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Abstract. We classify the foliations associated to hamiltonian
vector fields in C2 with an isolated singularity. In particular we
classify the foliations associated to vector fields obtained by the
differential equation ẍ + f(x) = 0.

1. Introduction

The definition of a semi-complete vector field relatively to a (rela-
tively compact) open set U is introduced in [6]. The importance of
that definition is that:

Proposition 1. [6] Let X be a complete holomorphic vector field on
M . The restriction of X to any connected, (relatively compact) open
set U (U ⊆ M) is a semi-complete vector field relatively to U .

Therefore, if a holomorphic vector field in an open set U is not semi-
complete it cannot be extended to a compact manifold containing U .

There exist no hamiltonian holomorphic vector fields defined in a
compact manifold. However there exist sympletic vector fields defined
in compact manifolds (for example, the linear flow in the complex
torous). As sympletic vector fields are locally hamiltonian, it is im-
portant to study the semi-completude of hamiltonian vector fields in
a neighbourhood of an isolated singularity, or better, the foliations
associated to hamiltonian vector fields in a neighbourhood of the sin-
gularity.

Without loss of generality we can assume that the isolated singularity
is the origin.

In this paper we prove the following results:

Theorem. Let F be the foliation associated to a non nilpotent hamil-
tonian vector field X : (C2, 0) → (C2, 0) with an isolated singularity at
the origin and such that J2

0X 6= 0. Let H be the hamiltonian function
associated to X. Then F admits a semi-complete representative, in a
neighbourhood of the singularity, if and only if ( ∂2H

∂x∂y
|0)2− ∂2H

∂x2 |0 ∂2H
∂y2 |0 6=

0 or if H can be written in the form H = uf1f2f3, where u is a holo-
morphic function verifying u(0) 6= 0 and f1, f2 and f3 are irreducible
holomorphic functions such that fi(0) = 0 and J1

0fi is non zero for
all i = 1, 2, 3, and the level curves of order zero of f1, f2 and f3 have
distinct tangents at the origin.
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Theorem. Let F be the foliation associated to a nilpotent hamiltonian
vector field X : (C2, 0) → (C2, 0) with an isolated singularity at the
origin. Then F admits a semi-complete representative, in a neighbour-
hood of the singularity, if and only if X is analytically equivalent to
(2y − x2)∂/∂x + 2xy∂/∂y or to 2y∂/∂x− 3x2∂/∂y.

The differential equations of type ẍ+f(x) = 0 model mechanical and
physical problems. A differential equation of that type can be written
as a system of differential equations associated to the vector field:

(1)

{
ẋ = y

ẏ = −f(x)

Many problems in physics are defined in compact manifolds. We
usually want to know if the solution of the system for a given initial
condition is defined for all the time. Therefore, by proposition 1, if the
vector field is not semi-complete the solution canot be defined for all
the time.

In this artical we also prove:

Theorem. Let f be a function such that f(0) = 0. Then the foliation
associated to the holomorphic vector field (1) admits a semi-complete
vector field as representative in a neighbourhood of the origin if and
only if f ′(0) 6= 0 or (1) is analytically equivalent to 2y∂/∂x−3x2∂/∂y.

Real vector fields are always semi-complete (this is an immediate
consequence of a result in [8]). It is obvious that complete vector
fields in complex time implies complete in real time which also implies
complete in positive time. However:

Theorem. [1] Let M be a complex manifold such that any bounded
plurisubharmonic function on M is constant. If M has a plurisub-
harmonic exhaustion function then any R+ complete vector field is C
complete.

Therefore, if X is not semi-complete then it is not (C) complete
neither R+ nor R complete.

It is important to remark that Cn verifies the hypothesis of the the-
orem.

Definition. A function s : G → R ∪ {∞}, where G ⊆ C, is called
subharmonic if s is upper semicontinuous on G and if D ⊆ G is a disk,
h : D̄ → R is continuous, h|D is harmonic and h ≥ s on ∂D, then h ≥ s
on D.

Definition. A function p : G → R ∪ {∞}, where G ⊆ Cn is called
plurisubharmonic on G if for every tangent vector (a, w) at a ∈ G the
function

pa,w(t) = p(a + tw)
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is subharmonic on the connected component of the set α−1
a,w(G) con-

taining 0 ∈ C, where αa,w(t) = a + tw.

Finally

Definition. A nonconstant continuous function f : G → R is called
an exhaustion function if for all c < supG(f) the set

{z ∈ G : f(z) < c}
is relatively compact in G.

I would like to thanks Helena Mena Matos for her valuable help with
the Weierstrass Preparation Theorem.

2. Premilinaries - Definitions and Basic Results

In this section we introduce the definitions and the basic and most
important results related and necessary to the problem.

Definition 1. Let X be a holomorphic vector field defined in a complex
manifold M . We say that X is complete if there is a holomorphic
application

Φ : C×M → M

such that

a) Φ(0, x) = x ∀x ∈ M
b) Φ(T1 + T2, x) = Φ(T2, Φ(T1, x)) ∀x ∈ M , ∀T1, T2 ∈ C

c) X(x) =
d

dT
|T=0Φ(T, x)

We can also define R (R+) complete vector fields substituing R (R+)
for C in the last definition.

Definition 2. Let X be a holomorphic vector field defined in an open
set U , U ⊆ M , where M is a complex manifold. We say that X is
semi-complete relatively to U if there exists a holomorphic application

Φ : Ω ⊆ C× U → U

where Ω is an open set containing {0} × U and such that

a) X(x) =
d

dT
|T=0Φ(T, x)

b) Φ(T1 + T2, x) = Φ(T2, Φ(T1, x)), when the two members are
defined

c) (Ti, x) ∈ Ω and (Ti, x) → ∂Ω ⇒ Φ(Ti, x) → ∂U

We call Φ the semi-complete flow associated to the vector field X.

In [6] and [7], Rebelo presents sufficient and necessary conditions for
a vector field to be semi-complete relatively to an open set U . The reg-
ular orbits of a vector field X (X 6≡ 0) are Riemann Surfaces. To each
one of its orbits (leafs), L, we can associate a holomorphic differential
1-form, dTL, such that dTL(X) = 1.
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Proposition 2. [7] Let X be a holomorphic vector field defined in a
neighbourhood U of the origin of Cn. Suppose that for all regular orbits
L of X and every c : [0, 1] → L such that c(0) 6= c(1) the integral of dTL

over c is non zero. Then the vector field X is semi-complete relatively
to U .

We will only consider the foliations associated to hamiltonian vector
fields with an isolated singularity at the origin.We present here the
three most important classifications of semi-complete vector fields, in
C2, at an isolated singularity, which will be important to prove our
main result.

In [7] it is proved:

Theorem 1. [7] Let F be the foliation associated to a holomorphic
vector field in C2 with an isolated singularity at the origin and such that
its linear part at the origin is diagonalizable and non singular. Then
F admits a representative which is semi-complete in a neighbourhood
of the origin.

Rebelo and Ghys, in [2], classified the semi-complete vector fields X,
in C2, with an isolated singularity at p and such that J1

pX = 0. They
obtained:

Theorem 2. [2] Let X be a semi-complete vector field defined in a com-
plex surface. Let p be an isolated singularity of X such that J1

pX = 0.
Then there exists a neighbourhood U of p such that, in local coordinates,
X is analytically conjugated to one of the following vector fields:

1. f [x2 ∂

∂x
− y(nx− (n + 1)y)

∂

∂y
], where n ∈ N0

2. f [x(x− 2y)
∂

∂x
+ y(y − 2x)

∂

∂y
]

3. f [x(x− 3y)
∂

∂x
+ y(y − 3x)

∂

∂y
]

4. f [x(2x− 5y)
∂

∂x
+ y(y − 4x)

∂

∂y
]

where f is a holomorphic function in U and such that f(0, 0) 6= 0.

The singularity can always be assumed to be the origin.
In the same paper, semi-complete nilpotent hamiltonian vector fields,

with an isolated singularity, were classified:

Theorem 3. [2] Let X : (C2, 0) → (C2, 0) be a nilpotent vector field
with an isolated singularity at the origin. If X is semi-complete in
some neighbourhood U of the origin then X is analytically conjugated
to one of the following vector fields:

1. f [(2y − x2)
∂

∂x
+ 2xy

∂

∂y
]
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2. f [(3y − x2)
∂

∂x
+ 4xy

∂

∂y
]

3. f [2y
∂

∂x
− 3x2 ∂

∂y
]

4. f [(y − 2x2)
∂

∂x
− 2xy

∂

∂y
]

where f is a holomorphic function in U and such that f(0, 0) 6= 0.

It is important to remember that:

Theorem 4. [6] If X is a holomorphic vector field in C2 with an iso-
lated singularity at p and such that J2

pX = 0, then X is not semi-
complete in any neighbourhood of the singularity.

3. Hamiltonian Vector Fields

From now on we assume that X : (C2, 0) → (C2, 0) is a hamiltonian
vector field with an isolated singularity at the origin.

By Theorem 4 it only makes sense to consider foliations defined by
holomorphic hamiltonian vector fields satisfying J2

0X 6= 0. Equiva-
lently, it only makes sense to consider holomorphic hamiltonian func-
tions H such that J3

0H 6= 0.

Lemma 1. Let X be a hamiltonian vector field, in C2, with an isolated
singularity at the origin. Then fX is a hamiltonian vector field iff f
is a first integral of X.

Proof. Let X be a hamiltonian vector field in C2 and Y = fX, where f
is a holomorphic function. Suppose that Y is also a hamiltonian vector
field. Let F and G be the hamiltonian functions associated to X and
Y , respectively. Then

∂G

∂y
= f

∂F

∂y

⇒ G(x, y) = fF −
∫

∂f

∂y
Fdy + h(x)

⇒ ∂G

∂x
=

∂f

∂x
F + f

∂F

∂x
−

∫ (
∂2f

∂x∂y
F +

∂f

∂y

∂F

∂x

)
dy + h′(x)

Thus Y is hamiltonian iff

∂f

∂x
F −

∫ (
∂2f

∂x∂y
F +

∂f

∂y

∂F

∂x

)
dy = −h′(x)

Deriving in order to y we obtain

∂f

∂x

∂F

∂y
− ∂f

∂y

∂F

∂x
= 0

i.e., f is a first integral of X. �
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The last Lemma alows us to say that if X is a semi-complete hamil-
tonian vector field then every hamiltonian vector field with the same
foliation is also semi-complete. However, we are interested in foliations
associated to hamiltonian vector fields instead of vector fields them-
selves.

The foliations associated to hamiltonian vector fields have an inter-
esting property which will simplify the classification of foliations de-
fined by hamiltonian vector fields X such that J1

0X = 0 but J2
0X 6= 0.

Proposition 3. Suppose that X1 and X2 are two holomorphic vector
fields analytically conjugated in a neighbourhood of the origin. Let F1

and F2 be the foliations associated to X1 and X2, respectively. Then, if
F1 admits a hamiltonian vector field as its representative, so does F2.
Moroever, if F1 admits a hamiltonian vector field as its representative,
the first non zero jet of X1 is hamiltonian.

Proof. As X1 and X2 are analytically conjugated in a neighbourhood
of the origin, there exists a holomorphic diffeomorphism H such that

X2 = (DH)−1(X1 ◦H)

As F1 admits a hamiltonian vector field as its representative, there
exists a holomorphic function F such that

∇F.X1 = 0

A hamiltonian vector field whose foliation is F1 is given by
ẋ =

∂F

∂y

ẏ = −∂F

∂x
Consider the function G = F ◦H. Thus

∇G = ((∇F ) ◦H).DH

and, consequently

∇G.X2 =((∇F ) ◦H)(DH)(DH)−1.(X1 ◦H)

=((∇F ) ◦H).(X1 ◦H)

=0

This means that G is a first integral of X2 and the foliation associated
to the hamiltonian vector field

ẋ =
∂G

∂y

ẏ = −∂G

∂x
is F2.

Suppose that F1 admits a hamiltonian vector field X as its represen-
tative. As X and X1 have the same foliation in a neighbourhood of the
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origin, there exists a holomorphic function f such that f(0, 0) 6= 0 and
X1 = fX. In particular, the first non zero jet of X1, JkX1, is a multiple
of the first non zero jet of X, JkX. As X is hamiltonian, so is each of
its homogeneous components. In particular, JkX is hamiltonian and
so is JkX1.

�

This property is important for the classification of foliations associ-
ated to hamiltonian vector fields in the following sense: hamiltonian
vector fields are not well behaved relatively to conjugation, because if
X is a hamiltonian vector field and H a holomorphic diffeomorphism,
then Y = (DH)−1(X ◦H) is not in general a hamiltonian vector field.
However, the foliation associated to Y admits a hamiltonian vector
field as its representative, i.e., there exists a holomorphic function f ,
such that f(0, 0) 6= 0 and fY is a hamiltonian vector field.

Lemma 2. Let X and Y be two holomorphic vector fields analytically
conjugated in a neighbourhood of the origin. Then the first non zero
jet of X and Y at the origin have the same degree and are analytically
conjugated by a linear holomorphic diffeomorphism.

Proof. Let H be the analytic diffeomorphism conjugating X and Y .
As the linear part of H verifies |DH(0)| 6= 0, the first non zero jet of

X ◦H has the same degree of the first non zero jet of X and the first
non zero jet of DH.Y has the same degree of the first non zero jet of
Y . As

DH.Y = X ◦H

the degrees of the first non zero jet of X and Y , at the origin, are equal.
Suppose that this degree is k. Then

Jk
0 (DH.Y ) = Jk

0 (X ◦H)

or, equivalently
DH(0).Jk

0 Y = Jk
0 X ◦ J1

0H

because, as J1
0H 6≡ 0, Jk

0 (DH.Y ) = DH(0).Jk
0 Y and Jk

0 (X ◦ H) =
Jk

0 X ◦ J1
0H

As D(J1
0H)(0) = DH(0), J1

0H is a linear analytic diffeomorphism
that conjugating Jk

0 Y and Jk
0 X.

�

Let X be a hamiltonian vector field with an isolated singularity at
the origin and such that J2

0X 6= 0. As X is of type
ẋ =

∂H

∂y

ẏ = −∂H

∂x
for some holomorphic function H, we can easily verify that the eigen-
values of the matrix associated to its linear part are symmetrical.
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If Y = fX for a holomorphic function f (f(0, 0) 6= 0) and a holomor-
phic hamiltonian vector field X, Lemma 2 guarantees that the eigen-
values of DY (0) are symmetrical. Consequently, if they are non zero
then DY (0) is diagonalizable.

In this way, we have to separate the classification of the hamiltonian
vector fields in three distint cases:

a) The eigenvalues are non zero
b) The eigenvalues are both zero, but J1

0X 6= 0
c) J1

0X = 0, but J2
0X 6= 0

3.1. The case that the eigenvalues are non zero. In this case
we have nothing to do. The existence of a semi-complete representa-
tive of the foliation F , associated to a hamiltonian vector field, is an
immediate consequence of proposition 1:

Proposition 4. Let X be a hamiltonian vector field with an isolated
singularity at the origin of C2 and such that DX(0) has non zero eigen-
values. Let F be the foliation associated to X. Then F admits a rep-
resentative that is semi-complete.

Remark 1. The eigenvalues of DX(0) are given by the solutions of

the equation s2 − ( ∂2H
∂x∂y

|0)2 + ∂2H
∂x2 |0 ∂2H

∂y2 |0 = 0. So DX(0) has non zero

eigenvalues iff ( ∂2H
∂x∂y

|0)2 + ∂2H
∂x2 |0 ∂2H

∂y2 |0 6= 0.

The representative of F that is semi-complete does not have neces-
sarily to be a hamiltonian vector field.

Suppose that both eigenvalues are non zero. Then their quocient is
equal to −1, i.e., belongs to R−. Then X admits two separatrices with
different tangents at the origin [4]. The next result give us a sufficient
condition, based in the holonomy relatively to the separatrices, to the
vector field be semi-complete.

Proposition 5. Let X be a vector field, with an isolated singularity at
the origin and such that the eigenvalues of its linear part are non zero.
If the holonomy relatively to one of its separatrices is the identity then
X is semi-complete.

Proof. We can suppose that the separatrices are given by the x and
y-axis. By hypothesis, X can be written in the form{

ẋ = αxg(x, y)

ẏ = −αyh(x, y)

where g and h are holomorphic functions such that g(0, 0) 6= 0 and
h(0, 0) 6= 0.

Suppose that the holonomy relatively to the x-axis is the identity.
This means that, for each leaf different from {x = 0} \ {(0, 0)}, we can
write y = y(x).
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Let c be a curve such that
∫

c
dTL = 0 for a given leaf L. Then

0 =

∫
c

dx

αxg(x, y)
=

∫
p(c)

dx

αxg(x, y(x))

where p(x, y) = x. As the 1-dimensional vector field αxg(x, y(x)) ∂
∂x

is

analytically conjugated to αx ∂
∂x

, by a holomorphic diffeomorphism H,
we have that ∫

H(p(c))

dx

αx
= 0

which means that H(p(c)), and consequently p(c), are closed and ho-
motopic to a point. In this way, as y = y(x), we have that c is also
closed.

By Proposition 2, X is semi-complete in a neighbourhood of the
origin. �

As the holonomy is independent of the representative of the foliation
we have as an immediate consequence:

Corollary 1. Let X be a hamiltonian vector field with an isolated sin-
gularity at the origin such that |DX(0)| 6= 0 and the holonomy relatively
to one of its separatrices is the identity. Let F be the foliation asso-
ciated to X. Then any representative of F is a semi-complete vector
field in some neighbourhood of the origin.

3.2. The case that the eigenvalues are both equal to zero, but
J1

0X 6= 0. Let X be a hamiltonian holomorphic vector field, with an
isolated singularity at the origin, such that the eigenvalues of its linear
part are both equal to zero but J1

0X 6= 0. By a linear change of
coordinates, X is analytically conjugated to a vector field of type

(2)

{
ẋ = y + f(x, y)

ẏ = g(x, y)

where f and g are holomorphic functions such that J1
0f = 0 = J1

0g,
i.e., X is analytically conjugated to a nilpotent vector field.

For foliations associated to hamiltonian nilpotent vector fields we
obtain:

Theorem 5. Let F be the foliation associated to a nilpotent hamilton-
ian vector field X : (C2, 0) → (C2, 0) with an isolated singularity at
the origin. Then F admits a semi-complete representative, in a neigh-
bourhood of the singularity, if and only if X is analytically equivalent
to (2y − x2)∂/∂x + 2xy∂/∂y or to 2y∂/∂x− 3x2∂/∂y.

Proof. Suppose that X is written in its normal form (2). Then

(3) DX(0) =

(
0 1
0 0

)
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By Theorem 3 we know that gX is a semi-complete vector field,
for some holomorphic function g with g(0, 0) 6= 0 iff X is analytically
equivalent to one of the 4 vector fields:

1. Y1 = [(2y − x2)
∂

∂x
+ 2xy

∂

∂y
]

2. Y2 = [(3y − x2)
∂

∂x
+ 4xy

∂

∂y
]

3. Y3 = [2y
∂

∂x
− 3x2 ∂

∂y
]

4. Y4 = [(y − 2x2)
∂

∂x
− 2xy

∂

∂y
]

so, it is sufficient to consider hamiltonian vector fields.
As X is a hamiltonian vector field, if X is analytically conjugated to

Yi, for some i = 1, 2, 3 or 4, then there exists a holomorphic function g,
with g(0, 0) 6= 0, such that gYi is a hamiltonian vector field (Proposition
3).

Y1 and Y3 are hamiltonioan vector fields with hamiltonian functions
H1(x, y) = y2 − x2y and H3(x, y) = y2 − x3, respectively. So, if X
is analytically equivalent to Y1 or to Y3, the foliation associated to X
admits a semi-complete hamiltonian vector field as its representative.

The vector field Y2 is not a hamiltonian vector field. We pretend to
know if there exists a holomorphic function g, g(0, 0) 6= 0, such that
gY2 is a hamiltonian vector field.

The holomorphic function H2(x, y) = y(y − x2)2 is a first integral of
Y2 and, if F is another first integral of Y2 then F = H(y(y − x2)2) for
some holomorphic function H.

Suppose that there exists a holomorphic function g, with g(0, 0) 6= 0,
such that gY2 is a hamiltonian vector field. Let K be the hamiltonian
function associated to gY2. As K is also a first integral of Y2, K =
H(y(y − x2)2) for some holomorphic function H. Then:

∂K

∂x
=

dH

dt
|t=y(y−x2)2

∂(y(y − x2)2)

∂x
= −2xy(y − x2)

dH

dt
|t=y(y−x2)2

and

∂K

∂y
=

dH

dt
|t=y(y−x2)2

∂(y(y − x2)2)

∂y
= (y − x2)(3y − x2)

dH

dt
|t=y(y−x2)2

i.e.,

gY2 = (y − x2)
dH

dt
|t=y(y−x2)2Y2

contradicting the fact that gY2 has an isolated singularity. This means
that the foliation associated to Y2 does not addmit a hamiltonian vector
field as its representative.

Finally, let us consider the vector field Y4. Y4 is also not a hamilton-
ian vector field. We can easily verify that the curves y = 0 and y = x2

are holomorphic invariant curves of the foliation. With this property
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we prove that H(x, y) = y−2(y − x2) is a meromorphic first integral of
Y4. In this way all curves in the set {y − x2 − ky2 = 0 : k ∈ C} are
separatrices of Y4. As we have an infinity number of separatrices, the
foliation associated to Y4 does not addmit any hamiltonian vector field
as its representative. �

The last Theorem can be expressed in terms of the hamiltonian func-
tions in the following way:

Corollary 2. The set of holomorphic functions, defined in a neigh-
bourhood of the origin, whose foliation associated to the correspon-
dent hamiltonian vector field addmits a semi-complete representative
are given by F ◦ H1 or F ◦ H3, where F is a holomorphic diffeomor-
phism in a neighbourhood of the origin.

3.3. The case J1
0X = 0 but J2

0X 6= 0. Consider now a hamiltonian
vector field X such that J1

0X = 0 but J2
0X 6= 0.

Let Y = fX where f is a holomorphic function such that f(0, 0) 6= 0.
By Theorem 2, Y is semi-complete in some neighbourhood of the origin
if and only if it is analytically equivalent to Xi, for some i = 1, 2, 3 or
4. As Y is analytically equivalent to a given vector field Z iff so is X,
the foliation associated to X admits a semi-complete representative iff
all its representatives are semi-complete. So it is sufficient to analyse
the hamiltonian vector fields.

Let X : (C2, 0) → (C2, 0) be a hamiltonian vector field with an
isolated singularity at the origin and such that J1

0X = 0 but J2
0X 6= 0.

Suppose that X is analytically equivalent to Xi, for some i = 1, . . . , 4.
By Proposition 3, there exists a holomorphic function g, with g(0, 0) 6=
0, such that gXi is hamiltonian. In particular, J2

0 (gXi) is hamiltonian.
But J2

0 (gXi) is a multiple of Xi, and only X2 is a hamiltonian vector
field. Thus X is semi-complete if and only if is analytically equivalent
to

x(x− 2y)∂/∂x + y(y − 2x)∂/∂y

It allows us to classify all foliations associated to semi-complete
hamiltonian vector fields X such that J1

0X = 0 but J2
0X 6= 0.

Proposition 6. Let X be a hamiltonian vector field in C2 with an
isolated singularity at the origin and such that J1

0X = 0 but J2
0X 6=

0. Then the foliation associated to X admits a semi-complete vector
field as its representative if and only if it has exactly 3 holomorphic
separatrices with distinct tangents at the origin.

Proof. As we said before, fX is semi-complete in some neighbourhood
of the origin, for some holomorphic function satisfying f(0, 0) 6= 0, iff
X is analytically equivalent to X2.

Let H be a holomorphic diffeomorphism in a neighbourhood of the
origin. Then

(DH)−1.(fX2 ◦H) = (f ◦H)((DH)−1(X2 ◦H))
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represents all vector fields analitically equivalent to X2.
The leaves of the vector fields fX2 (f(0, 0) 6= 0) are given by the level

curves of the hamiltonian function associated to the hamiltonian vector
field X2: F (x, y) = xy(x− y). Their separatrices are given by {x = 0},
{y = 0} and {x = y}. So, if X is a semi-complete hamiltonian vector
field then X admits 3 holomorphic separatrices with different tangents
at the origin.

Suppose now that X admits 3 holomorphic separatrices with different
tangents at the origin and let G be the corresponding hamiltonian
function. As C{x, y}, the set of holomorphic functions in C2, is a unique
factorization domain, G can be written in the form G = uf1f2f3, where
u is a unit, i.e., verifies u(0, 0) 6= 0, and f1, f2 and f3 are holomorphic
irreducible functions such that {f1 = 0}, {f2 = 0} and {f3 = 0} are
the separatrices of X.

As the tangents of the separatrices at the origin are distinct, the
foliation associated to the homogeneous vector field J2

0X has 3 dis-
tinct straight lines as separatrices, or equivalently, J2

0X has an iso-
lated singularity at the origin: as the tangents at the origin are dis-
tinct, the hamiltonian function associated to X is of type G(x, y) =
k(x − αy + g1(x, y))(x − βy + g2(x, y))(x − γy + g3(x, y, z)), up to a
change of coordinates, where k ∈ C, α, β, γ are distinct constants
in C and g1, g2 and g3 are holomorphic function of order greater or
equal to 2; then the hamiltonian function associated to J2

0X is equal
to k(x−αy)(x−βy)(x−γy) and, consequently, J2

0X has three distinct
separatrices and an isolated singularity at the origin.

We can easily prove:

Lemma 3. Let Y be a homogeneous hamiltonian vector field in C2 of
degree 2. Then Y is analytically equivalent to X2 iff the origin is an
isolated singularity of Y (geometrically, Y has 3 distinct straight lines
as separatrices).

By Lemma 3, we can suppose that J1f1 = x, J1f2 = y and J1f3 =
x− y.

Lemma 4. There exists holomorphic functions g and h such that g(0) =
1 = h(0) and gf1 − hf2 = f3.

Denote gf1 and hf2 by h1 and h2, respectively. Then G is written in
the form

G = vh1h2(h1 − h2)

where v = u
gh

is such that v(0, 0) = u(0, 0) 6= 0.

We have that (w, z) = K(x, y) = (v1/3h1, v
1/3h2) represents a holo-

morphic diffeomorphism because DK(0, 0) = (v(0, 0))1/3Id. Finally, in
these coordinates G is written as

G(w, z) = wz(w − z) = F (w, z)
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which means that X is analytically equivalently to X2 and, conse-
quently, semi-complete in some neighbourhood of the origin.

�

Corollary 3. All homogeneous vector fields of degree 2 with an isolated
singularity are semi-complete in a neighbourhood of the singularity.

This result is an immediat consequence of Lemma 3.

Proof of Lemma 3. Let P be the hamiltonian function associated to
Y . P is a homogeneous polynomial of degree 3. Any homogeneous
polynomial can be decomposed in a product of linear terms: P (x, y) =
(x− α1y)(x− α2y)(x− α3y) up to a change of coordinates.

Suppose that αi = αj for some i 6= j. Then ∂P/∂x and ∂P/∂y have
x− αiy as common factor. As the origin is not an isolated singularity,
Y is not analytically equivalent to X2.

Suppose now that αi 6= αj. In this case, making the change of
coordinates {

u = x− α1y

v = x− α2y

P is written in the form

P = uv

(
α3 − α2

α1 − α2

u +
α1 − α3

α1 − α2

v

)
where, by supposition, α3−α2

α1−α2
and α1−α3

α1−α2
are both well defined and dif-

ferent from zero. Putting α3−α2

α1−α2
in evidence we obtain

P =
α3 − α2

α1 − α2

uv(u− α3 − α1

α3 − α2

v)

Making the change of variable

ṽ =
α3 − α1

α3 − α2

v

P turns into a multiple of F (x, y) = xy(x− y):

P =
(α3 − α2)

2

(α1 − α2)(α3 − α1)
uṽ(u− ṽ)

and, without dificult, we can transform this multiple of F into F . It is
sufficient to make the change of variables

ū =
(

(α3−α2)2

(α1−α2)(α3−α1)

)1/3

u

v̄ =
(

(α3−α2)2

(α1−α2)(α3−α1)

)1/3

ṽ

The holomorphic diffeomorphism between the foliations associated
to Y and X2 is given by the composition of all those linear transfor-
mations. �



14 HELENA REIS

Proof of Lemma 4. Let f1, f2 and f3 be such that J1f1 = x, J1f2 = y
and J1f3 = x− y.

By the Weierstrass Preparation Theorem ([3]), f1, f2 and f3 can be
written in the form:

f1(x, y) = (x + ynh1(y))F1(x, y)

f2(x, y) = (y + xmh2(x))F2(x, y)

f3(x, y) = (x− yh3(y))F3(x, y)

where hi and Fi are holomorphic in a neighbourhood of the origin, for
all i = 1, 2, 3, n, m ≥ 2, F1(0, 0) = F2(0, 0) = F3(0, 0) = h3(0) = 1,
h1(0) 6= 0 and h2(0) 6= 0.

We want to prove that there exists holomorphic functions g and h
such that g(0, 0) = 1 = h(0, 0) and gf1 − hf2 = f3. This is equivalent
to solve the equation:

g(x + ynh1)F1 − h(y + xmh2)F2 = (x− yh3)F3

⇔ x(gF1 − xm−1hh2F2)− y(hF2 − yn−1h1gF1) = xF3 − yh3F3

or, equivalently, the system{
gF1 − xm−1hh2F2 = F3

hF2 − yn−1h1gF1 = h3F3

Its solution is given by
g(x, y) =

F3(x, y)(1 + xm−1h2(x)h3(y))

F1(1− xm−1yn−1h1(y)h2(x))

h(x, y) =
F3(x, y)(h3(y) + yn−1h1(y))

F2(x, y)(1− xm−1yn−1h1(y)h2(x))

The functions g and h are obviously holomorphic in a neighbourhood

of the origin and are such that g(0, 0) = F3(0,0)
F1(0,0)

= 1 and h(0, 0) =
F3(0,0)h3(0)

F2(0,0)
= 1, as we pretend to prove. �

As Corollary of Propositions 4 and 6 we obtain:

Theorem 6. Let F be the foliation associated to a non nilpotent hamil-
tonian vector field X : (C2, 0) → (C2, 0) with an isolated singularity at
the origin and such that J2

0X 6= 0. Let H be the hamiltonian function
associated to X. Then F admits a semi-complete representative, in a
neighbourhood of the singularity, if and only if ( ∂2H

∂x∂y
|0)2− ∂2H

∂x2 |0 ∂2H
∂y2 |0 6=

0 or if H can be written in the form H = uf1f2f3, where u is a holo-
morphic function verifying u(0) 6= 0 and f1, f2 and f3 are irreducible
holomorphic functions such that fi(0) = 0 and J1

0fi is non zero for
all i = 1, 2, 3, and the level curves of order zero of f1, f2 and f3 have
distinct tangents at the origin.



SEMI-COMPLETE HAMILTONIAN FOLIATIONS 15

4. The differential equations of type ẍ + f(x) = 0

Consider the differential equation given by

(4) ẍ + f(x) = 0, x ∈ C
As we said before, the equation (4) can be written as the differential
system of the first order in C2 (1):{

ẋ = y

ẏ = −f(x)

Our objective is to classify the semi-complete vector fields of type (1)
in a neighbourhood of the origin. In this way we assume that the origin
is a singular point (otherwise the system would be analytically conju-
gated to the vector field ∂

∂x
, in a neighbourhood of the origin, which is

obviously semi-complete). On the other hand, f 6≡ 0 guarantees that
the origin is an isolated singularity.

Our main result in this section is:

Theorem 7. Let f be a non zero function such that f(0) = 0. Then the
foliation associated to the holomorphic vector field (1) admits a semi-
complete vector field as representative in a neighbourhood of the origin
if and only if f ′(0) 6= 0 or (1) is analytically equivalent to 2y∂/∂x −
3x2∂/∂y.

Proof. Let X be the holomorphic vector field{
ẋ = y

ẏ = −f(x)

such that f(0) = 0 and f 6≡ 0. Then the origin is an isolated singularity.
Suppose that f ′(0) 6= 0. Then the origin is an isolated singularity of

X which can be written in the form:{
ẋ = y

ẏ = ax + h(x)

where a ∈ C \ {0} and h is a holomorphic function such that h(0) =
0 = h′(0).

As a 6= 0 the eigenvalues of DX(0) are non zero and symmetrical: b
and −b such that b2 = −a. By Theorem 1 the foliation associated to
X admits a semi-complete vector field as its representative.

Suppose now that f ′(0) = 0. Then X is a nilpotent hamiltonian vec-
tor field. The vector field gX is semi-complete in some neighbourhood
of the origin, for some holomorphic function g with g(0, 0) 6= 0, iff X
is analytically equivalent to Y1 or Y3 (Theorem 5).

The vector field Y3 is a hamiltonian vector field of type (1), contrary
to Y1.
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If X is analytically equivalent to Y1 then X̃, the blow-up of X at
the singularity, is analytically equivalent to Ỹ1, the blow-up of Y1. In
particular, J2

0 X̃ is analytically conjugated to a multiple of X3 by a
linear change of coordinates (Ỹ1 and X3 are analytically conjugated
homogeneous polynomials of degree 2).

As h′(0) = 0, X is of type X = y ∂
∂x

+ x2p(x) ∂
∂y

, and so, X̃ is given

by:

X̃ = tx
∂

∂x
+ (xp(x)− t2)

∂

∂y

If p(0) 6= 0, X̃ is still a nilpotente hamiltonian vector field and,
consequently, not analytically equivalent to X3 (Lemma 2).

So let p(0) = 0 . Then J2
0 X̃ is given by

J2
0 X̃ = tx

∂

∂x
+ (ax2 − t2)

∂

∂y

If a = 0 the origin is not an isolated singularity of J2
0 X̃, but as the

origin is an isolated singularity of X3 we conclude that J2
0 X̃ and X3

are not analytically equivalent in any neighbourhood of the origin.
Suppose that a 6= 0. Then

ωJ2
0 X̃ = txdt + (t2 − ax2)dx

If J2
0 X̃ is analytically conjugated to a multiple of X3 by a holomor-

phic diffeomorphism F = (F1, F2) then F ∗ωJ2
0 X̃ ∧ ωX3 ≡ 0. We have:

F ∗ωJ2
0 X̃ =

[
F1F2

∂F2

∂x
+ (F 2

2 − aF 2
1 )

∂F1

∂y

]
dx+[

F1F2
∂F2

∂y
+ (F 2

2 − aF 2
1 )

∂F1

∂y

]
dy

We take F (x, t) = (αx + βy, γx + ηy). All solutions, except one, of
F ∗ωJ2

0 X̃ ∧ ωX3 ≡ 0 verifies αη − βγ = 0, which means that H is not a

diffeomorphism.
The solution not verifying αη − βγ = 0 is given by:

{γ = η, a = 2η2/β2, α = −β}
Solving in order to η we obtain:

{γ = η, β =

√
2

a
η, α = −

√
2

a
η} ∪ {γ = η, β = −

√
2

a
η, α =

√
2

a
η}

The determinant of DH is equal to ±2
√

2
a
η and so not equal to zero

if we take η 6= 0.
As F ∗ωJ2

0 X̃ ∧ωX3 ≡ 0 is a necessary but not a sufficient condition for

the equivalence of vector fields we now have to test if there really can
exists conjugation between J2

0 X̃ and a multiple of X3.
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We calculate the expression of (DH)−1(J2
0 X̃ ◦H), which has also a

big expression, and we can easily verify that (DH)−1(J2
0 X̃ ◦H) = rX3,

for some r ∈ C, implies that η = 0. As H is not a diffeomorphism,
J2

0 X̃ is not analytically equivalent to X3 and, consequently, X is not
semi-complete in any neighbourhood of the origin. �

We should make an important remark. When we blow-up a vector
field we shoud take two charts: y = tx and x = uy. In the last proof
we took only one chart. There is one reason for this: it is easy to verify
that if J1

0X = y ∂
∂x

then if we consider the variables (u, y), i.e., if we
take x = uy, the vector field in these new coordinates do not have any
singularity along the divisor {y = 0}.

References

[1] Ahern, P., Flores, M., Rosay, J.-R., On R+ and C complete holomorphic vector
field, Proc. Am. Math. Soc., Vol. 128, No. 10 (2000), 3107-3113

[2] Ghys, E., Rebelo, J., Singularités des flots holomorphes II, Ann. Inst. Fourrier,
Vol. 47, No. 4 (1997), 1117-1174

[3] Fritzsche, K., Grauert, H., From Holomorphic Functions to Complex Mani-
folds, Springer, 2000

[4] Mattei, J. F., Moussu, R., Holonomie et intégrales premières, Ann. Scient. Ec.
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