Voronoi- Nasim summation formulas and index transforms
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Abstract

Using La-theory of the Mellin and Fourier -Watson transformations we relax Nasim’s conditions to
prove the summation formula of Voronoi. It involves sums of the form Y d(n) f(n), where d(n) is the
number of divisors of n. These sums are related to the famous Dirichlet divisor problem of determining
the asymptotic behaviour as * — oo of the sum D(z) = > __ d(n). In particular, we generalize
Koshliakov’s formula, which contains the modified Bessel function of zero-index f(z) = Ko(27zz), ( 2
is a parameter) on the modified Bessel function of an arbitrary complex index. Finally we apply index
transforms of the Kontorovich-Lebedev type to obtain a new class of summation formulas involving
Dirichlet’s function d(n).
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1 Introduction and auxiliary results

In 1972 Nasim [4] gave a proof of the Voronoi summation formula in the form

N N
i [g s - [ szt 2v>f<m>dx]
N N
= ngnoo L; d(n)g(n) — /1/N(logx + 27)g(x)dx] , (1.1)

where both limits exist, d(n) is the divisor function, 7 is Euler’s constant and f, g are Fourier cosine
transformations of a certain function from a subclass of Ly(Ry). In this paper we will relax Nasim’s
conditions giving a direct proof of the formula (1.1) basing only on the Lo-theory of the Mellin transfor-
mation and properties of the Fourier-Watson kernels [8], [9] [10]. Then we will generalize the Koshliakov
formula [4] involving the modified Bessel function K, (z) [1], Vol. II of an arbitrary index v. Finally we
will employ index transforms of the Kontorovich-Lebedev type (see in [2], [7], [11], [12]) to extend (1.1)
obtaining a certain class of summation formulas involving the divisor function d(n). Concerning other
generalizations of classical summation formulas see, for instance, in [5].
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As usual [8], the Mellin transform in Lo(R4) is defined by the integral
N
f(s) =lim.ny— oo f(z)zstd, (1.2)
1/N

where s € 0, 0 = {s €C:Res= %} and the convergence of the integral is in the mean square with
respect to the norm of the space Lo(c). Moreover, the inversion formula takes place

1 [l/2+iN
flz)=1im. _)oo—,/ fr(s)x™%ds, 1.3
@) =ty [ (13

where integral (1.3) is convergent in mean with respect to the norm in Lo(R;) and the generalized

Parseval equality holds
/ f(zt)g /f (1 —s)x™%ds. (1.4)
~ omi

In the sequel we are going to use important definitions and properties from [4], [9] of the divisor function
and its relation with the Riemann zeta-function. In fact, we denote by

Zd )—xz(logz+2y—1) gt = A;x), x> 0. (1.5)

n<x

Its Mellin transform (1.2) is calculated in [4] and we have reciprocal relations in Lo

h*(S) — C (1 _5)

1.6
=2 (16)
1 [fL/2+N 201 _
h(z) =1lim.y_oo=—— / M:v*sds, (1.7)
211 1/2—iN 1—s
where ((s) is the Riemann zeta-function [9], which satisfies the functional equation
¢(s) = 2°7°Lsin (%‘9) T(1—s)¢(1— s). (1.8)

From (1.7) by using (1.5) and a simple change of variables we easily find the representation for A(z),

namely
1 1/24+iN <-2 (S)

Ax) =lim.yoeo z°ds. (1.9)

211 1/2—iN S

2 Main results

Let f(z) be defined on R, and its Mellin transform (1.2) be such that sf*(s) € La(o). Hence it is easily
seen that f is continuous on Ry, f(z)z'/? tends to zero when z — 0 and  — oo, f € La(Ry), f*(s) €
Ly(0) N Li(0) and the integral (1.3) exists as Lebesgue integral. In fact, we obtain

[ eRis <2 [ lsr@Plas| < .
[ 17t < ( / ISf*(8)|2ds>1/2 ( / '|d|')/ o
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Therefore formula (1.3) becomes
1 R —
1) = 5 [ F(s)s (2.1)

and in particular we have the estimate

@) < o /U F(s)ds| = 0(1), x> 0.

Moreover it tends to zero when x approaches to zero and infinity via the Riemann- Lebesgue lemma.
Finally, condition sf*(s) € Ls(c) implies that f is equivalent to some absolutely continuous function p
such that for almost all z > 0 we have

(<ot ) ote) = (o) 1) € Lot

Theorem 1. Let sf*(s) € La(o). Then there exists a function ¢ € La(Ry) and ¢ € Lo(Ry) such
that f,g are Fourier cosine transforms of ¢ in Lo, namely

N

f@)=(F. o(t))(z) =2 lim y_ /1/N cos(2mat)p(t)dt, (2.2)
N
g(z) = (F. t 7 o(t™))(z) = 2 Lim. y_oo /1/N cos(2mat) %gp <1> dt. (2.3)

Moreover, the following identity holds
[ eis= [ g (2.4)

where g*(s) is the Mellin transform (1.2) of g in Lo, sg*(s) € La(o) and both integrals are absolutely
convergent.

Proof. In fact, the absolute convergence of integrals in (2.4) easily follows from (1.6), (1.7), conditions
sf*(s),s9*(s) € La(o) and the Schwarz inequality. Further, using the functional equation (1.8) for the
Riemann zeta-function, the supplement and duplication formulas for Euler’s gamma - function [1], Vol.
I, we write the left hand-side of (2.3) in the form

/UCQ(s)f*(s)ds = /02257r2(s_1) sin? (?) T%(1 —5)C3(1 — 8)f*(s)ds

= w/f*% {F(F(S%]QCQ(S)JC*(I — 5)ds. (2.5)

(1-s)
Hence denoting by ¢*(s) = W*S+1/2%f*(l — s) we easily get p*(s) € La(0) since

‘ [(s/2)
I'((1-9)/2)

Moreover there exists a function ¢(z) € Lo(R;), which is the inverse Mellin transform (1.3) of ¢*.
Appealing to the generalized Parseval equality (1.4) and an elementary integral

’:1, s € o.

* s=1 wos(2m :W—s+1/2L_S I'(s/2)
) o e 2 (1 5)/2)
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function () can be written as the cosine Fourier transform of f, namely
N
ox) = (Feof)(x) = lim.yoo 2/ cos(2maxt) f(t)dt. (2.6)

1/N

Thus reciprocally we prove (2.2). Further, the right-hand side of (2.4) can be written accordingly
- T(s/2) 1°
x| w2 {] C(s)f (1 —s)ds z/Cz(s)g (s)ds
L= | 2om) o)

*(g :,n_ferl/Q& s p

and sg*(s) € La(o). Therefore cancelling the Mellin transform in (2.7) we observe that there exists a

function g € Lo(R4) satisfying (2.3). Combining with to (2.5) we get (2.4) and complete the proof of
Theorem 1.

Theorem 2. Let sf*(s) € La(c). Then

N
27”/{2 s)ds = hm [Zd —/0 (10gx+2’y)f(x)dx]. (2.8)

Proof. In fact, calling formula (1.9) we have conversely

2 N
() = l.i.m.Nﬁoo/ A (1> ¥ Yz
S 1/N xr

N 1
Ay(s) = / A <) 5 ldx
1/N T

after a simple substitution and integration by parts it becomes

where

Hence denoting by

N — —
sAN(s) = 1/NA (x)z™°de — A(N) N —|—A<N) N°?. (2.9)

Therefore the left-hand side of (2.8) can be represented by the ordinary limit

1
27”/( ds-l\}gnooﬁ/sA*N(s)f*(s)ds

: 1 N / —5 px 1 1
= 1\}51100 [27”/0 1/NA (x)x=°f*(s)dz ds — A(N) f(N) +A (N) ! (N)l : (2.10)
The latter two terms in the right-hand side of (2.10) are via formula (2.1) of the Mellin transform of

f* € Li(o) and they tend to zero when N — oo by virtue of the discussion at the beginning of Section 2
and the Voronoi estimates (see in [9])

A(z) = O(z'?), & — oo, A(z) = O(xlogz), = — 0.
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So changing the order of integration in (2.10) by Fubini’s theorem and applying again (2.1) it gives the
equality

N
L/CQ(S)JC*(S)ds: lim i/sA}kv(s)f*(s)ds: lim A (z) f(x)dz.

211 N—oo 271 N —o0 1/N

But in the meantime from (1.5) and since f(z) is continuous we have

N / N N d N
Y@= [ @ | S |- [ Gog s 2
N N
= ; d(n)f(n) — /1/N(10ga: +29) f(z)dz.

Thus we come out with (2.8) and prove Theorem 2.

Corollary 1. Let sf*(s) € La(o). Then the summation formula (1.1) takes place where f,g are
related by (2.2),(2.3) and ¢ € La(Ry).

Corollary 2. Functions f and g are Fourier- Watson Lo- transforms of each other with the kernel
as a combination of Bessel functions, namely x(x) = 4Ky (4m\/x) — 27Yy (4m\/x).

Proof. In fact, calling (2.5), (2.7) we write

s

g*(s) = 4(27)"?*T?(s) cos® (7) ff(1—ys). (2.11)

Making use the representation [8]

/0 ’ (45 (4mvE) — 2nYy (4 V) | at

9 [1/24iN 1—s
=limyeo— (27) 7272 () cos? (W—S) T ds
™ 1/2—iN 2 1—s
and generalized Parseval equality (1.4), relation (2.11) yields
N
g(z) = l.i.m.N_,OO/ x(xzt) f(t)dt. (2.12)
1/N

Further, solving the algebraic equation (2.11) with respect to f*(s) we easily get by straightforward
calculations

F5(s) = 4(27)~2°T2(s) cos? (%‘S) g (1 — s).
Therefore it corresponds the reciprocal formula
N
flz) = l.i.m.N_,oo/ x(zt) g(t)dt

1/N

and completes the proof of Corollary 2.
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3 A modification of Koshliakov’s formula

As an example of the formula (1.1) Nasim proved in [4] the familiar Koshliakov’s formula, which were
established in 1928
> 1 & 2mn
d(n)Ko(2 — =) dn)Ko | —
> din)Ka(2em) ~ L 3 dwo (27

= —Z(’y —logdnz) — i(fy —log(47/z)), Re z > 0. (3.1)

Here we will give another proof of (3.1) basing on the equality (2.11) and the inverse Mellin transform
(1.3). In fact, appealing to the relation (2.16.2.2) in [6], Vol. 2

/ K, (cx)x* tde = 257 2%¢°T (8 —; V) r (8 ; V) , Re ¢ > 0,Re s > |Rev], (3.2)
0

we have reciprocally

1 a+1i00 _
K, (cx) = %/ o2 r (S —12_ V) r (S 5 V) (cx)~%ds, Re s = a, (3.3)

200

where both integrals (3.1), (3.2) are absolutely convergent via the asymptotic behavior of the modified
Bessel functions and the Euler gamma-functions (see [ ). Consequently, taking f(z) = Ko(27zz), we
find its Mellin transform (see (1.2), (3.2)) as f*(s) = §(mz)"*I'? (s/2). Hence substituting in (2.11) we
get g*(s) = 177 °2°71T'?(s/2). Therefore g(z) = z 1K0(2mc/z) and by straightforward calculations of
the related absolutely convergent integrals in (1.1) (see [4]) we come out with (3.1).

However, when the index v of the modified Bessel function is different from zero, the corresponding
modification of the Koshliakov formula (3.1) needs an operational technique being used for the generalized
Fourier- Watson transformations. In fact, let consider the modified Bessel function y K, (2,/7y), |Re v| <
1, x,y > 0. Then it evidently satisfies conditions of Theorem 1 and its Mellin transform by = (see (3.2))
is equal to .

1—s v v
5 F(s+2>F(s 2). (3.4)

Further, the left hand-side of (1.1) in this case contains a series and an integral, which converge absolutely.
Calling relation (2.16.20.1) in [6], Vol.2 it can be calculated explicitly and we obtain

N
Jim [y > d(n) K, (2y/yn) — /1 /N(logx + 27)KV(2\/@)dx]

—yZd 2\/1471)—7{2'7 logy—i—w(l—i—g)

wo(1-Plre5)r-5) 09

where 1(z) is Euler’s ¢-function [1], Vol. I. In order to treat the right-hand side of (1.1) we first find a
representation of the reciprocal function g, (x,y). Appealing to (1.2), (2.5), (3.4) we derive

g5(s,y) = / gy (x,y)r* tdr = 21 725y 172 cos? (g) I'2(s)
0

xI‘(l—s+%)F(1—s—g)
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= (2m) "% y® (cos s 4+ 1) % (s)I" (1 —s+ %) r (1 —5— g)

— (2m) "2y T2(s)T (1 s+ g) r (1 s g)
+(2m) " 2y" i Wrz(s)r (1 — s %) T (1 —s— g) . (3.6)
k=0

Hence cancelling the Mellin transform by using the generalized Parseval equality (1.4), relation (2.16.33.1)
in [6], Vol. 2, operational properties of the Mellin transform [7], [8] and the change of the order of
integration and summation via the absolute and uniform convergence with respect to y, = : y > yo >
0, x > zg > 0, we obtain correspondingly

gv(z,y) =2 [/OOO Ko <27rt\/j> K, (t) t dt
R NI CAR
- e (10515 2 5)

2 (—1)kg2k d\** v v 4y
— |y P14+, 1—=; 21— 3.7
+k2::1 20! Vg ) 2 Ty 50 % ” ; 3.7)

where o F (a, b; c; w) is the Gauss hypergeometric function [1], Vol. I. But according to relation (7.3.1.30)
in [6], Vol. 3 it has a representation in terms of the series of ¢-functions

v 47r2:r> 1
F(1+5)T(1-%)

v
Fill4+—=-1——=;2;,1—
21<+27 27 ) y

xi (L+5), (- 5), [2¢(m+1)—¢(1+g+m)

—¢ (1 - % —|—m) ~log (47;2:”)] <47;2x> .y > 4l (3.8)

where (a), is the Pochhammer symbol [1], Vol. 1. Meanwhile making an induction by % it is not difficult
to prove the equality

g\ 2
<ydy> (y*logy) =y~ (a% logy — 2k 042’“*1) . (3.9)

Hence due to the absolute and uniform convergence with respect to y > yo > 472z the second term in
the right-hand side of (3.7) becomes

L (—1)kg2k d\** v v 43z
-~ 7 - _ . 2. 1 —
Z (21{7)' ydy 2F1 1+ 2a 1 27 ’

k=1
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(-5 () - rrgram g o
S (18002 (g (1) g ) (422
ST Py e e )
- eforgen) el fon)m(59)] (5
TR e ()

x [2w(m+1)¢(1+;+m>¢,(1;+m>log(47jx)] ( 47;2x)m

v v 4dm2x
—F (1+ =, 1—=; 2;1— . 3.10
2 1( +27 27 ’ y ) ( )

Substituting the latter expression into (3.7) we write g, (x,y) in the form
v v\12 v v Az
(z, :F(l 7)1“(1—7)} Al1+2 1-% 2. 1=
9v(2,y) [ + 2 2 ok | 1+ 5 3 ”

(e )r(i-g) 3 B2

m=0
x [2¢(m+1)—¢(1+%—|—m)—w<1—g+m)
—log (4”;9‘")] (— 47;2”3) , y > 4n%z, [Rev| < L. (3.11)

Calling (3.8) we slightly simplify (3.11) representing the kernel g, (z,y) = S, (MTE) as follows

5.(2) = Vi (= 722 1+2m+27)nr)_§1+2m_)[21/}(2m+1)

4 2
—¢(1+g+2m)—¢(1—g+2m)—logz}z%, 0<z= Zx <1. (3.12)
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On the other hand, the same result we obtain inverting the Mellin transform (3.6) and calculating the
corresponding integral (1.3) taking into account the residues of multiple poles of gamma-functions (the
so-called logarithmic case, see details in [3]). Moreover, for any z > 0

S, (z) = i /##HOO cos? (%) I'2(s)

U —7300
T (1—s+g>r (1757 g) 2%ds, (3.13)
where we can choose p from the interval (0, 1-— @) , |Re v| < 1. Consequently, the Mellin integral

(1.2) in (3.6) exists and converges absolutely when s € o. Further, employing the duplication formula for
gamma-functions [1], Vol. 1 and making a simple change of variables we rewrite (3.13) in the form

e [ [ e (b))

T (1 — s+ %) r (1 —s— %) 22%ds. (3.14)

Letting again z = 4”;”” and considering the case z > 1, ie. 0 < y < 472z, |Rev| < 1, v # 0 we
can calculate the latter integral (3.14) via Slater’s theorem [3] as a linear combination of hypergeometric
functions 4F3, [6], Vol. 3. Precisely, we obtain

Cv1os T(3+%
5.2) = Vau () = ¥ 2 ar () |
1 v 1 v v v v 1 14+v _,
Fsl=-+—-, =+—,14+—, 14—, 14—, =
X4 3(2+452+47 +4a +47 +27 9 2 ;2 )

v 1 v v v v 1 1—v
FRl-——— = ——, 1—-—=,1——=;1— =, = —2
X4 3(2 47 D) 4) 47 47 27 27 2 ;2 >
y 2
Ly E2gv3 L(-v) | T(1+7F)
L [F5-9)
v 3 v 3 v 3 v 3 v
Fll+=, 14+, 42, S+ 242 2 142 272
X43(+ Attty oty gt )

3 3
X4F3(1_V AN

A3
2 _
47 47 2 4 ;R ) , &= . (315)

We note from (3.13), (3.14) that lim, ., V4 ,(2) =lim, 14 V2, (2) = S, (1).
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Meanwhile, each hypergeometric function 4F3 can be represented as a combination of Gauss hyper-
geometric functions o Fy owing to relations (7.5.1.6), (7.5.1.7) in [6], Vol.3. So we have, for instance,

1 v 1
Fl=+2Z =
: 3(2+4’ 2 "

L F 1+V 1+V 1+ ! + o F 1+V 1+V 1+ !
= — —_ — l/.i - - V'_i
2 241 27 27 7Z 2471 2a 27 ) P ’

v v 3 v 3 v 3 v 3 v
Fs(l+5, 145, S4—, S+ 5+5, o, 1453 277
43(+4’ Tty ettty ity? )
1 1 1
AL+ ) [gFl (1+V, L+ 55 1+ )—2Fl<1+”, L+ 23 1+, —)}
(1+%) 2 2 z 2 2 z

and similar formulas can be written for two other 4 F3-functions in (3.15) changing v on —v. Substituting
this into (3.15) and making use the duplication formula for gamma-functions we come out with the final
expression of the kernel V5 ,(2), z = % >1

_v_ v 14 14 1
V271/(Z) =z 2 IF(*I/)F2 (1+§) |:2F1 <1+2, 1+§, 1+V7 Z)
(m/) (14 v 14 v 14 1
—cos [ — - —; v, ——
9 241 27 2, ) P
v_q 9 v v v 1
r 1‘(1—7) Al1-Y 1-Y 1. =
22 () 2 {2 1( PR N z)

1
—COS(LV)QFl 1—5,1—5;1—V; ——
2 2 2 z

m m+ g TV m zmm—5—1
sin v l 1+ zr_'_);;g_lj) * ) [COS (7> (-1) —1} —

Z r 1+m— —)I‘(l—i—m ) [17COS (LV) (71)771} ngl] . (3.16)

I(l1+m-—v) 2 m!

m=0

In the meantime, another representation of the kernel S, (z) comes from Corollary 2. In fact, formula
(2.12) and a simple substitution give

42

Sy(z) :/ 2K, (t Vz) — 7Yo (t V2)] K, (t)tdt, z = (3.17)
0
where the integral converges absolutely.
We note here a particular case of the kernel S, (z) when v = 0. In fact, after straightforward calcula-
tions we obtain from the equality (3.12)

logz 47r2x

S = . 3.18
o(z) = 1 y ( )
On the other hand, the same result comes immediately, when we pass to the limit v — 0 through the

equality (3.16) and take into account particular cases of the Gauss hypergeometric functions. Therefore
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combining with (3.5) and taking in mind the value v = —(1) we have in this case an interesting
modification of the Koshliakov formula (3.1), namely

log (472 n/y)
2
321 d(n)Ko(2\/yn) — 2y E d(n 47T2 -y

e} 4 2
:—log\/g—y/ (10g33+27)80( 71‘yx) dx.
0

But the latter integral is easily calculated with the relation (2.6.5.15) in [6], Vol. 1. So we have finally
the following Koshliakov type formula

= B log(4m2n/y)
2 ) o [Rotavim — 2 G

1 472 log\y v
Slog (=) - ~L y>o 3.19
glo () - FEVE Ty (3.19)

Letting in (3.19) y = 1 we find the identity

> log(4m2n) 1
n=1
Meanwhile, singular value y = 472 in (3.19) yields

o0

> d(n )|:47T2K0(47r\f ) —

n=2

logn

1] =1 — 4% K (47) — log 2m — >,
n2 —

Considering the general case |Re v| < 1, v # 0, we appeal to Theorem 2 writing (2.7) for the function
g5(s,y), namely (see (3.6), (3.11), (3.12))

/C Vs = i iv:d()S 4’n —/N(l +29)8 47T2zd
5 5)gs(s,y) s = lim_ 2 mSe (= ; ogx +2v)S, ) x| .

Moving the line of integration o in the left hand-side of the latter equality to the right, we take the contour
o= {s €C, Res= ‘3} Doing this we encounter simple poles s = 1 — 4, s =1+ § of gamma-functions

r (1 —5— 5) , I ( —s+ ) respectively. Therefore we obtain

S

2m/ )95 (s y)ds = 7:2/(422)_ C(s)eos? () T20)
el
r

i <47yr2> - ¢ (1 * %) 1‘2((__2))] - (3.20)

In the meantime, using the representation [9]
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equalities (3.12), (3.13), (3.14) and the absolute convergence of the series and the integral we get

i. & (4;T2> ) ¢*(s) cos® (%3> I?(s)0 (1 — 5+ g) r (1 —5— %) ds

_ id(n) %/U (47;2”)_Scos2 (5)rer(1-s+2)r(1-s—2)ds
S [ () + oy [(5) " o+

Y
()t [(5) R ()R

= d(n)
n<y/(4r?)
4r2 a2 \"? T AN N
3 ()t () A () T R
o> a7 in?) y 8n cos” (%) y 2 (3) Y r?(=3)

Hence combining with (1.1), (3.5), (3.20) we arrive at the following Koshliakov type summation
formula

gd(n)Ku(Qm) - m {27 —logy + 9 (1 + g) + (1 _ g)}
- 1 4m*n 1 ar2n\*/? I'(v) ar?n\ 7V T (—v)
s y/<4w2>d(n) yVLV< y >+ 8n cos? (%) [( y ) I (3) +( y ) FQ(—S)H
1 dm*n 1 Ar2n\"/? I'(v) ar2n\ 72 T (—v)
" > y/<4w2>d(n) v ( Y ) " ueos? (%) K y ) 2y ( y ) FQ(—Z)H

1 An2\ "/ 9 vy I'(v) Ar2\ T2 9 vy I'(-v)
T S cos? (m) l( Yy ) ¢ (1 2) 2 (%) +< y ) ¢ (1+ 2) r2(-%)|’ (3:21)
where y >0, [Rev| <1, v#0.

Finally in this section we will show how to come to formula (3.19) from (3.21) considering the limit
case v — 0. In fact, we can easily pass to the limit in the left-hand side of (3.21) via the absolute
and uniform convergence by v of the series (see asymptotic properties and elementary inequalities for the
modified Bessel functions in [1], Vol. II, [3], [11], [12]). On the other hand, involving the series expansions

of the Riemann zeta-function [1], Vol. I and the reduction formula for gamma-functions it is not difficult
to prove the limit equality

72\""? 9 v v 7\ 2 v i
i st () 00 R+ () e -0 )

1 472
= —log S
8 Y 4

Therefore in order to obtain (3.19) from (3.21) we only must calculate the limit of two series in the right
hand -side of (3.21) when v — 0. Indeed, assuming |v| < § for a small positive § and substituting these

two terms by series
= 1 42\ T L, /TS
J,(y) = ;d(n) E/ ( ; ) cos (?) I'“(s)

e
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xF(lfs+g)F<1—s—g)ds, (3.22)

we will first establish its absolute and uniform convergence with respect to v. With the Schwarz inequality,
the Parseval equality for the Mellin transform [8] and Stirling’s asymptotic formula for gamma-functions
[1], Vol. T we have the estimates (|v| < d)

T;d(n) %/a <4ﬂ:n)s cos? (%s) I?(s)T (1 — s+ %) r (1 —5— g) ds
)T [ ) (o)
. e —Ely—VQi)Q/zi))a(ilu_+y2;t)2it)/2)’ dt
<c, /Z % T ((1+ v — 2i6)/2) T (1 — v — 2it)/2)]| dt
<Cys (/0; T ((14 v —2it)/2)] dt> v (/Z T((1—-v— 2it)/2)|2> v dt

00 1/2 0o 1/2
=21 Cys (/ e~ 2T Re ”dx) (/ e 2ryRe "dx)
0 0

=7 CysI'(1+Re v)['(1 -—Rev) < Dys < oo,

where Cy,Cy 5, Dy s are absolute positive constants, which do not depend on v. Thus we have proved
the absolute and uniform convergence of the series and the integral in (3.22). Hence passing to the limit
when v — 0 under the series and the integral signs in (3.22), we use relation (8.4.6.11) in [6], Vol. 3 to
calculate the corresponding Mellin transform and come out with the equality

log(4
hmJ —ZyZd Zg2w77l/y)2,y>0.
a Y

Hence taking into account our motivations above we arrive again at the Koshliakov type formula (3.19).

4 An application of index transforms

In this last section we will extend Koshliakov’s type formula (3.21) on a family of Voronoi-Nasim sum-
mation formulas applying the modified Kontorovich-Lebedev transformation (see [2], [7], [11], [12], [13])

N
(KLf)(z) = l.i.m.N_,OO/O Kir (2V/z)f(7) dr, > 0, (4.1)

which involves an integration with respect to the pure imaginary index i7 of the real-valued modified
Bessel function K;;(2+/z) given by the following Fourier integral [7]

Ki; (2Vz) = / e~ 2VEeoshU cog 1y du. (4.2)
0
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The transform (4.1) forms an isometric isomorphism

1
KL : Ly (R+; .dr) o Ly <R+ dx)
Tsinh 7t T

where integral (4.1) converges with respect to the norm in Ls (R+; df) Furthermore, the reciprocal

inversion is given by the formula

1 d
F(r) = Lim.y—oo QTsthT/ K (2v/2)(KLf)(z) 22 (4.3)
x
where integral (4.2) converges with respect to the norm in Lo (RJr; mdﬂ and the Parseval equality
holds - P \f( )2
x
KL 2= dr. 4.4
| wLn@p s = [ IO 4 (14)

However, integral (4.1) exists in the Lebesgue sense for a wide class of functions. Indeed, this fact can be
easily verified using the Schwarz inequality and the uniform inequality for the modified Bessel functions
[11], [12]

|Kir (2v)| < e BKo(Vz), x>0, 7>0. (4.5)

For instance, taking a simple function f(7) = 1 and using (4.2) with the reciprocal formula for cosine
Fourier transform we get (KLf)(z) = ge_Qﬁ. Hence letting y = 1, v = i7 and writing the Koshliakov
type formula (3.21) in the form (see (3.20))

i Ko (24/m) — ImT(g)[%W(lJFZ)W(l_Z)]

1 9 TS\ 19 T T
== ( 2)” C()cos(2)F(s)F<1 5+2)F(1 s 2>ds, (4.6)
we will integrate it through with respect to 7. We note that the change of the order of integration and
summation can be easily motivated via the absolute convergence and Fubini’s theorem (for the latter
integral one can use the Schwarz inequality, inequality (4.5) and the asymptotic behavior of the Riemann
zeta-function on the critical line ¢(1/2 + it) = O(t/logt), t — oo (cf. [9])). Therefore calculating
integrals by 7 invoking with relations (2.5.46.13), (2.5.46.15) in [6], Vol. 1 we obtain from the latter

equality ,
3 SN i i _u
nz::ld(n)e2 ol 7r/0 ‘F(l—i—Q) [w<1+2)+¢<1 2)]dr

- 1 _23( (s) cos? (7;8) I?(s)I'(2(1 — s))ds. (4.7)

Iy

Meanwhile, employing the definition of the psi-function ¥(z) = d—dz log [I'(z)] and integrating by parts we
easily deduce the value of the following index integral

S O I P

Thus (4.7) yields the equality

i d(n)e 2V + % —y= % /UT('_QSCQ(S) cos? (g) I?(s)I(2(1 — s))ds
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_ J;m /( m) 2 ¢(s) cos® () ()0 = )T (; - s) ds. (4.8)

Further, the right-hand side of (4.8) we treat in a similar manner as above moving the contour of integra-
tion to the right taking the line (u —ioo, u+i00), 1 < Re u < % and encountering a simple pole s = 1 of
the gamma-function I'(1 — s) (for the product ¢?(s)cos? (%) the point s = 1 is a removable singularity).
Hence with the residue theorem

1
— [ 77%5¢3(5) cos? (g) I?(s)I'(2(1 — 5))ds

T Sy

= i d(n) g /HHOO (47T2TL) cot (7;8> I'(s)l <; - s) ds + % (4.9)
n=1 H

—100

The latter integral with respect to s we calculate (appealing again to Slater’s theorem [3]) as a sum
of residues in the right-hand simple poles s = 1+ k, s = % + k, g +k, k=0,1,2,... of gamma-
functions I'(1 — s),T’ (% — s) , I (% — s), respectively. In fact, expressing straightforward the obtained
hypergeometric series and using relations (7.3.1.106), (7.3.1.107) in [6], Vol. 3, we derive

ﬁ /;MOo (47r2n) cot (7;8) I'(s)l (2 — s) ds

™ —100

- Fz/j% /W%M (47%n) F(Ff(f)s)r(l — )T <i - 5) r <i ~ s) ds

1/ 2—ico 2

1 335 1
=— 4R (1,1, 52, 2 ——
27in2 2(’ T2 4y 167r4n2>

- \/5(167r41; T [(1 + \2) (4r%n +1)%% + (1 - \2) (4m°n — 1)3/2} . (4.10)

Hence substituting the latter expression into the right-hand side of (4.9), changing the order of summation
in the double series and using a relation for (?(2(1+k)), k € Ny [1], Vol.1 in terms of squares of Bernoulli
numbers Bg(k +1yr We obtain finally

1 %S 24k 1 32

wi ] T e oot (F) P - 8)ds = it ZO T DT PR T)

Z 167r4n2 1572 [(1 + \2) (4m°n +1)%2 + (1 - \2) (472n — 1)3/2} .

Combining with (4.8) we get the following summation formula of Voronoi’s type

o

nz-:l i {ezﬁ G (167r4Z2 — 1) Kl + %) (4m’n +1)°2 + (1 - \}5) (42 — 1)3/2”

1 1 2477, 1 B2
—77—+ +

2(n+1)
< (dn+1!(n+1)2(2n +1) (411)

Generally, let f be absolutely continuous and belong to Lo(R4 ). Returning to (4.6) we multiply both
sides by f(7) and integrate with respect to 7. Changing the order of integration and summation via
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(4.5) and the absolute convergence and observing that integral (4.1) converges absolutely under these
conditions, we find

T

id(n)(KLf)(n) - Z/Ooosmﬂf:m {mﬂp <1+ Z;) + 9 <1 - 2)} dr

— 7712/0/000 (472) 77 3 (s) cos? (%8) I2(s)T (1 — s+ Z) r (1 —5— ’;) f(r)dr ds. (4.12)

However, by virtue of the Parseval equality for the cosine Fourier transform (2.6) (see [8]) and relation
(2.5.46.13), (2.5.46.15) in [6], Vol. 1 we derive

/owsmng:/deZQ/ow(mdm,

:_f(())_ﬂ-/ooo(FCf/)(z)dx’

cosh? (27 x)

/OOO T (1 —s+ Z;) T (1 —5— Z;) f(r)dr =45 7 T(2(1 — 5)) /OOO [ (Fcf)g]ar;)(l_s) iz

cosh(2mx

where / denotes the derivative of f, which belongs to Li(R) via the absolute continuity. Consequently,
equality (4.12) takes the form

S dn)(KLf)(n) /o) _ = /ODO (Felf' + 29 ) (=)

2 2 cosh? (27x)

_ 1 /OOOW /U(COS}:T))_QS-HCQ(S)COSQ () r2()rea - »)ds dr. (4.13)

i cosh(2mx) (27 2

But (see (4.9)) 1 ) o | o
/(cosh)) ¢2(s) cos? (5 ) T2(s)T(2(1 = 9))ds

i (2rx

1 [rtiee T —2stl 9 5 (TS o 71' 3
=— /H_iOC (cosh(27r:c)) ¢*(s) cos (7> I“(s)I'(2(1 — s))ds + 1 cosh(2mz), 1 < p< >
Denoting by
1 [rtieo s
D(z) = —/ 2722 () cos® (—) I2(s)T'(2(1 — 5))ds
'

™ L — 100 2

we have

B(z) = zm,Q 3 d(n) /WMoo (162%n2) F?f(f)s)m — 9T (i - s) r (i - s) ds

n=1 H/Q_ioo
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=2V2 2 i d(n) ¥(16z*n?), (4.14)

where

L1 e T2 (s) 3 5 (), ifue(0,1),
=5 P(l—s)r(ls)r<4s>r<4s>ds{wu), if u e (1,00)

2

and lim, ;- ¥y (u) = limy, 14 Po(u) = ¥(1). According to Slater’s theorem, ¥y (u) will be a sum of
residues in the left- hand double poles s = —k, k= 0,1,2..., of I'?(s). Therefore, after straightforward

calculations we obtain
(4k k 3 5
\/75 +12 ) l:w(1+k)—w<4+k)—’(/)<4+k>

1
+ (2+k> - 1ogu] , O<u<l (4.15)

The value of ¥s(u), in turn, will be derived easily from (4.10). Precisely, we find

221 3 3 51
Uy(u) = " 3Fy (17 1, 3T 4;u)

_ w [(H\%) (Vu+1)3? + (1-%) (\/a—nﬂ ,u> 1. (4.16)

Hence combining with (4.14) and using the value z = w[cosh(27z)]
(4.13) as follows

), iy [ () ot (F)roren -

i Jo cosh(2mx)

— lim /ON (Fef)@) | _21v2 3 d(n) ¥, <167T4”2>

NS00 cosh(2mz) | cosh(2mx) n< cosh? () /4n cosh®(2mz)

—! we represent the right-hand side of

1 4,2
+ Z d(n) Uy <m> + gcosh(va)

4
n> cosh?(2wz) /42 cosh (27{-3:)

= \[/ cosh 27rw Z dn) T (%)

4m2n< cosh?(27x)

167" n? N
+ 3 d(n) Uy (Zf”) do + % Jim [ (Ff)(@)da
472n> cosh?(27x) cosh (27T$) oo

Finally we will prove that under our conditions the latter limit exists and is equal to % £(0). In fact since
f is absolutely continuous and belongs to La(R;) we write for each N > 0 (see (2.6))

/ON(Fcf)( dz = lim 2/ / f(t) cos(2mwt)dt dx

m— 00
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lim 7/ I sm 27rNt)d _ 1/0°° f(t)Sin<27rNt)dt.

m—oo T t s t
Henee Nt) £(t) — £(0)
sin(2r Nt 1 [ f(t)— f(0 1
| — = lim — ——— =i 5
N1—I>I<1>o7r/ £ p i Sl 7 Nggoﬂ_ ; ; sin(2rNt)dt + 2f(0)
lim / f sm(27rNt )dt + hm —/ f sin(QﬁNt)dt + lf(O)
N—oo T N—oo T 2
1% F) - 1
= lim = M sin(2r Nt)dt + = f(0),
N—oo T 0 t 2

for a small positive 0 since the second limit is zero via the Riemann-Lebesgue lemma. But f(¢) — £(0) is
of bounded variation in the interval (0,d) and can be represented by f(t) — f(0) = ¢1(t) — ¥2(t), where
¥;(t), i = 1,2 are positive nondecreasing bounded functions, which tend to zero when ¢ — 0. Therefore
for each positive ¢ there exists a number 7, such that ¥;(¢t) < e, when ¢ < 5 and by the second mean
value theorem we have, for instance,

27Nn :
/77 210 sin(2r Nt)dt = 1/}1(17)/ ! SY .
o 1t 2

aN¢g U

Thus

/77 lfflt(t) sin(27TNt)dt‘ <Aeg, A>0

for any N > 0. Further, v (t)/t € L1(n, ). Since € is arbitrary small we find

5
lim + / () sin(2rNt)dt = 0.
N—oo T 0 t

Analogously we treat the integral with 5. Consequently, we prove the equality limy_, o fON (F.f)(x)dx =
1£(0) and establish our final result.

Theorem 3. Let f be absolutely continuous on Ry and belong to La(Ry). Then the following
Voronoi-Nasim type summation formula holds

fO) w7 (F(f+2y ) (@)

—2n/3 / Cosh QM S am (%)+ S dm)

472n< cosh?(2mx) 472n> cosh?(2wx)

1 4,2
cosh™(27x)

where F, is the cosine Fourier transform (2.6), KL is the modified Kontorovich-Lebedev transform (4.1)
and functions ¥;(z), i = 1,2 are defined by (4.15), (4.16).
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