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Abstract

We deal with an index integral involving the product of the modified Bessel functions and associated
Legendre functions. It was discovered by Ferrell [2] while comparing solutions of the Laplace equation
in different coordinate systems in his study of the so-called surface plasmons in various condensed matter
samples. This integral is quite interesting from the pure mathematical point of view and it is absent in
famous reference books for series and integrals. We give a rigorous proof of this formula and discuss its
particular cases. We also construct a convolution operator associated with this integral, which is related
to the classical Kontorovich-Lebedev and Mehler-Fock transforms. Mapping properties and the norm
estimates in weightedLp-spaces,1 ≤ p ≤ 2 are investigated. An application to a class of convolution
integral equations is considered. Necessary and sufficient conditions are found for the solvability of
these equations inL2.
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1 Introduction and preliminary results

In this paper we investigate the following integral with respect to an index or a parameter of the modified
Bessel function and associated Legendre functions [1], Vols. 1-2

e−xµηJ0

(
x
√

(η2 − 1)(1− µ2)
)

=

√
2

πx

∫ ∞

0

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)dτ, (1.1)

wherex > 0, µ, η > −1, J0(z), Kν(z) are Bessel and modified Bessel functions andP−1/2+iτ (z) is the
associated Legendre or conical function. It was discovered by Ferrell [2] while comparing solutions of
the Laplace equation in different coordinate systems in his study of the so-called surface plasmons in var-
ious condensed matter samples. However, integral (1.1) is quite interesting from the pure mathematical
point of view. As far as the author aware, there is no a rigorous proof of this formula and it is absent in
the corresponding reference book [8]. We will prove this formula in the sequel, will discuss its particu-
lar cases and represent new index integrals as a consequence of a relationship of the integral (1.1) with
the Kontorovich-Lebedev and Mehler-Fock transforms (see [9], [10], [11], [12]). Important and recent
applications of the Ferrell integral (1.1) to index integral representations for connection between different
coordinate systems see in [5]. Moreover, our goal is to construct a new convolution operator related to (1.1)
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for the Kontorovich-Lebedev and Mehler-Fock transforms. We will also prove the factorization property
for this convolution in the weightedLp-spaces,1 ≤ p ≤ 2 and discuss its algebraic properties. Finally we
will apply it to a class of the corresponding convolution integral equations, finding necessary and sufficient
conditions for the solvability of these equations inL2.

As it is known [9], [1], Vol.2, the modified Bessel functionKiτ (x) can be represented by the Fourier
integral

Kiτ (x) =

∞∫
0

e−x cosh u cosxudu, x > 0. (1.2)

Hence, whenτ ∈ R, it is real-valued and even with respect to the pure imaginary indexiτ . Furthermore,
this integral can be extended to the stripδ ∈ [0, π/2) in the upper half-plane, i.e.

Kiτ (x) =
1

2

iδ+∞∫
iδ−∞

e−t cosh z+iτzdz, (1.3)

and leads for eachx > 0 to a uniform estimate

|Kiτ (x)| ≤ e−|τ | arccos βK0(βx), 0 < β ≤ 1, (1.4)

which will be used in the sequel. We note also its asymptotic behaviour [1] at infinity

Kν(z) =
( π

2z

)1/2

e−z[1 +O(1/z)], z →∞, (1.5)

and hear the origin
zνKν(z) = 2ν−1Γ(ν) + o(1), z → 0, (1.6)

K0(z) = − log z +O(1), z → 0. (1.7)

Whenx is fixed we have the following behavior of the modified Bessel functionKiτ (x) with respect to the
indexτ → +∞

Kiτ (x) =

√
2π

τ
e−

π
2
τ sin

(
π

4
+ τ log

(
2τ

x

)
− τ

)[
1 +O

(
1

τ

)]
. (1.8)

By Lp(Ω;w(x)dx), 1 < p <∞ we denote the weightedLp- space with the norm

||f ||Lp(Ω;w(x)dx) =

(∫
Ω

|f(x)|pw(x)dx

)1/p

||f ||L∞(Ω;w(x)dx) = ess supx∈Ω|f(x)|.

As it is known [9], [11] the modified Bessel functionKiτ (x) is the kernel of the following operator of the
Kontorovich-Lebedev transformation

Kiτ [f ] = l.i.m.
N→∞

∞∫
1/N

Kiτ (x)f(x)
dx√
x
, (1.9)

which is an isometric isomorphism (see [12])

Kiτ : L2(R+; dx) → L2(R+; τ sinh πτdτ),



Index Integral and Convolution Operator 3

and the convergence of the integral (1.9) is in the mean-square sense with respect to the norm of the space
L2(R+; τ sinh πτdτ). Moreover, the Parseval identity

2

π2

∞∫
0

τ sinh πτ |Kiτ [f ]|2dτ =

∞∫
0

|f(x)|2dx (1.10)

holds and the inverse operator is defined by the formula

f(x) = l.i.m.
N→∞

2

π2

N∫
0

τ sinh πτ
Kiτ (x)√

x
Kiτ [f ]dτ, (1.11)

where the convergence is in mean-square with respect to the norm ofL2(R+; dx).
Formula (1) involves the product of the associated Legendre functions of different parameters [1], Vol.

1 and [4]. The functionPν(z) is the associated Legendre function of the first kind, which is analytic in the
half-planeRe z > −1 and entire with respect toν. The following integral representations will be useful in
the sequel (see [4])

P−1/2+iτ (µ) =
2

π
cosh(πτ)

∫ ∞

0

J0

(
y

√
µ− 1

2

)
K2iτ (y)dy, µ ≥ 1, (1.12)

P−1/2+iτ (cos β) =
2

π

∫ β

0

cosh θτ√
2(cos θ − cos β)

dθ, 0 ≤ θ ≤ π, (1.13)

P−1/2+iτ (coshα) =

√
2

π

cosh(πτ)

π

∫ ∞

0

e−y cosh αKiτ (y)
dy
√
y
, α ≥ 0. (1.14)

P−1/2+iτ (coshα) =
1

π

∫ π

0

dθ

(coshα+ sinhα cos θ)1/2+iτ
. (1.15)

We note the important valuesPν(1) = 1, ν ∈ C,

Pν(0) =

√
π

Γ((1− ν)/2)Γ(1 + ν/2)

and uniform asymptotic expansions with respect toτ at infinity

P−1/2+iτ (cos θ) = O

(
eθτ

√
2πτ sin θ

)
, δ ≤ θ ≤ π − δ, δ ∈ (0, π), τ → +∞, (1.16)

P−1/2+iτ (coshα) = O

(√
2

πτ sinhα
sin
(
ατ +

π

4

))
, δ ≤ α ≤ A <∞, δ > 0, τ → +∞. (1.17)

The associated Legendre function of the second kind is denoted byQν(z) and it is analytic in the half-plane
Re z > 1. It has the following uniform asymptotic behavior at infinity [1], Vol. 1

Qν(z) = O

( √
π

2ν+1

Γ(1 + ν)

Γ(ν + 3/2)
z−ν−1

)
, z →∞, (1.18)

which can be easily obtained from its representation in terms of the Gauss hypergeometric function (see
[4]).
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We will appeal below to the following integral representation

Qν−1/2(coshα) =

√
π

2

∫ ∞

0

e−y cosh αIν(y)
dy
√
y
, Re ν > −1

2
, α > 0, (1.19)

whereIν(z) is the modified Bessel function of the third kind [1], Vol. 2.
The classical Mehler-Fock transform in the spaceL2((1,∞); dx) we define in the form [9], [10]

MF [f ](τ) = l.i.m.
N→∞

N∫
1

P−1/2+iτ (x)f(x)dx, (1.20)

where integral (1.20) is convergent in the mean square sense with respect to the norm inL2(R+; τ tanh πτdτ).
It is known [3] thatMF is an isometric isomorphism

MF : L2((1,∞); dx) → L2(R+; τ tanh πτdτ)

with the inverse operator

f(x) = l.i.m.
N→∞

N∫
0

τ tanh πτ P−1/2+iτ (x)MF [f ](τ)dτ, (1.21)

where the convergence is with respect to the norm inL2((1,∞); dx), and the generalized Parseval equality

∞∫
0

τ tanh πτMF [f1](τ)MF [f2](τ)dτ =

∞∫
1

f1(x)f2(x)dx (1.22)

for anyf1, f2 ∈ L2((1,∞); dx).

2 Convergence properties and the validity of (1.1) under various pa-
rameters

We begin this section with the following
Theorem 1. Letx > 0 andµ, η > −1. Formula(1.1) is valid and the corresponding integral converges

absolutely if
µ, η > 0, µ2 + η2 > 1. (2.1)

The convergence in(1.1) is conditional if:

µ = 0, η ≥ 1 (2.2)

or vice versa, or
(µ, η) ∈ (0, 1)× (0, 1), µ2 + η2 = 1. (2.3)

Finally, when at least one of the parametersµ or η belongs to the interval(−1, 0) or (µ, η) ∈ [0, 1)× [0, 1)
such thatµ2 + η2 < 1 the integral(1.1) is divergent.

Proof. Denoting by

Iµ,η(x) =

√
2

πx

∫ ∞

0

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)dτ, (2.4)
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the right-hand side of the integral (1.1) we first consider the case(µ, η) ∈ [1,∞) × [1,∞). Taking into
account asymptotic behavior by the index of the modified Bessel function and associated Legendre functions
(see formulas (1.8), (1.16), (1.17)) it is not difficult to observe the absolute convergence of the integral (2.4)
in this case. Moreover, multiplying both sides of (2.4) by

√
xe−x, we appeal to inequality (1.4) for the

modified Bessel function in order to motivate the use of the Mellin transform [8], [10]

f ∗(s) =

∫ ∞

0

f(x)xs−1dx, (2.5)

with respect tox through the obtained equality. Changing the order of integration by Fubini’s theorem, we
employ relation (8.4.23.3) in [8]∫ ∞

0

e−xKiτ (x)x
s−1dx = 2−s

√
π

Γ(s+ iτ)Γ(s− iτ)

Γ(s+ 1/2)
, Re s > 0 (2.6)

and come out with the equality

I∗µ,η(s) =
21/2−s

Γ(s+ 1/2)

∫ ∞

0

τ tanh(πτ)Γ(s+ iτ)Γ(s− iτ)P−1/2+iτ (µ)P−1/2+iτ (η)dτ, (2.7)

where

I∗µ,η(s) =

∫ ∞

0

Iµ,η(x)e
−xxs−1/2dx. (2.8)

Further, appealing to (1.12) we substitute it in (2.7). Then denoting bya =
√

µ−1
2
, b =

√
η−1
2

we consider
the triple integral

I∗µ,η(s) =
23/2−s

π2Γ(s+ 1/2)

∫ ∞

0

∫ ∞

0

∫ ∞

0

τ sinh(2πτ)Γ(s+ iτ)Γ(s− iτ)

×J0(ay)J0(bu)K2iτ (y)K2iτ (u)dudydτ. (2.9)

By virtue of the Stirling asymptotic formula for gamma-functions [1], Vol. 1 we have

|Γ(s+ iτ)| = O
(
e−πτ/2τRes−1/2

)
, τ → +∞.

Therefore taking into account asymptotic properties of the Bessel functions (see (1.3), (1.4), (1.5), (1.7)),
we verify the absolute convergence of the integral (2.8) and the possibility to change the order of integration
via Fubini’s theorem. Since the inner index integral with respect toτ is calculated by relation (2.16.53.1)
in [7] we arrive at the equality

I∗µ,η(s) =
21/2−3s

Γ(s+ 1/2)

∫ ∞

0

∫ ∞

0

J0(ay)J0(bu)

(
y2u2

y2 + u2

)s

K2s

(√
u2 + y2

)
dudy. (2.10)

In the meantime (see relation (2.3.16.1) in [6]),(
y2u2

y2 + u2

)s

K2s

(√
u2 + y2

)
=

1

2

∫ ∞

0

t2s−1e−t y2+u2

2uy
−uy

2t dt.

Consequently, after simple substitutions (2.9) yields

I∗µ,η(s)Γ

(
1

2
+ s

)
= 2−3/2

∫ ∞

0

∫ ∞

0

∫ ∞

0

J0(ay)J0(bu)
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× exp

(
−
[√

8t
y2 + u2

2uy
+

uy

2
√

8t

])
ts−1dudydt. (2.11)

Now we are going to cancel the Mellin transform (2.5) in the latter equality (2.11) by using its uniqueness
for integrable functions [10]. Taking into account factorization properties of the Mellin type convolution
transforms (see [8], [10]) (2.11) implies fort > 0∫ ∞

0

Iµ,η(x)e
−x− t

x
dx

x
=

2−3/2

√
t

∫ ∞

0

∫ ∞

0

J0(ay)J0(bu)

× exp

(
−
[√

8t
y2 + u2

2uy
+

uy

2
√

8t

])
dudy, (2.12)

where the left-hand side represents a modified Laplace transform [10] of the functione−xIµ,η(x). Mean-
while, the double integral in the right-hand side of (2.12) can be treated by polar coordinates. This drives at
the form

2−3/2

√
t

∫ ∞

0

∫ ∞

0

J0(ay)J0(bu) exp

(
−
[√

8t
y2 + u2

2uy
+

uy

2
√

8t

])
dudy

=
2−3/2

√
t

∫ ∞

0

∫ π/2

0

J0(ar sinϕ)J0(br cosϕ) exp

(
−

[ √
8t

sin 2ϕ
+
r2 sin 2ϕ

4
√

8t

])
rdrdϕ.

The latter integral byr is calculated via relation (2.12.39.3) in [7]. Substituting the result in (2.11) we
obtain ∫ ∞

0

Iµ,η(k)e
−x− t

x
dx

x

= 2I0(ab
√

8t)

∫ π/2

0

exp

(
−
√

8t
1 + a2 sin2 ϕ+ b2 cos2 ϕ

sin 2ϕ

)
dϕ, (2.12)

whereI0(z) is the modified Bessel function [4]. Hence calculating the integral with respect toϕ in (2.12)
by using an elementary substitutions and calling relation (2.3.16.1) in [6], we get finally the equality∫ ∞

0

Iµ,η(x)e
−x− t2

8x
dx

x
= 2I0(abt)K0

(
t
√

(1 + a2)(1 + b2)
)
. (2.13)

Taking into account definitions of the involved parameters, the property of Bessel functionsJ0(iz) = I0(z)
and relation (2.12.10.1) in [7], we write (2.13) in the form∫ ∞

0

Iµ,η(x)e
−x− t2

8x
dx

x
=

∫ ∞

0

e−x(z+1)− t2

8xJ0(xR)
dx

x
, t > 0, (2.14)

where we denote byz = µη, andR =
√

(η2 − 1)(1− µ2). Consequently, the final equality gives the value
of the integral (1.1) via the uniqueness theorem for the modified Laplace transform of integrable functions
[9], [10]. Canceling this transform in (2.14) we find the value of (1.1), namely

Iµ,η(x) = e−xzJ0(xR), µ, ν ∈ [1,∞)× [1,∞). (2.15)

We will prove now the validity of integral (1) under conditions (2.1) and its absolute convergence. Indeed,
we could see already that (1.1) converges absolutely whenµ, ν ∈ [1,∞). Suppose thatµ ∈ (0, 1), η ≥ 1
or vice versa. In this case formula (1.1) is true because it can be prolonged analytically byµ or η. In
fact,P−1/2+iτ (z) is analytic in the right half-planeRe z > −1 and integral (1.1) converges absolutely and
uniformly with respect toθ = arccosµ ∈

[
ε, π

2
− ε
]
, η ≥ 1 or ξ = arccosη ∈

[
ε, π

2
− ε
]
, µ ≥ 1 for any
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k > 0 owing to uniform estimates (1.16), (1.17). Whenµ, η ∈ (0, 1)× (0, 1) we employ again (1.8), (1.16)
and an elementary equality [6]

arccosµ+ arccosη = arccos
(
µη −

√
(1− µ2)(1− η2)

)
to obtain for sufficiently bigA > 0∫ ∞

A

τ tanh(πτ)
∣∣Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)

∣∣ dτ
≤ C

∫ ∞

A

tanh(πτ)√
τ

exp
(
−τ
[π
2
− arccosµ− arccosη

])
dτ

= C

∫ ∞

A

tanh(πτ)√
τ

exp
(
−τ
[π
2
− arccos

(
µη −

√
(1− µ2)(1− η2)

)])
dτ, (2.16)

whereC > 0 is an absolute constant. Therefore, the latter integral in (2.16) converges uniformly if

arccos
(
µη −

√
(1− µ2)(1− η2)

)
≤ π

2
− ε, ε > 0.

This means the conditionµ2 + η2 > 1 and proves (2.1).
Further, whenµ, η ∈ [0, 1)× [0, 1) such thatµ2 + η2 < 1, then∫ ∞

A

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)dτ

= O

(∫ ∞

A

exp
(
τ
[
arccos

(
µη −

√
(1− µ2)(1− η2)

)
− π

2

])
dτ

)
→∞, A→∞

since arccos
(
µη −

√
(1− µ2)(1− η2)

)
> π

2
. Thus integral (1.1) diverges under these conditions. More-

over, since the uniform asymptotic formula (1.16) keeps true forθ ∈
(

π
2
, π − ε

]
, ε > 0 (see [4]), we easily

get assumingµ ∈ (−1, 0), η > −1 or vice versa, that integral (1.1) is divergent, namely∫ ∞

A

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)dq

= O

(∫ ∞

A

P−1/2+iτ (η) exp
(
q
[
θ − π

2

])
dq

)
→∞, A→∞.

Finally, we will establish the validity of the integral (1.1) under more delicate conditions (2.2), (2.3). To
do this we recall (1.8), (1.16), (1.17) to verify the uniform convergence of the integral∫ ∞

A

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)dq

= O

(∫ ∞

A

exp
(
τ
(

arccosµ− π

2

)) tanh(πτ)√
τ

sin

(
τ log

(
2τ

x

)
− τ +

π

4

)
× cos

(
τ arccoshη − π

4

)
dτ
)

(2.17)

with respect toµ ∈ [0, ε], ε > 0 for η > 1, k > 0 and sufficiently bigA > 0. But the latter fact follows
immediately from the Abel test of the uniform convergence. This means that we can putµ = 0 in (1.1) and
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condition (2.2) holds for anyη > 1. Moreover, taking into account valuesPq(0) (see above) we derive the
formula

J0

(
x
√
η2 − 1

)
=

√
2

x

∫ ∞

0

τ tanh(πτ)∣∣Γ (3
4

+ iτ
2

)∣∣2Kiτ (x)P−1/2+iτ (η)dτ, (2.18)

which coincides with a particular case of the relation (2.17.27.21) in [8]. We will show that formula (2.18)
is true also forη = 1, which gives a new index integral (P−1/2+iτ (1) = 1)∫ ∞

0

τ tanh(πτ)∣∣Γ (3
4

+ iτ
2

)∣∣2Kiτ (x)dτ =

√
x

2
.

In fact, integral (2.18) converges uniformly byη ∈ [1, 1 + ε], ε > 0 since (see above) with the integration
by parts ∫ ∞

A

τ tanh(πτ)∣∣Γ (3
4

+ iτ
2

)∣∣2Kiτ (x)P−1/2+iτ (η)dq

= O

(∫ ∞

A

sin

(
τ log

(
2τ

x

)
− τ +

π

4

)
cos
(
τ arccoshη − π

4

)
dτ

)
= O

(
arccoshη

∫ ∞

A

cos

(
τ log

(
2τ

x

)
− τ(1− arccoshη) +

π

4

)
dτ

log(2τ/x)

)
and the latter integral converges uniformly byη ∈ [1, 1 + ε], ε > 0 via the Dirichlet test.

Analogously, ifµ, η ∈ (0, 1)× (0, 1) such thatµ2 + η2 = 1, then (1.1) converges because∫ ∞

A

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)P−1/2+iτ (η)dτ

= O

(∫ ∞

A

exp
(
τ
(

arccos
(
µη −

√
(1− µ2)(1− η2)

)
− π

2

))
× tanh(πτ)√

τ
sin

(
τ log

(
2τ

x

)
− τ +

π

4

)
dτ

)
= O

(∫ ∞

A

tanh(πτ)√
τ

sin

(
τ log

(
2τ

x

)
− τ +

π

4

)
dτ

)
<∞

due to the Dirichlet test. Thus we get condition (2.3) and complete the proof of Theorem 1.
SinceP−1/2+iτ (1) = 1 we get the following value of the index integral∫ ∞

0

τ tanh(πτ)Kiτ (x)P−1/2+iτ (µ)dτ =

√
πx

2
e−xµ, x, µ > 0,

which coincides with relation (2.17.26.15) in [8]. Forµ = 1 it gives the value∫ ∞

0

τ tanh(πτ)Kiτ (x)dτ =

√
πx

2
e−x, x > 0, (2.19)

which is the limit case of the relation (2.16.48.15) in [7]. Whenµ = η ≥ 1√
2

formula (1.1) becomes∫ ∞

0

τ tanh(πτ)Kiτ (x)[P−1/2+iτ (µ)]2dτ =

√
πx

2
e−xµ2

I0(x(µ
2 − 1)),

which represents a slightly corrected relation (2.17.29.4) in [8].
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Corollary 1 . Letx > 0 andµ ≥ 0, η ≥ 0, z = µη, andR =
√

(η2 − 1)(1− µ2). Then
√

2

π
√
π

∫ ∞

0

e−xzJ0(xR)Kiτ (x)
dx√
x

= sech(πτ)P−1/2+iτ (µ)P−1/2+iτ (η), (2.20)

where the integral converges absolutely. Moreover, forµj, ηj, j = 1, 2 such thatηj > 1, 0 ≤ µj < 1, j =
1, 2, or vice versa, orηj > 1, µj > 1, j = 1, 2, or 0 < ηj < 1, 0 < µj < 1, η2

j + µ2
j > 1, j = 1, 2 we get

the value of a new index integral∫ ∞

0

τ
tanh(πτ)

cosh(πτ)
P−1/2+iτ (µ1)P−1/2+iτ (η1)P−1/2+iτ (µ2)P−1/2+iτ (η2)dτ

=
1

π2
√
R1R2

Q−1/2

(
(z1 + z2)

2 +R2
1 +R2

2

2R1R2

)
, (2.21)

wherezj = µjηj, Rj =
√

(η2
j − 1)(1− µ2

j), j = 1, 2. If one of the parametersµj, ηj, j = 1, 2 is equal to

1, sayµ1 = 1, then∫ ∞

0

τ
tanh(πτ)

cosh(πτ)
P−1/2+iτ (η1)P−1/2+iτ (µ2)P−1/2+iτ (η2)dτ =

1

π

1√
(η1 + z2)2 +R2

2

. (2.22)

Finally, whenµ1 = µ2 = η1 = η2 = a ∈
(

1√
2
,∞
)
\{1} we have in particular, a new index integral∫ ∞

0

τ
tanh(πτ)

cosh(πτ)

[
P−1/2+iτ (a)

]4
dτ =

1

π2|a2 − 1|
Q−1/2

(
a4 + 2a2 − 1

(a2 − 1)2

)
. (2.23)

The limit casea = 1 (see(1.18)) coincides with the known value∫ ∞

0

τ
tanh(πτ)

cosh(πτ)
dτ =

1

2π
.

Proof. The proof is based on the Plancherel theorem and Parseval’s equality (1.10) for the Kontorovich
-Lebedev transform (1.9). In fact, via the parallelogram equality for the inner product, (1.10) yields

2

π2

∫ ∞

0

τ sinh(πτ)Kiτ [f1]Kiτ [f2]dτ =

∫ ∞

0

f1(x)f2(x)dx. (2.24)

Taking0 < µ ≤ 1, η ≥ 1 we easily check via the asymptotic behavior of Bessel functions thate−xzJ0(xR) ∈
L2(R+; dx). Therefore (2.20) holds and the integral converges absolutely to the same limit under these con-
ditions. However the absolute and uniform convergence keeps true for anyµ ≥ 0, η ≥ 0. Therefore the
equality (2.20) is still valid for any nonnegative parametersµ, ν. Further, we immediately get (2.21) and
its particular cases (2.22), (2.23) as a consequence of the Parseval identity (26) and relations (2.12.38.1),
(2.12.8.2) in [7]. The corresponding conditions on parameters guarantee the absolute and uniform conver-
gence of the integral (2.21). Corollary 1 is proved.

3 A convolution operator and its mapping properties

We begin with
Definition 1. Let f, g be functions from(1,∞) into C. Then the functionf ∗ g defined onR+ by

(f ∗ g)(x) =

√
2

π
√
π

∫ ∞

1

∫ ∞

1

e−xuvI0

(
x
√

(u2 − 1)(v2 − 1)
)
f(u)g(v)dudv (3.1)
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is called the convolution related to the Kontorovich-Lebedev and Mehler-Fock transforms (1.9) and (1.20),
respectively (provided that it exists).

Theorem 2. f, g ∈ Lp((1,∞); dx), 1 < p < 2. Then the convolution(f ∗ g)(x) exists for almost all
x > 0 and belongs toL2(R+; dx). The convolution is commutative and

||f ∗ g||L2(R+;dx) ≤ C||f ||Lp((1,∞);dx)||g||Lp((1,∞);dx), (3.2)

whereC > 0 is an absolute constant.
Proof. Indeed, from Definition 1 it follows thatf ∗ g is a commutative operation. Further, by virtue of

Fubini’s theorem with the use of the generalized Minkowski inequality there exists

||f ∗ g||L2(R+;dx) ≤
√

2

π
√
π

∫ ∞

1

∫ ∞

1

(∫ ∞

0

e−2xuvI2
0

(
x
√

(u2 − 1)(v2 − 1)
)
dx

)1/2

|f(u)g(v)|dudv. (3.3)

The integral with respect tox

I =

∫ ∞

0

e−2xuvI2
0

(
x
√

(u2 − 1)(v2 − 1)
)
dx

is calculated by relation (2.15.20.1) in [7]. Consequently, we obtain

I =
1

π
√

(u2 − 1)(v2 − 1)
Q−1/2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
.

Substituting this value in (3.3) and using the Hölder inequality for double integrals it becomes

||f ∗ g||L2(R+;dx) ≤
√

2

π2

(∫ ∞

1

∫ ∞

1

[(u2 − 1)(v2 − 1)]−q/4Q
q/2
−1/2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
dudv

)1/q

×||f ||Lp((1,∞);dx)||g||Lp((1,∞);dx), q =
p

p− 1
. (3.4)

Meanwhile, calling representation (1.19) of the associated Legendre functionQν−1/2(coshα), we putν = 0
and use relation (8.4.22.3) in [8]

e−xI0(x) =
1

2πi
√
π

∫ γ+i∞

γ−i∞

Γ(s)Γ(1/2− s)

Γ(1− s)
(2x)−sds, 0 < γ <

1

2
.

Substituting the latter integral into (1.19) and changing the order of integration via Fubini’s theorem, we
have

Q−1/2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
=

1

4πi

∫ γ+i∞

γ−i∞

Γ(s)Γ2(1/2− s)

Γ(1− s)

×
(

u2v2

(u2 − 1)(v2 − 1)
− 1

)s−1/2

ds.

Hence

Q
1/2
−1/2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
≤ 1

2
√
π

(
u2v2

(u2 − 1)(v2 − 1)
− 1

) γ
2
− 1

4

×
(∫ γ+i∞

γ−i∞

∣∣∣∣Γ(s)Γ2(1/2− s)

Γ(1− s)
ds

∣∣∣∣)1/2

= Cγ

(
u2v2

(u2 − 1)(v2 − 1)
− 1

) γ
2
− 1

4

,

where

Cγ =
1

2
√
π

(∫ γ+i∞

γ−i∞

∣∣∣∣Γ(s)Γ2(1/2− s)

Γ(1− s)
ds

∣∣∣∣)1/2

, 0 < γ <
1

2
.
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Therefore with elementary substitutions

√
2

π2

(∫ ∞

1

∫ ∞

1

[(u2 − 1)(v2 − 1)]−q/4Q
q/2
−1/2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
dudv

)1/q

≤ Cγ

√
2

π2

(∫ ∞

1

∫ ∞

1

[(u2 − 1)(v2 − 1)]−qγ/2
(
u2v2 − (u2 − 1)(v2 − 1)

)q(γ−1/2)/2
dudv

)1/q

=
Cγ

√
2

π2

(∫ ∞

0

∫ ∞

0

[sinhu sinh v]1−qγ
(
sinh2 u+ sinh2 v + 1

)q(γ−1/2)/2
dudv

)1/q

≤ Cγ

√
2

π2

(∫ ∞

0

sinh1−qγ u du

)2/q

,

where the latter integral is evidently convergent forq ∈
(

1
γ
, 2

γ

)
⊂ (2,∞) because0 < γ < 1

2
. Sinceγ

is arbitrary from this interval, inequality (3.5) is true for any2 < q = p
p−1

. Hence appealing to relation
(2.4.4.7) in [6] and putting

C =
[Γ(1− qγ/2)Γ((qγ − 1)/2)]2/q

2(4+q)/2qπ(2+5q)/2q

(∫ γ+i∞

γ−i∞

∣∣∣∣Γ(s)Γ2(1/2− s)

Γ(1− s)
ds

∣∣∣∣)1/2

, 0 < γ <
1

2

we get (3.2) and complete the proof of Theorem 2.
In order to study mapping properties of the Mehler-Fock transform (1.20) we will need a uniform

estimate byτ ∈ R+ of the associated Legendre function. But this easily follows from representation
(1.15). Precisely, we have|P−1/2+iτ (x)| ≤ P−1/2(x), x ≥ 1.

Lemma 1. Operator of the Mehler-Fock transform(1.20)

MF [f ](τ) =

∞∫
1

P−1/2+iτ (x)f(x)dx, (3.5)

is bounded as the operator fromLp((1,∞); dx), 1 ≤ p < 2 into the spaceC0(R+) of bounded continuous
functions onR+ and the integral(3.5) converges absolutely and uniformly byτ ≥ 0. Moreover,

||MF [f ]||C0(R+) ≤ (2/q)1/q Γ2(2−1 − q−1)

πΓ(1− q−1)
||f ||Lp((1,∞);dx), q =

p

p− 1
. (3.6)

Whenp = 1 it gives, correspondingly,

||MF [f ]||C0(R+) ≤ ||f ||L1((1,∞);dx). (3.7)

Proof. Indeed, taking into account the previous uniform estimate of the associated Legendre function,
we use the Ḧolder inequality for1 < p < 2 to find

||MF [f ]||C0(R+) = sup
τ≥0

|MF [f ](τ)| ≤
∞∫

1

P−1/2(x)|f(x)|dx

≤

 ∞∫
1

P q
−1/2(x)dx

1/q

||f ||Lp((1,∞);dx), q =
p

p− 1
. (3.8)
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Meanwhile, representation (1.14) and the generalized Minkowski inequality yield ∞∫
1

P q
−1/2(x)dx

1/q

≤
√

2

π3

∫ ∞

0

(∫ ∞

1

e−qxydx

)1/q

K0(y)
dy
√
y

= q−1/q

√
2

π3

∫ ∞

0

e−yK0(y)y
−(q−1+1/2)dy.

The latter integral is calculated by relation (2.16.6.4) in [7]. Therefore, ∞∫
1

P q
−1/2(x)dx

1/q

≤ (2/q)1/q Γ2(2−1 − q−1)

πΓ(1− q−1)
(3.9)

and combining with (3.8) we establish (3.6). For the limit casep = 1 we deduce (see (3.9))

||MF [f ]||C0(R+) ≤ ||f ||L1((1,∞);dx) sup
x≥1

[P−1/2(x)] ≤ ||f ||L1((1,∞);dx)

√
2

π3

∫ ∞

0

e−yK0(y)
dy
√
y

= ||f ||L1((1,∞);dx).

Thus (3.7) holds and Lemma 1 is proved.
Corollary 2. The norm of the operatorMF : Lp((1,∞); dx) → C0(R+), 1 < p < 2 satisfies the

estimate

||MF || ≤ (2/q)1/q Γ2(2−1 − q−1)

πΓ(1− q−1)
.

Whenp = 1, we have||MF || ≤ 1.
Theorem 3. Let f, g ∈ Lp((1,∞); dx), 1 ≤ p < 2. Then for allx > 0 the following generalized

Parseval equality takes place

(f ∗ g)(x) =
2

π2

∫ ∞

0

τ tanh πτ
Kiτ (x)√

x
MF [f ](τ)MF [g](τ)dτ, (3.10)

where the integral is absolutely convergent.
Proof. In fact, we employ Ferrell’s integral (1.1) and substitute it in (3.1). The change of the order of

integration is guaranteed by Theorem 2 and Fubini’s theorem. Finally the definition of the Mehler-Fock
transform (3.5) leads to (3.10). Theorem 3 is proved.

Corollary 3 . Under conditions of Theorem 2 the product

MF [f ](τ)MF [g](τ) ∈ L2

(
R+; τ

tanh πτ

cosh πτ
dτ

)
.

Moreover, the factorization identity (see(1.9))

Kiτ [f ∗ g] =
1

cosh πτ
MF [f ](τ)MF [g](τ) (3.11)

and the Parseval equality hold∫ ∞

0

|(f ∗ g)(x)|2dx =
2

π2

∫ ∞

0

τ
tanh πτ

cosh πτ
|MF [f ](τ)MF [g](τ)|2 dτ. (3.12)
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Proof. Since via Theorem 2f ∗ g ∈ L2(R+; dx) the statement is an immediate consequence of the
L2-theory for the Kontorovich-Lebedev transform (1.9) by virtue of equalities (1.10), (1.11). Corollary 3 is
proved.

Theorem 4. Let f ∈ Lp((1,∞); dx), 1 ≤ p < 2. The Mehler-Fock transform(3.5) is the composition
of the Kontorovich-Lebedev transform(1.9) and the following Laplace transform

(Lf)(x) =

∫ ∞

1

e−xtf(t)dt, x > 0. (3.13)

Namely, we have the equality

MF [f ](τ) =
1

π

√
2

π
cosh πτKiτ [Lf ] , τ ≥ 0, (3.14)

where all involved integrals are absolutely convergent.
Proof. In fact, (3.14) takes place due to (1.9), (1.14), (3.5) and Fubini’s theorem. The latter fact can be

verified employing the estimate

∞∫
1

|P−1/2+iτ (x)f(x)|dx ≤
√

2

π3

∫ ∞

0

(∫ ∞

1

e−qxydx

)1/q

K0(y)
dy
√
y

 ∞∫
1

|f(x)|pdx

1/p

= q−1/q

√
2

π3
||f ||Lp((1,∞);dx)

∫ ∞

0

e−yK0(y)y
−(q−1+1/2)dy <∞, q =

p

p− 1
.

Theorem 4 is proved.

4 Convolution integral equations

This section will be devoted to a class of integral equations of the first kind related to the convolution
operator (3.1). Namely, we will examine a solvability of the following integral equations∫ ∞

1

K(x, y)f(y)dy = g(x), x > 0, (4.1)

∫ ∞

1

[
λe−xy +K(x, y)

]
f(y)dy = g(x), λ ∈ C, x > 0, (4.2)

where the kernelK(x, y) is defined by the integral

K(x, y) ≡ Kh(x, y) =

√
2

π
√
π

∫ ∞

1

e−xyuI0

(
x
√

(y2 − 1)(u2 − 1)
)
h(u)du, (4.3)

h, g are given functions andf is to be determined.
Definition 2. Let 1 < p < 2. We call by

MF p,2 ≡ {ψ(τ) ∈ L2 (R+; τ tanh πτdτ)) ; ψ(τ) = MF [f ](τ), f ∈ L2((1,∞); dx) ∩ Lp((1,∞); dx)}

a class of images off ∈ L2((1,∞); dx) ∩ Lp((1,∞); dx) under the Mehler-Fock transform (1.20), consid-
ering a restriction of this map to

MF : L2((1,∞); dx) ∩ Lp((1,∞); dx) →MF p,2.
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We note thatMF p,2 is a subspace ofL2(R+; τ tanh πτdτ) and by virtue of Lemma 1 we haveMF p,2 ⊂
C0(R+).

Theorem 5. Let 1 < p < 2, g ∈ L2(R+; dx) andh(x) ∈ Lp((1,∞); dx). Then for the solvability of

the equation(4.1) in L2((1,∞); dx) ∩ Lp((1,∞); dx) it is necessary and sufficient that
cosh πτKiτ [g]

MF [h](τ)
∈

MF p,2. Moreover, the corresponding solutionf(x) is unique and given by the formula

f(x) =

∞∫
0

τ sinh πτ P−1/2+iτ (x)
Kiτ [g]

MF [h](τ)
dτ, x > 1, (4.4)

where the convergence is with respect to the norm inL2((1,∞); dx).
Proof. Necessity.Indeed, if under conditions of the theorem equations (4.1) is satisfied, then convolution

(3.1) exists and by (3.11)

Kiτ [g] =
1

cosh πτ
MF [f ](τ)MF [h](τ).

However,MF [f ] ∈MF p,2. Hence
cosh πτKiτ [g]

MF [h](τ)
∈MF p,2 and the corresponding solution inL2(R+; dx)

is given by (4.4) via inversion formula (1.21) for the Mehler-Fock transform (1.20).

Sufficiency.Now assuming
cosh πτKiτ [g]

MF [h](τ)
∈ MF p,2 we get correspondingly via (4.4) and Definition 2

thatf(x) ∈ L2((1,∞); dx) ∩ Lp((1,∞); dx). Further, owing to conditions of the theorem the left-hand
side of (4.1) is the convolution like (3.1)(f ∗ h)(x), which belongs toL2(R+; dx). Therefore due to the
factorization identity (3.1) we obtain

Kiτ [f ∗ h] =
1

cosh πτ
MF [f ](τ)MF [h](τ). (4.5)

But (see (1.21) and (4.4))MF [f ] =
cosh πτKiτ [g]

MF [h](τ)
. Substituting this expression into (4.5) we find

Kiτ [f ∗ h] =
1

cosh πτ
MF [h](τ)

cosh πτKiτ [g]

MF [h](τ)
= Kiτ [g].

So by the uniqueness property for the Kontorovich-Lebedev transform equation (4.1) is satisfied, and (4.4)
its unique solution from the classL2((1,∞); dx) ∩ Lp((1,∞); dx). Theorem 5 is proved.

Equation (4.2) can be treated similarly by using composition representation (3.14). Indeed, under con-
ditions of Theorem 5 after applying the Kontorovich-Lebedev transform to both sides of (4.2) and taking
into account factorization identity (4.5) we get the following algebraic equality

λ

π

√
2

π
MF [f ](τ) +MF [f ](τ)MF [h](τ) = cosh πτKiτ [g], (4.6)

which can be solved with respect toMF [f ](τ) if

λ

π

√
2

π
+MF [h](τ) 6= 0, τ ∈ R+.

Hence

MF [f ](τ) = cosh πτKiτ [g]

[
λ

π

√
2

π
+MF [h](τ)

]−1

(4.7)
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and we come out with the following result.
Theorem 6. Under conditions of Theorem5 for the solvability of equation(4.2) in L2((1,∞); dx) ∩

Lp((1,∞); dx), 1 < p < 2 it is necessary and sufficient that the right-hand side of(4.7) belongs toMF p,2.
Then the corresponding solutionf(x) is unique and given by the formula

f(x) =

∞∫
0

τ sinh πτ P−1/2+iτ (x)Kiτ [g]

[
λ

π

√
2

π
+MF [h](τ)

]−1

dτ, x > 1, (4.8)

where the convergence is with respect to the norm inL2((1,∞); dx).
Let us indicate a special case of the equation (4.2) when its solution (4.8) can be represented in the

resolvent form. Suppose thatg(x) is the modified Laplace transform (3.13) of some functionϕ(t) ∈
L2((1,∞); dt) ∩ Lp((1,∞); dt), 1 < p < 2, i.e.

g(x) =

∫ ∞

1

e−xtϕ(t)dt. (4.9)

A class of such functionsg belongs toL2(R+; dx). In fact, by virtue of the generalized Minkowski and
Hölder inequalities we have the estimate

||g||L2(R+;dx) =

(∫ ∞

0

|g(x)|2dx
)1/2

≤
∫ ∞

1

(∫ ∞

0

e−2xtdx

)1/2

|ϕ(t)|dt

=
1√
2

∫ ∞

1

|ϕ(t)| dt√
t
≤ 1√

2
||ϕ||Lp((1,∞);dt)

(∫ ∞

1

dt

tq/2

)1/q

=
2q−1−2−1

(q − 2)1/q
||ϕ||Lp((1,∞);dt) <∞, q =

p

p− 1
.

Therefore by composition representation (3.14) and inversion formula (1.21) for the Mehler-Fock transform
solution (4.8) becomes in the form

f(x) =

∞∫
0

τ sinh πτ P−1/2+iτ (x)Kiτ [g]

[
λ

π

√
2

π
+MF [h](τ)

]−1

dτ

=
π
√
π√
2

∞∫
0

τ tanh πτ P−1/2+iτ (x)MF [ϕ]

[
λ

π

√
2

π
+MF [h](τ)

]−1

dτ

π2

2λ

∞∫
0

τ tanh πτ P−1/2+iτ (x)MF [ϕ]dτ

−π
2

2λ

∞∫
0

τ tanh πτ P−1/2+iτ (x)MF [ϕ]MF [h](τ)

[
λ

π

√
2

π
+MF [h](τ)

]−1

dτ

=
π2

2λ

ϕ(x)−
∞∫

0

τ tanh πτP−1/2+iτ (x)MF [ϕ]MF [h](τ)

×

[
λ

π

√
2

π
+MF [h](τ)

]−1

dτ

 , λ 6= 0. (4.10)
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Finally, let us consider an example of the equation (4.2), lettingMF [h](τ) = [cosh πτ ]−1. In order to
find an original we use the inversion formula (1.21) and integral representations (1.14), (2.19). So we have,
correspondingly, changing the order of integration and calculating elementary integrals

h(u) =

∞∫
0

τ
tanh πτ

cosh πτ
P−1/2+iτ (u)dτ =

√
2

π3

∞∫
0

τ tanh πτ

∫ ∞

0

e−yuKiτ (y)
dy
√
y
dτ

=
1

π

∫ ∞

0

e−y(u+1)dy =
1

π(u+ 1)
.

Equation (4.2) in this case can be written in the form (see (4.9))∫ ∞

1

e−xy(λf(y)− ϕ(y))dy +

∫ ∞

1

Kh(x, y)f(y)dy = 0, (4.11)

where the kernelKh(x, y) can be calculated explicitly by using relation (2.16.51.10) in [7]. Precisely we
obtain

Kh(x, y) =
2
√

2

π3
√
πx

∫ ∞

0

τ tanh(πτ)Kiτ (x)

∞∫
0

e−tyKiτ (t)
dt√
t
dτ

=

√
2

π5
exy

∞∫
x(y+1)

e−udu

u
= −

√
2

π5
exyEi(−x(y + 1)),

whereEi(z) is the integral exponential function [7]. Now takingλ = π
√
π/2 in (4.11), consider the

integral equation∫ ∞

1

e−xy

(
π

√
π

2
f(y)− ϕ(y)

)
dy −

√
2

π5

∫ ∞

1

exyEi(−x(y + 1))f(y)dy = 0, x > 0. (4.12)

According to (4.10) under the corresponding conditions its unique solution is given by the formula

f(x) =

√
π

2

ϕ(x)− 1

2

∞∫
0

τ tanh πτ

cosh2(πτ/2)
P−1/2+iτ (x)MF [ϕ](τ)dτ

 . (4.13)

Meanwhile, substituting the value ofMF [ϕ] by formula (3.5) into (4.13) and changing the order of inte-
gration, we will have the inner integral of the form

∞∫
0

τ tanh πτ

cosh2(πτ/2)
P−1/2+iτ (x)P−1/2+iτ (y)dτ.

Its value is still unknown. However, one can represent it in another form employing integral (1.1) and
relation (2.16.33.2) in [7]. Indeed, by straightforward calculations this gives the result

∞∫
0

τ tanh πτ

cosh2(πτ/2)
P−1/2+iτ (x)P−1/2+iτ (y)dτ =

(
2

π

)3/2 ∫ ∞

0

e−txyI0

(
t
√

(x2 − 1)(y2 − 1)
)
K0(t)

√
tdt.

Hence taking into account (4.3) the unique solution (4.13) of the integral equation (4.12) can be written in
the equivalent form

f(x) =

√
π

2

ϕ(x)−
∞∫

0

Kϕ(x, t)K0(t)
√
tdt

 , x > 1,
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where

Kϕ(x, t) =

√
2

π
√
π

∫ ∞

0

e−txyI0

(
t
√

(x2 − 1)(y2 − 1)
)
ϕ(y)dy.
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