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Abstract

We discuss the relation between the maximal invariant set of an endomorphism f : M → M

and the intersection of forward iterates of M .

Given an abstract endomorhism on a set M, f : M → M, let the Maximal Invariant set,

M, be the smallest set containing all sets A such that f(A) = A.
First of all we note that M exists by Zorn’s Lemma provided the set {X ⊂ M : f(X) = X}

is nonempty. Another important issue is that if one considers the invariance condition on A to be
either f(A) ⊂ A or both f(A) ⊂ A and f−1(A) ⊂ A then M is always the maximal invariant set.
However, the question is not trivial if we impose the condition: f(A) = A.

In this small note we will establish that in at least two different settings - which most maps f

considered in applications satisfy - we have that,

∩∞
n=0f

n(M) = M.

Nevertheless, in Figure 1 we point out that M may be strictly contained in ∩∞
n=0f

n(M).
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Figure 1: Arrows indicate the dynamics of the map. Note that the interval [a1, a2[ has preimages of all order but

it is not contained in the maximal invariant set, which is [0, a1[.

We say that x = {x−k}k∈Λ, where, Λ= {1, ..., n} for n ∈ N, or Λ = N, is a backward chain

under the map f of x if x0 = x and x−k ∈ f−1(x−k−1). The length of a chain, |x|, is the cardinality
of Λ. If Λ = N then |x| = ∞ and then, we say that x admits an infinite backward chain.

The concept of backward chain can be used to characterize M and will allow us to show that,
for a general class of maps which includes injective endomorphisms, ∩∞

n=0f
n(M) is the maximal

invariant set.
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Lemma 1 M = {x ∈ M : x admits an infinite backward chain}.

Proof. Firstly, if x belongs to some invariant set I then there exists a x−1 ∈ I such that f(x−1) = x

since f|I is surjective and by the same argument there also exists a preimage x−2, of x−1, and so
on.

Let I = {x ∈ M : x admits an infinite backward chain}. It suffices to show that I is an invariant
set. Since any infinite backward chain x can be extended forwards by adding f(x0) we conclude
that f(I) ⊂ I. Finally, for every x ∈ I take y = x−1. It follows that, y also admits an infinite
backward chain ȳ = {y−k}k≥0 ≡ {x−n}n≥2 and therefore y ∈ I which shows that f|I is surjective
since, by definition, f (y) = x.

In Example 1 one might assert that, although N = ∩∞
n=0f

n(M) is not the maximal invariant set,
the other set ∩∞

n=0f
n(N ) is. Therefore, let us consider the following collection of sets: let M0 := M

and Mn := ∩∞
n=0f

n(Mn−1) for every n ∈ N. Note that f(Mn) ⊂ Mn and thus, Mn+1 ⊂ Mn.
More importantly, notice that M ⊂ Mn for all n ∈ N, hence M ⊂ M∞ := ∩∞

n=0Mn.

We say that f is finite-to-one if for every x ∈ M the cardinality of the set f−1(x) is finite.

Proposition 2 Let M be a manifold and f : M → M a map such that, for some n ∈ N, f|Mn
is

finite-to-one. Then Mn+1 = M. In particular, if f is finite-to-one then M = ∩∞
n=0f

n(M).

Proof. This observation follows trivially from the fact that every point x ∈ Mn+1 has backward
chains of every length in Mn since x ∈ fk(Mn) for all k ∈ N. Therefore, there exists an infinite
number of backward chains. Let x0 = x. Since f|Mn

is finite-to-one, we know that there exist an

infinite number of backward chains xi = {xi
k}k that must agree for k = −1. Take x−1 = xi1

−1 =

... = xim

−1 = ... and so on. At each stage s we have only a finite number of preimages and therefore
the above argument always applies and x−s can always be found. Since we always have left an
infinite number of backward chains with unbounded set of lengths, we may conclude that this
procedure does not stop. Consequently, x = {x−s}s∈N is an infinite backward chain for x.

The converse is not true, though, for we can modify the first example slightly, in such a way
that ∩∞

n=0f
n(M) is the maximal invariant set and yet f remains infinite-to-one.

Another setting where M = ∩∞
n=0f

n(M) is explained in the following result.

Proposition 3 Let M be a compact manifold and f : M → M a continuous map. Then, M =
∩∞

n=0f
n(M) 6= ∅.

Proof. By the Fixed Point theorem we know that M 6= ∅. It suffices to prove that M1 ⊂ f (M1) .

Let y ∈ M1 = ∩∞
n=0Fn where Fn = fn (M) . Consequently, there exists a sequence of points

zn ∈ Fn such that fn (zn) = y. Let wn = fn−1 (zn) . It follows that, for all n, f (wn) = y. By
compactness of M we must have a converging subsequence {wnk

}k to a point x ∈ M and also, by
continuity of f it must be true that f (x) = y. Moreover, since f is continuous and M is compact
every iterate of M is compact as well. The fact that limk→∞wnk

= x, wnk
∈ Fnk

and every Fnk
is

compact implies that x ∈ ∩∞
k=0Fnk

. Finally, x ∈ ∩∞
n=0Fn because {Fn}n is a decreasing sequence

of sets.

One question that arises now is whether one can construct a map such that for every n ∈
N, Mn 6= M. This is equivalent to saying that the sequence of sets {Mn}n is infinite. From
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Figure 2: An example of a map whose maximal invariant set differs from Mn for every n.

Proposition 2, if one aims to build such map, it must be so that f|Mn
is infinite-to-one for all

n ∈ N.

The main idea in our next construction is to glue up countably many copies of intervals on
which f acts in a similar fashion to that in our first example. Namely, take a sequence {bn}n∈N

of strictly decreasing numbers in the unit interval [0, 1] such that b0 = 1, limn→∞bn = 0. We then
divide each interval of the form [bn, bn−1[ in subintervals of the form [bi

n, bi+1
n [ where {bi

n}i is an
increasing sequence of numbers in the interval [bn, bn−1[ such that b0

n = bn and limi→∞bi
n = bn−1.

Followingly, we define the action of f|[bn,bn−1[ similarly to that shown in Figure 1 for the interval
[a1, 1[ (via some homeomorphism from [a1, 1[ to [bn, bn−1[) for all subintervals but In := [b0

n, b1
n[

which is the homeomorphic copy of [a1, a2[ in Figure 1 within [bn, bn−1[. We then define, for every
n ∈ N, f(In) = [bn+1, bn[ and finally, let f(0) = 0 and f(1) = 0. In Figure 2 we show a graphic
example of the map. It follows from this construction that f|Mn

is infinite-to-one for every n ∈ N

and Mn = [0, bn[∪In . More importantly, we have that M∞ = {0} hence M = {0}.

Open question. In our previous example we have concluded that M∞ = M. However, there is
no evidence that this is the case for a given map f in general. It could happen that f (M∞) is
strictly contained in M∞ and the process of approximating M starts all over again: M∞,0 = M∞,
M∞,1 = ∩∞

n=0f
n (M∞,0) , . . . ,M∞,k = ∩∞

n=0f
n (M∞,k−1) and M∞,∞ = ∩∞

n=0M∞,n. And so on.
Is there an example of an abstract map f on a set M such that M can never be attained under
this process?

Final remark. In the setting of invertible endomorphisms we can consider the maximal invariant
set as being the maximal set satisfying both f (A) = A and f−1 (A) = A. Since the map is
invertible both f and f−1 are one-to-one. Therefore, the maximal invariant set under this definition
corresponds to the intersection of the maximal invariant sets of f and f−1 which turns out to be,
from Proposition 2, M = ∩∞

n=−∞fn(M).
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