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ABSTRACT

The Stallings construction for f.g. subgroups of free groups is generalized by in-
troducing the concept of Stallings section, which allows an efficient computation of
the core of a Schreier graph based on edge folding. It is proved that those groups
admitting Stallings sections are precisely f.g. virtually free groups, through a con-
structive approach based on Basse-Serre theory. Complexity issues and applications
are also discussed.

1 Introduction

Finite automata became over the years the standard representation of finitely generated
subgroups H of a free group F4. The Stallings construction constitutes a simple and efficient
algorithm for building an automaton S(H) which can be used for solving the membership
problem of H in F4 and many other applications. This automaton S(H) is nothing more
than the core automaton of the Schreier graph (automaton) of H in F4, whose structure can
be described as S(H) with finitely many infinite trees adjoined. Many features of S(H) were



(re)discovered over the years and were known to Reidemeister, Schreier, and particularly
Serre [16]. One of the greatest contributions of Stallings [17] is certainly the algorithm to
construct S(H): taking a finite set of generators hi, ..., h,, of H in reduced form, we start
with the so-called flower automaton, where petals labelled by the words h; (and their inverse
edges) are glued to a basepoint go:

I o2 Agh :

Then we proceed by successively folding pairs of edges of the form g«—p——sr until no more
folding is possible (so we get an inverse automaton). And we will have just built S(H). For
details and applications of the Stallings construction, see [1, 7, 13].

Since S(H) turns out to be the core of the Schreier graph of H < Fy, this construction
is independent of the finite set of generators of H chosen at the beginning, and of the
particular sequence of foldings followed. And the membership problem follows from the
fact that S(H) recognizes all the reduced words representing elements of H... and the
reduced words constitute a section for any free group.

Such an approach invites naturally generalizations for further classes of groups. For
instance, an elegant geometric construction of Stallings type automata was achieved for
amalgams of finite groups by Markus-Epstein [12]. On the other hand, the most general
results were obtained by Kapovich, Weidmann and Miasnikov [8] for finite graphs of groups
where each vertex group is either polycyclic-by-finite or word-hyperbolic and locally quasi-
convex, and where all edge groups are virtually polycyclic. However, the complex algorithms
were designed essentially to solve the generalized word problem, and it seems very hard to
extend other features of the free group case, either geometric or algorithmic. Our goal in the
present paper is precisely to develop a Stallings type approach with some generality which
is robust enough to exhibit several prized algorithmic and geometric features, namely in
connection with Schreier graphs. Moreover, we succeed on identifying those groups G for
which it can be carried on: (finitely generated) virtually free groups.

Which ingredients shall we need to get a Stallings type algorithm? First of all, we need
a section S with good properties that may emulate the role played by the reduced words
in the free group. In particular, we need a rational language (i.e. recognizable by a finite
automaton). We may of course need to be more restrictive than taking all reduced words,
if we want our finite automaton to recognize all the representatives of H <y, G in S. To
get inverse automata, it is also convenient to have S = S~}

Second, the set S, of words of S representing a certain g € G must be at least rational,
so we can get a finite automaton to represent each of the generalized petals.

Third, the folding process to be performed in the (generalized) flower automaton (com-
plemented possibly by other identification operations) must ensure in the end that all rep-
resentatives of elements of H in S are recognized by the automaton. And folding is the
automata-theoretic translation of the reduction process w — w taking place in the free
group. So we need the condition Sg,4, € Sg,Sg,, to make sure that the petals (correspond-
ing to the generators of H) carry enough information to produce, after the subsequent
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folding, all the representatives of elements of H. And this is how we were led to our
definition of Stallings section.

It is somewhat surprising how much we can get from this concept, that turned out to be
more robust than one would expect. Among other features, we can mention independence
from the generating set (so we can have Stallings automata for free groups when we consider
a non canonical generating set!), or a generalized version of the classical Benois Theorem.
We present some applications of the whole theory, believing that many others should follow
in due time, as it happened in the free group case.

The paper is structured as follows. In Section 2 we present the required basic concepts.
The theory of Stallings sections is presented in Section 3. In Section 4, we discuss the
complexity of the generalized Stallings construction in its most favourable version. In
Sections 5 and 6 we show that existence of a Stallings section is inherited through free
products with amalgamation over finite groups and HNN extensions over finite groups,
respectively. In Section 7, we prove that those groups admitting a Stallings section are
precisely the finitely generated virtually free groups. In Section 8, we show that we can
assume stronger properties for Stallings sections with an eye to applications, namely the
characterization of finite index subgroups. Finally, we present some examples in Section 9.

2 Preliminaries

Given a finite alphabet A, we denote by A* the free monoid on A, with 1 denoting the
empty word. A subset of a free monoid is called a language.
We say that A= (Q,q,T, E) is a (finite) A-automaton if:

e ( is a (finite) set;
® g €Qand T C Q;
e FCQxXAXQ.

A nontrivial path in A is a sequence

al a2 an
Po—P1—>  —Dn
with (pi_1,a;,p;) € E for i = 1,...,n. Its label is the word a1 ---a, € AT = A*\ {1}. Tt is
said to be a successful path if pg = g and p,, € T. We consider also the trivial path p#p
for p € Q. It is successful if p = qo € T'. The language L(A) recognized by A is the set of all
labels of successful paths in A. A path of minimal length between two vertices is called a
geodesic, and so does its label by extension.

The automaton A = (Q, qo, T, E) is said to be deterministic if, for all p € @Q and a € A,
there is at most one edge of the form (p,a,q). We say that A is trim if every ¢ € @ lies in
some successful path.

Given deterministic A-automata A = (Q, qo, T, F) and A" = (Q', ¢}, T', E'), a morphism
o: A— A is a mapping ¢ : Q — Q' such that

® qop =qpand T C T

* (pp,a,qp) € E' for every (p,a,q) € E.



It follows that L(A) C L(A’) if there is a morphism ¢ : A — A’. The morphism ¢ : A — A’
is:

e injective if it is injective as a mapping ¢ : Q — Q';

e an isomorphism if it is injective, 7" = T'y and every edge of E’ is of the form (pyp, a, qp)
for some (p,a,q) € E.

The star operator on A-languages is defined by

L=z,

n>0

where LY = {1}. A language L C A* is said to be rational if L can be obtained from
finite languages using finitely many times the operators union, product and star (admits a
rational expression). Alternatively, L is rational if and only if it is recognized by a finite
(deterministic) A-automaton A = (Q, qo, T, E) [3, Section III]. The definition generalizes to
subsets of an arbitrary monoid in the obvious way.

We denote the set of all rational languages L C A* by Rat A*. Note that Rat A*,
endowed with the product of languages, constitutes a monoid.

In the statement of a result, we shall say that a rational language L is effectively con-
structible if there exists an algorithm to produce from the data implicit in the statement a
finite A-automaton A recognizing L.

It is convenient to summarize some closure and decidability properties of rational lan-
guages in the following result (see [3] e.g.). The prefix set of a language L C A* is defined
as

Pref(L) = {u € A" |uA* N L # 0}.

A rational substitution is a morphism ¢ : A* — Rat B* (where Rat B* is endowed with
the product of languages). Given K C A*, we denote by K¢ the language U,cxup C B*.
Since singletons are rational languages, monoid homomorphisms constitute particular cases
of rational substitutions.

Proposition 2.1 Let A be a finite alphabet and let K, L C A* be rational. Then:
(i) KUL,KNL,A*\ L, Pref(L) are rational;

(i) if p : A* — Rat B* is a rational substitution, then K¢ is rational;
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(iii) if ¢ + A* — M is a monoid homomorphism and M s finite, then Xp™" is rational

for every X C M.

Moreover, all the constructions are effective, and the inclusion K C L is decidable.

Given an A-automaton A and L C A*, we denote by A M L the A-automaton obtained
by removing from A all the vertices and edges which do not lie in some successful path
labelled by a word in L.

Proposition 2.2 Let A be a finite A-automaton and let L C A* be a rational language.
Then AN L is effectively constructible.



Proof. Write A = (Q,qo, T, E) and let A" = (Q’, ¢(,, T, E') be a finite A-automaton recog-
nizing L. The direct product

AN = (Q X Qla (q07Q(,))7T X T/7E//)

is defined by
E"={((p,?),a,(q,4)) | (p,a,q) € E, (¢v,a,¢) € E'}.

Let B denote the trim part of A” (by removing all vertices/edges which are not part of
successful paths in A”; this can be done effectively). Then A M L can be obtained by
projecting into the first component the various constituents of B. O

Given an alphabet A, we denote by A~1 a set of formal inverses of A, and write A=

AUA™L We say that A is an involutive alphabet. We extend A5 A e al to
an involution on A* through

(@Y l=a, (w)t=v'u! (a€A, uved).

An automaton A over an involutive alphabet A is involutive if, whenever (p,a,q) is an
edge of A, so is (g,a™!,p). Therefore it suffices to depict just the positively labelled edges
(having label in A) in their graphical representation.

An involutive automaton is inverse if it is deterministic, trim and has a single final
state (note that for involutive automata, being trim is equivalent to being connected). If
the latter happens to be the initial state, it is called the basepoint.

The next result is folklore. For a proof, see [1, Proposition 2.2].

Proposition 2.3 Given inverse automata A and A’, then L(A) C L(A") if and only if
there exists a morphism ¢ : A — A’. Moreover, such a morphism is unique.

Given an alphabet A, let ~ denote the congruence on A generated by the relation
{(aa™,1) | a € A}. 1)

The quotient F4 = /Nl*/w is the free group on A. We denote by 6 : A* = F4 the canonical
morphism u +— [u]~.

Alternatively, we can view (1) as a confluent length-reducing rewriting system on ﬁ*,
where each word w € A* can be transformed into a unique reduced word w with no factor
of the form aa™!. As a consequence, the equivalence

u~v &S U=70 (u,v € A¥)

solves the word problem for F4. We shall use the notation R4 = A,

We close this section with the classical Benois Theorem, which relates rational languages
with free group reduction:
Theorem 2.4 [2] If L C A* s rational, then L is an effectively constructible rational
language.



3 Stallings sections

Let GG be a (finitely generated) group generated by the finite set A. More precisely, we
consider an epimorphism 7 : A* — G satisfying

a 'r=(am)”!  for every ac A. (2)

A homomorphism satisfying condition (2) is said to be matched. Note that in this case (2)
holds for arbitrary words. For short, we shall refer to a matched epimorphism 7 : A* 5 G
(with A finite) as a m-epi.
We shall call a language S C A* a section (for m) if ST = G and S~! = S. For every
X C G, we write
Sx =Xr"'nS&.

We say that an effectively constructible rational section S C Ry is a Stallings section
for 7 if, for all g, h € G:

(S1) Sy is an effectively constructible rational language;
(52) Sgn € SySh.-
Note that (S2) yields immediately
Sgl~~-gn < Sgl e Sgn (3)

for all g1,...,9, € G. Moreover, in (S1) it suffices to consider S, for a € A. Indeed, by
(3), and since S~ = S and Sy = g for every g € G, we may write

S(al---an)w = Sa17r T Samr ns

and S 1= S, 1 forall a; € A. Then, by Proposition 2.1 and Theorem 2.4, Sy is a rational
languaé;e for every g € G; furthermore, it is effectively constructible from Sy, ..., Sa, x-
Note that if S is a Stallings section, then S U {1} is also a Stallings section. Indeed,
it is easy to see that conditions (S1) and (S2) are still verified: namely, if gh = 1, then
le SgSg_l = S,S), and so Sy U {1} C S,S), as required.
The next result shows that the existence of a Stallings section is independent from the

finite set A and the m-epi 7 : A* — G considered:

Proposition 3.1 Let 7 : A* 5 Gand 7 i AT = G be m-epis. Then G has a Stallings
section for w if and only if G has a Stallings section for 7.

Proof. Let S C R4 be a Stallings section for w. There exists a matched homomorphism
@ A* — A" such that on’ = . Write S’ = Sp. By Proposition 2.1(ii) and Theorem 2.4,
S’ is an effectively constructible rational subset of R4.. We claim that

Sg/; = Sg¢ (4)

holds for every g € G.
Indeed, let u € Sy. Then u = v for some v € S and vr = vpr' = vpr’ = ur’ = g.
Hence v € S, and so S C Sy¢.



Conversely, let v € S;. Then v € Sp = S" and vor’ = ver’ = v = g, hence Vg € Sy
and so (4) holds.
Since

(8)7 = (Sp) = (Sp)1=5"lp=5p=149,

it follows from (4) that S’ is a section for 7’. Moreover, (S1) is inherited by S’ from S by
Proposition 2.1(ii) and Theorem 2.4. Finally, for all g, h € G, we get

;h = Sgnp € (SgSh)¢ = (S¢Sn)p
= (Sgp)(Snp) = (Sg0)(Shp) = Sy},

hence (S2) holds for S” and so S’ is a Stallings section for 7/. By symmetry, we get the
required equivalence. [

Proposition 3.2 Free groups of finite rank and finite groups have Stallings sections.

Proof. Let A be a finite set and consider the canonical m-epi 0 : A* = Fp. Let S=Ry =

g*, which is rational by Theorem 2.4. Since S, = g for every g € Fjy, it is immediate that
S is a Stallings section for 6.

Assume now that G is finite and 7 : A* — G is a m-epi. We show that S = R4 is a
Stallings section for 7. For every g € G, we have S, = gn' N R4 = gn—!. Since both
gn~! and R, are effectively constructible rational languages, so is their intersection and
o (S1) holds. Finally, let u € Sy, and take v € Sp. Then (uv™!)m = ghh™! = g and so

wl € gn=t = S;. Hence u = wv=1tv = wv=lv € 5,5, and (S2) holds as well. Therefore
R4 is a Stallings section for w. [J

Given a m-epi 7 : A* = G and H < G, we define the Schreier automaton I'(G, H, ) to
be the A-automaton having;:

e the right cosets Hg (g € G) as vertices;
e H as the basepoint;
e edges Hg—"+Hg(ar) for all g € G and a € A.

It is immediate that T'(G, H, ) is always an inverse Z—automaton, but it is infinite unless
H has finite index in G. Moreover, L(['(G, H,7)) = Hr 1.

We will prove that I'(G, H, 7)1 S is an effectively constructible finite inverse automaton
when S is a Stallings section for w. The following lemmas pave the way for the construction
of '(G,H,m)M S:

Lemma 3.3 Let 7 : A* — G be a m- epi. Let A be a trim A- automaton and let p—25q be
an edge of A for some a € A. Let B be obtained by adding the edge q—>p to A. Then
(L(B))m < ((L(A))).

Proof. Write A = (Q, qo, T, E). We can factor any u € L(B) as u = upa ‘uy ---a ‘uy,
where the a~! label each visit to the new edge. We show that um € ((L(A))x) by induction



on n. The case n = 0 being trivial, assume that n > 1 and the claim holds for n—1. Writing
1 L4,—1, we have a path in B of the form

V=Ugad UL
qoi>qa—7l>pﬂ>t eT.
Since A is trim, we have also a path
Go—=p—sqg-—t' €T
in A. By the induction hypothesis, we get (vz)m € ((L(A))7) and so
ur = (va  up) T = ((v2) (27 ta ™ lw ™) (wuy ) )7 € (L(A))7)

as claimed. OJ

Lemma 3.4 Let m: A* — G be a m-epi. Let A= (Q,qo,T,E) be a trim A-automaton and
let B be obtained by identifying qo with some t € T. Then (L(B))m C ((L(A))7).

Proof. Let u € L(B). We can factor it as u = uj - - - ,,, where p;—¢; is a path in A with
Pi, ¢ € {qo,t} (i=1,...,n). In any case, there exist paths

Go—5pi, G—ot€T

in A with v, w; € L(A) U {1}. Since v;u;w; € L(A), we get w;m = (U{l(viuiwi)wi_l)w S
((L(A))7) for every i and so um € ((L(A))m) as well. O

Lemma 3.5 Let 7 : A* — G be a m-epi. Let A be an involutive A-automaton and let
p—=q be a path in A with wr = 1. Let B be obtained by identifying the vertices p and q.
Then L(A) C L(B) and (L(B))m = (L(A))m.

-1
Proof. The first inclusion is clear. Since A is involutive, we have also a path ¢g—p in A
and w™!7 = 1. Clearly, every u € L(B) can be lifted to some v € L(.A) by inserting finitely
many occurrences of the words w,w ™!, that is, we can get factorizations

u=uguy - -up € L(B), v=upw ™ uy - w"u, € L(A)

with e1,...,e, € {—1, 1}. Since um = v, it follows that (L(B))m C (L(.A))w. The opposite
inclusion holds trivially. [

Since (aa=!)m = 1 for every a € A, this same argument proves that:

Lemma 3.6 Let 7 : A* — G be a m-epi. Let A be a finite involutive A-automaton and
let B be obtained by successively folding pairs of edges in A. Then L(A) C L(B) and
(L(B))m = (L(A))m.

The next lemma reveals how the automaton I'(G, H, ) M S can be recognized.

Lemma 3.7 Let S C R4 be a Stallings section for the m-epi m : A* = G and let H <trg. G
Let A be a finite inverse A-automaton with a basepoint such that

Sy C L(A) C Hr 1, (5)

there is no path p—sq in A with p # q and wr = 1. (6)
ThenT(G,H,m)MNS=AMS.



Proof. Since A and I' = I'(G, H, ) are both inverse automata with a basepoint, and
L(A) € Hr~! = L(T), it follows from Proposition 2.3 that there exists a morphism ¢ :
A — T'. Suppose that pp = qp for some vertices p, q in A. Take geodesics

W=D, Go——q

in A, where qq denotes the basepoint. Since py = g, we have uv™! € L(T) = Hrn~ ! Let
50 € Stuv-1)r € Su. Then so € L(A) by (5) and so there is a path p=—%¢ in A. Since
(utsov)m = (utuv~lv)m = 1, it follows from (6) that p = ¢. Thus ¢ is injective.

It is immediate that ¢ restricts to an injective morphism ¢’ : AMS — I'MS. It remains
to show that every edge of I' M S is induced by some edge of AT S. Assume that H—+H
is a (successful) path in T' with s € S. By (5), we have s € L(A) and the path go——qo
is mapped by ¢’ onto H—+H. Since every edge of I' 1S occurs in some path H——H, it

follows that ¢’ is an isomorphism. [J

Lemma 3.8 Let S C R4 be a Stallings section for the m-epi m : A* = G and let H <rg G
Let A be a finite inverse A-automaton with a basepoint such that Sg C L(A) C Hr L It
is decidable, given two distinct vertices p,q of A, whether or not there is some path p—->q
n A with wr = 1.

Proof. Let p,q be distinct vertices of A and let gy denote its basepoint. Take geodesics
go—p and gp—>q, and let s € S(uwv-1)x- We claim that there is a path p—>q in A with
wm =1 if and only if s € L(A).

Indeed, assume that p——q is such a path. Then uwv™! € L(A) and so s7 = (uv™))m =
(uwv™H)7m € H. Thus s € Sy C L(A). .

Conversely, assume that s € L(A). Then there is a path p———¢ in A. Since

(u=tsv)m = (v tuv~ )T = 1, the lemma is proved. [J

Theorem 3.9 Let S C Ry be a Stallings section for the m-epi 7 : A* = G and let H <fg.
G. Then I'(G,H,w) M S is an effectively constructible finite inverse A-automaton with a

basepoint such that
Sy € L(I'(G,H,7)NS) C Hr L. (7)

Proof. Assume that H = (h1,...,hp). Fori=1,...,m, let A; = (Qi, 1, E;) be a finite
trim A-automaton with a single initial and a single terminal vertex satisfying

Shi € L(A;) C him ™! (8)

(in the next section we shall discuss how to define such an automaton with the lowest
possible complexity). Let By be the A-automaton obtained by taking the disjoint union of
the A; and then identifying all the ¢; into a single initial vertex qg.

Suppose that ¢;—gq; is a path in A;. Take v € L(A;). Then uv € L(A;) C hyw—! and
so um = (wwv™t) T = hih; ! = 1. Tt follows easily that (L(Bo))m C (Sp, U---U Sy, )7 C H.

Let B; be the finite trim involutive A-automaton obtained from By by adjoining edges
(g,a~t, p) for all edges (p,a,q) in By (a € A). It follows from Lemma 3.3 that (L(By))r C
(L(By))) C H.



Next let By be the A-automaton obtained from B; by identifying all terminal vertices
with the initial vertex go. By Lemma 3.4, we get (L(B2))m C ((L(B1))m) € H.

Finally, let B3 be the finite inverse A-automaton with a basepoint obtained by complete
folding of By. By Lemma 3.6, we have (L(Bs))m = (L(B2))m € H and so L(B3) C Hrn L.

Moreover,

Sh1 U---uJ Shm C L(.A1> U---u L(.Am) - L(Bo) C L(Bg)
and S~ = S yield

(Sh1 U--- UShm UShfl U--- UShfnl)* - L(Bg)

since Bj is involutive and has a basepoint, and therefore

(Sp, U---USy, U Sh;l .U Sh;})* C L(B3)

since Bs is inverse (the language of an inverse automaton is closed under reduction since
a word aa~! must label only loops). In view of (3), it follows that S;, C L(B3) for every
h € H and so Sy C L(B3). Therefore (5) holds for Bs.

However, (6) may not hold. Assume that the vertex set Q" of Bs is totally ordered. By
Lemma 3.8, we can decide if that happens, and find all concrete instances

J=1{(p,q) € @ x Q| p < qand there is some path p—q in Bz with wr = 1}.

Let B, be the finite inverse A-automaton with a basepoint obtained by identifying all pairs
of vertices in J followed by complete folding. Since the existence of a path with label in
17! is preserved through the identification process, it follows from Lemmas 3.5 and 3.6
that By still satisfies (5). )

Suppose that there exists a path p'—¢' in By with p’ # ¢’ and w'r = 1. We can lift p/
and,q’ to vertices p and ¢ in Bs, respectively. It is straightforward to check that the path
p'—5¢' can be lifted to a path p—>q in Bs by successively inserting in w’ factors of the
form:

e aa~! (a € A) (undoing the folding operations):;
e z ¢ 177! (undoing the identification arising from r—s ).

Since w'm = wr, it follows that either (p,q) € J or (¢q,p) € J, and so p’ = ¢/, a contradiction.
Therefore By satisfies (6). Now the theorem follows from Proposition 2.2 and Lemma 3.7.
O

We call I'(G, H, ) M S the Stallings automaton of H (for a given Stallings section 5).
Note that I'(Fa, H,0) M R 4 is the classical Stallings automaton of H <, F4 when we take
R4 as Stallings section (for the canonical m-epi 6).

Stallings automata provide a natural decision procedure for the generalized word prob-
lem:

Corollary 3.10 Let S C R4 be a Stallings section for the m-epi w : A* = G and let
H <y, G. Then the following conditions are equivalent for every g € G:

(i) g€ H;
10



(ii) Sy C L(T(G, H,7)NS);
(iii) Sy N L(T(G, H,7)NS) # 0.

Therefore the generalized word problem is decidable for G.

Proof. (i) = (ii). If g € H, then S, C Sy C L(I'(G, H,7) N S) by Theorem 3.9.
(ii) = (iii). Immediate since Sy # ) due to S being a section.
(iii) = (i). Since S, N L(T(G,H, 7)1 S) C gr ' nHr L.
Now decidability follows from (S1) and Theorem 3.9. O

We can also prove the following generalization of Benois Theorem:

Theorem 3.11 Let S C R4 be a Stallings section for the m-epi 7 : A* 5 Gandlet L C A*
be rational. Then S is an effectively constructible rational language.

Proof. Let ¢ : A* = Rat A* be the rational substitution defined by ap = Sur, for a € A
(note that 1o = {1} and, for u = aj---a, (a; € g), wp is not Sy but just Sg -+ Sa,x)-
We claim that

Su7r =5N up (9)

holds for every u € L\ {1}. Let u = a; ---a, € L (a; € A). Then by (3) we get

Sur = S(arm)-(anm) € Sarm -+ Sapr = (A1) -+ (anp) = up

and so Sy C S Nup. B

Since apm = Sym = aw holds for every a € A, the inclusion S Nup C Sy, follows from
upm = uprm = un. Therefore (9) holds.

Now it becomes clear that

Six = SN (Uuertp) = SN Ly

if 1 ¢ L and
Str = (SOE)US1

iflelL.

Now Ly is an effectively constructible rational language by (S1) and Proposition 2.1(ii),
and so is Ly by Theorem 2.4. Since S and S are rational, it follows from Proposition 2.1(i)
that Spr is rational and effectively constructible. [J

A natural question to ask at this stage is if we can identify a Stallings automaton for a
given Stallings section S. In the classical case of a free group F4 with S = R4 this is an
elementary thing to do: in this case, an A-automaton A is of the form ['(Fa,H,m)MRy = Sy
for some H <j,4 Fa if and only if A is inverse, has a basepoint, and has no vertex of
outdegree one except possibly the basepoint.

Proposition 3.12 Let S C Ra be a Stallings section for a m-epi 7 : A* 5 G Itis
decidable, given a finite A-automaton A, whether or not A = I'(G,H,7) 1S for some
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Proof. We may assume that A is inverse and has a basepoint. Write A = (Q, qo, g0, E).
The equality A = AM S is an obvious necessary condition, decidable by Lemma 2.2. Thus
we may assume that A =AM S (in particular, A is trim).
Since S € R4 and A is trim, it follows that only the basepoint may have outdegree
1, and so A = S(K) = I'(Fya, K,0) M Ry for some K <y4 Fa [1, Proposition 2.12]: the
standard algorithm [1, Proposition 2.6] actually computes a finite subset X C R4 projecting
onto a basis X0 of K. Let K’ = (X7) <j,4 G. We claim that A= T(G,H,7) NS for some
H <j,4 Gifand only if A=T(G,K’,7)MNS, a decidable condition in view of Theorem 3.9.
The converse implication being trivial, assume that A = I'(G, H, 7)M.S for some H <y.4.
G. Since words of 177! can only label loops in I'(G, H, ), it follows from Lemma 3.7 that
we only need to show that
Sk € L(A) C K'n ™t (10)

Since A 2 T'(F4, K,0) M R4, it follows from Theorem 3.9 that
XCRyNKO ' CL(A) C Ko

Since KO~ C K'n7!, we get L(A) C K'7—!. Finally, X C L(A) C Hr ! yields X7 C H
and so K’ < H. Hence
Sk C Sy C L(A)

by (7) and so (10) holds. Thus A = T'(G, K’,7) M .S and we are done. [J

4 Complexity

In this section we discuss, for a given Stallings section, an efficient way (from the viewpoint
of complexity) of constructing the automata A; in the proof of Theorem 3.9 and compute an
upper bound for the complexity of the construction of the Stallings automata I'(G, H, 7)1S.

We say that an A-automaton is uniterminal if it has a single terminal vertex. It is easy
to see that there exist rational languages which fail to be recognized by any uniterminal
automaton (e.g. Ry, since regular languages recognizable by uniterminal automata and
containing the empty word must have a basepoint and so they are submonoids). However,
we can prove the following:

Lemma 4.1 Let S C Ra be a Stallings section for the m-epi 7 : A* = G and let ge€a@q.
Then there exists a finite trim uniterminal A-automaton C4 satisfying

S, C L(C,) C gn 1.

Proof. Let C = (Q,4,T, F) be the minimum automaton of S, (or any other finite trim
automaton with a single initial vertex recognizing S;) and let C, be obtained by identifying
all the terminal vertices of C. Clearly, C, is a finite trim uniterminal automaton and S, =
L(C) C L(C,) yields Sy = S; C L(Cy). It remains to be proved that (L(Cy))m = g.

Let w € L(Cy). Then there exists a factorization u = ugu; - - - uy such that

i—%t0,  S1—Bt1, ..., Se—2uiy

12



are paths in C with s;,t; € T'. Take a path i&sj inC, for j =1,...,k. Then vj,vju; €
L(C) and so v;m = (vjuj)m = g. Hence ujm = (v; vjuy)m = g lg =1 and so ur =
(uouy - - - ug)™ = upm = g since ug € L(C) = Sy. Thus (L(C,))m = g and so L(Cy) C gn~ ! as

required. [J

We introduce next a multiplication of (finite trim) uniterminal automata: given (fi-
nite trim) uniterminal A-automata A = (Q,4,t, F) and A" = (Q',¢, ¢, E'), let Ax A’ =
(Q",i,t', E") be the (finite trim) uniterminal A-automaton obtained by taking the disjoint
union of the underlying graphs of A and A" and identifying ¢ with i’.

Lemma 4.2 Let S C Ra be a Stallings section for the m-epi 7 : A* = G and let 9,9 €G.
Let A and A’ be finite trim uniterminal A-automata satisfying

Sy C L(A) C g1, Sy C L(A") C gm L

Then
Sggr € L(Ax A') C (99")m "

Proof. Since L(A)L(A") C L(Ax A’), we get in view of (S2)

Sgq € S¢Sy € L(A)L(A") C L(Ax A").
Now let uw € L(A* A’). Then u labels a path in A x A" of the form
LNV N N LN

where we emphasize all the occurrences of the vertex p obtained through the identification of
t and i’. Now it is easy to see that there exist paths i—¢ in A and i/—¢ in A’. Moreover,

for each 7 = 1,...,k — 1, there exists either a path t—5tin Aor a path '3 in A, Now,
in view of (L(A))m = g and (L(A"))m = ¢’, we can use the same argument as in the proof
of Lemma 4.1 to show that u;m = 1 for j = 1,...,k — 1. Hence ur = (upuy - up)m =

(uoug)™ = gg’ and so L(A* A’) C (gg')m~! as required. O

In view of the preceding two lemmas, we can now set an algorithm to construct the
automata A; in the proof of Theorem 3.9. All we need for a start are the minimum automata
of Syr for each a € A (or any other finite trim automaton with a single initial vertex
recognizing S,; this can be effectively constructed by (S1)). Following the argument in the
proof of Lemma 4.1, we may identify all the terminal vertices to get finite trim uniterminal
A-automata Cyr satisfying

Sar C (Caﬂ') - arm L.

Note that, since S~! = S, we get finite trim uniterminal A-automata C,-1, satisfying
So-1, CL(Cp1,) Catar!

by exchang;jrllg the initial and the terminal vertices in C,; and replacing each edge pi>q by
an edge g—p.

Now, given h; € G, we may represent it by some reduced word a; - -a, (a; € ﬁ), and
may compute

‘Ai = (( o (Calﬂ *CCLQW) * Ca37r) koo ) * Canﬂ'~
13



By Lemma 4.2, A; is a finite trim uniterminal A-automaton satisfying
Sh, € L(A;) C hﬁrfl.

What is the maximum size of A; relatively to |h;|? What is the time complexity of
the algorithm for its construction? Note that we start with only finitely many “atomic”
automata Cyr (a € A). Hence the number of vertices (edges) in A; is a bounded multiple
of |h;|, therefore is O(|h;]), and the time complexity of the construction (disjoint union
followed by identification of two vertices, |h;] — 1 times) is also clearly O(|h;|). This is why
we gave ourselves (and the reader) the trouble of constructing the 4; this way instead of
just taking the minimum automaton of Sj,, whatever that may be!

But what is the time complexity of the full algorithm leading to the Stallings automaton
I'(G, H,7)MS? It is also useful to discuss the complexity of the important intermediate Bs
in the proof of Theorem 3.9 since Bs suffices for such applications as the generalized word
problem: indeed, since Bs satisfies (5), we may replace I'(G, H,7) 1M S by Bs in Corollary
3.10.

Let n = |hi|+-- -+ |hm|. It follows easily from our previous discussion of the time com-
plexity of the construction of the A; that By (and therefore B; and Bs) can be constructed
in time O(n). Since we get to B3 through complete folding, the complexity of constructing
B3 is that of the classical Stallings construction in the free group. Touikan proved in [18]
that such complexity is O(nlog* n), where log* n denotes the least integer k such that the
kth iterate of the log function of n is at most 1 (for most practical purposes, O(nlog* n) is
similar to O(n)). Therefore Bs can be constructed in time O(nlog* n).

We shall now discuss the complexity of the construction of the Stallings automata:

Theorem 4.3 Let S C Ry be a Stallings section for the m-epi 7 : A* = G and let H =
(h1,... hm) <pg G. Then T'(G,H,m) 1S can be constructed in time O(n®log*n), where
n= bl + -+ .

Proof. We go back to the proof of Theorem 3.9, starting at Bs.

The number of vertices of B3 is O(n) and therefore we have O(n?) candidate pairs to .J.
For each one of these pairs, we must decide whether or not they belong to J. This involves
bounding the complexity of the algorithm described in the proof of Lemma 3.8.

Let p, ¢ be distinct vertices of B3 and let gy denote its basepoint. Take geodesics go—sp
and gy—>q. Clearly, g = (uv~')7 can be represented by a word of length O(n). It follows
from the previous discussion on the complexity of the construction of A; that we may
construct a finite trim uniterminal A-automaton C, satisfying

Sg S L(Cg) Sgn™?

in time O(n). Performing a complete folding on C; (in time O(nlog*n)), we get a finite
inverse A-automaton D, satisfying

Sy C L(Dy) C gnt.

Since S is a constant for our problem, we can compute an element s € SN L(Dy) = S in
time O(n) and check if s € L(Bs3) in time O(n). Therefore, by the proof of Lemma 3.8, we
can decide whether or not (p, ¢) € J in time O(nlog* n). Since we had O(n?) candidates to
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consider, we may compute J in time O(n?log*n). It is very likely that this upper bound
can be improved.

Since B, is obtained from B3 by identifying the pairs in J followed by complete folding,
and B3 has O(n) vertices, then By can be constructed in time O(n®log*n) in view of
Touikan’s bound.

For the last step, we must discuss the time complexity of the algorithm in the proof of
Proposition 2.2. Note that By has O(n) vertices and therefore (since the alphabet is fixed)
O(n) edges. Since S is a constant for our problem, we can build the direct product of By
by some deterministic automaton recognizing S in time O(n) and compute its trim part
in time O(n) (we have O(n) vertices and O(n) edges), and the final projection can also be
performed in linear time. Therefore I'(G, H, 7)M.S can be constructed in time O(n3log* n),
which means very close to cubic complexity. [

We should stress that the above discussion of time complexity was performed for a fixed
Stallings section of a fixed group. But the computation of a Stallings section for a (virtually
free) group can be in itself a costly procedure, particularly if it is supported by Bass-Serre
theory as in the present case. This will become more evident throughout the next two
sections.

5 Amalgamation over finite groups

Given groups H, G and Ga, and isomorphisms ¢; : H — H; < G; (j = 1,2), the free
product with amalgamation (amalgam for short) of G and Ga, relative to 1 and 9, is
defined as the quotient of the free product G * Go by the normal subgroup generated by
the elements of the form (hp1)(h~1p2) (b € H). Tt is usually denoted by G * g Go, whenever
a specific reference to the homomorphisms ¢; can be omitted.

The groups Gj embed canonically into G g Ga2, and we shall actually view them as
subgroups of their amalgam. In particular, we view H; = Hs as a subgroup of G = G1xgGo.

A factorization g = wy - - - wy, is said to be a reduced form for g € G1 xg Go if:

(i) wy € G1 U Go;
(11) w1 ¢H1UHQ if n>1;
(iii) w; € Gj \ Hj = Wit1 € Gj+1 \ Hj+1

hold for alli € {1,...,n— 1} and j € {1,2} modulo 2.
Every element of G x G2 can be represented by a reduced form, but the representation

is not in general unique. However, this representation can be strictly controlled (see e.g [11,
Chapter IV]):

Proposition 5.1 Let u = uy -+ Uy and v = vy - - - vy, be reduced forms of Gy xg Go. Then
u = v holds in Gy xg G if and only if one of the following conditions holds:

(i) m=n=1 and u; =v; € G1 UGy;

(it) m =n =1 and u; = hyj, vi = hp;q1 for some h € H and j € {1,2} modulo 2;
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(i1i) m =mn > 1 and there exist z1,...,2p—1 € H and j € {1,2} modulo 2 such that

Ul = vl(zupj) m Gj,
up = (27" pj1)v2(220j41) in Gy,

Un—1 = (2, n L @itn—2)Un—1(2n-19j4n—2) in Gjin—2,
Un _( Zp— IQDJJFTL 1)’Un in G]+n 1.

The main theorem of this section is
Theorem 5.2 Let G and Go be groups with Stallings sections and let H be a finite group.
Then G1 xg Go has also a Stallings section.
Proof. Let S (respectlvely T) be a Stalhngs sectlon for the m-epi 7 : Z* — G (respec-
tively mo : Ag — G3). We assume that A1 N AQ = 1 and write A = A1 U Ay. Let H
be a finite group and consider isomorphisms ¢; : H — H; < G (j = 1,2). We denote by
G = Gy xp G2 the amalgam of G; and G relative to ¢1 and 3. Let 7 : A* — G be the
m-epi induced by 7 and .

Let B = {by | h € H} be a new alphabet and let ¢ : B* — H be the homomorphism
defined by byt = h (h € H). Let £ : B* — Rat A* be the rational substitution defined by

bné = Shp, U Thg, € horm ! = hpar ™.

We define
L =1y ¢,
In the next lemma, we collect some important properties of L:

Lemma 5.3 (i) L is an effectively constructible rational language;
(ii)) 1 € L and L7 = 1;

(iii)) L? = L =L"1;

(iv) (br€)L(by-1&) C L for every h € H.

Proof. (i) Since H is finite, 199~! and L are rational and effectively constructible by Propo-
sition 2.1.
(ii) Indeed, if (bp, - --bp, )1 =1, then hy ---h, = 1 and so

(b -+ bn, )ém € (Paprm ™) -+ (hpprm ™)) = (ha -+~ hy)ipr = 1.
(iii) The equality L? = L follows from (13~1)? = 19~!. Now let u € L. We may write
u € (bpy -+ bp,, )€ with (bp, -+~ by, )Y = 1. It follows that (b1 - ~bh1_1)1/1 =1. Since =t = 9§
and T~' =T, we get

bh-1€ = Sp-14, UTh-1p, = S0 UT, 0 = (bn€) ™!

for every h € H and so

w € ((bny€) -+ (b, )" = (b, &)1 (bry )
( nlf) -(bh1—1§) = (bhrjl T bhl—l)f - 17/1_15 = L.

16

||m



Thus L= C L and so also L = (L7')~! C L=!. Therefore L = L.
(iv) Assume that (bp, ---bp, ) = 1 and u € (bp, ---bp, ). Then hy---h, = 1 and so
hhy---h,h~t = 1. It follows that

(brn&)u(bp-1E) S (bybp, - - - by, bp—1)€ € L.

Let

S =85\ | Shprs T'=T\ | Ths-
heH heH

Since H is finite and S, T are both Stallings sections, then S’, T are both effectively con-
structible rational languages. We define

V =LSLULTLU(1ULS)(LT'LS)*(LULT'L). (11)

Since L,S,T,S’,T" are all effectively constructible rational languages, so is V, in view of
Proposition 2.1 and Theorem 2.4. Since S and T are sections for w1 and 7o, and 1 € L, it
follows from the representation of amalgams in reduced form that V is a section for 7. In
particular, note that ($)~! = ', (T")"! = T’ and so V! = V. It remains to be proved
that V satisfies axioms (S1) and (S2).

Now let g = g1 - - - gn be a reduced form of G. We claim that

Vy=LWy - LWL, (12)

where W = § if gi € Gy and W@ =T if g; € G2. In particular, V;, = LS,L = LT,L if
g€ GiNGy=H, = H.
We prove two cases, the others are similar:

Case n =1 and g1 € Gy:

We must prove that V, = LSy, L. Indeed, it is immediate that LS, L C V and LSy L7 =
(LSy, L)m = Sqym = g1 = g, hence LSy L C V,. Conversely, if u € Vj, it is clear from
Proposition 5.1 and L7 = 1 that we must have v € LSLU LTL. If uw € LS, L for some
x € Gy, then g1 = g = ur = z and so u € LS,, L. Hence we assume that v € LT,L for
some y € Go. It follows that g1 = g = ur = y and so g € Gy N Go = Hy = Hy. We can
then write g1 = hy1 and y = hpy for some h € H. By Lemma 5.3, we get

u < LThcng - LTh@QSh*1¢15h¢1L - L2Sh¢,lL = LSglL

and so (12) holds in this case.
Case n =2k and g1 € G1 \ Hy:
We must prove that

Vg =LSg LTy, --- LSg,, LTy, L.
Indeed, it is immediate that LSy, LT, --- LS, LT,,L CV and

92k—1 92k

LS, LT, ---LS

92k—1 92k

LTy, Lm= (LSg1LTg2 T LSg%flLTQ%L)ﬂ—

= (Sg1ng T Sg2k—1Tg2k)7T =91 92k =9,
17



hence LSy, LTy, --- LSy, LTy, L C V,. Conversely, if u € V,, it is clear from Proposition

5.1 and L7 = 1 that we must have u € LSg/ LTg/ ce LSg/ LTg/ L where
1 2 2k—1 2k

g
g

= g1(h1¢1),

/
1 1
b= (hi ) ga(haga),

Jop—1 = (hQ_I%—QSOl)92k—1(h2k—1901),
gék = (hg_k_1<P2)92k

for some hq,...,hop_1 € H. Since S and T satisfy (S2) and by Lemma 5.3(iv), we get

we LSy LTy LS, LT, L

92k—1

- LSgl Shl‘plLThflw2Tg2 e Th2k72¢2LSh;k1_2¢1 ngk—lsh%fl‘{?l LTh
C LS, LT, LS, LT, L

92k—1 92k

T

92k

L

-1
2k —1%2

and so V, = LSy, LT,, ---LSy,, LT, L as claimed.

The other cases are absolutely similar, therefore (12) holds. Since S and T satisfy (S1),
and by Proposition 2.1, Theorem 2.4 and Lemma 5.3(i), Vj is an effectively constructible
rational language for every g € G. Therefore (S1) holds for V.

As a consequence of (12), we have

Vg = Vgl"'givgi+1"'9n
whenever g = g1---g, is a reduced factorization. In particular, Vi, = V,Vy holds if

g=¢g1--gnand ¢ = g} --- g, are reduced factorizations with g, € G1\H; and g} € G2\ Ho,
or vice-versa. We shall refer to this case as the favourable case.
Given g € G, let ||g|| denote the number n of components in a reduced form g; - - - g, of
g. Let g,¢' € G. We prove that
Vg © VoVy (13)

by induction on k = ||g|| + ||¢||-

If ||g]] = ||¢'|| = 1, we may assume that g,¢' € G1 or g,¢’ € G2, otherwise we have the
favourable case and we are done. Without loss of generality, we may assume that g, ¢’ € G.
Then (12) and (S2) for S yield

Vyy = LSy L C LS,SyL C LYy L2SyL = VyVy.

Therefore (13) holds for k = 2.

Assume now that ||g|| + ||¢’|| > 2 and (13) holds for smaller values of ||g|| + ||¢'||. Let
g=¢g1--gnand ¢ =g} --- g, be reduced decompositions of g and ¢'.

We do not have to consider the favourable case, hence we may assume that g,,, g; € G1 or
gn, 9} € Ga. By symmetry, we may assume that ¢,, ¢ € Gy andn > 1. Writex = g1 -+ - gn—1
and y = gng} -+ g Then ||z|| + ||y]| < ||g|| + ||¢’|| and so the induction hypothesis yields

Vog = Vay € ViV

Suppose first that m = 1. Then (S2) for S yields

Vy = LS, L C LS, Sy L C LS,,L?Sy L = LS, LV,
18



and so in view of (12) we get
Vi € VaVy € VLS, LVy = V,Vy.

Now suppose that m > 1. Then V;, C Voud Vgt by the induction hypothesis and so

Vgg/ngVyszV /V/, g, CVVgnV V/, g, —VV

by the favourable case. Thus (13) holds and so (S2) holds for V. Therefore V' is a Stallings
section for m and the theorem is proved. [J

6 HNN extensions over finite groups

Given a subgroup H of a group K and a monomorphism ¢ : H — K, the HNN eztension
HNN(K, H, ) is the group defined by the relative presentation

(K,t|tht™' = he (h € H)),
that is, is the quotient of the free product K * F{;y by the normal subgroup generated by
the elements of the form tht=!(h='¢) (h € H). For details, the reader is referred to [11,
Chapter IV].

We use the standard notation Hy = H and H_1 = Hp. A given factorization of g,
g = wottrwy - - - t°rwy, is said to be a reduced form for g € HNN (K, H, ¢) if:

(i) w; € K
(i) g € {-1, 1}
(iii) Eitl = —&; = W; Qf Hei

hold for every possible ¢. In particular, 1 is a reduced form.

Every element of HN N (K, H, ¢) can be represented by a reduced form, but the represen-
tation is not in general unique. However, this representation becomes clear as a consequence
of the classical Britton’s Lemma, which we choose to present in the following form:
Proposition 6.1 Let g = wugt®uy---t**u, be a reduced form of HNN(K,H,y). The
alternative reduced forms for g in HNN (K, H, ) are obtained by replacing each occurrence
of t by some element of Upcr(h)th™t.

In particular, 1 is the unique reduced form for the identity and so both K and Fl
embed canonically into HNN (K, H, p).

Theorem 6.2 Let K be a group with a Stallings section and let ¢ : H — K be a monomor-
phism for some finite subgroup H of K. Then HNN (K, H,¢) has also a Stallings section.

Proof. Let S be a Stallings section for the m-epi 7 : A* - K. Write G = HNN(K, H, ¢),
B =AU {b} and let 7 : B* — G be the m-epi defined by ar = an (a € A) and br = ¢.

Let C = {cy | h € H} be a new alphabet and let ¢ : C* — H be the homomorphism
defined by cpt) = h (h € H). Let £ : C* — Rat B* be the rational substitution defined by
cpé = Sy U b‘lS}wb. We define

L=1yp"Y ={(cp, - -cn,)E | hi--hy =1},
The next lemma summarizes some important properties of L:
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Lemma 6.3 (i) L is an effectively constructible rational language;
(ii) 1 € L and L7 = 1;

(iii) L? = L =L"};

(v) (ch€)L(cp-1&) C L for every h € H;
(v) L C ((Hn "o~ (Hen™")b)*(Hn™).

Proof. Since
cném = (S, Ub 1 Spb)m = Spm = Spn = h

for every h € H, the proof of Lemma 5.3 can be used with straightforward adaptations to

prove (i)-(iv).
On the other hand, since 1 € Hn~! we have

L=1¢7'¢ CC*C (Hn™ ) Ub™ (Hen)b)* C (Hn~ o~ (Hen™)b)* (Hn™")
and so (v) holds as well. [

Now let B
N = (Sb)*S\ B*(bSub~' Ub~ 'Sy, b)B*
denote the set of all words in (Sb)*S representing reduced forms of G. Let a : B* — Rat B*
be the rational substitution defined by ao = a (a € A) and bae = bL, b~ o = L~ = Lb L.
We claim that
V =Na

is a Stallings section for .

By Theorem 3.11 and Lemma 6.3, the languages S, Sy, Sp, and L are all rational and
effectively constructible. By Proposition 2.1 and Theorem 2.4, so are N, Na and V. Since
N7m = G and 1 € L, it follows that Vm = G. Note that S~! = S yields N~! = N, and
together with L~! = L, this yields V~! = V. Thus V is a section for 7.

Let g = uot*tuy - - - t*"u,, be a reduced form of G. We claim that

Vy = (Sugb®' Sy - 57 S ). (14)

Since Lm = 1, we have am = 7 and so

(Sugb®1Sy, -+ - b5 Sy, Jam = (Sy bt Sy, -+ - b Sy, )™ = upttuy - - - t°"u,, = g,

hence

(Sub®1Sy, - b7y, )a CV N gn 1t = Vy.

Conversely, let w € V. Then there exists a reduced form votO vy - - - t9mu,, of G such
that w € (Sy,b°1Sy, - - -0 S, yo. Then

g=wmr = vgt51U1 . 'tdmvm
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and it follows from Proposition 6.1 that m =n, §; = ¢; for i = 1,...,n, and votlvy - - - t°7vy,
can be obtained from wgt**uy - - - t**u, by replacing each occurrence of ¢ by some element
of Uper (hp)th™t. Assume that ¢ is replaced by ((hip)th; })%. For i =1,...,n, write

L hl ifEi:—l o hz ifEizl
Ti= hitp if g, — 1 Yi = hitp if &, — —1

and also yp = zn4+1 = 1. Then
-1
Vi =Y; Uikit1
fori=0,...,n.
Moreover, we claim that

(SxibfiSyiq)oz C bhiau. (15)

Assume that ¢; = 1. Then

(SxibEiSyiq)a = Sz, bLS, 1 = Sp,pbLS), 1 = bb*lShWbLShi_l - b(chig)L(ch;lf) CbL = b
by Lemma 6.3(iv).
Similarly, (15) holds for ¢; = —1. Hence

W E (Syyb1Sy, -+ b S, )
- (Suoitl bEl Syl_lulz2 T Sy;ilunflznbensyglun)a
C (Suy S, b1, 150, 5y 8,1 S 50, b5, 15, )
C (SulFiSy, - - 078y )

and so (14) holds.

Since K has a Stallings section, has decidable generalized word problem and so we can
effectively compute a reduced form for any given element of G. Therefore (S1) follows from
(14).

If g € G has a reduced form g = wot®'wy - - - t**w,,, we write ||g|| = n. We show that
Vyg € V,Vy for all g,¢' € G by induction on llgl| +l]|g’|\.

Let g = wot® wy - - - t*"wy, and ¢’ = w(t1w] - - - t*mw), be reduced forms. If

99’ = wotlwy - - - Frwwht W -t (16)

is a reduced form, then

Vgt = (Suwgb S, - - 6578y, i D18y -+ - b¥m Sy Jev
99 0 1 n'Wo 1 m
C (Sygb®1 Sy -+ - benSwnSw()bE/lSw’l .. be,mSw;n)Oé
g (Swobslswl . bEnSwn)a(Swéb?fa Sw,l e bE;nSw;n)a = ‘/g‘/rq/7

hence we may assume that (16) is not a reduced form and Vj, 4, C Vj, Vy, whenever ||g1|| +
l|lg2]] < llgl| + |I¢’||- In particular, n,m > 0 and either

en=—¢c1=1, wyw, € H (17)
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or
En = —6/1 =—-1, wnw6 € Hp.

The second case being analogous, we assume that (17) holds. Let h = w,w(. Then
99’ = (wot wy - - - 57 Lw, 1) ((hp)w) t2wh - - - t5mu ).

Since g1 = wotlwy - - -t~ 1w, _1 and gg = (hcp)w’ltséwé . -tsinw;n are both reduced forms,
the induction hypothesis yields

Vog' = Vgigs € Vg1 Vgy = (Suwob™ Suy - - ba"_lswn_1)a(s(h<.0)w'1 b Swé . -bainsw,m)a
c (Sw0b81 Swl s ban_lswn_lshcpsw’l beéswé <. E;”Sw;n)a‘

Now

Shp@ = Shp € b(b~1SpbSy-1)Spb~t CDLSRLb~1 = (bSpb~ ") C (bSw, Sy b
yields

Vg C (Swob1 Sy, - -+ bEn—1 Swn—1sh<p5w’l ) Sw,2 e b Sw'/rn)a
C (Suybf Sy, + - - bEn—1 Swn_lbanswnsw(,)bs’l Sw’l bes Sw’Q e bEm Sw;n)a =V,Vy
and so (S2) holds. Therefore V' is a Stallings section for 7. [

7 Virtually free groups

Recall that a pushdown A-automaton is a sextuple of the form A = (Q, qo, T, D, do, §), where
Q@ and D are finite sets, g0 € Q, T C Q, dy € D and 0 is a finite subset of

Qx(AU1l)x D xQ x D*.

A configuration of A is an element of @ x D*. The pair (qo, do) is the initial configuration.
If (q,a,d,p,u) € 0, we write

(¢, vd)F—(p, vu)

a
for every v € D*. We call this relation an elementary transition. If we have a sequence

(QO; UJO)’_((]l, wl)’a_ T ’G_(an wn)

ai

for some n > 0, we write N

(g0, wo) F———(gn, wn)
ai--an

and we refer to it as a transition. The langluage accepted by A (by final states) is defined
by *
L(A) ={w € A" | (q0,do)—(t,u) for some t € T and u € D*}.
A language L C A* is context-free if L = L(A) for some pushdown A-automaton .A. For
details on pushdown automata, the reader is referred to [6, Chapter 6].

Recall that a group is virtually free if it has a free subgroup of finite index. Some recent
papers involving virtually free groups include [5, 9, 10].

We can now prove the main theorem of the paper:
Theorem 7.1 A finitely generated group has a Stallings section if and only if it is virtually
free.
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Proof. It is known that finitely generated virtually free groups are, up to isomorphism,
the fundamental groups of graphs of groups where the graph, the vertex groups and the
edge groups are all finite [15, Theorem 7.3]. Moreover, they can be obtained from finite
groups by finitely many successive applications of free products with amalgamation over
finite groups and HNN extensions over finite groups [4, Chapter 1, Example 3.5 (vi)]. Since
finite groups have Stallings sections by Proposition 3.2, it follows from Theorems 5.2 and
6.2 that every finitely generated virtually free group has a Stallings section.

Conversely, assume that S is a Stallings section for the m-epi 7 : A* — G. We show
that the word problem submonoid 17~ is context-free. By Muller and Schupp’s Theorem
[14], this implies that G is virtually free.

By the remark following the definition of Stallings section in Section 3, we can assume
that 1 € 5. B

For every a € A, let A* = (Q% ¢§,T* E*) be a finite automaton recognizing Syr.
We define a pushdown A-automaton A = (Q,q0,t, D, dp,d) by Q@ = (U,.7Q%) U{q.t},

D= AU{dy} and

{(qo,l,do,t 1)} U {(qg,a do,qo,do) | a € A}
{(p 1d07q dOb)‘(pab7Q)€Ea7 a7b€fi1}
{(p*,1,¢,q% ¢cb) | (p%b,q%) € E, a,b,c € A}
{(t*,b,d, ¢,d) | t* € T, a,b € A, d € D}
{(t*,1,do,t,1) | t* € T*, a € A}.

C C CcC

We shall prove that 17! = L(A). First of all we note that (p%,b,q%) € E implies

(p®, dov)}—(q*, dovd)

1
forallbe A and v € R4, hence

*

If p®—¢® is a path in A%, then (p%, dov)—(¢%, doT) (18)
1

holds for all @ € A and v € R4. N

Assume now that aj ---a, € 177!, with a1,...,a, € A. We may assume that n > 0.
Then 1 € S1 = S(4;.an)r S Sayr =+ Sa,r and so there exist u; € So;r = L(A%) such that
Uy - un = 1. It follows from (18) that

*

(g5, dout —wi—1) F—(t*, dour ;)
1

for some t% € T% . Hence
* *

(g0, do) b= (go", do)b— (¢, dowa)—(q5*, down) (¢, dorriz) —---

al az a3
*

F— (g™ " dotur — wp—2) —(t*, douy - un—1)F—(g§", dots - Un—1)

an—1 1 an
*

li (ta"adom) = (ta",do)lT(t, 1)

1
and so ay - a, € L(A). Thus 1771 C L(A).
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Conversely, let ay---a, € L(A), with ay,...,a, € A. We may assume that n > 0. It
follows easily that there exists a sequence of transitions of the form

* *

(g0, do) = (po, dowo)F—(qq*, dowo) F—(p1, dow1) - - - F—(qg™, down—1) (P, down)
ai 1 as an 1
= (pn, do)}—(,1)
1
for some wy,...,w, € Ra. Now, for i =1,...,n, we must have p; € T% and w; = w;_1u;

for some u; € L(A%) = S,,~. Hence

1:wn:w0u1"'un:ul"'uneSaﬂr"'SanTr

and so 1 € (Suyn-+San)m™ = (a1---an)m. Thus L(A) C 1z7~! and so 177! = L(A).
Therefore 177! is context-free and so G is virtually free. O

8 Sections with good properties

Having established that finitely generated virtually free groups are precisely the groups
with a Stallings section, we have now the possibility of imposing stronger conditions on
their Stallings sections, with the purpose of allowing further applications of the Stallings
automata I'(G, H,7) M S.

The technique is simple. Suppose that:

e every finite group has a Stallings section with property P;

e if G; and G5 have Stallings sections with property P and H is a finite group, then
G1 x G2 has also a Stallings section with property P;

e if K has a Stallings section with property P and H is a finite subgroup of K, then
HNN(K, H,p) has also a Stallings section with property P.

Then, in view of [4, Chapter 1, Example 3.5 (vi)], every finitely generated virtually free
group has a Stallings section with property P.

A good example is given by the concept of extendable Stallings section, which will turn
out to be useful to characterize finite index subgroups.

Let S be a Stallings section for the m-epi m : A* — G. We say that S is extendable if,
for every u € S, there exists some v € R4 such that uv* C .S and

u € Pref(S(yyny-1),) for almost all n € IN. (19)

In order to prove the next result, we consider the following condition on a Stallings
section S for w: A* — G:

(N) If G is not torsion-free, then S; # 1.

Proposition 8.1 Fvery finitely generated virtually free group has an extendable Stallings
section.
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Proof. In fact, we show that such a group always has an extendable Stallings section
satisfying condition (N).

Following the script previously described, we start by considering a m-epi 7 : A* > G
with G finite. Let S = R4 and take v = 1 for every u € S. Hence uv* C S. Since Sy = gn—!
for every g € G, we claim that Pref(Sy) = Ra:

Let w € Ry and take a € A such that wa € R4. Since G is finite, there exists some
m € IN such that every element of G can be represented by some word of length < m. In
particular, there exists some z € Ry such that ((a ™w 1)7)g = 27m and |z| < m. Hence
(wa™z)m = g and so wa™z € gn~! = S4. Since wa™ € R4 and |z| < m, we get w € Pref(Sy)
and so Pref(Sy) = Ra.

Therefore (19) holds and so R4 is an extendable Stallings section for 7 : A* = G when
G is finite. Moreover, if G is nontrivial, then S; = I7—! contains nonempty words and so
condition (N) holds for S.

Next, assume that S (respectively T') is an extendable Stallings section for the m-epi

m o :41* — G (respectively m : Ag* — (G9), satisfying condition (N). We assume that
E* N Z;* =1 and write A = A1 U A,. Let H be a finite group and consider isomorphisms
pj: H— H; <G (j=1,2). Let G = Gy g G2 be the amalgam of G and Gy relative to
1 and 9, and let 7 : A* — G be the m-epi induced by 7 and mo. We may assume that
Hy < Gy and Hy < G, otherwise G = G5 or G = G1. We claim that the Stallings section
V' (for m) defined in the proof of Theorem 5.2 is also extendable. We use all the notation
introduced in that proof.

Let u € V. Without loss of generality, we may assume that either u = 1 or the last
letter of u is in Ay. Let umr = g1 - - - g;n be a reduced form of wum.

Suppose first that ¢, € G1 \ H;. Take w € T" and z € S, and write v = wz. Then
uv* C V. We claim that

u € Pref(Viyyny 1)) if n > % +1. (20)

Indeed, a simple induction on ¢ shows that if © = x1---xpyer1 and y = y1 - -y are
reduced forms in G, then xy has a reduced form xq - xgzy -« - 2

We may assume that y; € G1. If y; € Hy, then £ = 1 and 2y = z1 - Tr1(Trr2y1)
is a reduced form and we are done. Hence we may assume that yi, zx¢11 € G1 \ H1 and
Ti+o+1Y1 = hpy for some h € H. Then (heay2)ys---ye is a reduced form. If £ = 1, then
xy = x1 - zp(rEr1(hpse)) is a reduced form and we are done. If £ > 1, we reduce the
problem to the case ¢ — 1 by considering the product zy = (z1 - zk1e)(ho2y2)ys - - ye).
Thus zy has a reduced form x1 -+ - xr21 - - - 2, as claimed.

In particular, taking = (uv™)7and y = u~!r, it follows that (uv"u~1)7 has a reduced
form g1 -+ gmw--- if n > % + 1. Since g, € G1 \ Hy and uw is reduced, it follows easily
from (12) that V(yyn,-1), must contain some word uw - - Thus (20) holds.

Suppose next that g,, € G2 \ Ha. We can of course assume that u # 1. Since the last
letter of u is in Ay, it follows from (12) that H # 1. Since S and T satisfy condition (N),
it follows that there exist z; € Sy \ {1} and wy; € T} \ {1}. Take w € T" and z € S’ and
write v = wyzwz;. Since wi,z1 € L, we have uv* C V. Similarly to the preceding case,

(20) holds.
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Finally, we are left with the case m = 1 and g1 € H; (equal to Hs in G). Let v = 1.
Then uv* C V trivially and (uv™u~!)m = 1, hence it suffices to show that u € Pref(V7).
By (12) and Lemma 5.3, we have V; = LS1L = L and u € LSy, L for some h € H. Let
w € Tj-1,,. Then u € Pref(uw) and uw = ww € LSy, LT)-1,, € L = Vi by Lemma 5.3.
Therefore V' is extendable.

Suppose now that V3 = {1}. Since Vi = L, it follows that H is trivial and S = T} = {1}.
Since S and T satisfy condition (N), it follows that G; and G2 are torsion-free and so G is a
free product of torsion-free groups, hence torsion-free. Therefore V' satisfies condition (N).

Finally, assume that S is an extendable Stallings section for the m-epi 7 : A* 5 K
satisfying condition (N). Let ¢ : H — K be a monomorphism for some finite subgroup H
of K. Write G = HNN(K,H, ), B=AU{b} and let 7 : B* = G be the m-epi defined by
am =an (a € A) and br = t.

We claim that the Stallings section V' (for 7) defined in the proof of Theorem 6.2 is also
extendable. We use all the notation introduced in that proof.

We start by proving the following lemma:

Lemma 8.2 Let kot ky - - -t k,, be a reduced form of G with m > 1 and let

P = {20w1 b z1wab2 20 - - - Wb 2y, | 20 € (koH _c,)n ™1,
Zi € (H€z‘kliH*€¢+1)77_l Jori=1,....n—1, z, € (HEmkm)n_ly
wj € (bEj (Héjn_l)b_sj (H—aﬂ]_l))*}'

Then P is closed under (partial) free group reduction.

Proof. Let u = zow1b*' zqwab*2 29 - - - W, b°™ 2z, be an element of P of the described form.
Suppose first that aa™' is a factor of u for some a € A. Then aa™! is either a factor of
some z; or a factor of some w;, and it follows from the definitions that we may cancel aa™?
and remain inside P.

Thus we are left to discuss the case of cancellations involving the letter b. Sup-
pose first that we have a factor 6767 to cancel in wj;. Write w; = x1---x,, with
x; = balb~%a] (¢ € Hep o € H_.n'), and assume that 2, = 1. Cancelling
our factor yields 1 - - - xy_12xpq1 -+ @p. If £ > 1, we can incorporate xy/ into x,—; in view
of (]r{_ajnfl)2 - H_gjnfl. If £ = 1, we can incorporate z}/ into zj_; by the same reason.
The case of cancellations b~%/b% inside w; is discussed similarly.

Suppose now that =% is the last letter of w; and cancels with its right neighbour b%.

Then we replace w;b* = zq---x,b% by x1---z,_1b% ). Since z] can be absorbed by z;,
the claim holds also in this case.

Finally, we note that we can never have z; = 1 when €; = —¢;41: otherwise, we would
get

1=z € (HekH,)n
and so k; € He,, impossible since €; = —¢;41 and kot*'ky - - - t*™ ky, is a reduced form. [
Back to the proof of Proposition 8.1, let w € V. Assume that ur = kot**ky---t°"k,,
is a reduced form of umw. If m = 0, then u € V,; = Sy, and it follows that uv* C V for

v = b. What if m > 0?7 Then it is clear that kgt®'k; - - - t°™k,,t*" is a reduced form for
every n > 0. We claim that ub*"™ C V.
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Indeed, let P be defined as in Lemma 8.2. It follows from (14) that

S (Skobslskl .- tfmSkm)a
and it is immediate that Sy b°* Sk, - - -t Sy, € P. Since

bta= Lo~ C (Hy )0~ (Hen b(Hn ™)) 0™"

by Lemma 6.3(v), and the factors z;_1 may absorbe factors from Hn~! on the right when

ej = —1, it follows that we may replace b= by bl in Skob1 Sk, - - - t°™ Sk, and remain
inside P.
Similarly,

ba = bL C b((Hy~ )b~ (Hen™)b)* (Hy ™) = (b(Hy~ )b~ (Hen™ 1)) "b(Hn ")

and the factors z; may absorbe factors from H n~! on the left when ej = 1, it follows that
(Skob' Sky -+ b5 Sk,, ) € P. Hence (Sk,b°1 Sk, - - -t Sk, ) C P by Lemma 8.2 and so
u € P.

As a consequence, we may write u = xb°"y with y € Ra. Since kot ky - - - t5m kp, t°" is
a reduced form for every n € IN, it follows that

(Skobalskl <. bamSkm)abfm” - (Skobsl Skl v bfmSkmbfm")a cV

for every n € IN and so ub*»"™ € V. Since u = xb*my, taking v = b*™ we get uv™ = ub*" =
ubtm™ € V for every n € IN as claimed.
We continue now by showing that in any case

u € Pref(Viyyny—1)r) if n > m. (21)
Indeed, since uv € Rp, it suffices to show that (uv™u~!)m has a reduced form
koterky - - - tomkptem - if n > m (kot--- if m = 0), and we may use induction on m. The

case m = 0 being obvious, assume that m > 0 and the claim holds for m — 1. We assume
that v = ¢, the other case being analogous. If kotlky - - tsmk,,t"k, 1t—em kr_nl—l o ~t*51k0_1
is not itself a reduced form, then k' € H and ¢,, = 1, hence we may write

(" u )T = kotT kg - T ket el T e L R

for some k!, € Hyp. Since n —1 > m — 1, the induction hypothesis applied to the prod-
uct kotlky - - -t 1k, _1(k!,)~! yields now the required result. Thus (21) holds and V is
extendable.

It remains to show that V satisfies condition (N). Suppose that V; = {1}. Since V; = 5;
and S satisfies condition (N), it follows that K is torsion-free, and so H is trivial. Hence G
is the free product of K by the infinite cyclic group Fy;;. Being a free product of torsion-free
groups, G is itself torsion-free, therefore V' satisfies condition (N). O

We can now derive the following application of the concept of extendable Stallings
section:

Theorem 8.3 Let S be an extendable Stallings section for the m-epi 7 : A* = G and let
H be a finitely generated subgroup of G. Then the following conditions are equivalent:
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(i) H has finite index in G;
(ii) S C Pref(Si):
(iii) every word of S labels a path out of the basepoint of T'(G, H, 7)1 S.

Proof. (i) = (ii). Suppose that u € S\ Pref(Sg). Since S is extendable, there exist some
v € Ry and m € N such that uwv* C S and u € Pref(S(,yny-1)r) for n > m. We claim that

H(uv! ) # H(uw')m if j > i +m. (22)
Indeed, assume that j > i +m. If H(uv/)7 = H(uv")m, then (uv/~*u~1)7 € H and so
(IS Pref(S(uUjfiufl)ﬂ.) C Pref(SyH),

a contradiction. Therefore (22) holds and so H has infinite index in G.

(ii) = (iii). Since Sy € L(I'(G, H,7) M S) by Theorem 3.9.

(iii) = (i). Assume now that every word of S labels a path out of the basepoint ¢y of
A=T(G,H,7)1S. Let @ denote the vertex set of A. For every ¢ € @, fix a path qogq.
We claim that

G = U H(wgm). (23)
q€Q
Indeed, let g € G, and take u € Sy. Then there is a path in A of the form go—q for some
q € Q. Hence uw,' € L(A) C Hr~! by Theorem 3.9 and so g = ur € H(wgm). Thus (23)
holds and so H has finite index in G. O

A natural question to ask is whether or not one could replace condition (S2) in the
definition of Stallings section by the stronger condition

(82’) Sgn = 545, for all g,h € G.

However, we can prove that this condition can only be assumed in the simplest cases:

Proposition 8.4 The following conditions are equivalent for a group G:
(i) there exist a m-epi T : A* = G and a Stallings section S for m satisfying (S2°);
(i) G is either finite or free of finite rank;

(iii) Ry is a Stallings section for some m-epi 7 : A* = G.

Proof. (i) = (ii). Let S be a Stallings section S for m : A* — G satisfying (S2’). Then
S;! =5 = 57 and so we can view (S1,0) as a subgroup of (Ra,0) & Fu, where uov = wv.
The same holds for (S, 0) since S~! = § = §2, and (51, 0) is then a subgroup of (5, o). Now
(S,0) must be free by Nielsen’s Theorem. Since S, being a Stallings section, is rational,
so is (S, 0) (a rational expression for S as a subset of A* translates through reduction to a
rational expression for S as a subset of (R4,0)). The same happens with S, so it follows
from Anisimov and Seifert’s Theorem [1, Theorem 3.1] that both (S,0) and (Si,0) are

finitely generated groups. Hence (S, 0) is a free group of finite rank.
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For every u € S, we have
uSlu_l - SWSlSuflﬂ = Sl,

hence (Si,0) is a finitely generated normal subgroup of the free group (S,0). By [11,
Proposition 3.12], (S1,0) is either trivial or has finite index in (S,0). On the other, we
claim that

uS) = vS] & ur = vom (24)

holds for all u,v € S. The direct implication follows from Si7m = 1. Conversely, assume
that ur = vw. Then v—1u € S,-1, S, = S1 and so u € vS; and uS; C VS;. By symmetry,
we get uS; = V.51 and so (24) holds.

It is now straightforward to check that

(Sv O)/(Sl7o) - G

uST —uT

is a group isomorphism. Hence either G = (S,0) is a free group of finite rank, or G =
(S,0)/(S1,0) is a finite group.

(ii) = (iii). Immediate from the proof of Proposition 3.2.

(iii) = (i). Assume that S = R, is a Stallings section for the m-epi 7 : A* — G. Let
u € Sy and v € S, for some g,h € G. Since wvm = (uv)m = gh, we get v € Sy, and so
SySh C Sgn. Therefore Sy, = SyS), and so Ry satisfies (S27). O
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