
PROFINITE GROUPS ASSOCIATED WITH WEAKLY
PRIMITIVE SUBSTITUTIONS

JORGE ALMEIDA

Abstract. A uniformly recurrent pseudoword is an element of a free
profinite semigroup in which every finite factor appears in every suffi-
ciently long finite factor. An alternative characterization is as a pseu-
doword which is a factor of all its infinite factors, that is one which lies
in a J -class with only finite words strictly J -above it. Such a J -class is
regular and therefore it has an associated profinite group, namely any of
its maximal subgroups. One way to produce such J -classes is to iterate
finite weakly primitive substitutions. This paper is a contribution to the
computation of the profinite group associated with the J -class which is
generated by the infinite iteration of a finite weakly primitive substitu-
tion. The main result implies that the group is a free profinite group
provided the substitution induced on the free group on the letters which
appear in the images of all of its sufficiently long iterates is invertible.

1. Introduction

The theory of profinite semigroups, particularly those that are free rel-
ative to a pseudovariety, has been given considerable attention since the
mid-1980’s. The main interest in the theory stems from its connections
with language and automata theory via Eilenberg’s correspondence between
certain classes of rational languages and pseudovarieties of semigroups. In
particular, structural knowledge about a relatively free profinite semigroup
can often lead to important applications [2, 11, 4, 22, 5, 10]. Yet, very little
is known to this date about the structure of absolutely free profinite semi-
groups, whose elements are called pseudowords. This paper further develops
a connection between the structure of finitely generated free profinite semi-
groups with symbolic dynamics which first emerged in [3] and which has
also been used in [10].

One of the key ideas in the symbolic dynamics approach is to produce
pseudowords by iterating continuous endomorphisms of the free profinite
semigroup. The setting for this iteration is established by a result which
states that, provided a profinite semigroup is finitely generated, then its
monoid of continuous endomorphisms is itself a profinite monoid under the
point-wise convergence topology [5]. Thus, there is a natural infinite iterate
of a continuous endomorphism, namely the unique one which is idempotent,
also known as its ω-power. This technique has been used in [3] to show that
the pseudovariety of finite p-groups is tame (see [9, 8, 4] for the significance
of this property) and in [10] to construct group-generic sets of pseudowords,
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which can then be used to study pseudovarieties characterized by the fact
that the subgroups of its members lie in a given pseudovariety of groups.

The specific idea adopted here is to iterate finite substitutions to produce
uniform recurrence phenomena. This paper is a contribution to the under-
standing of the J -classes of uniformly recurrent pseudowords. We show in
Section 2 that these J -classes, which consist entirely of uniformly recur-
rent pseudowords, are precisely those that only have finite words strictly
J -above them and, therefore, they are regular. In a further connection with
symbolic dynamics which is not used or explored here but which can be
found in [7, 6], it can be shown that there is a one-to-one correspondence
with minimal symbolic dynamical systems, namely through the language of
finite factors.

In particular, to each uniformly recurrent pseudoword we associate the
profinite group which is obtained by taking any of the maximal subgroups in
the J -class of the pseudoword (it is well known that they are all isomorphic).
Sections 3, 4, and 5 develop methods which, at least in a wide class of cases,
allow us to compute such profinite groups. The main result is Theorem 5.3,
whose statement is too technical to be reproduced here. The wide class of
applications is given by Corollary 5.7 which establishes that, if the finite
weakly primitive substitution acts as an automorphism on the free group
with generating set the letters that appear in the image of the infinite iterates
of the substitution, then the associated profinite group is a finitely generated
free profinite group. Moreover, Theorem 5.3 provides techniques to exhibit
free generators of this profinite group.

Section 6 shows that, within our wide class of uniformly recurrent J -
classes, one can find the Sturmian and Arnoux-Rauzy J -classes, correspond-
ing respectively to Sturmian and Arnoux-Rauzy symbolic dynamical systems
generated by substitutions (see [18, 14] for further information on such sys-
tems). More specifically, here the groups in question are free profinite groups
on n generators if the system involves precisely n letters. The extension of
this result to such systems which are not necessarily generated by substitu-
tions has been sketched in [7].

Finally, Section 7 presents a few examples including a maximal subgroup
of a uniformly recurrent J -class which is not a free profinite group.

The combinatorial tools that play a crucial role in the paper are some
elementary combinatorial group theory along with some topics from the
algebraic theory of codes, such as circular codes and codes with bounded
delay. All the required results are established in the paper, which should
make it self-contained in this respect. Some important coding theorems from
[19] and [15] are also used.

Preliminary versions of the main results of this paper have been an-
nounced at various meetings and seminars. They have also been announced
or sketched, without proof, in the papers [6, 7].

2. Uniform recurrence as an algebraic property

Throughout this paper, A denotes a finite set which is called an alphabet.
The free monoid on A is denoted A∗.
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Recall that a profinite monoid is a compact zero-dimensional monoid.
Equivalently, a profinite monoid is a projective limit of finite monoids, which
are viewed as topological monoids under the discrete topology. Let Â∗ denote
the free profinite monoid, which is obtained by profinite completion of the
free monoid A∗ [5]. The elements of Â∗ will be called pseudowords in this
paper. While the elements of A∗ are called finite words, the elements of Â∗ \
A∗ are said to be infinite pseudowords. We also consider the subsemigroup
Â+ which is obtained from Â∗ by dropping the neutral element, namely the
empty word, and which is the free profinite semigroup on A.

The reader may wish to consult [17, 2, 11, 4, 22, 5] for general background
on finite and profinite semigroups. An example of an elementary but use-
ful observation which is an immediate consequence of compactness is the
following lemma.

Lemma 2.1. The set of factors of an element of a compact monoid is closed.

We may use freely the fact that the closure L in Â∗ of a rational language
L ⊆ A∗ is a clopen subset, which moreover satisfies L∩A∗ = L, see [2, Section
3.6] or [5]. Of particular relevance are the sets of the form Â∗ u Â∗ = A∗uA∗

which are therefore clopen for every u ∈ A∗. In other words, all but finitely
many elements of a convergent sequence of finite words have a given finite
word as a factor if and only if the limit does. Similarly, considering the
languages of the form u Â∗ = uA∗, with u ∈ A+, we conclude that every
infinite pseudoword has a well-defined finite prefix (and, dually, a suffix) for
each finite length. In fact, canceling such a prefix, the remainder is also
uniquely determined [2] but we will not be using this result here. Moreover,
every clopen subset of Â∗ is the closure of a rational language, so that the
topology of the zero-dimensional space Â∗ closely reflects the combinatorics
of rational languages, but again this property will not be so relevant here.

For a pseudoword w ∈ Â∗, denote by F (w) the set of all finite factors of w
and by Fn(w) the set of all factors of w of length n.

Let w be an infinite pseudoword. We say that w is recurrent if, for every
u ∈ F (w), there is a word v such that uvu ∈ F (w). We say that w is
uniformly recurrent if, for every u ∈ F (w), there is a positive integer N
such that every v ∈ FN (w) admits u as a factor. Note that every uniformly
recurrent pseudoword is recurrent and so is every member of the minimal
ideal IA of Â∗. On the other hand, it follows from the following lemma that,
if |A| > 1, then no element of IA is uniformly recurrent.

There is an alternative definition of recurrent pseudoword which may be
imported from symbolic dynamics: we could call an infinite pseudoword re-
current if all its infinite factors have the same finite factors. This alternative
notion turns out to be equivalent to uniform recurrence as the following
result shows.

Lemma 2.2. An infinite pseudoword is uniformly recurrent if and only if
all its infinite factors have the same finite factors.

Proof. Let w be an infinite pseudoword and suppose first that it is uniformly
recurrent. Let u be an infinite factor of w. Then of course every finite factor
of u is also a factor of w. Conversely, since u is infinite, it has arbitrarily
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long finite prefixes and so it has arbitrarily long finite factors which are also
factors of w. Since w is uniformly recurrent, every finite factor of w is a
factor of any sufficiently long finite factor and therefore it is also a factor
of u. This shows that u has the same finite factors as w does.

Suppose next that all infinite factors of w have the same finite factors. Let
v be a finite factor of w. Arguing by contradiction, suppose that there are
arbitrarily long factors of w which do not admit v as a factor. Then there
is a sequence of factors of w which do not admit v as a factor converging to
an infinite pseudoword u, which is itself also a factor of w by Lemma 2.1. It
follows that u also does not admit v as a factor, in contradiction with the
assumption. Hence w is uniformly recurrent. �

The aim of this section is to characterize uniform recurrence in alge-
braic terms. For a pseudoword w, denote by X(w) the set of all infinite
pseudowords which are limits of sequences of finite factors of w, that is
X(w) = F (w) \A∗.

Recall that, for two elements s, t of a semigroup S, s is said to lie J -above
t and we write s ≥J t if s is a factor in some factorization of t. We further
say that s and t are J -equivalent if each of them is a factor of the other. We
will write s >J t if s ≥J t but s and t are not J -equivalent. An element s
of a semigroup S is said to be regular if sxs = s for some x ∈ S. It is well
known that, in a compact semigroup, a J -class consists entirely of regular
elements if and only if one of its elements is regular, if and only if it contains
an idempotent. The equivalence relation J is one of Green’s relations on
a semigroup S. Replacing “factor” by “factor on the left” (or prefix ), we
obtain the quasi-orders ≥R and >R and the equivalence relation R. Dually,
replacing “factor” by “factor on the right” (or suffix ), we obtain the quasi-
orders ≥L and >L and the equivalence relation L. The intersection of R
and L is denoted H. In general, J is not the smallest equivalence relation
containing both R and L, which is denoted D, but it is so in every compact
semigroup.

Every subgroup of a semigroup S (meaning a subsemigroup which is a
group) is contained in a J -class or, more precisely, in an H-class. The H-
classes which are subgroups (and therefore maximal subgroups) are precisely
the H-classes which contain a (unique) idempotent. If S is compact, then
all the maximal subgroups contained in the same J -class are isomorphic as
topological groups. Compact semigroups also satisfy the following stability
condition: if x ≤R y and x J y, then x R y, and dually for L.

Lemma 2.3. Let w be a uniformly recurrent pseudoword over a finite al-
phabet A.

(a) Every element of X(w) is a factor of w.
(b) All elements of X(w) lie in the same J -class of Â∗.
(c) Every element of X(w) is regular.

Proof. (a) This is an immediate consequence of Lemma 2.1.
(b) Suppose that u, v ∈ X(w). By Lemma 2.2, u and v have the same

finite factors. Hence, by (a), u and v are factors of each other, that is they
are J -equivalent.
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(c) Suppose u is an infinite pseudoword which is the limit of a sequence
(un)n of finite factors of w. Since w is recurrent and the un are finite factors
of w, there are finite words vn such that unvnun is a factor of w. If v is
an accumulation point of the sequence (vn)n, then the infinite pseudoword
uvu belongs to X(w) and therefore, by (b), uvu is J -equivalent to u. In a
compact semigroup, this implies that u is regular. �

For a uniformly recurrent pseudoword w, denote by J(w) the unique J -
class containing X(w).

Lemma 2.4. Let w be a uniformly recurrent pseudoword. Then every H-
class contained in J(w) contains some element of X(w).

Proof. Let u ∈ J(w). Let xn and yn denote respectively the prefix and
the suffix of u of length n. Since u is uniformly recurrent by Lemma 2.2,
yn can be found as a factor of u within bounded distance from the left and
there is a factor tn of u, of length at least 2n, such that xn is a prefix of tn
and yn is a suffix of tn. Let (nk)k be a strictly increasing sequence such
that the sequences (xnk

)k, (ynk
)k, and (tnk

)k converge and let x, y, t be their
respective limits. By Lemma 2.3(b), we know that x, y, t ∈ J(w). Since
x ≥R z ≤L y for z ∈ {u, t}, by stability it follows that u and t lie in the
same H-class. �

Lemma 2.5. Let v be a uniformly recurrent pseudoword and suppose a is
a letter such that va is still uniformly recurrent. Then v and va are R-
equivalent.

Proof. Let vn be the suffix of v of length n. Since v is an infinite factor of
the uniformly recurrent pseudoword va, by Lemma 2.2 they have the same
finite factors. Hence, for every n there exists some mn such that there is a
factorization vmn = xnvnayn for some words xn, yn. By compactness, there
exists some strictly increasing sequence of indices (nk)k such that each of
the sequences (vnk

)k, (xnk
)k, and (ynk

)k converges, say respectively to v′, x,
and y. Then, by continuity of multiplication in Â∗, the sequence (vmnk

)k

converges to xv′ay. Since it is well known and easy to verify that the limits
of two convergent sequences of suffixes of increasing length of the same
pseudoword are L-equivalent, it follows that v′ ≤J v′a, and so v′ R v′a.
Moreover, since v′ is the limit of a sequence of suffixes of v, there is some
factorization of the form v = zv′. Since R-equivalence is a left congruence,
we finally conclude that va = zv′a R zv′ = v. �

We are now ready for the main result of this section.

Theorem 2.6. Let w be an infinite pseudoword over a finite alphabet. Then
w is uniformly recurrent if and only if w is J -maximal as an infinite pseu-
doword.

Proof. Suppose first that w ∈ Â∗ is uniformly recurrent and let u ∈ J(w).
By Lemma 2.3(a), u ≥J w, say w = puq, with p, q ∈ Â∗. We claim that
u J w. Indeed, otherwise, by [2, Corollary 5.6.2(b)] there is a continuous
homomorphism ϕ : Â∗ →M onto a finite monoid such that ϕ(u) >J ϕ(w).
We will show that this leads to a contradiction.
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Let (pn)n and (qn)n be sequences of finite words converging respectively
to p and q and such that ϕ(pn) = ϕ(p) and ϕ(qn) = ϕ(q) for all n. For
each n, considering pn and qn as being factorized into their letter factors, we
may view ϕ(w) as being obtained from ϕ(u) by successively multiplying, on
the left and then on the right by the image under ϕ of those letters. Since
ϕ(u) >J ϕ(w), at some point in this sequence of multiplications there is
a first step in which we leave the J -class of ϕ(u). In other words, either
there is a factorization of the form pn = xnanyn, with an ∈ A such that
ϕ(u) L ϕ(ynu) >L ϕ(anynu) ≥J ϕ(w) or ϕ(pu) = ϕ(pnu) L ϕ(u), in which
case there is a factorization of the form qn = znbntn, with bn ∈ A, such
that ϕ(pu) R ϕ(puzn) >R ϕ(puznbn) ≥J ϕ(w). Since the alphabet is finite
and Â∗ is compact, one may extract subsequences such that the relevant
letter sequences are constant, the factor sequences converge, and the same
alternative holds for every n. Hence, there is either some factorization of
the form p = xay, with a ∈ A, such that ϕ(u) L ϕ(yu) >L ϕ(ayu) ≥J ϕ(w)
or some factorization of the form q = zbt, with b ∈ A, such that ϕ(pu) R
ϕ(puz) >R ϕ(puzb) ≥J ϕ(w). The two cases are essentially dual, so we
consider only the second one. Since ϕ(puz) >R ϕ(puzb), we cannot have
puz R puzb. On the other hand, both puz and puzb are infinite factors
of w and, therefore, by Lemma 2.2 they are both uniformly recurrent. By
Lemma 2.5, we obtain puz R puzb, which is a contradiction. This proves
the claim.

Now, given an infinite factor v of w, let u be the infinite limit of a sequence
of finite prefixes of v. Then u ∈ X(w) ⊆ J(w) and, by the prefix version of
Lemma 2.1, we obtain u ≥R v ≥J w. By the claim, u J w, which implies
that v J w. Hence w is J -equivalent to all its infinite factors, that is w is
J -maximal as an infinite pseudoword.

Conversely, suppose that w is J -maximal as an infinite pseudoword. If v
is an infinite factor of w then, by J -maximality of w, v is J -equivalent to w.
Hence, v and w have the same factors and, in particular they have the same
finite factors. By Lemma 2.2 it follows that w is uniformly recurrent. �

Theorem 2.6 has a number of important consequences which we proceed to
state. The proofs are now all straightforward. The first corollary could also
be derived directly from the definition of uniformly recurrent pseudoword.

Corollary 2.7. The J -classes of uniformly recurrent pseudowords consist
entirely of uniformly recurrent pseudowords. �

Corollary 2.8. The J -class of a uniformly recurrent pseudoword w is com-
pletely determined by the finite factors of w as well as by the finite prefixes
(respectively suffixes) of w. �

Corollary 2.9. Every uniformly recurrent pseudoword is H-equivalent to
the limit of a sequence of its finite factors. �

Corollary 2.10. If u and v are two uniformly recurrent pseudowords and
every finite factor of u is also a factor of v, then u and v are J -equivalent.

�

We say that an infinite pseudoword is periodic if it is J -equivalent to
some pseudoword of the form uω for some u ∈ A+. To end this section, we
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present a characterization of periodicity for uniformly recurrent pseudowords
in terms of the combinatorial and topological properties of its set of factors.
The basic idea in the proof is the pumping lemma of automata theory, as in
the proof of [14, Corollary 6.1.11].

Theorem 2.11. Let w ∈ Â∗ be a uniformly recurrent pseudoword. Then
the following conditions are equivalent:

(1) w is periodic;
(2) the language F (w) of finite factors of w is rational;
(3) the set of all factors of w is clopen in Â∗.

Proof. Let F denote the set of all the factors of w in Â∗.
(1)⇒(3) Suppose that w is J -equivalent to uω with u ∈ A+. Then the

finite factors of w are the words which are factors of some power of u. In
particular, there are at most n factors of w of length n. By [10, Theorem 6.3],
the factors of w are the factors of u together with all words of the form xuνy,
where x is a suffix of u, y is a prefix of u, aν denotes an arbitrary element
of the monogenic free profinite monoid {̂a}∗, and uν = ψ(aν) for the unique
continuous homomorphism ψ : {̂a}∗ → Â∗ such that ψ(a) = u. It follows
that F is the closure of the rational language

F (u) ∪
⋃
{xu∗y : x ∈ (A∗)−1u, y ∈ u(A∗)−1}

and, therefore, it is a clopen subset of Â∗.
(3)⇒(2) Suppose that F is clopen. Then F (w) = F ∩ A∗ is a rational

language by [2, Theorem 3.6.1].
(2)⇒(1) Finally, suppose that F (w) is a rational language. Then F (w) is

recognized by some finite deterministic automaton. If n is the number of
states of such an automaton and v ∈ F ∩ A∗ is a word of length at least n
then there is a factorization v = xyz, with y ∈ A+, such that xy∗z ⊆ F ∩A∗.
This is the pumping lemma and results from the fact that the path labeled
v from the initial state has to repeat some state. Since F is closed under
taking factors, it follows that y∗ ⊆ F . Since F is closed, we deduce that the
infinite pseudoword yω = limn→∞ yn! belongs to F . By Theorem 2.6, we
conclude that yω J w, which shows that w is periodic. �

3. Uniform recurrence vs substitutions

A well-known way to produce uniform recurrence phenomena in sym-
bolic dynamics is through the iteration of primitive substitutions. For pseu-
dowords, we have an extension of the analogous result which we proceed to
present.

Given an element x of a profinite monoid, the sequence (xn!)n must con-
verge to an idempotent, and this is the only idempotent which is the limit
of a sequence of positive powers of x, simply because this is the case in ev-
ery finite monoid and profinite monoids are residually finite as topological
monoids. This special idempotent associated with x is denoted xω.

We have shown elsewhere that, provided a profinite monoid M is finitely
generated, the monoid of continuous endomorphisms of M is a profinite
monoid with respect to the point-wise convergence topology [5, Theorem 4.14].
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In particular, for a finite alphabet A, given any continuous endomorphism
ϕ of Â∗, there is a (unique) idempotent “infinite iterate” ϕω.

The following is a trivial but crucial observation.

Lemma 3.1. If u is a factor of ϕω(v) then so is ϕω(u).

Proof. By hypothesis, u is a factor of ϕω(v), say ϕω(v) = xuy with x, y ∈
Â∗. Since ϕω is an idempotent homomorphism, it follows that ϕω(v) =
ϕω(ϕω(v)) = ϕω(x)ϕω(u)ϕω(y) which shows that ϕω(u) is a factor of ϕω(v).

�

Since Â∗ is the free profinite monoid on the set A of free generators,
every homomorphism ϕ : A∗ → B∗ induces a continuous homomorphism
ϕ̂ : Â∗ → B̂∗. A continuous homomorphism ψ : Â∗ → B̂∗ is said to be
finite if ψ transforms finite words into finite words, that is ψ is induced
by some homomorphism A∗ → B∗. Both a homomorphism A∗ → B∗ and
the unique finite continuous homomorphism Â∗ → B̂∗ which it induces are
called substitutions from A to B, or simply over A in case B = A.

For a pseudoword w ∈ Â∗, c≤n(w) denotes the set of all non-empty factors
of w of length at most n. An element of c≤n(w) is also said to occur in w. It
is well known that the content function defined by and c(w) = c≤1(w) \ {1}
is a continuous homomorphism with values in the semilattice of all subsets
of A with respect to union and the discrete topology. For ϕ ∈ End Â∗, let
c≤n(ϕ) =

⋃
a∈A c≤n(ϕ(a)) and let c(ϕ) = c≤1(ϕ) \ {1}.

Lemma 3.2. Let ϕ ∈ End Â∗. Then
(
c(ϕn)

)
n

is a sequence of subsets of A
which strictly decreases until it stabilizes. In particular, c(ϕω) = c(ϕ|A|).

Proof. If the letter a occurs in ϕn+1(b) = ϕn(ϕ(b)), then there is some letter
d ∈ c(ϕ(b)) such that a occurs in the factor ϕn(d). Hence the sequence
(c(ϕn))n is decreasing. Suppose next that c(ϕn) = c(ϕn+1). Given a ∈
c(ϕn), there is some letter b such that a occurs in ϕn+1(b) = ϕ(ϕn(b)) and
so there is some letter d ∈ c(ϕn(b)) such that a occurs in ϕ(d). Since
c(ϕn) = c(ϕn+1), there is some letter e such that d ∈ c(ϕn+1(e)). Hence
a ∈ c(ϕn+2) since a occurs in ϕn+2(e). �

For B ⊆ A, denote by B≤n the set of all words in the letters of B of
length at most n. We say that a mapping ϕ : Â∗ → B̂∗ erases a letter a if
ϕ(a) = 1.

Lemma 3.3. Let ϕ ∈ End Â∗ and let B = c(ϕω). If ϕ does not erase
letters of B, then

(
c≤r(ϕn|B)

)
n

is a sequence of subsets of B≤n which strictly
increases until it stabilizes.

Proof. If u is a factor of ϕn(a) and a ∈ B then a ∈ c(ϕ(b)) for some letter
b ∈ B, and so u is a factor of ϕn+1(b). This shows that the sequence is
increasing. Suppose next that c≤r(ϕn|B) = c≤r(ϕn+1|B) and let u be a
factor of ϕn+2(a) for some a ∈ B. Since ϕn+2(a) = ϕ(ϕn+1(a)), there is
some factor v of ϕn+1(a) such that u is a factor of ϕ(v). If we choose v to
be of minimal length, since ϕ does not erase letters of B, then we must have
|v| ≤ r. Hence v belongs to c≤r(ϕn+1|B) and so also to c≤r(ϕn|B). This
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shows that u ∈ c≤r(ϕn+1|B). By induction, it follows that the sequence(
c≤r(ϕn|B)

)
n

stabilizes as soon as it repeats some term. �

A continuous endomorphism ϕ of Â∗ is said to be weakly primitive if there
exists n such that the set c≤2(ϕn(a)) is the same for every letter a ∈ A and
it is not contained in A, that is, ϕn(a) has at least one factor of length 2.
We also say that ϕ is primitive if there exists n such that c(ϕn(a)) = A
for every letter a ∈ A. An endomorphism of A∗ is also said to be weakly
primitive (respectively primitive) if its unique extension to a continuous
endomorphism of Â∗ has the same property.

Lemma 3.4. Let ϕ ∈ End Â∗ and suppose that c≤2(ϕn(a)) is the same set
for all a ∈ A and a fixed n. Then, for every m ≥ n, the set c≤2(ϕm(a)) is
also independent of a ∈ A.

Proof. Proceeding by induction, it suffices to show that, if a, b ∈ A and u is
a factor of ϕn+1(a) of length at most 2, then u is also a factor of ϕn+1(b).
Indeed, since ϕn+1(a) = ϕ(ϕn(a)) and |u| ≤ 2, there is v ∈ c≤2(ϕn(a)) such
that u is a factor of ϕ(v). Hence v ∈ c≤2(ϕn(b)) and u is also a factor
of ϕn+1(b). �

The set of elements w ∈ Â∗ with a given c≤2(w) is the intersection of a
finite set of clopen subsets of Â∗, each stipulating the presence or absence of
a certain factor of length at most 2. Hence the function c≤2 : Â∗ → P(A≤2)
is continuous for the discrete topology of the power set P(A≤2). In view of
Lemma 3.4, we conclude that ϕ ∈ End Â∗ is weakly primitive if and only if
c≤2(ϕω(a)) is the same for every letter a ∈ A, in which case the common
value is c≤2(ϕω). Since c(w) = c≤2(w) ∩ A for every w ∈ Â∗, if ϕ is weakly
primitive then we also have c(ϕω(a)) = c(ϕω) for every letter a ∈ A.

The following result is useful to perform computations in concrete exam-
ples.

Lemma 3.5. Let ϕ be a weakly primitive substitution, let B = c(ϕω), and
let r = |B|. Define f(n) =

∑
b∈B |c(ϕn(b))| and let N be the smallest integer

n such that f(n) = f(n + k) for some k ≥ 1. Then N ≤ r2 − r + 1 and
c(ϕN (b)) = B for every b ∈ B.

Proof. If r = 1 then the result is immediate. We assume that r > 1. We
claim that the sequence

(
f(n)

)
n

is strictly increasing until it stabilizes at
the value r2. Since f(1) ≥ r, this will show that N ≤ r2 − r + 1 and, from
the definition of f(N), that c(ϕN (b)) = B for every b ∈ B.

To prove the claim, we first observe that

(3.1) a ∈ c(ϕ(b)) =⇒ c(ϕn(a)) ⊆ c(ϕn+1(b)).

Let B = {a1, . . . , ar} and suppose that the letters have been ordered so
that |c(ϕn(a1))| ≥ · · · ≥ |c(ϕn(ar))|. From (3.1), we obtain the following
inequalities:

(3.2) f(n+ 1) ≥
r∑

i=1

∣∣∣c(ϕ(ai)) \
⋃

1≤j<i

c(ϕ(aj))
∣∣∣ · |c(ϕn(ai))| ≥ f(n),
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where

(3.3)
r∑

i=1

∣∣∣c(ϕ(ai)) \
⋃

1≤j<i

c(ϕ(aj))
∣∣∣ = r.

The inequalities (3.2) imply that f is a non-decreasing function. Next,
write B = {b1, . . . , br} with the letters now ordered so that |c(ϕn+1(b1))| ≥
· · · ≥ |c(ϕn+1(br))|. If f(n) = f(n+ 1), then it follows that |c(ϕn+1(bi))| =
|c(ϕn(ai))| for i = 1, . . . , r. Moreover, taking into account the inequalities
(3.2) and (3.3), we deduce that all the numbers |c(ϕn(ai))| must be the same.
Combining with (3.1), it follows that

a ∈ c(ϕ(b)) =⇒ c(ϕn(a)) = c(ϕn+1(b))

=⇒ c(ϕn+k(a)) = c(ϕn+k+1(b)) (k ≥ 0).

Hence, for all m ≥ n and all b ∈ B, the sets c(ϕm(b)) have the same number
of elements. Since ϕ is assumed to be weakly primitive, this implies that
they all have r elements, which establishes the claim and completes the proof
of the lemma. �

Part of the following simple observation has already appeared in [10] but
its proof is also included here for the sake of completeness.

Lemma 3.6. Let ϕ ∈ End Â∗.
(a) If all c(ϕω(a)) = B for every letter a ∈ A, then all ϕω(a), with a ∈ B,

lie in the same J -class.
(b) If all ϕω(a), with a ∈ A, lie in the same J -class, then, for each n ≥ 1,

c≤n(ϕω(a)) is the same for every letter a ∈ A.
(c) If all ϕω(a), with a ∈ A, have the same factors of length at most 2, then

they have the same finite factors.

Proof. (a) Let a, b ∈ B. By hypothesis, a is a factor of ϕω(b) and so, by
Lemma 3.1, ϕω(a) is a factor of ϕω(b). By symmetry, it follows that ϕω(a)
and ϕω(b) are J -equivalent.

(b) Given a, b ∈ A, ϕω(a) and ϕω(b) have the same factors and, in partic-
ular, they have the same finite factors.

(c) It suffices to show that, given a, b ∈ A, every finite factor of ϕω(a)
is also a factor of ϕω(b). Now, by [10, Lemma 7.2] every finite factor u of
ϕω(a) = ϕω(ϕω(a)) is also a factor of ϕω(x) for some factor x of ϕω(a) of
length at most 2. Then, by hypothesis, x is a factor of ϕω(b) and, therefore,
by Lemma 3.1 so is ϕω(x). Hence u is a factor of ϕω(b). �

Lemma 3.6 implies that primitive substitutions are weakly primitive. An
example of a weakly primitive substitution which is not primitive is given by
the substitution ϕ over the alphabet {a, b, c} defined by ϕ(a) = ab, ϕ(b) =
ba, and ϕ(c) = a3b3: for every letter x, the factors of ϕ3(x) of length at
most 2 are the words of such length in the proper subalphabet {a, b}.

In view of Lemma 3.6, for a weakly primitive substitution ϕ ∈ End Â∗
with B = c(ϕω), we must have c≤n(ϕω) = c≤n(ϕω|B) which, together with
Lemma 3.3, provides a simple algorithm to compute c≤n(ϕω). A rough
upper bound of how many iterations are needed is provided by the equality
c≤n(ϕω) = c≤n((ϕ|B)|B|

n
) which now follows from Lemma 3.3.
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Theorem 3.7. Let ϕ be a substitution over a finite alphabet A. Then the
following conditions are equivalent:
(a) the pseudowords ϕω(a), with a ∈ A, are all J -equivalent;
(b) the pseudowords ϕω(a), with a ∈ A, are all uniformly recurrent and have

the same content;
(c) ϕ is weakly primitive.

Proof. The implication (a)⇒(c) follows from Lemma 3.6(b).
To prove (b)⇒(a), consider a letter b ∈ c(ϕω). By hypothesis, b is a factor

of ϕω(a) for every a ∈ A, and therefore so is ϕω(b) by Lemma 3.1. Since
ϕω(b) is itself uniformly recurrent, it must be infinite. By Theorem 2.6
we conclude that all ϕω(a) lie in the same J -class as ϕω(b) as uniformly
recurrent pseudowords do not have infinite pseudowords strictly J -above
them.

To conclude the proof, it remains to show that (c)⇒(b), that is weak
primitivity of ϕ implies uniform recurrence of the ϕω(a), since the con-
tent condition in (b) is an immediate consequence of weak primitivity. By
Lemma 3.6(c), all ϕω(a), with a ∈ A, have the same finite factors. Fix a ∈ A
and let v be a finite factor of ϕω(a). Since ϕω(a) = limn→∞ ϕn!(a), and all
the ϕω(b) have the same finite factors, for every b ∈ A there exists k ≥ 1
such that v is a factor of ϕk(b). Following [20, Section 5.2], let

K = max
b∈A

min{k ≥ 1 : j ≥ k =⇒ v ∈ F (ϕj(b))}.

Let ` be the maximum of the lengths |ϕK(b)| with b ∈ A. Then, for a factor
z of ϕω(a) of length 2` − 1, z must be a factor of ϕr(a) for some r ≥ K.
Note that ϕr(a) is a product of words of the form ϕK(b) (b ∈ A), each of
which has v as a factor. But z is a too long factor of ϕr(a) to overlap these
words without completely containing one of them as a factor. Hence v is a
factor of z, which shows that ϕω(a) is uniformly recurrent. �

We examine next what happens when we apply a finite continuous endo-
morphism to a uniformly recurrent pseudoword.

Theorem 3.8. Let ϕ : Â∗ → B̂∗ be a finite continuous homomorphism and
let w ∈ Â∗ be such that ϕ does not erase all the letters from c(w). If w is
uniformly recurrent then so is ϕ(w).

Proof. Let w be uniformly recurrent. Note that ϕ(w) is an infinite pseu-
doword since ϕ does not erase every letter from w and no letter can occur
only a finite number of times in a uniformly recurrent pseudoword.

Suppose v is a finite factor of ϕ(w). By Corollary 2.9, there exists a
sequence (wn)n of finite factors of w converging to a pseudoword in the H-
class of w. Since ϕ is a continuous homomorphism, the sequence (ϕ(wn))n of
factors of ϕ(w) converges to a pseudoword H-equivalent to ϕ(w) and which,
therefore, has the same finite factors as ϕ(w) does. Hence v is a factor of
some ϕ(wn). Let N be such that every factor of w of length N admits wn as
a factor. Let K = (N + 1)M + 1, where M = max{|ϕ(a)| : a ∈ A}, and
let z be a factor of ϕ(w) of length K. Then z is a factor of some ϕ(wm),
which in turn is a product of words of the form ϕ(a). Now, z was chosen
sufficiently long to contain a factor of the form ϕ(y) with y a factor of wm
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of length N . Hence wn is a factor of y and so v is a factor of ϕ(y), which in
turn is a factor of z. This shows that ϕ(w) is uniformly recurrent. �

We say that a subgroup of Â∗ is J -maximal if it consists of infinite pseu-
dowords and there is no other such subgroup of Â∗ which lies strictly J -
above it. By Theorem 2.6, the J -maximal subgroups are the subgroups
which consist of uniformly recurrent pseudowords. By Lemma 2.3(c), the
J -class of every uniformly recurrent pseudoword contains J -maximal sub-
groups and in fact all its subgroups are J -maximal.

Example 3.9. Let A = {a1, . . . , am} and let wi = ϕω(ai) where ϕ(ai) =
a1 · · · ai−1a

2
i ai+1 · · · am for i = 1, . . . ,m − 1 and ϕ(am) = a1 · · · am. It is

shown in [10] that the wi freely generate a free profinite subgroup H of Â∗.
By Theorems 3.7 and 2.6 this is a J -maximal subgroup. It follows from the
results of Sections 4 and 5 below that H is an H-class of Â∗ and, therefore,
a maximal subgroup.

Say that an equality u1 · · ·um = v1 · · · vn with ui, vj ∈ Â∗ is reducible if
there exist indices r and s with 2 < r+ s ≤ m+ n and ur · · ·um = vs · · · vn.

Let ϕ be a continuous homomorphism Â∗ → B̂∗. We say that ϕ is an
encoding if it is injective. By [19, Proposition 2.1], in case ϕ is finite, ϕ is
an encoding if and only if its restriction to A∗ is injective.

We say that C ⊆ A∗ is of bounded delay with respect to a given w ∈ Â∗

if there exists an integer N such that any equality between factors of w of
one of the forms

uc1 · · · cmv = c′1 · · · c′n or uc1 · · · cm = c′1 · · · c′nv
with the ci, c′j ∈ C, u, v ∈ A∗ such that A∗u∩C∗ 6= ∅ and vA∗∩C∗ 6= ∅, and
m + n > N is reducible; in this case we also say that C has delay at most
N with respect to w. In case there is an integer N such that C has delay at
most N with respect to every w ∈ Â∗, then we also say that C has bounded
delay and C has delay at most N . See [21, 1] for effective procedures to test
this stronger property in case C is finite. From those procedures it is not
hard to derive algorithms to test whether C has bounded delay with respect
to a given w ∈ Â∗ provided one can effectively test whether any of a certain
finite number of words (depending only on C) is a factor of w.

For a finite continuous homomorphism ϕ : Â∗ → B̂∗, we say that ϕ is of
bounded delay with respect to a given w ∈ B̂∗ if ϕ(A) is of bounded delay
with respect to w. We also say that ϕ has delay at most N with respect to w
if ϕ(A) does.

The following result is a partial converse for Theorem 3.8 which will play
key role in Section 4.

Theorem 3.10. Let ϕ : Â∗ → B̂∗ be a finite continuous homomorphism
and let w ∈ Â∗. If ϕ(w) is uniformly recurrent and ϕ is an encoding of
bounded delay with respect to ϕ(w), then w is also uniformly recurrent.

Proof. Let N be an integer such that ϕ has delay at most N with respect
to ϕ(w). Let u ∈ F (w). Let n = d|u|/Ne+2 and letm andM be respectively
the minimum and the maximum of the lengths of the words in ϕ(A). Since
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ϕ(w) is uniformly recurrent and A is finite, there exists an integer K such
that every finite factor of ϕ(w) of length at least K contains as a factor
every factor of ϕ(w) of length at most MnN .

Let v be a factor of w of length dK/me. Then ϕ(v) is a factor of ϕ(w)
of length at least K which, therefore, contains as a factor some word of the
form ϕ(xuy) with x, y ∈ AN since the length of such a word is at mostMnN .
Let v = v1 · · · vp, x = x1 · · ·xN , u = u1 · · ·uq, and y = y1 · · · yN with the
vi, xj , uk, yj ∈ A and denote, for each a ∈ A, ϕ(a) by ā. Then we have an
equality between factors of ϕ(w) of the form

v̄1 · · · v̄p = z x̄1 · · · x̄N ū1 · · · ūq ȳ1 · · · ȳN t

for some z, t ∈ A∗. Since ϕ has delay at most N with respect to ϕ(w), there
exist indices i, j, k, ` such that

v̄i · · · v̄j = x̄k · · · x̄N ū1 · · · ūqȳ1 · · · ȳ`

Since ϕ is an encoding, it follows that the preceding equality still holds if we
remove the bars and so u is a factor of v. Hence w is uniformly recurrent. �

Note that one cannot expect that w be uniformly recurrent just under
the hypothesis that ϕ(w) is uniformly recurrent for a non-erasing continuous
homomorphism ϕ : Â∗ → B̂∗. Indeed, simply by changing one occurrence
of one letter in a uniformly recurrent pseudoword v into a new letter we
obtain a pseudoword w which is not uniformly recurrent; but, letting ϕ be
the identity on all the old letters and mapping the new letter to the replaced
letter, we have ϕ(w) = v. In this example, ϕ is not an encoding. We do
not know whether there are any examples in which ϕ is an encoding which
fails the bounded delay hypothesis of Theorem 3.10 and does not preserve
uniform recurrence.

4. Weakly primitive substitutions

Throughout this section let ϕ be a finite weakly primitive continuous
endomorphism of Â∗, where A is a finite alphabet. By Theorem 3.7, all the
pseudowords ϕω(a) (a ∈ A) lie in the same J -class of Â∗. We denote this
J -class by Jϕ. The factors of members of Jϕ will be called simply factors
of Jϕ. By Theorem 2.6 and Lemma 2.3(c), Jϕ is a J -maximal regular J -
class of Â+ and it consists of uniformly recurrent pseudowords. Hence the
infinite factors of Jϕ are the members of Jϕ. By compactness and continuity
of multiplication, the set of factors of Jϕ is closed.

Lemma 4.1. (1) If u is a finite factor of Jϕ then so is ϕ(u).
(2) If u is a non-empty factor of Jϕ then ϕω(u) ∈ Jϕ.

Proof. (1) Let a be any letter in c(ϕω) and let w = ϕω(a). Since w =
limn→∞ ϕn!(a), u is a finite factor of w, and the set Â∗uÂ∗ is an open subset
of Â∗, u must be a factor of ϕn!(a) for all sufficiently large n. By Lemma 3.5,
for all sufficiently large m, the letter a occurs in ϕm−n!(a) and so the word
ϕn!(a) is a factor of ϕm(a). Hence, for all sufficiently large m, u is a factor
of ϕm(a) and therefore it is also a factor of ϕω−1(a) = limn→∞ ϕn!−1(a).
Since ϕ is a homomorphism, ϕ(u) is a factor of ϕω(a) = w.
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(2) By Lemma 3.1, ϕω(u) is an infinite factor of Jϕ. Hence ϕω(u) ∈ Jϕ

since Jϕ is a J -maximal J -class of infinite pseudowords. �

Proposition 4.2. The action of ϕ on Â∗ induces an action on Jϕ.

Proof. Take a ∈ A and let w = ϕω(a). Since w is uniformly recurrent by
Theorem 3.7, by Theorem 3.8 ϕ(w) is also uniformly recurrent. Hence, by
Corollary 2.10, it suffices to show that every finite factor of ϕ(w) is also a
factor of w. Now, by [10, Lemma 7.2], every finite factor u of ϕ(w) is a
factor of ϕ(v) for some finite factor v of w. Moreover, by Lemma 4.1(1),
whenever v is a finite factor of w, so is ϕ(v). Hence u is a factor of w. �

Lemma 4.3. Let v be a pseudoword of Jϕ which belongs to Imϕω and let a
be its first letter. Then a is also the first letter of ϕω(a) and there is some
k ≥ 1 such that a is the first letter of ϕk(a) and ϕω−k(a) ∈ Jϕ.

Proof. By hypothesis there is a factorization of the form v = av′ for some
v′ ∈ Â+ and so the first letter, a, of v = ϕω(v) = ϕω(a)ϕω(v′) is also the
first letter of ϕω(a). Since the alphabet A is finite so that the set aÂ∗ is
open, there is some k ≥ 1 such that ϕk(a) starts with the letter a. By
Proposition 4.2 and since Jϕ is a closed set, ϕω−k(a) = ϕω−k(ϕω(a)) =
limn→∞ ϕn!−k(ϕω(a)) also lies in Jϕ. �

Lemma 4.4. Let H be a maximal subgroup of Jϕ containing an element of
the form ϕω(v) for some pseudoword v. Then ϕω(H) ⊆ H.

Proof. Let K = ϕω(H). Then K is a continuous homomorphic image of a
profinite group. Since K is a closed subsemigroup of a profinite semigroup,
it is itself a profinite semigroup [4, Proposition 4.3]. Hence K is a profinite
group by the same result. On the other hand, H ∩ K is non-empty since
both contain the pseudoword ϕω(v). Since H is a maximal subgroup of Â∗,
it follows that K ⊆ H. �

Let a and b be letters such that ba is a factor of Jϕ. Denote by Xϕ(a, b)
the set of all finite words u such that bua is a factor of Jϕ, and u starts
with a, ends with b, and cannot be properly factorized into such words, that
is it does not contain ba as a factor. There is another related set which is
in general larger and which will also play a role here. It is the set Yϕ(a, b)
consisting of all finite factors of Jϕ which start with a, end with b, and do not
contain the factor ba. Since the elements of Jϕ are uniformly recurrent, the
set Yϕ(a, b) is finite, and therefore so is its subset Xϕ(a, b). More precisely,
we have the following result which shows that Xϕ(a, b) may be effectively
computed.

Lemma 4.5. Let ba be a 2-letter factor of Jϕ, B = c(ϕω), and r = |B|. Let
M be the smallest integer such that c≤2(ϕM ) = c≤2(ϕM+1) and let N be the
smallest integer such that c(ϕN (b)) = c(ϕω) for every b ∈ B. Then Xϕ(a, b)
consists of factors of words of the form ϕM+N (u), where u ∈ c≤2(ϕω|B).
Hence Xϕ(a, b) may be effectively computed.

Proof. Let w ∈ Xϕ(a, b). Then w is a factor of Jϕ and, therefore it is a factor
of ϕM+N (u) for some u ∈ B∗. By Lemma 3.3, ba is a factor of ϕM (d) for
some d ∈ B. On the other hand, by assumption, d appears in every word of
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the form ϕN (e) with e ∈ B. Hence ba is a factor of every word of the form
ϕM+N (e) with e ∈ B. Since w does not admit ba as a factor, it follows that
w cannot contain any factor of the form ϕM+N (e), with e ∈ B, and hence it
must be a factor of ϕM+N (u0) for some u0 ∈ c≤2(ϕω|B), which establishes
the lemma. �

Note that the numbers M and N of Lemma 4.5, satisfy the following
inequalities: by Lemma 3.3, M ≤ r2 and, by Lemma 3.5, N ≤ r2 − r + 1.
These values are probably not optimal.

Example 4.6. For the substitution ϕ ∈ End {̂a, b}∗, which sends the letter
a to ab2 and b to a, where r = 2, we find N = 2, M = 3, and every 2-letter
word is a factor of Jϕ. Hence, to compute the set Xϕ(a, a), it suffices to
compute the words

ϕ5(a) = abbaaabbabbabbaaabbaaabbaaabbabbabbaaabbabb,

ϕ5(b) = abbaaabbabbabbaaabbaa,

concatenate two of these in any order and find the factors between consec-
utive occurrences of the factor aa. Performing this routine calculation, we
conclude that Xϕ(a, a) = {a, ab2a, (ab2)3a}. Since every word in Yϕ(a, a)
is a factor of some word in Xϕ(a, a), it is now immediate to deduce that
Yϕ(a, a) = {a, ab2a, (ab2)2a, (ab2)3a}. �

For a subset X of Â+, denote by X+ the subsemigroup of Â+ generated
by X.

Lemma 4.7. Suppose that ba is a factor of Jϕ and that there is some pseu-
doword of the form w = ϕω(u) with u ∈ Xϕ(a, b) such that w starts with a
and ends with b. Let M be the maximum length of elements of Xϕ(a, b). Let
v be a finite word which has the same prefix of length M +1, the same suffix
of length M +1, and also the same factors of length M +2 as w does. Then
v belongs to Xϕ(a, b)+.

Proof. Note that, by the choice of M , every factor of length M + 1 of the
uniformly recurrent pseudoword w must contain ba as a factor. Since every
factor of w of length M+1 is a factor of v, the word v must therefore contain
ba as a factor. Since v starts with a and ends with b, it follows that v admits
a factorization of the form u1u2 · · ·ur, with each ui starting with a, ending
with b, not having ba as a factor, and of length at most M . Hence u1a is a
prefix, bur is a suffix, and each buia (1 < i < r) is a factor of w. Moreover,
as ba is a factor of Jϕ, so is ϕω(ba). Since ϕω(u) starts with a and ends
with b, it follows that ϕω(bua) belongs to Jϕ. Hence bu1a and bura are also
factors of w by Lemma 4.3. By the definition of Xϕ(a, b), this implies that
all the factors uj belong to Xϕ(a, b). Hence v ∈ Xϕ(a, b)+. �

Proposition 4.8. Let a and b be letters such that ba is a factor of Jϕ.
(1) All pseudowords of the form ϕω(u) with u ∈ Xϕ(a, b) belong to the

same H-class H of Jϕ, which is a group.
(2) If ϕω(a) starts with a and ϕω(b) ends with b, then ϕω(H) is generated

by the set ϕω(Xϕ(a, b)) as a closed subgroup.
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Proof. The pseudowords ϕω(a) and ϕω(b), as well as, by Lemma 4.1(2),
all the elements of the set ϕω(Xϕ(a, b)), belong to Jϕ. Moreover, ϕω(a)
is a prefix and ϕω(b) is a suffix of every element of ϕω(Xϕ(a, b)). Hence
ϕω(Xϕ(a, b)) is contained in the H-class H which is the intersection of the
R-class of ϕω(a) with the L-class of ϕω(b).

Since ba is a factor of Jϕ and the pseudowords of Jϕ are uniformly re-
current, there is some finite factor of Jϕ of the form baubavba and therefore
also one of the form xy with x, y ∈ Xϕ(a, b). Again by Lemma 4.1(2), the
pseudoword ϕω(xy) = ϕω(x)ϕω(y) belongs to Jϕ, which implies that H is
a group. This proves (1). Moreover, by Lemma 4.4, ϕω(H) is a profinite
subgroup of H.

Next assume that ϕω(a) starts with a and ϕω(b) ends with b. Then every
element of H starts with a and ends with b.

Let M be as in Lemma 4.7 and let w be an arbitrary element of ϕω(H).
Let (wn)n be a sequence of finite words converging to w which we may choose
so that all wn have the same prefix and the same suffix of length M+1 as w,
as well as the same factors of length M + 2 as w. By Lemma 4.7 it follows
that each wn belongs to Xϕ(a, b)+. This shows that w ∈ Xϕ(a, b)+. By con-
tinuity of ϕω, we deduce that ϕω(w) belongs to the closure of ϕω(Xϕ(a, b))+.
Finally, by (1), the closure of the subsemigroup ϕω(Xϕ(a, b))+ is the closed
subgroup of H generated by ϕω(Xϕ(a, b)), which proves (2). �

We say that a finite weakly primitive substitution ϕ on an alphabet A is
of relative bounded delay if ϕ is of bounded delay with respect to elements
of Jϕ, and we say that ϕ is special if ϕ is of relative bounded delay and its
restriction to ĉ(ϕω)∗ is an encoding.

Lemma 4.9. If ϕ is a finite special weakly primitive continuous endomor-
phism of Â∗ then so is ϕn for every n ≥ 1.

Proof. Let B = c(ϕω). Since ϕ is assumed to be an injective continuous
endomorphism of B̂∗, so are its powers ϕn. Since ϕω = (ϕn)ω, and so
Jϕ = Jϕn , it remains to show that ϕn is of bounded delay with respect to
elements of Jϕ. In order to prove this for n > 1, we assume inductively that
ϕn−1 is of bounded delay with respect to elements of Jϕ.

Consider an equality between factors of Jϕ of the following form

(4.1) uϕn(a1) · · ·ϕn(ar) v = ϕn(b1) · · ·ϕn(bs)

where the ai, bj ∈ B. Since ϕn−1 is assumed to be of bounded delay with
respect to factors of Jϕ, provided r + s is sufficiently large there are indices
i1, j1 and factorizations ϕ(ai1) = xi1x

′
i1

and ϕ(bj1) = yj1y
′
j1

such that

uϕn−1
(
ϕ(a1 · · · ai1−1)xi1

)
= ϕn−1

(
ϕ(b1 · · · bj1−1) yj1

)
(4.2)

ϕn−1
(
x′i1 ϕ(ai1+1 · · · ar)

)
v = ϕn−1

(
y′j1 ϕ(bj1+1 · · · bs)

)
(4.3)

Provided r+s is sufficiently large, one of the numbers i1+j1 or r+s−i1−j1
will be still sufficiently large to guarantee that at least one of the equalities
(4.2) and (4.3) will reduce similarly, say producing equalities

uϕn−1
(
ϕ(a1 · · · ai2−1)xi2

)
= ϕn−1

(
ϕ(b1 · · · bj2−1) yj2

)
ϕn−1

(
x′i2 ϕ(ai2+1 · · · ai1−1)xi1

)
= ϕn−1

(
y′j2 ϕ(bj2+1 · · · bj1−1) yj1

)
(4.4)
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where ϕ(ai2) = xi2x
′
i2

and ϕ(bj2) = yj2y
′
j2

. Again assuming r + s is suf-
ficiently large, we may proceed in this manner until, by concatenating the
equalities of type (4.4), we obtain an equality of the form

ϕn−1
(
x′` ϕ(a`+1 · · · am−1)xm

)
= ϕn−1

(
y′p ϕ(bp+1 · · · bq−1) yq

)
where ϕ(at) = xtx

′
t, ϕ(bt) = yty

′
t, and m − ` + q − p is as large as desired.

Since ϕn−1 is injective on B∗, B = c(ϕω), and ϕ is weakly primitive, it
follows that

(4.5) x′` ϕ(a`+1) · · ·ϕ(am−1)xm = y′p ϕ(bp+1) · · ·ϕ(bq−1) yq.

Moreover, since ϕn−1 sends Jϕ into itself by Proposition 4.2 and ϕn−1 is
injective on B̂∗, the common value of the two sides of (4.5) is still a factor
of Jϕ. Now, since m− `+ q− p may be taken to be as large as required and
ϕ is of bounded delay with respect to factors of Jϕ, we conclude that the
equation (4.5) is reducible, say

x′` ϕ(a`+1 · · · af ) = y′p ϕ(bp+1 · · · bg).
Taking into account how the equality (4.5) was obtained, this implies that

uϕn(a1 · · · af ) = ϕn(b1 · · · bg),
which shows that the equality (4.1) is reducible. The other type of equality
needed to show that ϕn is of bounded delay with respect to Jϕ is treated
similarly. �

Under suitable hypotheses, we have described in Proposition 4.8(2) a set
of generators for the closed subgroup ϕω(H) corresponding to a maximal
subgroup H of Jϕ. The extra hypothesis of bounded delay with respect to
elements of Jϕ will now allow us to show that if H and ϕω(H) have some
point in common then they are equal. The proof of this result turns out to
be somewhat technical and long.

Proposition 4.10. Let ϕ be a special finite weakly primitive continuous
endomorphism of Â∗ and let w ∈ Jϕ. If w lies in the same H-class as some
element of Imϕω then w ∈ Imϕω.

Proof. Let v be an element of the H-class of w which lies in Imϕω. Since
ϕω is an idempotent homomorphism, we have ϕω(v) = v. Note that v and
w have the same factors, as well as the same finite prefixes and the same
finite suffixes. Since v = limn→∞ vn for some sequence (vn)n of finite words
and so v = ϕω(v) = limn→∞ ϕω(vn), every finite factor of w is therefore a
factor of some word in ϕk(A+) for every positive integer k.

Let a be the first letter of v. By Lemma 4.3, there is some ` > 0 such
that ϕ`(a) starts with a. Now, (ϕ`)ω = ϕω (and so Jϕ` = Jϕ) so that, taking
also into account Lemma 4.9, by replacing ϕ by ϕ`, if necessary, we may
assume that a is the first letter of ϕ(a). This implies that ϕn(a) is a prefix
of ϕn+1(a) for all n ≥ 0, whence ϕn(a) is a prefix of v for all n ≥ 0. In
particular, w has arbitrarily long prefixes of the form ϕk(u) with u ∈ A+

and k > 0. Similarly, w has arbitrarily long suffixes in ϕk(A+) for every
k > 0.

Let k be an arbitrary positive integer and let ψ = ϕk. By Lemma 4.9,
there exists N such that ψ has delay at most N with respect to w. Let m
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and M be respectively the minimum and the maximum of the lengths of the
words in ψ(A), and let K = (N + dM

m e+ 2)M .
Suppose next that x is a finite word which has the same factors, the same

prefixes, and the same suffixes of length at most K as w does. We claim
that x ∈ Imψ. Since w has arbitrarily long prefixes in ψ(A+), x has a prefix
y0 and a suffix z in ψ(AN+dM

m
e+2).

On the other hand, given any factor u of w of length K, it has already
been observed that u is a factor of some word in ψ(A+). Hence u must have
the form u = u1u2u3u4u5u6u7 with each of u1 and u7 of length less than M ,
|u1u2| = |u6u7| = M , both words u2u3, u5u6 ∈ ψ(A+), and u4 = ψ(ũ4)
for some ũ4 ∈ A+ of length at least N − 2. Note that some of the factors
ui, particularly u3 and u5, may be empty. The factorization is depicted in
Figure 1 where the waves are meant to represent elements of ψ(A).
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u1 u2 u3 u4 u5 u6 u7

Figure 1. Factorization of factor of length K

Now, supose that we have already identified a prefix yn of x which belongs
to ψ(A+) and that K ≤ |yn| < |x| −M . Let u be the suffix of length K of
the prefix of x of length |yn| + M and consider its associated factorization
u = u1u2u3u4u5u6u7 as described in the preceding paragraph. Then for the
word u2u3u4u5u6, which is a product of at least N factors from ψ(A), the
prefix u2u3u4u5 is also a suffix of the word yn. Since ψ has delay at most N
with respect to w, it follows that the equality that expresses the overlapping
factor must split, since it expresses two factorizations of a factor of u, and
therefore also of a factor of w. Hence we can further extend yn by jumping
from the factorization within yn to that of u and thus find a word yn+1 such
that |yn+1| > |yn| and yn+1 ∈ ψ(A+). The extension of the factorization of
a prefix of x in terms of elements of ψ(A) is depicted in Figure 2.

............
......................................... .........

........................... .........
........................... ............

......................................... ................
......................................................... ............

......................................... .........
........................... ............

......................................... .........
........................... ............

.........................................................................................
.....................................

....................................
....................................................

..... ................................
....................................................

.....................................................
.....................................

............................................
................................

...

........................................

yn

yn+1

M

K

Figure 2. Extension of the prefix of x in ψ(A+)

Suppose that y is the longest prefix of x which belongs to ψ(A+). By
the preceding argument and the assumptions on x, we have |y| ≥ K and
|y| > |x| −M . We claim that y = x. Otherwise, we consider the overlap of
y with the suffix z of x introduced above. By length considerations, there
are factorizations y = y′t and z = tz′ with 1 ≤ |z′| < M . See Figure 3.
Recall that z is the product of N + dM

m e + 2 factors from ψ(A). Reading
from right to left, excluding those factors which lie completely within z′,
certainly there will remain at least N factors. Since ψ has delay at most
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Figure 3. Final extension of the prefix of x in ψ(A+)

N with respect to w, we find a factorization (of a factor of w) involving
those remaining factors which must split, which allows us to extend y to a
longer prefix which still lies in ψ(A+), in contradiction with the assumption
at the beginning of this paragraph. This completes the proof of the claim
that x ∈ ψ(A+).

Now, since prescribing a finite number of conditions on finite factors de-
termines a clopen subset of Â+, w is the limit of a sequence (zn)n of finite
words all of which have the same factors, the same prefixes, and the same
suffixes of length K as w does. By the above, each zn belongs to ψ(A+).
Since ψ = ϕk is continuous, it follows that w ∈ Imϕk, say w = ϕk(wk).

Since Â∗ is a compact metric space, there is a strictly increasing sequence
(kr)r such that (wkr!)r converges to some pseudoword w∞. By continuity
of the evaluation mapping of continuous endomorphisms of Â∗ [5, Theo-
rem 4.14], we conclude that

w = lim
r→∞

ϕkr!(wkr!) = ϕω(w∞),

and so w ∈ Imϕω. �

For a subset X of a group G, denote by 〈X〉 the subgroup generated by X.
A 2-letter factor ba of Jϕ such that ϕω(a) starts with a and ϕω(b) ends

with b will be called a connection for ϕ. The name is intended to suggest that
the factor ba establishes precisely the needed connection between elements of
a H-class of Jϕ which makes their product remain in Jϕ, that is which forces
the H-class to be a maximal subgroup. This is justified by Theorem 4.13
below which summarizes the main conclusions of this section.

Lemma 4.11. Let ϕ be a finite weakly primitive continuous endomorphism
of Â∗ and suppose H is maximal subgroup of Jϕ such that H contains some
element of Imϕω. Then there is a unique connection ba for ϕ such that
ϕω(Xϕ(a, b)) ⊆ H.

Proof. Let a be the first letter and b the last letter of the elements of H.
Then, by Lemma 4.3 and its left-right dual, a is the first letter of ϕω(a) and
b is the last letter of ϕω(b). Since H is a group, ba is a factor of Jϕ, which
shows that ba is a connection for ϕ. Since H contains some element of the
of form ϕω(u), which starts with a and ends with b, H is the intersection of
the R-class of ϕω(a) with the L-class of ϕω(b). Hence every element of the
form ϕω(v), with v ∈ Xϕ(a, b), belongs to H. This proves the existence of
a connection as stated. Uniqueness follows from the fact that, ba being a
connection such that ϕω(Xϕ(a, b)) ⊆ H, a must be the first letter and b the
last letter of the elements of H. �
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Since there is at least one maximal subgroup of Jϕ which meets non-
trivially Imϕω by Proposition 4.8(1), we obtain the following result.

Corollary 4.12. Every finite weakly primitive continuous endomorphism
of Â∗ has at least one connection. �

Assuming further that ϕ is special, we obtain more precise conclusions.

Theorem 4.13. Let ϕ be a special finite weakly primitive continuous endo-
morphism of Â∗.

(1) Let H be a maximal subgroup of Jϕ such that H ∩ Imϕω 6= ∅. Then
there is a connection ba for ϕ such that H = 〈ϕω(Xϕ(a, b))〉.

(2) Let ba be a connection for ϕ. Then ϕω(Xϕ(a, b))+ is a maximal
subgroup of Jϕ.

Proof. Given a connection ba for ϕ, by Proposition 4.8(2), ϕω(Xϕ(a, b))+
is contained in a maximal subgroup of Jϕ and therefore it coincides with
〈ϕω(Xϕ(a, b))〉, since xω−1 = limn→∞ xn!−1. If we take H to be this maxi-
mal subgroup and prove (1), then (2) will follow by the uniqueness part of
Lemma 4.11. So we proceed with a maximal subgroup as in (1). By the exis-
tence part of Lemma 4.11, we already have the inclusion 〈ϕω(Xϕ(a, b))〉 ⊆ H
for a connection ba for ϕ. On the other hand, by Proposition 4.8(2),
〈ϕω(Xϕ(a, b))〉 = ϕω(H). Finally, by Proposition 4.10, H = ϕω(H), which
establishes (1). �

Let ba be a connection for a substitution ϕ satisfying the hypothesis of
Theorem 4.13. The maximal subgroup of Jϕ generated, as a topological
group, by the set ϕω(Xϕ(a, b)) is called the maximal subgroup associated
with ba.

5. Ultimately G-invertible substitutions

We continue to assume here the general assumptions of Section 4, namely
that ϕ is a finite weakly primitive continuous endomorphism of Â∗, where
A is a finite alphabet.

We say that a weakly primitive substitution ϕ is ultimately G-invertible
if there exists ψ ∈ End F̂GA such that ψ ◦ pG ◦ϕ sends each letter a ∈ c(ϕω)
to the generator pG(a). If we let B = c(ϕω), then ϕ induces a continuous
endomorphism ϕ′ of F̂GB by ϕ′(b) = pG ◦ ϕ(b) for b ∈ B. Note that ϕ
is ultimately G-invertible if and only if (ϕ′)ω is the identity transformation
of F̂GB or, in other words, that ϕ′ has an inverse in the profinite monoid
End F̂GB. In the case where B = A, we will also say that ϕ is G-invertible.
Note that, if ϕ and ψ are finite G-invertible continuous endomorphisms of Â∗,
then so is their composite ϕψ.

Without further reference, we will view F̂GB as the closed subgroup
of F̂GA generated by B. We will also view A∗ as being naturally embedded
in F̂GA, namely as the submonoid generated by A.

Proposition 5.1. Let ϕ be a special finite weakly primitive continuous en-
domorphism of Â∗ and let B = c(ϕω). Suppose ϕ is ultimately G-invertible
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and let ba be a connection for ϕ with associated maximal subgroup H. Then
the restriction to H of the natural projection pG : Â∗ → F̂GA has image the
closed subgroup generated by Yϕ(a, b).

Proof. Since Xϕ(a, b) ⊆ Yϕ(a, b) and ϕω(Yϕ(a, b)) ⊆ H, H is also generated,
as a topological group, by ϕω(Yϕ(a, b)). Denote by ψ the unique continuous
endomorphism of F̂GA which sends each a ∈ A to the positive word ϕ(a).
Note that pG ◦ ϕ = ψ ◦ pG, from which it follows that the restriction of
pG ◦ ϕω = ψω ◦ pG to B̂∗ is the same as that of pG since ϕ is ultimately
G-invertible. Hence the closed subgroup of F̂GA given by pG(H) is that
generated by Yϕ(a, b). �

Let X be a finite non-empty subset of A+. An elementary splitting per-
formed over X consists in finding in X a pair of distinct words of one of
the forms x, xy or x, yx and producing the set X ′ which is obtained from X
by replacing the element xy, respectively yx, by y. Then we obviously have
〈X〉 = 〈X ′〉 and X∗ ⊆ (X ′)∗. Note that

∑
x∈X |x| >

∑
x′∈X′ |x′| and so any

sequence of elementary splittings performed on X must eventually lead to a
finite subset Y of A+ upon which no elementary splitting is possible, that
is Y is a finite biprefix code. Moreover, it is easy to see that the elementary
splitting transformation is locally confluent in the sense that, when two dis-
tinct elementary splitting transformations are applied to a set X to produce
sets X ′ and X ′′, then there is a set Z which can be obtained from both X ′

and X ′′ by applying elementary splittings. Hence there is a unique biprefix
code X̃ which can be obtained from X by applying a sequence of elementary
splittings. We call it the split code of X. Taking also into account that, if
w(a1, . . . , an) is a non-trivial reduced group word and we substitute for each
ai a distinct element ui of a biprefix code, then the group word w(u1, . . . , un)
cannot be reduced to the empty word, we obtain the following result which
amounts to a simple and probably folklore exercise in combinatorial group
theory.

Proposition 5.2. Let X be a finite non-empty subset of A+. Then the split
code X̃ is a set of free generators of the subgroup 〈X〉 of the free group FGA

and X∗ ⊆ X̃∗. �

We are ready for one of the main results of this paper.

Theorem 5.3. Let ϕ be a special finite weakly primitive continuous endo-
morphism of Â∗. Suppose ϕ is ultimately G-invertible and let ba be a con-
nection for ϕ with associated maximal subgroup H. Then the mapping χ :
H → F̂GA, obtained by restriction of the natural projection pG : Â∗ → F̂GA,
is an isomorphism from H onto the closed subgroup generated by Yϕ(a, b),
which is a finitely generated free profinite group with set of free generators
Ỹϕ(a, b).

Proof. By Proposition 5.1 and its proof, pG(ϕω(u)) = u for u ∈ A∗. Let

K = 〈Yϕ(a, b)〉. By Proposition 5.2, K is a free group on the set Ỹϕ(a, b).
By a result of Coulbois, Sapir and Weil [15, Theorem 1.1], applied to the
pseudovariety G of all finite groups, the closure K of K in F̂GA is a free
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profinite group on Ỹϕ(a, b). This already establishes that Imχ is a finitely
generated free profinite group. It remains to show that χ is injective. For
this purpose, it suffices to show that H is generated as a closed subgroup by
elements which map into Ỹϕ(a, b) under χ.

The slight difficulty in the proof at this point is that ϕω(v) may not

belong to H for v ∈ Ỹϕ(a, b). To overcome this difficulty, we have to exhibit
a modified pseudoword v′ such that ϕω(v′) ∈ H and χ(ϕω(v′)) = v. This
is simply done by mimicking in the group H the sequence of cancellations
leading from the set Yϕ(a, b) to Ỹϕ(a, b) by using the (ω−1)-power operation.
More precisely, suppose that X is a set of generators of H, as a topological
group, and that x and y are two distinct elements of X. Then, by replacing
y by xω−1y or by yxω−1, we obtain another subset of H which is still a set of
generators of H, as a topological group. Since χ is a group homomorphism
and the (ω−1)-power in F̂GA coincides with inversion, the result follows. �

Recall from [13] the notion of a circular code. A subset C of A+ is
a circular code if, whenever p ∈ A∗, s ∈ A+, c1, . . . , cm, d1, . . . , dn ∈ C,
sc2 · · · cmp = d1 · · · dn, and c1 = ps, we have m = n, p = 1, and ci = di

(1 ≤ i ≤ n). Equivalently, the submonoid C∗ of the free monoid A∗ is very
pure, in the sense that uv, vu ∈ C∗ implies u, v ∈ C∗, and C is a minimal
set of generators of C∗. We say that ϕ ∈ End Â∗ is a circular encoding if
ϕ|B is injective and ϕ(B) is a circular code, where B = c(ϕω).

Proposition 5.4. Let ϕ be a finite continuous ultimately G-invertible en-
domorphism of Â∗. Then ϕ is a circular encoding.

Proof. Let B = c(ϕω). It follows from Proposition 5.2 that ϕ̃(B) = B and
so there is a sequence of elementary splittings starting from ϕ(B) that ends
in the set B, which is certainly a circular code. The idea of the proof is
to trace back through elementary splittings and show that, at each stage, a
circular code is obtained. To prove this fact we use a well-known result from
the theory of codes, namely that the composition of two circular codes is
again a circular code [13, Proposition 1.9]. Indeed, if X = {x1, x2, . . . , xn} is
a circular code, then {x1x2, x2, . . . , xn} is obtained by composing the code
{d1d2, d2, . . . , dn}, over the alphabet D = {d1, d2, . . . , dn}, with X and sim-
ilarly for the dual construction {x2x1, x2, . . . , xn}. Thus, it suffices to show
that Z = {d1d2, d2, . . . , dn} (along with its dual) is a circular code, which
corresponds to the very first step of the announced trace-back procedure.

Now, Z is even a prefix code, so it suffices to show that Z∗ is a very pure
submonoid of D∗. Indeed, if u, v ∈ D∗ and uv, vu ∈ Z∗ then u, v ∈ Z∗ since,
for instance, if in u not every occurrence of the letter d1 is followed by d2,
then the same holds for vu, which contradicts vu ∈ Z∗. �

The following is a variation of several similar results which can be found
in the literature on the algebraic theory of codes with various definitions of
delay [13, Section VII.2]. Since none seems to involve precisely the definition
of language of bounded delay which has been adopted in this paper, we
provide a proof for the sake of completeness.

Lemma 5.5. Every finite circular code has bounded delay.
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Proof. Let C be a finite circular code over the alphabet A. Then there is
an upper bound on the number of different overlaps between words in C,
meaning factorizations of the form xc = c′y with c, c′ ∈ C, x ∈ A∗, y ∈ A+,
and |x| < |c′| as is depicted in Figure 4. Hence, provided m+n is sufficiently
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x c

c′ y

Figure 4. An overlap between two code words

large, if we have two factorizations

(5.1) uc1 · · · cmv = c′1 · · · c′n
with ci, c′j ∈ C then, considering the overlaps between factors ci and c′j , there
will be at least two equal overlaps, which leads to equalities of the following
forms: scici+1 · · · ci+r−1p = c′jc

′
j+1 · · · c′j+t and ps = ci+r, with s 6= 1. Since

C is a circular code, it follows that p = 1, which shows that the equality (5.1)
is reducible. The other type of equality involved in the definition of language
of bounded delay is handled similarly. �

Corollary 5.6. Let ϕ be a finite ultimately G-invertible weakly primitive
continuous endomorphism of Â∗. Then ϕ is special.

Proof. This follows directly from Proposition 5.4 and Lemma 5.5. �

This leads to a simplified formulation of Theorem 5.3 without explicit
reference to the technical hypothesis that the endomorphism be special.

Corollary 5.7. Let ϕ be a finite ultimately G-invertible weakly primitive
continuous endomorphism of Â∗. Then the maximal subgroups of Jϕ are
finitely generated free profinite groups.

Proof. By Corollary 5.6, ϕ is special. By Theorem 5.3 there is a maximal
subgroup H of Jϕ such that the restriction to H of the natural projection
pG : Â∗ → F̂GA is an embedding which sends H onto a finitely generated
free profinite group. �

Another consequence of Theorem 5.3 is the following result for which we
have found no direct proof.

Corollary 5.8. Let ϕ be a finite ultimately G-invertible weakly primitive
continuous endomorphism of Â∗ and let ba be a connection for ϕ. Then we
have the following equality of subgroups of FGA: 〈Xϕ(a, b)〉 = 〈Yϕ(a, b)〉 or,

equivalently, X̃ϕ(a, b) = Ỹϕ(a, b).

Proof. Let H be the maximal subgroup containing ϕω(Xϕ(a, b)). By Theo-
rem 4.13 (2), H is generated, as a topological group, by ϕω(Xϕ(a, b)). Let
χ : H → F̂GA be the restriction of the natural projection pG : Â∗ → F̂GA

to H. By Theorem 5.3, we obtain the equality χ(H) = 〈Yϕ(a, b)〉. On the
other hand, since χ is a continuous homomorphism and H = ϕω(Xϕ(a, b))+,
we also have the equality χ(H) = 〈Xϕ(a, b)〉. This shows that

(5.2) 〈Xϕ(a, b)〉 = 〈Yϕ(a, b)〉.
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Finally, the result follows by M. Hall’s Theorem [16], since the finitely gen-
erated subgroups 〈Xϕ(a, b)〉 and 〈Yϕ(a, b)〉 of the group FGA are closed in
the profinite topology and they have the same closure by (5.2). �

We conclude this section with a couple of examples. The first shows that
the conclusion of Corollary 5.8 may fail without the assumption that ϕ be
ultimately G-invertible. The second example illustrates the computation of
a maximal subgroup. In both cases, we take A = {a, b, c}.

Example 5.9. Let ϕ be the substitution defined by ϕ(a) = bac, ϕ(b) = cba,
and ϕ(c) = acb. Note that this is a primitive substitution and that ab is a
connection for ϕ. Using Lemma 4.5, one computes

Xϕ(b, a) = {bacacbacbcba, bacacbbacacbcba, bacacbbacacbcbaacbcba,
bacacbbacacbcbacba, bacacbcba, bacacbcbaacbcba,

bacbacacbcbaacbcba, baccba}

from which it follows that Yϕ(b, a) contains the elements ba, bba, bcba, which

generate the free group FGA. On the other hand, X̃ϕ(b, a) = {acb, bac, cba},
which coincides with ϕ(A).

Example 5.10. Consider the continuous endomorphism of Â∗ defined by
ϕ(a) = bcac, ϕ(b) = bcacbc, and ϕ(c) = cbcbcac. A little computation
using Lemma 4.5 shows that cb is a connection for ϕ and that Xϕ(b, c) =

{bc, bcc, bcac, bcacc}. Hence X̃ϕ(b, c) = {a, b, c}. By Theorem 5.3 and its
proof, the maximal subgroup containing ϕω(bc) is a free profinite group
which is freely generated by the set{

ϕω

((
(bc)ωc

)ω−1 ·
(
bc

(
(bc)ωc

)ω−1
)ω−1

· bcac ·
(
(bc)ωc

)ω−1
)
,

ϕω
(
bc · ((bc)ωc)ω−1

)
, ϕω

(
(bc)ω−1 · bcc

)}
. �

Example 5.10 illustrates the computation of a specific maximal subgroup
of the J -class associated with a finite weakly primitive substitution. The
computation is effective in the sense that a connection ba and the associated
finite set of words Yϕ(a, b) can be effectively computed. In case ϕ is ulti-

mately G-invertible, the computation of the split code Ỹϕ(a, b) can be turned
into the description of a set of free generators, as a topological group, of the
maximal subgroup H of Jϕ containing ϕω(Yϕ(a, b)). Moreover, taking into
account that, in a profinite monoid, uω−1 = limn→∞ un!−1, we conclude
that the computed free generators of H determine effectively computable
“implicit operations”. See [10], particularly its Proposition 4.5 and following
remarks, for related computability and complexity questions.

6. Sturmian and Arnoux-Rauzy J -classes generated by
substitutions

This section is dedicated to some important special cases of application
of Theorem 5.3 in which it is possible to be more precise about the number
of free generators of the maximal subgroups of the J -class associated with a
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finite ultimately G-invertible weakly primitive continuous endomorphism ϕ

of Â∗ without the need for a case by case computation. The results in this
section have been previously announced, without proof, in [7].

A first simple application is obtained by considering Sturmian substitu-
tion subshifts.1 Such subshifts are obtained by iterating primitive endomor-
phisms ϕ of the free monoid {a, b}∗ that are G-invertible, which are also
known as Sturmian substitutions. Since the finite factors of Jϕ must then
be balanced, in the sense that factors of the same length cannot differ by
more than 1 in the number of occurrences of a given letter and the number
of factors of length n is n+1 [18, Chapter 2], it follows that the word ba is a
factor and Xϕ(a, b) contains exactly two elements: in case aa is not a factor,
then the elements of Xϕ(a, b) are abn and abn+1 for some n ≥ 1; in case bb is
not a factor, then the elements are anb and an+1b for some n ≥ 1. In either
case Xϕ(a, b) generates the free group FG{a,b} and so Theorem 5.3 applies
in case ba is a connection for ϕ. The case in which ab is a connection is dual.
The case in which one of the words aa or bb is a connection is even easier.
Indeed, say in the case where aa is a connection, Yϕ(a, a) contains both a
and the word aba (since, otherwise, the set of finite factors of Jϕ would not
be balanced), which shows that Yϕ(a, a) generates the free group FG{a,b}.

Corollary 6.1. Let ϕ be a Sturmian substitution. Then the maximal sub-
groups of Jϕ are free profinite groups on two free generators. �

We have also announced in [7] that it follows that, for the maximal regular
J -class of {̂a, b}∗ associated with an arbitrary Sturmian subshift over the
alphabet {a, b}, the maximal subgroups are also free profinite groups on two
free generators.

A generalization of Sturmian subshift proposed by Arnoux and Rauzy
(see [14]) may be defined as follows. We first consider the Arnoux-Rauzy
homomorphism

ρ : Â∗ → End Â∗

w 7→ ρw

which is defined by the following formula for a, b ∈ A:

ρa(b) =
{
a if a = b,
ab otherwise.

We say that a word u ∈ A∗ has full content if c(u) = A.

Lemma 6.2. Let u ∈ A∗ be a finite word with full content.
(a) The mapping ρu is a finite G-invertible primitive continuous endomor-

phism of Â∗.
(b) There is a connection ba for ρu such that the set Yρu(a, b) generates the

free group FGA.

1By a subshift we mean a symbolic dynamical system over a finite alphabet A, that is
a closed subset of AZ which is stable under all shifts of origin. A substitution subshift is
one that is generated by iteration of a substitution in a sense which is described in detail
in [14].
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Proof. (a) Since each ρa, with a ∈ A, is G-invertible, so is ρu. To prove (a)
it remains to show that ρu is primitive, which follows from the observation
that, for u, v ∈ A∗,

(6.1) c(ρu(v)) = c(u) ∪ c(v),

which in turn is easily established by induction on the length of u.
(b) Let a be the first letter of the word u. Then Im ρun ⊆ Im ρa and,

since every finite factor of ρω
u(a) = ρuω(a) is a factor of all words of the

form ρun!(a) for sufficiently large n, such a factor must be a factor of ρa(v)
for some word v. Now, Im (ρa|A∗) is the submonoid of A∗ generated by the
words of the form ab, with b ∈ A\{a}, together with the letter a. Moreover,
by the content formula (6.1), if u = au′, then a occurs in ρu′un(a) followed
by some other letter for all n ≥ 1 and so aa is a factor of ρun(a) for n > 1.
Note also that ρun(a) starts and ends with the letter a. Hence the factor aa
is a connection for ρu.

It remains to show that the set Yρu(a, a) generates the free group FGA.
By definition of the set Yρu(a, a), since its elements must be factors of words
which are products of a and 2-letter words ab (b ∈ A\{a}), Yρu(a, a) contains
both the letter a and all words of the form aba with b ∈ A \ {a}. From such
words, by canceling the letter a, we obtain all other letters from A and hence
Yρu(a, a) generates FGA. �

Applying Theorem 5.3, we thus obtain the following result, of which Corol-
lary 6.1 may be shown to be a consequence [7].

Corollary 6.3. Let u ∈ A∗ be a word with full content. Then the maximal
subgroups of the maximal regular J -class Jρu are free profinite groups on |A|
free generators.

The subshifts corresponding to the J -classes appearing in Corollary 6.3
are known as Arnoux-Rauzy subshifts (generated by substitutions) [18, 14, 7]
and constitute a generalization of subshifts generated by Sturmian substitu-
tions. More generally, a subshift (or a pseudoword) over the finite alphabet
A is said to be of Arnoux-Rauzy if, for every n ≥ 1, it has precisely one
right special and one left special factor of length n, each of degree |A|. Here,
a factor u is said to be right special of degree d if there are precisely d > 1
letters a ∈ A such that ua is still a factor and a left special factor of degree d
is defined dually. As has been argued in [7], it follows from results on right
infinite words, that is words in AN, that every Arnoux-Rauzy pseudoword is
J -equivalent to some pseudoword of the form ρv(a), with v ∈ Â∗ in which,
in every letter appears an unbounded number of times in the finite prefixes
of v [12, 14]. In fact the sequence of the finite prefixes of v, that is a right in-
finite word, suffices to determine the J -class. The Arnoux-Rauzy subshifts
generated by substitutions correspond to the case where the right infinite
word in question is periodic.

It is sketched in [7] how to extend Corollary 6.3 to maximal subgroups of
J -classes associated with arbitrary Arnoux-Rauzy subshifts, not necessarily
generated by the infinite iteration of a finite endomorphism.
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7. Some examples

We present in this section some examples to illustrate what happens be-
yond the nicer cases of Sections 5 and 6, while the full picture for the cal-
culation of J -maximal subgroups of Â∗ remains open.

Example 7.1. Let A = {a, b, c} and let ϕ ∈ End Â∗ be defined by ϕ(a) =
bac, ϕ(b) = cbac, and ϕ(c) = bacb. Then bc is a factor of the word
ϕ2(b) = bacbcbacbacbacb and therefore also of ϕω applied to any letter,
since ϕ is primitive. A little calculation using Lemma 4.5 shows that bc is a
connection for ϕ and that Xϕ(c, b) = {cbacbacb, cbacbacbacb} and, therefore,
Yϕ(c, b) = {(cba)ncb : n = 0, 1, 2, 3}. Hence the subgroup of FGA generated
by Yϕ(c, b) is also generated by {a, cb}. Note that ϕ is G-invertible. Hence,
by Theorem 5.3, the maximal subgroups of Jϕ are free profinite groups on
two generators. �

Example 7.2. Let A = {a, b} and consider the continuous endomorphism
of Â∗ defined by ϕ(a) = ab and ϕ(b) = a3b. Note that ϕ is a finite primitive
substitution but that it is not G-invertible. We claim that the maximal
subgroups of Jϕ are not free profinite groups.

By [10, Proposition 4.3], the pseudowords ϕω(a) and ϕω(b) lie in the same
maximal subgroup H of Jϕ. Hence Imϕω ⊆ H. Note that ϕ is a prefix en-
coding with delay 1 and, therefore, ϕ is special. By Proposition 4.10, we
conclude that H = Imϕω. On the other hand, by Theorem 4.13, the maxi-
mal subgroup H is generated, as a closed subgroup, by the set ϕω(Xϕ(a, b)).
Since ϕ(A∗) = {ab, a3b}, it is easy to deduce that Xϕ(a, b) = {ab, a3b}.
Hence H is generated, as a closed subgroup, by the set {ϕω(ab), ϕω(a3b)}.

If the profinite group H were free on two generators, then it would also
have to be free on any two generators. In particular, H would be freely
generated, as a profinite group, by both the pair ϕω(ab), ϕω(a3b) and the pair
ϕω(a), ϕω(b). Hence, there is a continuous homomorphism ψ : H → Z/2Z
which maps both ϕω(a) and ϕω(b) to 1 (which denotes here the generator
of the additive group Z/2Z). Then ψ maps both ϕω(ab) and ϕω(a3b) to
0 = 1 + 1 which contradicts the already established fact that those two
pseudowords generate a dense subgroup of H. Hence H is not a free group
on two generators.

To conclude the proof that H is a not a free profinite group, it suffices
to show that it is not a procyclic group. In order to establish this property,
we consider the continuous homomorphism θ : Â∗ → Z/3Z × Z/3Z which
sends a to (1, 0) and b to (0, 1), where 1 denotes the usual generator of Z/3Z.
Then θ(ϕn(a)) and θ(ϕn(b)) are easily seen to be, respectively, the first and
second columns of the matrix Mn, computed over the field Z/3Z, where
M = ( 1 0

1 1 ). Since M3 is the identity matrix, it follows that θ(ϕω(a)) = (1, 0)
and θ(ϕω(b)) = (0, 1). Hence H is not a procyclic group, since it has a non-
cyclic finite group as a continuous homomorphic image. This completes the
proof of the claim that the maximal subgroup H of Jϕ is not a free profinite
group. �

The previous example seems to be the first non-free-profinite maximal
subgroup of a finitely generated free profinite monoid to be exhibited.
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Example 7.3. Let A = {a, b} and let ϕ be the continuous endomorphism
of Â∗ determined by ϕ(a) = ab and ϕ(b) = ba. This is the well-known
Prouhet-Thue-Morse substitution [14]. Consider the J -class Jϕ of α =
ϕω(a). Note that a2 is a connection for ϕ and so α lies in a maximal subgroup
H. A simple calculation shows that Xϕ(a, a) = {a, aba, ab2a}. While ϕ is
not of bounded delay, it is of relative bounded delay and so it is special.
Hence, by the general theory, H is the closure of the subgroup generated by
α = ϕω(a), β = ϕω(aba), and γ = ϕω(ab2a). We claim that α, β, γ are not
free generators ofH, from which it follows thatH is not a free profinite group
on three generators, although it might still be a free profinite group on fewer
generators. To prove the claim, consider the continuous endomorphism ϕ2

of Â∗, which is given by ϕ2(a) = abba and ϕ2(b) = baab. Since members ofH
are of the form ϕω(ava) for some pseudoword v, their images under ϕ2 are of
the form ϕω(abbav′abba). Since the latter belongs to Jϕ by Proposition 4.2,
it follows that it belongs to H. Hence ϕ2(H) ⊆ H. On the other hand, we
have:

ϕω(ava) = ϕ2(ϕω−2(ϕω(ava))) = ϕ2( lim
n→∞

ϕn!−2(ϕω(ava))).

Since ϕω(ava) is assumed to belong to H, ϕn!−2 is a power of ϕ2 for n ≥ 3,
ϕ2(H) ⊆ H, and H is closed, we deduce that H = ϕ2(H). Since ϕ2 is
injective by [19], it follows that ϕ2 induces a continuous automorphism of H.
Hence, if H were freely generated, as a profinite group, by α, β, γ, then it
would also be freely generated by their images under ϕ2, which we now
compute. Clearly ϕ2(α) = γ. On the other hand,

ϕ2(β) = ϕω(abba baab abba)

= ϕω(abba · aω−1 · aba · aba · aω−1 · abba)
= γα−1β2α−1γ

and, similarly,

ϕ2(γ) = ϕω(abba baab baab abba)

= ϕω(abba · aω−1 · aba · abba · aba · aω−1 · abba)
= γα−1βγβα−1γ.

So ϕ2 sends the subgroup H0 (discretely) generated by α, β, γ to a sub-
group of itself. Computing the minimal inverse automaton recognizing this
subgroup we obtain the following automaton:

β

β

α

α

γγ

Hence ϕ2{α, β, γ} generates a proper subgroup K of H0. Under the assump-
tion that H is freely generated, as a profinite group, by α, β, γ, H0 would
be freely generated, as a discrete group, by the same elements. Hence, by
M. Hall’s Theorem [16], K is closed in the profinite topology of H0, which is
just the induced topology from H. This is a contradiction since ϕ2{α, β, γ}
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has been shown to generate a dense subgroup of H. Hence H is not freely
generated by α, β, γ. �
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