Non-Noetherian generalized Heisenberg algebras

Samuel A. Lopes^{*}

Abstract

In this note we classify the non-Noetherian generalized Heisenberg algebras $\mathcal{H}(f)$ introduced in [8]. In case deg f > 1, we determine all locally finite and also all locally nilpotent derivations of $\mathcal{H}(f)$ and describe the automorphism group of these algebras.

MSC Numbers (2010): Primary 16W25, 16W20; Secondary 16P40, 16S36. Keywords: generalized Heisenberg algebra; ambiskew polynomial ring; weak generalized Weyl algebra; automorphism group; derivation; Noetherian.

1 Introduction

Fix a polynomial $f \in \mathbb{C}[h]$. The generalized Heisenberg algebra $\mathcal{H}(f)$ is the unital associative \mathbb{C} -algebra with generators x, y, h satisfying the relations:

$$hx = xf(h), \quad yh = f(h)y, \quad yx - xy = f(h) - h.$$
 (1.1)

See [8] and the references therein for information on how these algebras first appeared and on their applications to theoretical physics.

Ambiskew polynomial rings were introduced by Jordan over a series of papers (see the references in [5]), but for our purposes the best suited definition is the one found in [5], which we briefly recall. Let σ be an endomorphism of a commutative \mathbb{C} -algebra $B, c \in B$ and $p \in \mathbb{C}$. The ambiskew polynomial ring $R(B, \sigma, c, p)$ is the \mathbb{C} -algebra generated by B and two indeterminates, x and y, subject to the relations

$$bx = x\sigma(b), \quad yb = \sigma(b)y, \quad yx - pxy = c, \text{ for all } b \in B.$$

On comparing these relations with those in (1.1), one immediately sees that

$$\mathcal{H}(f) \cong R(\mathbb{C}[h], \sigma, f(h) - h, 1), \tag{1.2}$$

where $\sigma : \mathbb{C}[h] \to \mathbb{C}[h]$ is the algebra endomorphism given by $\sigma(h) = f(h)$. In particular, one can see that there is an overlap between the generalized Heisenberg algebras defined above and (generalized) down-up algebras (see Corollary 2.7 below).

^{*}The author was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

The algebras $\mathcal{H}(f)$ can also be seen as weak generalized Weyl algebras over a polynomial algebra in two variables, in the sense of [7], a construction which includes the generalized Weyl algebras introduced by V.V. Bavula in [1]. In [8] the authors determine a basis for $\mathcal{H}(f)$ over \mathbb{C} , compute the center of $\mathcal{H}(f)$, solve the isomorphism problem for this family of algebras and classify all the finite-dimensional irreducible representations of $\mathcal{H}(f)$.

In this note we show that $\mathcal{H}(f)$ is (right or left) Noetherian if and only if deg f = 1and that $\mathcal{H}(f)$ is isomorphic to a generalized down-up algebra if and only if deg $f \leq 1$. For this reason, we then concentrate on the case where deg f > 1 and determine the locally nilpotent and the locally finite derivations of $\mathcal{H}(f)$, all \mathbb{Z} -gradings of $\mathcal{H}(f)$ and describe the automorphism group of $\mathcal{H}(f)$. In particular, we obtain the following results in case deg f > 1:

- (i) $\mathcal{H}(f)$ in neither right nor left Noetherian (Proposition 2.4);
- (ii) $\mathcal{H}(f)$ admits a unique (up to an integer multiple) nontrivial \mathbb{Z} -grading, in which x has degree 1, y has degree -1 and h has degree 0 (Corollary 4.10);
- (iii) the automorphism group of $\mathcal{H}(f)$ is abelian: it is isomorphic to $\mathbb{C}^* \times C$, where C is a finite cyclic group whose order divides (deg f) 1 (Theorem 5.5).

In Section 2 of the paper we review some properties of $\mathcal{H}(f)$ which have been established in [8], determine when $\mathcal{H}(f)$ is Noetherian and when it is isomorphic to a generalized down-up algebra, while in Section 3 we introduce a useful commutative subalgebra of $\mathcal{H}(f)$, which is a maximal commutative subalgebra if deg f > 1. Assuming that deg f > 1, we then investigate the locally finite and the locally nilpotent derivations of $\mathcal{H}(f)$ and also its Z-gradings in Section 4, and in the final section, Section 5, we describe the automorphism group of $\mathcal{H}(f)$ and show that it is always an abelian group generated by the automorphisms which fix h and the automorphisms which fix x.

We make use of the commutator notation [a, b] = ab - ba. The sets of integers, nonnegative integers and positive integers are denoted by \mathbb{Z} , $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{>0}$, respectively. The field of complex numbers is denoted by \mathbb{C} , and the multiplicative group of nonzero complex numbers is denoted by \mathbb{C}^* . For a polynomial $g \in \mathbb{C}[h]$, deg g will always denote the degree of g as a polynomial in h.

Throughout the paper, $\sigma : \mathbb{C}[h] \to \mathbb{C}[h]$ is the algebra endomorphism given by $\sigma(h) = f(h)$. For any function $\phi : X \to X$, we will use the notation ϕ^k to mean the k-th power of ϕ with respect to composition. In particular, ϕ^0 denotes the identity on the set X.

2 The Noetherian property

Below we record a few results from [8] which will be useful in the course of this paper. As usual, $Z(\mathcal{H}(f))$ denotes the center of $\mathcal{H}(f)$.

Lemma 2.1 ([8, Lemma 1, Lemma 2, Theorem 4]). Let $f \in \mathbb{C}[h]$. Then:

- (a) The set $\{x^i h^j y^k \mid i, j, k \in \mathbb{Z}_{>0}\}$ is a basis of $\mathcal{H}(f)$.
- (b) The algebra $\mathcal{H}(f)$ is a domain if and only if deg $f \geq 1$.
- (c) The center of $\mathcal{H}(f)$ contains the polynomial algebra $\mathbb{C}[z]$, where z = xy h = yx f(h). If deg $f \neq 1$, then $Z(\mathcal{H}(f)) = \mathbb{C}[z]$.

Remarks 2.2.

- 1. Identifying $\mathcal{H}(f)$ with the ambiskew polynomial ring $R(\mathbb{C}[h], \sigma, f(h) h, 1)$ as in (1.2), it follows that $\mathcal{H}(f)$ is conformal, as defined in [5, Section 2.3], and the corresponding Casimir element is precisely the central element z = xy h defined above.
- 2. Suppose $f \in \mathbb{C}$. Then by considering the generators -x, y and h f, we see that $\mathcal{H}(f) \cong R(\mathbb{C}[h], \sigma, h, 1)$, with $\sigma = 0$, and from [5, Theorem 7.10] we conclude that $\mathcal{H}(f)$ is a prime ring. Thus by Lemma 2.1(b), $\mathcal{H}(f)$ is a prime ring for any $f \in \mathbb{C}[h]$.
- 3. Since the center of $\mathcal{H}(f)$ contains the polynomial algebra $\mathbb{C}[z]$ and $\mathcal{H}(f)$ has countable dimension over \mathbb{C} , it follows from Dixmier's version of Schur's Lemma that $\mathcal{H}(f)$ is never primitive.

There is an order two anti-automorphism of $\mathcal{H}(f)$, denoted by ι , that fixes h and interchanges x and y:

$$\iota: \mathfrak{H}(f) \to \mathfrak{H}(f), \qquad x \mapsto y, \quad y \mapsto x, \quad h \mapsto h.$$
 (2.3)

Hence $\mathcal{H}(f)$ is isomorphic to its opposite algebra $\mathcal{H}(f)^{\mathrm{op}}$.

Proposition 2.4. The algebra $\mathcal{H}(f)$ is right (respectively, left) Noetherian if and only if deg f = 1.

Proof. If deg f = 1 then $\mathcal{H}(f)$ is a generalized Weyl algebra over a polynomial ring in two variables, and thus it is right and left Noetherian. So assume that deg $f \neq 1$. In particular, f(h) - h has some root $\alpha \in \mathbb{C}$. Let $F(h) = f(h + \alpha) - \alpha$. Then deg F = deg f (here we assume the zero polynomial has degree 0) and $F(h) \in h\mathbb{C}[h]$. Moreover, $F(h - \alpha) = f(h) - \alpha$ and then $\mathcal{H}(f) \cong \mathcal{H}(F)$ by [8, Lemma 3]. So there is no loss in assuming that $f(h) \in h\mathbb{C}[h]$. By the isomorphism $\mathcal{H}(f) \cong \mathcal{H}(f)^{\text{op}}$ it will be enough to show that $\mathcal{H}(f)$ is not left Noetherian.

For each $n \in \mathbb{Z}_{\geq 0}$ define the left ideal

$$I_n = \sum_{i=0}^n \mathcal{H}(f) h y^i.$$

Then $I_n \subseteq I_{n+1}$ for all $n \ge 0$ and we finish the proof by showing that these inclusions are strict. Note that by Lemma 2.1(a),

$$\mathcal{H}(f) = \bigoplus_{j,k \ge 0} x^j \mathbb{C}[h] y^k.$$

Given $j, k \ge 0$ and $g(h) \in \mathbb{C}[h]$, we have $x^j g(h) y^k h y^i = x^j g(h) \sigma^k(h) y^{k+i}$. Assume, by way of contradiction, that $hy^{n+1} \in I_n$. Then there exist $g_i(h) \in \mathbb{C}[h]$, $i = 0, \ldots, n$, such that $hy^{n+1} = \sum_{i=0}^{n} g_i(h) \sigma^{n+1-i}(h) y^{n+1}$. It follows by Lemma 2.1(a) that

$$h = \sum_{i=0}^{n} g_i(h)\sigma^{n+1-i}(h).$$
 (2.5)

As by hypothesis $\sigma(h) = f(h) \in h\mathbb{C}[h]$, one can deduce that $\sigma^{n+1-i}(h) \in f(h)\mathbb{C}[h]$ for all $0 \leq i \leq n$ and (2.5) then implies that $h \in f(h)\mathbb{C}[h]$, which is a contradiction since under our hypothesis either f(h) = 0 or $\deg f > 1$. This proves that $hy^{n+1} \notin I_n$ for any $n \geq 0$ and hence $\{I_n\}_{n>0}$ is a strict ascending chain of left ideals of $\mathcal{H}(f)$. \Box

Remark 2.6. The case $f \in \mathbb{C}$ of Proposition 2.4 follows also from [5, Corollary 7.3], which applies when σ is not injective. In terms of the endomorphism σ , Proposition 2.4 could be restated as: The algebra $\mathcal{H}(f)$ is right (respectively, left) Noetherian if and only if σ is an automorphism.

We recall that a generalized down-up algebra $L(g, r, s, \gamma)$, given by the parameters $g \in \mathbb{C}[H]$ and $r, s, \gamma \in \mathbb{C}$, is defined as the unital associative \mathbb{C} -algebra generated by d, u and H, subject to the relations:

$$dH - rHd + \gamma d = 0$$
, $Hu - ruH + \gamma u = 0$, $du - sud + g(H) = 0$

Generalized down-up algebras were defined in [4] as generalizations of the down-up algebras introduced by Benkart and Roby in [2]. Generalized down-up algebras include all down-up algebras, the algebras similar to the enveloping algebra of \mathfrak{sl}_2 defined by Smith [11], Le Bruyn's conformal \mathfrak{sl}_2 enveloping algebras [6] and Rueda's algebras similar to the enveloping algebra of \mathfrak{sl}_2 [10].

Corollary 2.7. The algebra $\mathcal{H}(f)$ is isomorphic to a generalized down-up algebra if and only if deg $f \leq 1$.

Proof. Suppose first that deg $f \leq 1$, say f(h) = ah + b for $a, b \in \mathbb{C}$. Then it is straightforward to verify that $\mathcal{H}(f) \cong L(H - f(H), a, 1, -b)$, under an isomorphism that sends x, y and h to u, d and H, respectively. Conversely, suppose that deg f > 1. Then by Proposition 2.4 and Lemma 2.1(b), $\mathcal{H}(f)$ is a non-Noetherian domain. Hence $\mathcal{H}(f)$ cannot be isomorphic to a generalized down-up algebra, as a generalized down-up algebra is a domain if and only if it is Noetherian, by Propositions 2.5 and 2.6 of [4]. \Box

In view of this result, we will henceforth focus most of our attention on the generalized Heisenberg algebras $\mathcal{H}(f)$ with $f \in \mathbb{C}[h]$ such that deg f > 1.

3 The commutative algebra $\mathcal{H}(f)_0$

In this short section we record a few useful formulas for computing in $\mathcal{H}(f)$ and then explore an interesting commutative subalgebra of $\mathcal{H}(f)$.

Lemma 3.1. Let $k \in \mathbb{Z}_{\geq 0}$ and $g \in \mathbb{C}[h]$. Then the following hold:

- (a) $[y, x^k] = x^{k-1}(\sigma^k(h) h);$
- (b) $[y^k, x] = (\sigma^k(h) h)y^{k-1};$
- (c) $(x^k g y^k) x = x (x^k \sigma(g) y^k + x^{k-1} (\sigma^k(h) h) g y^{k-1});$
- (d) $y(x^kgy^k) = (x^k\sigma(g)y^k + x^{k-1}(\sigma^k(h) h)gy^{k-1})y;$
- (e) $x^k g y^k$ commutes with $x^j \tilde{g} y^j$ for all $\tilde{g} \in \mathbb{C}[h]$ and all $j \in \mathbb{Z}_{\geq 0}$.

Proof. Parts (a) and (b) have been established in [5], formulas (6a)–(6b). We prove part (c) using (b):

$$\begin{aligned} (x^{k}gy^{k})x &= x^{k}gxy^{k} + x^{k}g[y^{k}, x] \\ &= x^{k+1}\sigma(g)y^{k} + x^{k}g(\sigma^{k}(h) - h)y^{k-1} \\ &= x(x^{k}\sigma(g)y^{k} + x^{k-1}(\sigma^{k}(h) - h)gy^{k-1}). \end{aligned}$$

Formula (d) follows from applying the anti-automorphism ι of (2.3) to (c).

Finally, we prove (e) by induction on k, the case k = 0 being trivial:

$$g(x^j \tilde{g} y^j) = x^j \sigma^j(g) \tilde{g} y^j = x^j \tilde{g} \sigma^j(g) y^j = (x^j \tilde{g} y^j) g.$$

Now suppose (e) holds for a certain $k \ge 0$. Thus we have:

$$\begin{aligned} (x^{k+1}gy^{k+1})(x^{j}\tilde{g}y^{j}) &= (x^{k+1}gy^{k})y(x^{j}\tilde{g}y^{j}) \\ &= x(x^{k}gy^{k})(x^{j}\sigma(\tilde{g})y^{j} + x^{j-1}(\sigma^{j}(h) - h)\tilde{g}y^{j-1})y \qquad \text{by (d)} \\ &= x(x^{j}\sigma(\tilde{g})y^{j} + x^{j-1}(\sigma^{j}(h) - h)\tilde{g}y^{j-1})(x^{k}gy^{k})y \qquad (*) \\ &= (x^{j}\tilde{g}y^{j})x(x^{k}gy^{k})y \qquad \text{by (c)} \\ &= (x^{j}\tilde{g}y^{j})(x^{k+1}gy^{k+1}), \end{aligned}$$

where (*) follows from the induction hypothesis. So (e) holds for all $k \in \mathbb{Z}_{\geq 0}$.

There is an obvious grading of $\mathcal{H}(f)$ relative to which x has degree 1, y has degree -1 and h has degree 0. We denote the corresponding homogeneous subspaces by $\mathcal{H}(f)_{\ell}$, for $\ell \in \mathbb{Z}$, so that

$$\mathcal{H}(f) = \bigoplus_{\ell \in \mathbb{Z}} \mathcal{H}(f)_{\ell}, \quad \text{with} \quad \mathcal{H}(f)_{\ell} = \bigoplus_{i-k=\ell} \mathbb{C} \, x^{i} \mathbb{C}[h] y^{k}. \tag{3.2}$$

We call this the *standard grading* of $\mathcal{H}(f)$, and, whenever we mention a homogeneous component or element of $\mathcal{H}(f)$, we will always be referring to this standard grading.

The subalgebra $\mathcal{H}(f)_0$ has basis $\{x^k h^j y^k \mid k, j \ge 0\}$ and $\mathcal{H}(f)_\ell = x^\ell \mathcal{H}(f)_0$ if $\ell \ge 0$; $\mathcal{H}(f)_\ell = \mathcal{H}(f)_0 y^{-\ell}$ if $\ell \le 0$. Thus we have the decomposition

$$\mathcal{H}(f) = \bigoplus_{\ell > 0} x^{\ell} \,\mathcal{H}(f)_0 \oplus \mathcal{H}(f)_0 \oplus \bigoplus_{\ell > 0} \mathcal{H}(f)_0 \, y^{\ell}$$

Proposition 3.3. The subalgebra $\mathcal{H}(f)_0$ is commutative. If deg f > 1, then $\mathcal{H}(f)_0$ is a maximal commutative subalgebra of $\mathcal{H}(f)$ which strictly contains $\mathbb{C}[z,h]$, the polynomial subalgebra of $\mathcal{H}(f)$ generated by h and the central element z = xy - h.

Proof. The first statement is a direct consequence of Lemma 3.1(e). Assume now that deg f > 1. Then σ is injective and has infinite order. For any $i, k \in \mathbb{Z}_{\geq 0}$ and $g \in \mathbb{C}[h]$, $[h, x^i g y^k] = x^i (\sigma^i(h) - \sigma^k(h)) g y^k$. Hence, if $g \neq 0$, we deduce that $[h, x^i g y^k] = 0 \iff i = k$, and from this it is straightforward to conclude that $\mathcal{H}(f)_0$ is the centralizer of h, hence a maximal commutative subalgebra of $\mathcal{H}(f)$.

The commuting elements h and z are homogeneous of degree 0 and are easily seen to be algebraically independent, as $z^k - x^k y^k$ is in the span of $\{x^i g y^i \mid i < k, g \in \mathbb{C}[h]\}$. Suppose, by contradiction, that there exist $g_k \in \mathbb{C}[h]$ such that $xhy = \sum_{k\geq 0} g_k z^k$. Then by the argument above we must have $g_k = 0$ for all k > 1 and $\sigma(g_1) = h$, which is possible only if deg f = 1. Therefore $xhy \in \mathcal{H}(f)_0 \setminus \mathbb{C}[z,h]$.

By Lemma 3.1(c)–(d), it is possible to extend σ to a \mathbb{C} -linear endomorphism $\tilde{\sigma}$ of $\mathcal{H}(f)_0$ so that $\tilde{\sigma}(x^k g y^k) = x^k \sigma(g) y^k + x^{k-1} (\sigma^k(h) - h) g y^{k-1}$, for all $k \in \mathbb{Z}_{\geq 0}$ and $g \in \mathbb{C}[h]$. For simplicity, we still denote this endomorphism by σ instead of $\tilde{\sigma}$. By Lemma 3.1(c)–(d) and Lemma 2.1(a), σ is defined by the relations:

$$\theta x = x\sigma(\theta), \qquad y\theta = \sigma(\theta)y, \qquad \text{for all } \theta \in \mathcal{H}(f)_0.$$
 (3.4)

In particular, (3.4) implies that σ is an algebra endomorphism of $\mathcal{H}(f)_0$.

4 locally finite derivations of $\mathcal{H}(f)$ when deg f > 1

Henceforth we will assume that deg f > 1. By Corollary 2.7 we are assuming that $\mathcal{H}(f)$ is not a generalized down-up algebra. Most of our subsequent results do not hold if deg $f \leq 1$.

Our goal in this section is to determine all locally finite derivations of $\mathcal{H}(f)$. In particular, we will classify all \mathbb{Z} -gradings of $\mathcal{H}(f)$ and show that $\mathcal{H}(f)$ has no nontrivial locally nilpotent derivations. Our methods are akin to those used in [12].

Let δ be a \mathbb{C} -linear endomorphism of $\mathcal{H}(f)$. We recall the following standard definitions:

- δ is a derivation of $\mathcal{H}(f)$ if $\delta(ab) = \delta(a)b + a\delta(b)$;
- δ is locally finite if for every $a \in \mathcal{H}(f)$ the \mathbb{C} -linear span of $\{\delta^k(a) \mid k \in \mathbb{Z}_{\geq 0}\}$ is finite dimensional;
- δ is locally nilpotent if for every $a \in \mathcal{H}(f)$ there is $k \in \mathbb{Z}_{\geq 0}$ such that $\delta^k(a) = 0$;

• δ is homogeneous of degree $r \in \mathbb{Z}$ if $\delta(\mathcal{H}(f)_{\ell}) \subseteq \mathcal{H}(f)_{\ell+r}$ for all $\ell \in \mathbb{Z}$.

Assume δ is any derivation of $\mathcal{H}(f)$. Since $\mathcal{H}(f)$ is finitely generated, there exist homogeneous derivations $\delta_1, \ldots, \delta_k$ of strictly increasing degrees such that $\delta = \delta_1 + \cdots + \delta_k$. Moreover, as seen in [12, Lemma 1.1], if δ is locally finite, then so are δ_1 and δ_k , and if δ_1 (respectively, δ_k) is of nonzero degree, then it must be locally nilpotent.

We need one final definition. Given a locally nilpotent derivation δ and $a \in \mathcal{H}(f)$, define

$$\deg_{\delta}(a) = \max\{k \in \mathbb{Z}_{\geq 0} \mid \delta^k(a) \neq 0\} \quad \text{if } a \neq 0;$$

define also $\deg_{\delta}(0) = -\infty$. It can be easily checked (see for example [9]) that for $a, b \in \mathcal{H}(f)$, $\deg_{\delta}(a+b) \leq \max\{\deg_{\delta}(a), \deg_{\delta}(b)\}$, with equality if $\deg_{\delta}(a) \neq \deg_{\delta}(b)$. Since $\mathcal{H}(f)$ is a domain and \mathbb{C} has characteristic 0, we also have, from the Leibniz rule, $\deg_{\delta}(ab) = \deg_{\delta}(a) + \deg_{\delta}(b)$. In particular, ker δ is factorially closed: if $\delta(ab) = 0$ for some nonzero $a, b \in \mathcal{H}(f)$, then $\delta(a) = 0 = \delta(b)$.

Lemma 4.1. Assume that deg f > 1. Then all locally finite derivations of $\mathcal{H}(f)$ are homogeneous of degree 0.

Proof. Let δ be a locally finite derivation of $\mathcal{H}(f)$. By the above decomposition $\delta = \delta_1 + \cdots + \delta_k$ of δ into homogeneous derivations of strictly increasing degrees, it will be enough to show that there are no nonzero homogeneous locally nilpotent derivations of $\mathcal{H}(f)$ of degree $r \neq 0$.

So assume δ is a homogeneous locally nilpotent derivation of $\mathcal{H}(f)$ of degree $r \neq 0$. Let $d = \deg_{\delta}(h)$ and suppose that d > 0. Then $\deg_{\delta}(f(h)) = d \deg f$ and the relation hx = xf(h) yields

$$d + \deg_{\delta}(x) = \deg_{\delta}(x) + d \deg f,$$

so deg f = 1, which contradicts our hypothesis. Hence d = 0 and $\delta(h) = 0$.

By replacing δ with $\iota \delta \iota^{-1}$, where ι is the anti-automorphism defined in (2.3), we can assume that r > 0. Then ker δ contains some nonzero homogeneous element of positive degree. Since elements of $\mathcal{H}(f)$ of positive degree lie in $x\mathcal{H}(f)$ and ker δ is factorially closed, we deduce that $\delta(x) = 0$.

Any derivation maps the center of an algebra into itself, so δ restricts to a locally nilpotent derivation of $\mathbb{C}[z]$, by Lemma 2.1(c), and thus $\delta(z) \in \mathbb{C}$. On the other hand, since z = xy - h is homogeneous of degree 0 and δ has positive degree, it must be that $\delta(z) = 0$, and from $0 = \delta(z) = x\delta(y)$, we conclude that $\delta(y) = 0$. Then $\delta = 0$ and the lemma is proved.

The next theorem, our main result on derivations of $\mathcal{H}(f)$ when deg f > 1, shows that the space of locally finite derivations of $\mathcal{H}(f)$ is one-dimensional over \mathbb{C} , spanned by the derivation ∂ defined by

$$\partial(x^i h^j y^k) = (i-k)x^i h^j y^k, \quad \text{for all } i, j, k \in \mathbb{Z}_{>0}.$$

$$(4.2)$$

Theorem 4.3. Assume that deg f > 1. If δ is a locally finite derivation of $\mathcal{H}(f)$, then there is $\lambda \in \mathbb{C}$ such that $\delta(x) = \lambda x$, $\delta(y) = -\lambda y$ and $\delta(h) = 0$.

Proof. Let δ be a locally finite derivation of $\mathcal{H}(f)$. By Lemma 4.1, we know that δ is homogeneous of degree 0, so there are $\theta_x, \theta_h, \theta_y \in \mathcal{H}(f)_0$ so that

$$\delta(x) = x\theta_x, \quad \delta(h) = \theta_h, \text{ and } \delta(y) = \theta_y y.$$

In particular, since h commutes with θ_h , we have $\delta(g(h)) = g'(h)\theta_h$ for all $g(h) \in \mathbb{C}[h]$, where g'(h) denotes the derivative of g(h) with respect to h.

Claim 1: $\theta_h = 0$ and $\theta_x + \theta_y = 0$.

Proof of Claim 1: Write

$$\theta_h = \sum_{k \ge 0} x^k g_k(h) y^k, \tag{4.4}$$

with $g_k(h) \in \mathbb{C}[h]$ and $g_k(h) = 0$ except for finitely many indices k.

As observed in the proof of Lemma 4.1, δ restricts to a locally finite derivation of $\mathbb{C}[z]$, the center of $\mathcal{H}(f)$, and thus $\delta(z) \in \mathbb{C} \oplus \mathbb{C}z$, say $\delta(z) = \mu z - \lambda$, with $\lambda, \mu \in \mathbb{C}$. Since $\mu z - \lambda = \delta(xy - h) = x(\theta_x + \theta_y)y - \theta_h$, we have

$$\theta_h = x(\theta_x + \theta_y)y - \mu z + \lambda = x(\theta_x + \theta_y - \mu)y + \mu h + \lambda.$$
(4.5)

In particular, $g_0(h) = \mu h + \lambda$.

We now apply δ to the relation yh = f(h)y and get $\theta_y yh + y\theta_h = f'(h)\theta_h y + f(h)\theta_y y$. As h and θ_y commute, and $y\theta_h = \sigma(\theta_h)y$, by (3.4), we obtain

$$\sigma(\theta_h) = f'(h)\theta_h. \tag{4.6}$$

Now combining (4.4) and (4.6) we deduce that, for every $k \ge 0$:

$$\sigma^{k}(f'(h))g_{k}(h) = \sigma(g_{k}(h)) + (\sigma^{k+1}(h) - h)g_{k+1}(h).$$
(4.7)

Setting k = 0 in (4.7) we obtain $(f(h) - h)g_1(h) = f'(h)g_0(h) - \sigma(g_0(h))$. Since we have already established that $\deg g_0 \leq 1$, we deduce now from the latter equation that $\deg (f(h) - h)g_1(h) \leq \deg f$, and thus $g_1 \in \mathbb{C}$. Combining this with the k = 1 case of (4.7), $\sigma(f'(h))g_1(h) = \sigma(g_1(h)) + (\sigma(f(h)) - h)g_2(h)$, yields $g_2 = 0$, and in turn the latter gives $g_k = 0$ for all $k \geq 2$. Using again the relation $\sigma(f'(h))g_1(h) = \sigma(g_1(h)) + (\sigma(f(h)) - h)g_2(h)$ with $g_2 = 0$ and $g_1 \in \mathbb{C}$ gives $g_1 = 0$. Therefore we have

$$\sigma(g_0) = f'(h)g_0. \tag{4.8}$$

Suppose $g_0 \neq 0$, and let *a* be the leading coefficient of f(h). Then $\mu \neq 0$ and comparing leading coefficients in (4.8) yields $\mu a = a(\deg f)\mu$, whence $\deg f = 1$, which is a contradiction. Thus $g_0 = 0$.

From the above we conclude that $\theta_h = \sum_{k\geq 0} x^k g_k(h) y^k = 0$ and finally by (4.5) we get $\theta_x + \theta_y = 0$, establishing Claim 1.

So far we have shown that

$$\delta(x) = x\theta_x, \quad \delta(h) = 0, \text{ and } \delta(y) = -\theta_x y,$$

so it remains to be inferred that $\theta_x \in \mathbb{C}$.

Claim 2: $\delta(\theta) = 0$, for all $\theta \in \mathcal{H}(f)_0$.

Proof of Claim 2: Since $\delta(g) = 0$ for all $g \in \mathbb{C}[h]$, it suffices to show that if $\theta \in \mathcal{H}(f)_0$ and $\delta(\theta) = 0$, then also $\delta(x\theta y) = 0$. This follows easily using the fact that $\mathcal{H}(f)_0$ is commutative, as proved in Proposition 3.3.

From Claim 2 it follows that, for all $k \ge 0$, $\delta(\theta_x^k) = 0$, which implies that $\delta^k(x) = x\theta_x^k$. As δ is locally finite, the span of $\{\theta_x^k \mid k \in \mathbb{Z}_{\ge 0}\}$ must then be finite dimensional. This is possible only if $\theta_x \in \mathbb{C}$, thus finishing the proof of the theorem.

Since locally nilotent derivations are locally finite, we derive the following corollary.

Corollary 4.9. Assume that deg f > 1. Then $\mathcal{H}(f)$ has no nonzero locally nilpotent derivations.

Suppose that $\mathcal{H}(f) = \bigoplus_{\alpha \in \mathbb{C}} V_{\alpha}$ is a grading. Define the \mathbb{C} -linear endomorphism δ of $\mathcal{H}(f)$ by $\delta(v_{\alpha}) = \alpha v_{\alpha}$ for all $v_{\alpha} \in V_{\alpha}$ and all $\alpha \in \mathbb{C}$. It is immediate to check that δ is a diagonalizable derivation of $\mathcal{H}(f)$ whose eigenvalues are those $\alpha \in \mathbb{C}$ such that $V_{\alpha} \neq (0)$. Conversely, if δ is a diagonalizable derivation, then δ determines a grading where V_{α} is the α -eigenspace of δ . Furthermore, diagonalizable derivations are clearly locally finite.

Thus, we deduce from Theorem 4.3 that, except for the trivial grading in which every element of $\mathcal{H}(f)$ has degree 0, $\mathcal{H}(f)$ only admits the standard grading defined in (3.2), up to scaling by some integer. More precisely, we have:

Corollary 4.10. Assume that deg f > 1. Then for any \mathbb{Z} -grading of $\mathcal{H}(f)$, there is an integer $\ell \in \mathbb{Z}$ such that, relative to that grading, x has degree ℓ , y has degree $-\ell$ and h has degree 0.

5 Automorphisms of $\mathcal{H}(f)$ when deg f > 1

When deg f = 1 the algebra $\mathcal{H}(f)$ is a Noetherian generalized down-up algebra, by Corollary 2.7, and the automorphisms of the latter have been investigated in [3]. We continue to assume that deg f > 1 and note again that our results do not generalize to the cases with deg $f \leq 1$.

Since $\mathcal{H}(f)$ has no nonzero locally nilpotent derivations, it seems natural to conjecture that the automorphism group of $\mathcal{H}(f)$ is somewhat small. However, over \mathbb{C} we can consider also the exponential of a diagonalizable derivation. Specifically, let $c \in \mathbb{C}$ and let ∂ be the derivation of $\mathcal{H}(f)$ defined in (4.2). Then the expression

$$\exp(c\partial):=\sum_{k=0}^\infty \frac{(c\partial)^k}{k!}$$

defines an automorphism of $\mathcal{H}(f)$ satisfying

$$\exp(c\partial)(x) = \sum_{k=0}^{\infty} \frac{c^k}{k!} x = \exp(c)x, \quad \exp(c\partial)(y) = \exp(-c)y, \quad \exp(c\partial)(h) = h,$$

with inverse $\exp(-c\partial)$.

The above motivates the following definition. For each $\lambda \in \mathbb{C}^*$, let ϕ_{λ} be the automorphism of $\mathcal{H}(f)$ defined by

$$\phi_{\lambda}(x) = \lambda x, \quad \phi_{\lambda}(y) = \lambda^{-1} y, \quad \phi_{\lambda}(h) = h.$$
(5.1)

The group of algebra automorphisms of $\mathcal{H}(f)$ will be denoted by $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$. We have a first description of $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$ below.

Proposition 5.2. Assume deg f > 1. Then the following hold:

- (a) Any automorphism of $\mathcal{H}(f)$ restricts to an automorphisms of $\mathbb{C}[h]$, and x and y are eigenvectors.
- (b) $\{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(h) = h\} = \{\phi_{\lambda} \mid \lambda \in \mathbb{C}^*\} \cong \mathbb{C}^*, and this is a central subgroup of \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)).$
- (c) $\{\phi \in Aut_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ is a finite cyclic subgroup whose order divides $(\deg f) 1$.

Proof. Let ϕ be an automorphism of $\mathcal{H}(f)$. Then as argued in Claim 4 of the proof of [8, Theorem 5], the relation $\phi(h)\phi(x) = \phi(x)f(\phi(h))$ with deg f > 1 implies that $\phi(h) \in \mathbb{C}[h]$; applying this result to ϕ^{-1} gives that $\phi(h) = ah + b$, for some $a, b \in \mathbb{C}$ with $a \neq 0$.

Now writing $\phi(x)$ as a sum of terms of the form $x^i g_{i,j} y^j$ with $i, j \in \mathbb{Z}_{\geq 0}$ and $g_{i,j} \in \mathbb{C}[h]$, and comparing the corresponding expressions for $\phi(h)\phi(x)$ and $\phi(x)f(\phi(h))$, we obtain $\phi(x) \in \mathcal{H}(f)_1$. Similarly, $\phi(y) \in \mathcal{H}(f)_{-1}$, so ϕ is homogeneous of degree 0. Thus, there exist $\theta_x, \theta_y \in \mathcal{H}(f)_0$ such that $\phi(x) = x\theta_x$ and $\phi(y) = \theta_y y$. Applying the same reasoning to ϕ^{-1} , we deduce that $\theta_x, \theta_y \in \mathbb{C}^*$, which proves (a).

Now assume $\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$ and $\phi(h) = h$. By (a) there exist $\lambda, \mu \in \mathbb{C}^*$ such that $\phi(x) = \lambda x$ and $\phi(y) = \mu y$. Applying ϕ to the relation [y, x] = f(h) - h yields $\lambda \mu = 1$, so $\phi = \phi_{\lambda}$. This proves the equality in (b), and the isomorphism $\{\phi_{\lambda} \mid \lambda \in \mathbb{C}^*\} \cong \mathbb{C}^*$ is clear, as $\phi_{\lambda} \circ \phi_{\mu} = \phi_{\lambda\mu}$ for all $\lambda, \mu \in \mathbb{C}^*$.

Next, we show that the subgroup $\{\phi_{\lambda} \mid \lambda \in \mathbb{C}^*\}$ is central in $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$. Let $\lambda \in \mathbb{C}^*$, and suppose $\psi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$ is arbitrary. By (a) we know that $\psi(h) \in \mathbb{C}[h]$, which implies that $\phi_{\lambda} \circ \psi(h) = \psi \circ \phi_{\lambda}(h)$. But as x and y are eigenvalues for any automorphism of $\mathcal{H}(f)$, $\phi_{\lambda} \circ \psi$ and $\psi \circ \phi_{\lambda}$ also agree on these generators, and thus $\phi_{\lambda} \circ \psi = \psi \circ \phi_{\lambda}$.

To prove part (c), suppose that $\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$ and $\phi(x) = x$. We know already that $\phi(h) = ah + b$ and $\phi(y) = cy$, for some $a, b, c \in \mathbb{C}$ with $a, c \neq 0$. Then $xf(ah + b) = x\phi(f(h)) = \phi(h)x = (ah + b)x = x(af(h) + b)$, and we obtain

$$f(ah+b) = af(h) + b.$$
 (5.3)

Therefore,

$$c(f(h) - h) = c[y, x] = \phi([y, x]) = \phi(f(h) - h) = af(h) + b - (ah + b)$$

= $a(f(h) - h)$,

and we conclude that c = a.

Write $f(h) = \sum_{k=0}^{n} a_k h^k$, where $n = \deg f$ and $a_k \in \mathbb{C}$. Applying the derivation $\frac{d}{dh}$ to (5.3) n-1 times yields $a^{n-1}f^{(n-1)}(ah+b) = af^{(n-1)}(h)$, as $n-1 \ge 1$. As $f^{(n-1)}(h) = (n-1)!(na_nh+a_{n-1})$, we obtain

$$a^{n-1} = 1$$
 and $b = \frac{(a-1)a_{n-1}}{na_n}$. (5.4)

Let $U_{n-1} = \{\zeta \in \mathbb{C}^* \mid \zeta^{n-1} = 1\}$ be the cyclic group of order n-1, and define a map

$$\Psi: \{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\} \longrightarrow \mathsf{U}_{n-1}, \quad \phi \mapsto a, \text{ where } \phi(h) = ah + b.$$

Then Ψ is well defined by (5.4), and it is a group homomorphism. If $\Psi(\phi) = 1$ for some $\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$ with $\phi(x) = x$, then the above shows that $\phi(y) = y$ and $\phi(h) = h + b$. Again by (5.4) we deduce that b = 0, so ϕ is the identity on $\mathcal{H}(f)$. This shows that Ψ is an injective group homomorphism and thus $\{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ is isomorphic to a subgroup of U_{n-1} ; hence it is a finite cyclic group whose order divides n-1. \Box

It is now an easy matter to determine the structure of $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$. The symbol \times used below denotes the internal direct product of subgroups of a group.

Theorem 5.5. Assume deg f > 1. Then

$$\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) = \{\phi_{\lambda} \mid \lambda \in \mathbb{C}^*\} \times \{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$$
(5.6)

is an abelian group, where:

- $\{\phi_{\lambda} \mid \lambda \in \mathbb{C}^*\} \cong \mathbb{C}^*$ and ϕ_{λ} is defined in (5.1);
- $\{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ is a finite cyclic group whose order divides $(\deg f) 1$ and which, as a set, can be identified with $\{(a,b) \in \mathbb{C}^* \times \mathbb{C} \mid f(ah+b) = af(h)+b\}$ via the correspondence $\phi \mapsto (a,b)$, where $\phi(h) = ah + b$.

Proof. Since we have already seen in Proposition 5.2 that $\{\phi_{\lambda} \mid \lambda \in \mathbb{C}^*\}$ is central, in order to prove the direct product decomposition in (5.6), it remains to show that the two subgroups have trivial intersection, which is clear, and generate $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$. Let $\psi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$. Then there is $\lambda \in \mathbb{C}^*$ such that $\psi(x) = \lambda x$, whence $\phi_{\lambda}^{-1} \circ \psi \in \{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$, and this shows the latter claim. Moreover, since $\{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ is abelian, by Proposition 5.2(c), the group $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f))$ must also be abelian.

The remaining parts of the theorem have already been proved, except for the observation that $\{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ can be identified with the set $\{(a,b) \in \mathbb{C}^* \times \mathbb{C} \mid f(ah+b) = af(h) + b\}$. Indeed, if $\phi(x) = x$, then we have seen in the proof of Proposition 5.2 that $\phi(h) = ah + b$ and $\phi(y) = ay$, for some $a, b \in \mathbb{C}$ with $a \neq 0$, and (5.3) must hold. This shows that the correspondence $\phi \mapsto (a,b)$ is well defined and one-to-one. Conversely, given $(a,b) \in \mathbb{C}^* \times \mathbb{C}$ satisfying f(ah+b) = af(h) + b, it is routine to check that there is an automorphism of $\mathcal{H}(f)$ defined by the conditions $\phi(x) = x$, $\phi(y) = ay$, $\phi(h) = ah + b$, and this shows the correspondence is onto. \Box

Remark 5.7. Any pair $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ satisfying f(ah + b) = af(h) + b must also satisfy (5.4), where $n = \deg f$, although the conditions in (5.4) are not sufficient (see the examples below). Thus, for each (n-1)-th root of unity a, the corresponding scalar b is determined by (5.4), but one still needs to check the relation f(ah + b) = af(h) + b for the pair (a, b).

Examples 5.8.

- (a) If deg f = 2, then n = 2 in (5.4), so a = 1 and b = 0, and the pair (1,0) corresponds to the identity map. It follows that the group $\{\phi \in Aut_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ is trivial and $Aut_{\mathbb{C}}(\mathcal{H}(f)) \cong \mathbb{C}^*$.
- (b) Let $f(h) = h^3 + h$. Then n = 3 in (5.4), so $a = \pm 1$. If a = 1, then b = 0, and the corresponding automorphism is the identity. If a = -1, then b = 0, and in fact f(-h) = -f(h). Therefore there is an automorphism ϕ of $\mathcal{H}(f)$ such that $\phi(x) = x, \phi(y) = -y, \phi(h) = -h$, and $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \cong \mathbb{C}^* \times \mathbb{Z}_2$.
- (c) Let $f(h) = h^3 + h + 1$. Then n = 3 in (5.4), so $a = \pm 1$. If a = -1, then (5.4) yields b = 0, but $f(-h) \neq -f(h)$, so the group $\{\phi \in \operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \mid \phi(x) = x\}$ is trivial and $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \cong \mathbb{C}^*$.
- (d) Let $f(h) = h^n$, for n > 1. Then (5.4) says that a is a (n-1)-th root of unity and b = 0. Moreover, $f(ah) = a^n f(h) = af(h)$ for any (n-1)-th root of unity a. Hence $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \cong \mathbb{C}^* \times \mathbb{Z}_{n-1}$.
- (e) Let $f(h) = h^n + 1$, for n > 1. Then, as before, a is a (n-1)-th root of unity and b = 0. However, in this case, $f(ah) = ah^n + 1$ whereas $af(h) = ah^n + a$, so equality holds if and only if a = 1. Hence $Aut_{\mathbb{C}}(\mathcal{H}(f)) \cong \mathbb{C}^*$.
- (f) Let $f(h) = h^n + h^{k+1}$, for some $n \ge 4$, and take any $1 \le k < n-1$ such that $k \mid n-1$. Then a is a (n-1)-th root of unity and b = 0. In this case $f(ah) = ah^n + a^{k+1}h^{k+1}$ whereas $af(h) = ah^n + ah^{k+1}$, so equality holds if and only if $a^k = 1$. By the hypothesis that $k \mid n-1$, we deduce that $\operatorname{Aut}_{\mathbb{C}}(\mathcal{H}(f)) \cong \mathbb{C}^* \times \mathbb{Z}_k$.

References

- V. V. Bavula. Generalized Weyl algebras and their representations. Algebra i Analiz, 4(1):75–97, 1992.
- [2] G. Benkart and T. Roby. Down-up algebras. J. Algebra, 209(1):305–344, 1998.
- [3] Paula A. A. B. Carvalho and Samuel A. Lopes. Automorphisms of generalized down-up algebras. *Comm. Algebra*, 37(5):1622–1646, 2009.
- [4] Thomas Cassidy and Brad Shelton. Basic properties of generalized down-up algebras. J. Algebra, 279(1):402–421, 2004.

- [5] David A. Jordan. Down-up algebras and ambiskew polynomial rings. J. Algebra, 228(1):311-346, 2000.
- [6] Lieven Le Bruyn. Conformal sl₂ enveloping algebras. Comm. Algebra, 23(4):1325– 1362, 1995.
- [7] Rencai Lü, Volodymyr Mazorchuk, and Kaiming Zhao. Simple weight modules over weak generalized Weyl algebras. J. Pure Appl. Algebra, 219(8):3427–3444, 2015.
- [8] Rencai Lü and Kaiming Zhao. Finite-dimensional simple modules over generalized Heisenberg algebras. *Linear Algebra Appl.*, 475:276–291, 2015.
- [9] L. Makar-Limanov. Locally nilpotent derivations, a new ring invariant and applications. Available at http://math.wayne.edu/~lml/lmlnotes.pdf.
- [10] Sonia Rueda. Some algebras similar to the enveloping algebra of sl(2). Comm. Algebra, 30(3):1127–1152, 2002.
- [11] S. P. Smith. A class of algebras similar to the enveloping algebra of sl(2). Trans. Amer. Math. Soc., 322(1):285–314, 1990.
- [12] Mariano Suárez-Alvarez and Quimey Vivas. Automorphisms and isomorphisms of quantum generalized Weyl algebras. J. Algebra, 424:540–552, 2015.

SAMUEL A. LOPES *CMUP, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687 4169-007 Porto, Portugal* slopes@fc.up.pt