ·Sanπ and so there exist ui ∈ Saiπ = L(Aai) such that
u1 · · ·un = 1. It follows from (18) that

(qai0 , d0u1 · · ·ui−1)
∗
|−−
1

(tai , d0u1 · · ·ui)

for some tai ∈ T ai . Hence

(q0, d0) |−−
a1

(qa10 , d0)
∗
|−−
1

(ta1 , d0u1)|−−
a2

(qa20 , d0u1)
∗
|−−
1

(ta2 , d0u1u2)|−−
a3

· · ·

|−−
an−1

(q
an−1

0 , d0u1 · · ·un−2)
∗
|−−
1

(tan−1 , d0u1 · · ·un−1)|−−
an

(qan0 , d0u1 · · ·un−1)
∗
|−−
1

(tan , d0u1 · · ·un) = (tan , d0)|−−
1

(t, 1)

and so a1 · · · an ∈ L(A). Thus 1π−1 ⊆ L(A).
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Conversely, let a1 · · · an ∈ L(A), with a1, . . . , an ∈ Ã. We may assume that n > 0. It
follows easily that there exists a sequence of transitions of the form

(q0, d0) = (p0, d0w0)|−−
a1

(qa10 , d0w0)
∗
|−−
1

(p1, d0w1)|−−
a2

· · · |−−
an

(qan0 , d0wn−1)
∗
|−−
1

(pn, d0wn)

= (pn, d0)|−−
1

(t, 1)

for some w0, . . . , wn ∈ RA. Now, for i = 1, . . . , n, we must have pi ∈ T ai and wi = wi−1ui
for some ui ∈ L(Aai) = Saiπ. Hence

1 = wn = w0u1 · · ·un = u1 · · ·un ∈ Sa1π · · ·Sanπ

and so 1 ∈ (Sa1π · · ·Sanπ)π = (a1 · · · an)π. Thus L(A) ⊆ 1π−1 and so 1π−1 = L(A).
Therefore 1π−1 is context-free and so G is virtually free. �

8 Sections with good properties

Having established that finitely generated virtually free groups are precisely the groups
with a Stallings section, we have now the possibility of imposing stronger conditions on
their Stallings sections, with the purpose of allowing further applications of the Stallings
automata Γ(G,H, π) u S.

The technique is simple. Suppose that:

• every finite group has a Stallings section with property P ;

• if G1 and G2 have Stallings sections with property P and H is a finite group, then
G1 ∗H G2 has also a Stallings section with property P ;

• if K has a Stallings section with property P and H is a finite subgroup of K, then
HNN(K,H,ϕ) has also a Stallings section with property P .

Then, in view of [4, Chapter 1, Example 3.5 (vi)], every finitely generated virtually free
group has a Stallings section with property P .

A good example is given by the concept of extendable Stallings section, which will turn
out to be useful to characterize finite index subgroups.

Let S be a Stallings section for the m-epi π : Ã∗ → G. We say that S is extendable if,
for every u ∈ S, there exists some v ∈ RA such that uv∗ ⊆ S and

u ∈ Pref(S(uvnu−1)π) for almost all n ∈ IN. (19)

In order to prove the next result, we consider the following condition on a Stallings
section S for π : Ã∗ → G:

(N) If G is not torsion-free, then S1 6= 1.

Proposition 8.1 Every finitely generated virtually free group has an extendable Stallings
section.
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Proof. In fact, we show that such a group always has an extendable Stallings section
satisfying condition (N).

Following the script previously described, we start by considering a m-epi π : Ã∗ → G
with G finite. Let S = RA and take v = 1 for every u ∈ S. Hence uv∗ ⊆ S. Since Sg = gπ−1

for every g ∈ G, we claim that Pref(Sg) = RA:

Let w ∈ RA and take a ∈ Ã such that wa ∈ RA. Since G is finite, there exists some
m ∈ IN such that every element of G can be represented by some word of length < m. In
particular, there exists some z ∈ RA such that ((a−mw−1)π)g = zπ and |z| < m. Hence
(wamz)π = g and so wamz ∈ gπ−1 = Sg. Since wam ∈ RA and |z| < m, we get w ∈ Pref(Sg)
and so Pref(Sg) = RA.

Therefore (19) holds and so RA is an extendable Stallings section for π : Ã∗ → G when
G is finite. Moreover, if G is nontrivial, then S1 = 1π−1 contains nonempty words and so
condition (N) holds for S.

Next, assume that S (respectively T ) is an extendable Stallings section for the m-epi

π1 : Ã1
∗
→ G1 (respectively π2 : Ã2

∗
→ G2), satisfying condition (N). We assume that

Ã1
∗
∩ Ã2

∗
= 1 and write A = A1 ∪A2. Let H be a finite group and consider isomorphisms

ϕj : H → Hj ≤ Gj (j = 1, 2). Let G = G1 ∗H G2 be the amalgam of G1 and G2 relative to

ϕ1 and ϕ2, and let π : Ã∗ → G be the m-epi induced by π1 and π2. We may assume that
H1 < G1 and H2 < G2, otherwise G ∼= G2 or G ∼= G1. We claim that the Stallings section
V (for π) defined in the proof of Theorem 5.2 is also extendable. We use all the notation
introduced in that proof.

Let u ∈ V . Without loss of generality, we may assume that either u = 1 or the last
letter of u is in Ã1. Let uπ = g1 · · · gm be a reduced form of uπ.

Suppose first that gm ∈ G1 \ H1. Take w ∈ T ′ and z ∈ S′, and write v = wz. Then
uv∗ ⊆ V . We claim that

u ∈ Pref(V(uvnu−1)π) if n ≥ m

2
+ 1. (20)

Indeed, a simple induction on ` shows that if x = x1 · · ·xk+`+1 and y = y1 · · · y` are
reduced forms in G, then xy has a reduced form x1 · · ·xkz1 · · · zr:

We may assume that y1 ∈ G1. If y1 ∈ H1, then ` = 1 and xy = x1 · · ·xk+1(xk+2y1)
is a reduced form and we are done. Hence we may assume that y1, xk+`+1 ∈ G1 \H1 and
xk+`+1y1 = hϕ1 for some h ∈ H. Then (hϕ2 y2)y3 · · · y` is a reduced form. If ` = 1, then
xy = x1 · · ·xk(xk+1(hϕ2)) is a reduced form and we are done. If ` > 1, we reduce the
problem to the case ` − 1 by considering the product xy = (x1 · · ·xk+`)((hϕ2 y2)y3 · · · y`).
Thus xy has a reduced form x1 · · ·xkz1 · · · zr as claimed.

In particular, taking x = (uvn)πand y = u−1π, it follows that (uvnu−1)π has a reduced
form g1 · · · gmw · · · if n ≥ m

2 + 1. Since gm ∈ G1 \H1 and uw is reduced, it follows easily
from (12) that V(uvnu−1)π must contain some word uw · · · Thus (20) holds.

Suppose next that gm ∈ G2 \H2. We can of course assume that u 6= 1. Since the last

letter of u is in Ã1, it follows from (12) that H 6= 1. Since S and T satisfy condition (N),
it follows that there exist z1 ∈ S1 \ {1} and w1 ∈ T1 \ {1}. Take w ∈ T ′ and z ∈ S′, and
write v = w1zwz1. Since w1, z1 ∈ L, we have uv∗ ⊆ V . Similarly to the preceding case,
(20) holds.
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Finally, we are left with the case m = 1 and g1 ∈ H1 (equal to H2 in G). Let v = 1.
Then uv∗ ⊆ V trivially and (uvnu−1)π = 1, hence it suffices to show that u ∈ Pref(V1).
By (12) and Lemma 5.3, we have V1 = LS1L = L and u ∈ LShϕ1L for some h ∈ H. Let
w ∈ Th−1ϕ2

. Then u ∈ Pref(uw) and uw = uw ∈ LShϕ1LTh−1ϕ2
⊆ L = V1 by Lemma 5.3.

Therefore V is extendable.
Suppose now that V1 = {1}. Since V1 = L, it follows that H is trivial and S1 = T1 = {1}.

Since S and T satisfy condition (N), it follows that G1 and G2 are torsion-free and so G is a
free product of torsion-free groups, hence torsion-free. Therefore V satisfies condition (N).

Finally, assume that S is an extendable Stallings section for the m-epi η : Ã∗ → K
satisfying condition (N). Let ϕ : H → K be a monomorphism for some finite subgroup H
of K. Write G = HNN(K,H,ϕ), B = A∪ {b} and let π : B̃∗ → G be the m-epi defined by
aπ = aη (a ∈ Ã) and bπ = t.

We claim that the Stallings section V (for π) defined in the proof of Theorem 6.2 is also
extendable. We use all the notation introduced in that proof.

We start by proving the following lemma:

Lemma 8.2 Let k0t
ε1k1 · · · tεmkm be a reduced form of G with m ≥ 1 and let

P = {z0w1b
ε1z1w2b

ε2z2 · · ·wmbεmzm | z0 ∈ (k0H−ε1)η−1,
zi ∈ (HεikiH−εi+1)η−1 for i = 1, . . . , n− 1, zm ∈ (Hεmkm)η−1,
wj ∈ (bεj (Hεjη

−1)b−εj (H−εjη
−1))∗}.

Then P is closed under (partial) free group reduction.

Proof. Let u = z0w1b
ε1z1w2b

ε2z2 · · ·wmbεmzm be an element of P of the described form.
Suppose first that aa−1 is a factor of u for some a ∈ Ã. Then aa−1 is either a factor of
some zi or a factor of some wj , and it follows from the definitions that we may cancel aa−1

and remain inside P .
Thus we are left to discuss the case of cancellations involving the letter b. Sup-

pose first that we have a factor bεjb−εj to cancel in wj . Write wj = x1 · · ·xr, with
xi = bεjx′ib

−εjx′′i (x′i ∈ Hεjη
−1, x′′i ∈ H−εjη

−1), and assume that x′` = 1. Cancelling
our factor yields x1 · · ·x`−1x′′`x`+1 · · ·xr. If ` > 1, we can incorporate x′′` into x`−1 in view
of (H−εjη

−1)2 ⊆ H−εjη
−1. If ` = 1, we can incorporate x′′` into zj−1 by the same reason.

The case of cancellations b−εjbεj inside wj is discussed similarly.
Suppose now that b−εj is the last letter of wj and cancels with its right neighbour bεj .

Then we replace wjb
εj = x1 · · ·xrbεj by x1 · · ·xr−1bεjx′r. Since x′r can be absorbed by zj ,

the claim holds also in this case.
Finally, we note that we can never have zj = 1 when εj = −εj+1: otherwise, we would

get
1 = zj ∈ (HεjkjHεj )η

−1

and so kj ∈ Hεj , impossible since εj = −εj+1 and k0t
ε1k1 · · · tεmkm is a reduced form. �

Back to the proof of Proposition 8.1, let u ∈ V . Assume that uπ = k0t
ε1k1 · · · tεmkm

is a reduced form of uπ. If m = 0, then u ∈ Vuπ = Suη and it follows that uv∗ ⊆ V for
v = b. What if m > 0? Then it is clear that k0t

ε1k1 · · · tεmkmtεmn is a reduced form for
every n ≥ 0. We claim that ubεmn ⊆ V .
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Indeed, let P be defined as in Lemma 8.2. It follows from (14) that

u ∈ (Sk0b
ε1Sk1 · · · tεmSkm)α

and it is immediate that Sk0b
ε1Sk1 · · · tεmSkm ⊆ P . Since

b−1α = Lb−1 ⊆ (Hη−1)(b−1(Hϕη−1)b(Hη−1))∗b−1

by Lemma 6.3(v), and the factors zj−1 may absorbe factors from Hη−1 on the right when
εj = −1, it follows that we may replace b−1 by b−1α in Sk0b

ε1Sk1 · · · tεmSkm and remain
inside P .

Similarly,

bα = bL ⊆ b((Hη−1)b−1(Hϕη−1)b)∗(Hη−1) = (b(Hη−1)b−1(Hϕη−1))∗b(Hη−1)

and the factors zj may absorbe factors from Hη−1 on the left when εj = 1, it follows that

(Sk0b
ε1Sk1 · · · bεmSkm)α ⊆ P . Hence (Sk0b

ε1Sk1 · · · tεmSkm)α ⊆ P by Lemma 8.2 and so
u ∈ P .

As a consequence, we may write u = xbεmy with y ∈ RA. Since k0t
ε1k1 · · · tεmkmtεmn is

a reduced form for every n ∈ IN, it follows that

(Sk0b
ε1Sk1 · · · bεmSkm)αbεmn ⊆ (Sk0b

ε1Sk1 · · · bεmSkmbεmn)α ⊆ V

for every n ∈ IN and so ubεmn ∈ V . Since u = xbεmy, taking v = bεm we get uvn = ubεmn =
ubεmn ∈ V for every n ∈ IN as claimed.

We continue now by showing that in any case

u ∈ Pref(V(uvnu−1)π) if n > m. (21)

Indeed, since uv ∈ RB, it suffices to show that (uvnu−1)π has a reduced form
k0t

ε1k1 · · · tεmkmtεm · · · if n > m (k0t · · · if m = 0), and we may use induction on m. The
case m = 0 being obvious, assume that m > 0 and the claim holds for m − 1. We assume
that v = t, the other case being analogous. If k0t

ε1k1 · · · tεmkmtnk−1m t−εmk−1m−1 · · · t−ε1k
−1
0

is not itself a reduced form, then k−1m ∈ H and εm = 1, hence we may write

(uvnu−1)π = k0t
ε1k1 · · · tεmkmtn−1k′mk−1m−1t

−εm−1k−1m−2 · · · t
−ε1k−10

for some k′m ∈ Hϕ. Since n − 1 > m − 1, the induction hypothesis applied to the prod-
uct k0t

ε1k1 · · · tεm−1km−1(k
′
m)−1 yields now the required result. Thus (21) holds and V is

extendable.
It remains to show that V satisfies condition (N). Suppose that V1 = {1}. Since V1 = S1

and S satisfies condition (N), it follows that K is torsion-free, and so H is trivial. Hence G
is the free product of K by the infinite cyclic group F{t}. Being a free product of torsion-free
groups, G is itself torsion-free, therefore V satisfies condition (N). �

We can now derive the following application of the concept of extendable Stallings
section:

Theorem 8.3 Let S be an extendable Stallings section for the m-epi π : Ã∗ → G and let
H be a finitely generated subgroup of G. Then the following conditions are equivalent:
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(i) H has finite index in G;

(ii) S ⊆ Pref(SH);

(iii) every word of S labels a path out of the basepoint of Γ(G,H, π) u S.

Proof. (i) ⇒ (ii). Suppose that u ∈ S \ Pref(SH). Since S is extendable, there exist some
v ∈ RA and m ∈ IN such that uv∗ ⊆ S and u ∈ Pref(S(uvnu−1)π) for n ≥ m. We claim that

H(uvj)π 6= H(uvi)π if j ≥ i+m. (22)

Indeed, assume that j ≥ i+m. If H(uvj)π = H(uvi)π, then (uvj−iu−1)π ∈ H and so

u ∈ Pref(S(uvj−iu−1)π) ⊆ Pref(SH),

a contradiction. Therefore (22) holds and so H has infinite index in G.
(ii) ⇒ (iii). Since SH ⊆ L(Γ(G,H, π) u S) by Theorem 3.9.
(iii) ⇒ (i). Assume now that every word of S labels a path out of the basepoint q0 of

A = Γ(G,H, π) u S. Let Q denote the vertex set of A. For every q ∈ Q, fix a path q0
wq−→q.

We claim that
G =

⋃
q∈Q

H(wqπ). (23)

Indeed, let g ∈ G, and take u ∈ Sg. Then there is a path in A of the form q0
u−→q for some

q ∈ Q. Hence uw−1q ∈ L(A) ⊆ Hπ−1 by Theorem 3.9 and so g = uπ ∈ H(wqπ). Thus (23)
holds and so H has finite index in G. �

A natural question to ask is whether or not one could replace condition (S2) in the
definition of Stallings section by the stronger condition

(S2’) Sgh = SgSh for all g, h ∈ G.

However, we can prove that this condition can only be assumed in the simplest cases:

Proposition 8.4 The following conditions are equivalent for a group G:

(i) there exist a m-epi π : Ã∗ → G and a Stallings section S for π satisfying (S2’);

(ii) G is either finite or free of finite rank;

(iii) RA is a Stallings section for some m-epi π : Ã∗ → G.

Proof. (i) ⇒ (ii). Let S be a Stallings section S for π : Ã∗ → G satisfying (S2’). Then

S−11 = S1 = S2
1 and so we can view (S1, ◦) as a subgroup of (RA, ◦) ∼= FA, where u◦ v = uv.

The same holds for (S, ◦) since S−1 = S = S2, and (S1, ◦) is then a subgroup of (S, ◦). Now
(S, ◦) must be free by Nielsen’s Theorem. Since S, being a Stallings section, is rational,
so is (S, ◦) (a rational expression for S as a subset of Ã∗ translates through reduction to a
rational expression for S as a subset of (RA, ◦)). The same happens with S1, so it follows
from Anisimov and Seifert’s Theorem [1, Theorem 3.1] that both (S, ◦) and (S1, ◦) are
finitely generated groups. Hence (S, ◦) is a free group of finite rank.
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For every u ∈ S, we have

uS1u−1 ⊆ SuπS1Su−1π = S1,

hence (S1, ◦) is a finitely generated normal subgroup of the free group (S, ◦). By [11,
Proposition 3.12], (S1, ◦) is either trivial or has finite index in (S, ◦). On the other, we
claim that

uS1 = vS1 ⇔ uπ = vπ (24)

holds for all u, v ∈ S. The direct implication follows from S1π = 1. Conversely, assume
that uπ = vπ. Then v−1u ∈ Sv−1πSuπ = S1 and so u ∈ vS1 and uS1 ⊆ V S1. By symmetry,
we get uS1 = V S1 and so (24) holds.

It is now straightforward to check that

(S, ◦)/(S1, ◦)→ G

uS1 7→ uπ

is a group isomorphism. Hence either G ∼= (S, ◦) is a free group of finite rank, or G ∼=
(S, ◦)/(S1, ◦) is a finite group.

(ii) ⇒ (iii). Immediate from the proof of Proposition 3.2.
(iii) ⇒ (i). Assume that S = RA is a Stallings section for the m-epi π : Ã∗ → G. Let

u ∈ Sg and v ∈ Sh for some g, h ∈ G. Since uvπ = (uv)π = gh, we get uv ∈ Sgh and so
SgSh ⊆ Sgh. Therefore Sgh = SgSh and so RA satisfies (S2’). �

9 Examples
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