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Abstract

We deal with an index integral involving the product of the modified Bessel functions and associated
Legendre functions. It was discovered by Ferrell [2] while comparing solutions of the Laplace equation
in different coordinate systems in his study of the so-called surface plasmons in various condensed matter
samples. This integral is quite interesting from the pure mathematical point of view and it is absent in
famous reference books for series and integrals. We give a rigorous proof of this formula and discuss its
particular cases. We also construct a convolution operator associated with this integral, which is related
to the classical Kontorovich-Lebedev and Mehler-Fock transforms. Mapping properties and the norm
estimates in weighted,-spaces] < p < 2 are investigated. An application to a class of convolution
integral equations is considered. Necessary and sufficient conditions are found for the solvability of
these equations ihs.
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1 Introduction and preliminary results

In this paper we investigate the following integral with respect to an index or a parameter of the modifie
Bessel function and associated Legendre functions [1], Vols. 1-2

e ] <:1c\/(772 -1 - M2)> — \/%/000 7 tanh (7w 7) Kir (@) P—1 joqir (1) Po1 j244- (n)dT, (1.1)

wherex > 0,u,n > —1, Jo(2), K,(2) are Bessel and modified Bessel functions &hd, ;- (2) is the

associated Legendre or conical function. It was discovered by Ferrell [2] while comparing solutions o
the Laplace equation in different coordinate systems in his study of the so-called surface plasmons in ve
lous condensed matter samples. However, integral (1.1) is quite interesting from the pure mathematic
point of view. As far as the author aware, there is no a rigorous proof of this formula and it is absent ir
the corresponding reference book [8]. We will prove this formula in the sequel, will discuss its particu-
lar cases and represent new index integrals as a consequence of a relationship of the integral (1.1) w
the Kontorovich-Lebedev and Mehler-Fock transforms (see [9], [10], [11], [12]). Important and recent
applications of the Ferrell integral (1.1) to index integral representations for connection between differer
coordinate systems see in [5]. Moreover, our goal is to construct a new convolution operator related to (1.
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for the Kontorovich-Lebedev and Mehler-Fock transforms. We will also prove the factorization property
for this convolution in the weighted, -spaces] < p < 2 and discuss its algebraic properties. Finally we
will apply it to a class of the corresponding convolution integral equations, finding necessary and sufficier
conditions for the solvability of these equationdin

As it is known [9], [1], Vol.2, the modified Bessel functidki;,(x) can be represented by the Fourier
integral

[eo]

K (z) = /e_“”h“cosxudu, x> 0. (1.2)
0

Hence, when € R, it is real-valued and even with respect to the pure imaginary indekurthermore,
this integral can be extended to the strig [0, 7/2) in the upper half-plane, i.e.

10+00
1 .
KZT(x) — 5 / e—tcoshz—f—m‘zdz7 (13)
10—00
and leads for each > 0 to a uniform estimate
’KZT(m)‘ < e*\7’|arccosﬁf(o(ﬁx)7 0 < 5 < 17 (1.4)

which will be used in the sequel. We note also its asymptotic behaviour [1] at infinity

K (2) = (;—z)m e[l +0(1/2)], = o0, (1.5)

and hear the origin
2K, (2) =2""'T(v) +o(1), z—0, (1.6)
Ko(z) = —logz+0O(1), z—0. (1.7)

Whenz is fixed we have the following behavior of the modified Bessel funchignx) with respect to the

indexr — 400
Kir(x) =4/ —ZWe_%T sin (z + 7 log (—27—) — T> [1 +0 (1>] . (1.8)
T 4 T T

By L,(£; w(x)dz), 1 < p < oo we denote the weightekl,- space with the norm

1/p
1112 ntariy = ( / |f($)|pw(:r)dx>

112 @su(@)ar) = €8S SUPq]f(2)].

As it is known [9], [11] the modified Bessel functidk;. (z) is the kernel of the following operator of the
Kontorovich-Lebedev transformation

[e.9]

Ki-[f] = lNl_f{.lo Kn(m)f(m)ﬁa (1.9)

1/N
which is an isometric isomorphism (see [12])

K : Ly(Ry;dx) — Lo(Ry; 7sinh wrdr),
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and the convergence of the integral (1.9) is in the mean-square sense with respect to the norm of the sp
Ly(R,; 7sinh m7dT). Moreover, the Parseval identity

e}

= 7sinh 7| K [ f ]dT—/|f )|*dx (1.10)
0

holds and the inverse operator is defined by the formula

N
f(z) = INLTO%/TSinhWTKi;g)K”[f]dT’ (1.11)

0
where the convergence is in mean-square with respect to the nati®f ; dx).
Formula (1) involves the product of the associated Legendre functions of different parameters [1], Vol
1 and [4]. The functiorP,(z) is the associated Legendre function of the first kind, which is analytic in the
half-planeRe z > —1 and entire with respect te. The following integral representations will be useful in
the sequel (see [4])

2 o —
P_ijovir(p) = - cosh(m')/ Jo (y a 5 ) Koir(y)dy, p > 1, (1.12)
0
cosh 01
P_ i (cos do, 0 <0 <m, 1.13
H b= \/2 cos f — cos [3) ( )
2cosh(mr) [ . o dy
Py jppin(cosha) = 4] =228 yeoshape (VY >0, 1.14
sir(cosha) \/; e %o (1.14)
[ do
Py jppi-(cosha) = = ' _ 1.15
1/2tir(cosha) 7T/0 (cosh o + sinh v cos §)1/2+i (1.15)

We note the important valudg,(1) = 1, v € C,

- s
RO == ras 9

and uniform asymptotic expansions with respect & infinity

697

V27T sin 0

2
P_1/54ir(cosha) = O | {/ ————sin <a7 + z) ,0<a<A<o0, 6>0, 7T— 4+o0. (1.17)
T sinh o 4

The associated Legendre function of the second kind is denotéd (ay and it is analytic in the half-plane
Re z > 1. It has the following uniform asymptotic behavior at infinity [1], Vol. 1

- Vi T(1+v) —v—1
QV(Z)O(2V+1F<V+3/2)Z ),z—>oo, (1.18)

which can be easily obtained from its representation in terms of the Gauss hypergeometric function (s

[4]).

P_1/24ir(cosf) = O < ) ,0<0<m—06,6€(0,m), T — +o0, (1.16)




Index Integral and Convolution Operator 4

We will appeal below to the following integral representation

T [ _ dy 1
o h — - ycoshaIV It _ = 1.1
Qv—1/2(cosh @) \/;/0 e (y)\/@, Rev > 5 &> 0, (1.19)

wherel, (z) is the modified Bessel function of the third kind [1], Vol. 2.
The classical Mehler-Fock transform in the spégé(1, co); dx) we define in the form [9], [10]

N

MF[f](r) =Lim. | P_yjoi(x)f(x)dx, (1.20)

N—oo
1

where integral (1.20) is convergent in the mean square sense with respect to the hgfRinr tanh w7dr).
It is known [3] that)M F' is an isometric isomorphism

MF : Ly((1,00); dx) — Lo(Ry; 7 tanh w7dT)

with the inverse operator

N—oo

flz) = l.i.m./Ttanh T P_yjoqir(x) MF[f](T)dT, (1.21)

where the convergence is with respect to the normif{1, c0); dx), and the generalized Parseval equality

e}

/7'tanhWTMF[fl](T)MF[fg](T)dT = /fl(x)fg(a:)da: (1.22)

0

forany fi, f2 € Ly((1, 00); dz).

2 Convergence properties and the validity of (1.1) under various pa-
rameters

We begin this section with the following
Theorem 1 Letz > 0 andu,n > —1. Formula(1.1) is valid and the corresponding integral converges
absolutely if
>0, pr4+nt>1 (2.1)

The convergence ifl.1) is conditional if:

pu=0, n>1 (2.2)

or vice versa, or
(1,m) € (0,1) x (0,1), > +n*>=1. (2.3)

Finally, when at least one of the parametgrsr 1 belongs to the intervgl—1,0) or (1,7) € [0,1) x [0, 1)
such thatu? + n? < 1 the integral(1.1) is divergent.
Proof. Denoting by

[ 9 00
IMW(Z') = E\/O Ttanh(WT)KiT(x)P,1/2+iT([1,)p,1/2+i7-(77)d7', (24)
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the right-hand side of the integral (1.1) we first consider the ¢ase) € [1,00) x [1,00). Taking into
account asymptotic behavior by the index of the modified Bessel function and associated Legendre functio
(see formulas (1.8), (1.16), (1.17)) it is not difficult to observe the absolute convergence of the integral (2.4
in this case. Moreover, multiplying both sides of (2.4) bye*, we appeal to inequality (1.4) for the
modified Bessel function in order to motivate the use of the Mellin transform [8], [10]

_ /0 " Fa)e e, (2.5)

with respect tar through the obtained equality. Changing the order of integration by Fubini’'s theorem, we
employ relation (8.4.23.3) in [8]

s+11)I'(s —iT)
I'(s+1/2)

o r
/ e " Ki(z)2* tdr = 275/ ( , Res >0 (2.6)
0

and come out with the equality

21/273 00 . »
) / 7tanh(m7)L (s + i7)1(s — i) Poq jopir (1) P-1 /2447 (0)dT, (2.7)

()= -2
w®) = 5172 .

where -
I, (s) :/0 Ly (x)e 2" 2dy. (2.8)

Further, appealing to (1.12) we substitute it in (2.7). Then denotingby, /£, b = ,/=* we consider
the triple integral

23/2 s
I = h(2 I'(s —
in(8) (1 12) / / / 7sinh(27n7)[(s +47)[(s — i7)

x Jo(ay)Jo(bu) Koir (y) Koir (u)dudydr. (2.9)
By virtue of the Stirling asymptotic formula for gamma-functions [1], Vol. 1 we have

sS+1T)| = e T T — —+00.
|F< . ), O( 7TT/2 Res 1/2)7

Therefore taking into account asymptotic properties of the Bessel functions (see (1.3), (1.4), (1.5), (1.7)
we verify the absolute convergence of the integral (2.8) and the possibility to change the order of integratic
via Fubini’'s theorem. Since the inner index integral with respeecticalculated by relation (2.16.53.1)

in [7] we arrive at the equality

i 21/2 3s y2u s
[M:W(S) = 5 n 1/2 / / JO ay =]0 bu (2—u2> KQS (\/ u? + y2> dUdy (210)

In the meantime (see relation (2.3.16.1) in [6]),

2,2 \ 5 1 [ 2402w
( g/u ) Kos (\/u2—|—y2> = 5/ PR T 2 13
0

y* +u?

Consequently, after simple substitutions (2.9) yields

I ()T (%+s) ek /OOO /OOO /Ooo To(ay) Jo(bu)



Index Integral and Convolution Operator 6

2 2
Yy~ tu uy s—1
— |Vt = Ldudydt. 2.11
XeXp( { " uy +2x/§D o 24

Now we are going to cancel the Mellin transform (2.5) in the latter equality (2.11) by using its uniquenes:
for integrable functions [10]. Taking into account factorization properties of the Mellin type convolution
transforms (see [8], [10]) (2.11) implies for> 0

o ¢ dx 2_3/2 ° °
I e — = J, Jo(b
|ttt = [ [ et

2 2
Y t+u uy
— 8t dud 2.12
xexp( [\/ 2uy + 5 gt]) uay, ( )

where the left-hand side represents a modified Laplace transform [10] of the fuactign, (x). Mean-
while, the double integral in the right-hand side of (2.12) can be treated by polar coordinates. This drives

the form 32 , )
2” o[> Y+ u uy
Jo(ay)Jo(bu) exp [ — | V8t + dud
gl eanaon Xp( [ Sy z@D udy
9-3/2 oo rm/2 V8t 72 sin 2¢p
= Jo(arsin @) Jy(br cos p) e — | = + rdrdp.
\/E /(; /0 O( 90) 0( S0> Xp( [stgo 4\/§ 2

The latter integral by is calculated via relation (2.12.39.3) in [7]. Substituting the result in (2.11) we

obtain - y
Lt AT
/0 I/m(k)e T

X

/2 1 2 32 b2 2
= 2[0(ab\/§)/ exp (—\/Q T a7sm pr 0 cos SO) de, (2.12)
0

sin 2¢

wherel,(z) is the modified Bessel function [4]. Hence calculating the integral with respecind2.12)
by using an elementary substitutions and calling relation (2.3.16.1) in [6], we get finally the equality

/ h Iu,n(x)e_m_éid?x = 21, (abt) Ky (t\/(l T a1+ b2)> . (2.13)

Taking into account definitions of the involved parameters, the property of Bessel funétions= Iy(z)
and relation (2.12.10.1) in [7], we write (2.13) in the form

[e¢) 2 d o] 2 d
/ [um(l’)e_x_@_x — / e_x(z'*‘l)_@t]o(x]{)_x’ t> O’ (214)
0 x 0 x

where we denote by = un, andR = \/(n? — 1)(1 — 2). Consequently, the final equality gives the value
of the integral (1.1) via the uniqueness theorem for the modified Laplace transform of integrable function
[9], [10]. Canceling this transform in (2.14) we find the value of (1.1), namely

I, ,(x) =e " Jy(zR), p,v € [1,00) x [1,00). (2.15)

We will prove now the validity of integral (1) under conditions (2.1) and its absolute convergence. Indeed
we could see already that (1.1) converges absolutely where [1,00). Suppose that € (0,1),n > 1

or vice versa. In this case formula (1.1) is true because it can be prolonged analyticallprby. In

fact, P_y 21, (2) is analytic in the right half-plan&e z > —1 and integral (1.1) converges absolutely and
uniformly with respect t@ = arccosi € [e, 2 —¢], n > 1 or¢ = arccos € [e, 2 —¢|, p > 1forany
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k > 0 owing to uniform estimates (1.16), (1.17). Whenn € (0, 1) x (0, 1) we employ again (1.8), (1.16)
and an elementary equality [6]

arccosu + arccos) = arccos(;m — V(1 —p2)(1 - 772))

to obtain for sufficiently bigd > 0

/ Ttanh(77) | Kir (@) Py jopir (1) Po1j21i (0)] dT

< C/Oo tanh(r7) exp (—r E — arccosu — arccosnD dr

* tanh(7)

=C T exp <—7‘ [g - arccos(;m — (1 —p2)(1 - 772)>D dr, (2.16)

whereC > 0 is an absolute constant. Therefore, the latter integral in (2.16) converges uniformly if

arccos(;m — (1 —p2)(1 - 772)) < g —¢,e>0.

This means the condition* + * > 1 and proves (2.1).
Further, whenu, n € [0,1) x [0,1) such tha? +n? < 1, then

/ T tanh(m7) Kir () Py /2450 (1) P-1 /2447 (n)dT
A

=0 (" exp (r [arcoos{j — VT 7) = 5] ) r) > o0, 4 - 0

since arcco{un — /(1 =p2)(1 - 772)> > 7. Thus integral (1.1) diverges under these conditions. More-

over, since the uniform asymptotic formula (1.16) keeps trué f@r( , T — g} , € > 0 (see [4]), we easily
getassuming € (—1,0), n > —1 or vice versa, that integral (1.1) is divergent, namely

/ 7 tanh(77) Kir () P_1jo4ir (1) P-1/244- (1) dq
A

=0 (/AOO P_1/24i-(n) exp (q [9 - g]) dq) — 00, A — oo0.

Finally, we will establish the validity of the integral (1.1) under more delicate conditions (2.2), (2.3). To
do this we recall (1.8), (1.16), (1.17) to verify the uniform convergence of the integral

/ Tta‘nh<7TT)KiT(x)P—1/2+iT(/’[‘)P—l/2+i7'(,r])dq
A

-0 (/Aooexp (T (arccosu— g)) wgn (Tlog (%) -7+ %)

X COS (T arccosh) — %) dr) (2.17)

with respect tqu € [0,¢], ¢ > 0 forn > 1, & > 0 and sufficiently bigA > 0. But the latter fact follows
immediately from the Abel test of the uniform convergence. This means that we can=p0tin (1.1) and
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condition (2.2) holds for any > 1. Moreover, taking into account valué¥(0) (see above) we derive the

formula
7 tanh(7r)
JO (l’ 77 — \/7/ KiT(I>P_1/2+iT(77)dT, (218)

which coincides with a particular case of the relatlon (2.17.27.21) in [8]. We will show that formula (2.18)
is true also form = 1, which gives a new index integraP(, /2., (1) = 1)

/ MK”(@CZT - /%
TG +5)] 2

In fact, integral (2.18) converges uniformly hye [1,1 + €], € > 0 since (see above) with the integration
by parts

00 h
/ T tan (7T7—) KZ.T(Z’)P_UQ-H’T(T])dq

TG+
Rl 27 T T
=0 </A sin (7’ log (?> -7+ Z) cos (7’ arccoshy — Z) dT)

-0 (arccosh; /AOO cos (7’ log (%T) — 7(1 — arccoshy) + Z) l%éﬁ)

and the latter integral converges uniformly by [1,1 + ¢|, € > 0 via the Dirichlet test.
Analogously, ifu, n € (0,1) x (0,1) such thay:? + n? = 1, then (1.1) converges because

/ 7 tanh(77) Kir () P_1 joqir (1) P-1 /246 () dT
A

=0 (/AOO exp (7 (arccos(;m — V(1= p2)(1 - 772)> = g))
X %sin (Tlog (QSC—T) —r+%) d7>
:o< j%sm (Tlog (%T) —H%) dT) <

due to the Dirichlet test. Thus we get condition (2.3) and complete the proof of Theorem 1.
SinceP_, 54,-(1) = 1 we get the following value of the index integral

/ T tanh(m7) Kir () Py jo4ir () d7 = w/g—xe_m“, x, >0,
0

which coincides with relation (2.17.26.15) in [8]. For= 1 it gives the value

/ 7 tanh(77) K, (x)dT = ”%376—337 x>0, (2.19)
0

which is the limit case of the relation (2.16.48.15) in [7]. Whea:- 1 > % formula (1.1) becomes

[ v )i = e 1),

which represents a slightly corrected relation (2.17.29.4) in [8].
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Corollary 1. Letz > 0andu >0, n > 0,z = un,and R = \/(n? — 1)(1 — u2). Then

V2 [ dz
Wﬁ/o e IEZJ()(xR)qu—(JI)ﬁ = SeCNT‘-T)P—l/?-HT(N)P—I/Q—&-ir(n), (220)
where the integral converges absolutely. Moreoverifpn;, j =1,2suchthat); >1,0<pu; <1, j =

1,2, orvice versa, or; > 1, ju; > 1, j=1,2,0r0 <n; <1, 0 < p; <1, nf+p5 > 1, j=1,2we get
the value of a new index integral

> tanh(7r
/ T#PAQHT(M)P71/2+z'7(771)Pf1/2+iT(M2)Pf1/2+z‘r(772)d7
0

cosh(mT)
1 (z1+z2)2+R%+R§>
= 2.21
MQ 2 ( 2R\ Ry ’ (221)
wherez; = p;n;, R; = \/(77 —1)(1 = p3),j = 1,2. If one of the parameters;, n;, j = 1,2 is equal to

1, sayu;, = 1, then

1 1
7T\/7]1+22) +Rz

°* tanh(wr
/ T—())P v2+ir (M) Po1y2rir (f2) Po1 iz (12)dT = —
0

cosh(m (222)

Finally, whenu; = s = =m =a € (\/%, oo) \{1} we have in particular, a new index integral

/Ooo TM [P71/2+i7'(a)]4d7' — 1 |Q " (%) , (2.23)

cosh(mr) m2|a? — (a?
The limit case: = 1 (see(1.18)) coincides with the known value

°° tanh 1
/ Tan(m’)d 1
0

cosh(m7) 271

Proof. The proof is based on the Plancherel theorem and Parseval’'s equality (1.10) for the Kontorovic
-Lebedev transform (1.9). In fact, via the parallelogram equality for the inner product, (1.10) yields

% /OOO7'Sinh(WT)Kir[fl]KiT[fz]dT = /000 fi(x) fo(x)dx. (2.24)

Taking0 < u < 1, n > 1 we easily check via the asymptotic behavior of Bessel functiongtfiall,(zR) €
Ly(Ry; dx). Therefore (2.20) holds and the integral converges absolutely to the same limit under these cot
ditions. However the absolute and uniform convergence keeps true for &ny, n > 0. Therefore the
equality (2.20) is still valid for any nonnegative parameters .. Further, we immediately get (2.21) and

its particular cases (2.22), (2.23) as a consequence of the Parseval identity (26) and relations (2.12.38
(2.12.8.2) in [7]. The corresponding conditions on parameters guarantee the absolute and uniform conv
gence of the integral (2.21). Corollary 1 is proved.

3 A convolution operator and its mapping properties

We begin with
Definition 1. Let f, g be functions from(1, co) into C. Then the functiory « g defined orR ;. by

G = 2 [ [ e (oD@ D) s (3.1
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is called the convolution related to the Kontorovich-Lebedev and Mehler-Fock transforms (1.9) and (1.20
respectively (provided that it exists).

Theorem 2 f,g € L,((1,00);dz), 1 < p < 2. Then the convolutioQf * ¢)(z) exists for almost all
x > 0 and belongs td.»(R;; dz). The convolution is commutative and

||f * g||L2(R+;dx) < C||f||Lp((1700);dx)||9||Lp((1700);dx)= (3'2)

whereC > 0 is an absolute constant
Proof. Indeed, from Definition 1 it follows thaf * g is a commutative operation. Further, by virtue of
Fubini’s theorem with the use of the generalized Minkowski inequality there exists

I eallonn < 2 [ [T ([T (/T D) de) I s@igte . 03

The integral with respect to

I= /000 e 2w s (ac\/(u2 —1)(v? — 1)) dx

is calculated by relation (2.15.20.1) in [7]. Consequently, we obtain

1 2u?v?
= T/ (u? — 1) (v? — I)Q_1/2 ((U2 -DE-1) 1> .

Substituting this value in (3.3) and using thél#er inequality for double integrals it becomes

\/§ 0o oo B . 2202 1/q
I A B e e e L)

p
X fllzp(o0)ide) 19 Lp((Lo0)sda), @ = T (3.4)
Meanwhile, calling representation (1.19) of the associated Legendre fugtign, (cosh o), we puty = 0
and use relation (8.4.22.3) in [8]
1 T P($)T(1/2 — s) 1
] = 2x) " °ds, 0 < =.
e holr) = 5o e T(1—s) (22)%ds, 0 <7 < 3

Substituting the latter integral into (1.19) and changing the order of integration via Fubini’'s theorem, we

have N o 2
% <(u2 _1;;1(];2 —1) - 1) o ds.
Hence N - N
i (W —QSZ;Q -1 1) = 2;% <<u2 D 1>
(PR )
where

e ([ Rl

—100
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Therefore with elementary substitutions
([ -0 -0, (e ) )
_2 [ _ 1/q

< 07\2/_ (/ / (W = 1) = )] (u?0® — (u? — 1)(0* — 1))q(7 1/2)/2 dudv>
™ 1 1
2 [ _ 1/q
07\2/_ (/ / [sinh u sinh 0]~ (sinh® u + sinh® v + 1)!1(“/ 1/2)/2 dudv)
™ 0 0

C 9 o] 2/q
< V2 (/ sinh!~? u du) :
0

2

where the latter integral is evidently convergent joe (%, %) C (2,00) becausd) < v < % Sincey

is arbitrary from this interval, inequality (3.5) is true for apy< ¢ = ]% Hence appealing to relation
(2.4.4.7) in [6] and putting

1/2 1
O<y< =
s) <y<s

o 00— qy/2T((ay = 1)/ ( [ HOIUESRE

- 9(4+9)/2q 7 (2+59)/2q T(1—s)

—100

we get (3.2) and complete the proof of Theorem 2.

In order to study mapping properties of the Mehler-Fock transform (1.20) we will need a uniform
estimate byr € R, of the associated Legendre function. But this easily follows from representation
(1.15). Precisely, we havé_, /o, (7)| < Py 2(x), © > 1.

Lemma 1. Operator of the Mehler-Fock transfor(i.20)

[e.o]

MEFUIT) = [ Prajoein (o) (), (3.5)

1

is bounded as the operator frof),((1, 00); dz), 1 < p < 2 into the space’y(R..) of bounded continuous
functions orR; and the integral 3.5) converges absolutely and uniformly by> 0. Moreover,

M —q¢" p
MF < (@2/qfi——— 2 7 00):da = —. 3.6
IME[f]llcoms) < (2/0) TA—¢7 120 00)ida)> 4 p— (3.6)
Whenp = 1 it gives, correspondingly,
IME[f]llcoms) < Ifl]zra,00)da)- (3.7)

Proof. Indeed, taking into account the previous uniform estimate of the associated Legendre functior
we use the Hider inequality forl < p < 2 to find

(e 9]

IMF Al = sup MFIAW < [ Pap@lf@)ds
B 1
oo 1/q
<| [P ) Wl g = 2 (33)

p—1
1
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Meanwhile, representation (1.14) and the generalized Minkowski inequality yield

(7 1/q 5 ~ - 1/q dy
P ()de | <> / ( / e—wdm) Ko(y) 2L
_ /2 — 7T3
/ 0 1 VY
[2 [ _
= q—l/q F/ e_yKo(y)y_(q 1+1/2)dy.
0

The latter integral is calculated by relation (2.16.6.4) in [7]. Therefore,

o) 1/q
( / Pq1/2<:c>dm> < /gt (39

and combining with (3.8) we establish (3.6). For the limit case 1 we deduce (see (3.9))

2 [ _ dy
IME[fllcos) < LIz (00)sday SUPLP-1/2(2)] < ([ Fl]1 (1,000 —3/ e Ko(y)—
z>1 ™ Jo VY

= |[f1l1((1,00);d2)

Thus (3.7) holds and Lemma 1 is proved.
Corollary 2. The norm of the operatod/ ' : L,((1,00);dx) — Cp(Ry), 1 < p < 2 satisfies the
estimate 29— g
MFIl < (2 1/q—_q'
IMF) < 2/0) =
Whenp = 1, we havg|M F|| < 1.
Theorem 3 Let f,g € L,((1,00);dz), 1 < p < 2. Then for allz > 0 the following generalized
Parseval equality takes place

(f*xg)(x)= %/ 7 tanh WTMMF[f](T)MF[g] (1)dr, (3.10)
™ Jo Ve
where the integral is absolutely convergent.

Proof. In fact, we employ Ferrell’s integral (1.1) and substitute it in (3.1). The change of the order of
integration is guaranteed by Theorem 2 and Fubini’'s theorem. Finally the definition of the Mehler-Focl
transform (3.5) leads to (3.10). Theorem 3 is proved.

Corollary 3. Under conditions of Theorem 2 the product

MPF[f](x)MFlg](7) € Ly (R+;Ttanh ”dT) |

cosh 7t

Moreover, the factorization identity (s¢&.9))

1
cosh 7t

Kir[f + g] =

ME[f1(r)MFlg](r) (3.11)

and the Parseval equality hold

cosh 7t

| s a@pis = % [ SR MM Pl () b (312)
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Proof. Since via Theorem Z x g € Ly(R,;dz) the statement is an immediate consequence of the
Lo-theory for the Kontorovich-Lebedev transform (1.9) by virtue of equalities (1.10), (1.11). Corollary 3 is
proved.

Theorem 4 Let f € L,((1,00);dx), 1 < p < 2. The Mehler-Fock transforr(8.5) is the composition
of the Kontorovich-Lebedev transforfh9) and the following Laplace transform

(Lf)(z) = / e F()dt, > 0. (3.13)
1
Namely, we have the equality

MFI[f](1) = l\/gcoshm-KiT [Lf], 7>0, (3.14)

™

where all involved integrals are absolutely convergent.
Proof. In fact, (3.14) takes place due to (1.9), (1.14), (3.5) and Fubini’s theorem. The latter fact can b
verified employing the estimate

jlpl/w(x)f(x)’dx - \/Wz/oo (/oo d””) ) KM)% (/OO f(x)pdx) :

_ 2 & _ (-1 P
=gy —3HfHLp(<1,oo>;dz>/ e Ko(y)y™" TPy < 00, g = ——.
™ 0 p

Theorem 4 is proved.

4 Convolution integral equations

This section will be devoted to a class of integral equations of the first kind related to the convolutior
operator (3.1). Namely, we will examine a solvability of the following integral equations

/1 " K, y) fly)dy = g(a), 2 > 0, (4.1)

/100 [Ae ™ + K(z,y)] fy)dy = g(z), A€ C, >0, (4.2)

where the kernek (z, y) is defined by the integral

K(x,y) = Ki(z,y) = % /1 et (2v&7 = D@ = 1)) h(w)du, (4.3)

h, g are given functions and is to be determined.
Definition 2. Let1 < p < 2. We call by

MFy, = {¢(7) € Ly (Ry; 7 tanhw7dr)) ; () = ME[f](7), | € La((1, 00); d) N Ly((1, 00); d) }

aclass ofimages of € Ly((1,00); dz) N L,((1, 00); dz) under the Mehler-Fock transform (1.20), consid-
ering a restriction of this map to

MF : Ly((1,00);dz) N Ly((1,00); dz) — MF, 5.
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We note thaiM F,, » is a subspace di, (R ; 7 tanh 77d7) and by virtue of Lemma 1 we havetF', , C
Co(R4).
Theorem 5. Letl < p < 2, g € Lo(Ry;dx) andh(z) € L,((1,00);dx). Then for the solvability of

: . " - hrr Ky,
the equation(4.1) in Ly((1,00);dxz) N Ly((1,00); dx) it is necessary and sufficient that———rJ] ;[Zb]( )[g] €
Vi -
MF, . Moreover, the corresponding solutigitz) is unique and given by the formula

[e.e]

flx) = /Tsinh T P_ijo1ir ()

0

Ki-[g]
——d 1 4.4
MFR)(D) T (44
where the convergence is with respect to the normsifi1, co); dx).

Proof. Necessityindeed, if under conditions of the theorem equations (4.1) is satisfied, then convolution

(3.1) exists and by (3.11)
1

cosh 7t

Kirlg] = ME[fI(T)MF[h)().

coshmr K,
However,M F[f] € MF,». Hence MFIh] (T>[g]

is given by (4.4) via inversion formula (1.21) for the Mehler-Fock transform (1.20).
cosh 7 K- [g]
MFIh|(T)
that f(x) € La((1,00);dz) N L,((1,00);dx). Further, owing to conditions of the theorem the left-hand
side of (4.1) is the convolution like (3.1} * h)(x), which belongs td.,(R; dz). Therefore due to the

factorization identity (3.1) we obtain

€ MF,, and the corresponding solutionin(R . ; dx)

SufficiencyNow assumin € MF,, we get correspondingly via (4.4) and Definition 2

1

cosh 7t

Kol # h] = MF[f)(r)MFR](7). (45)

cosh 17 K [g]

But (see (1.21) and (4.4} F[f] = MER|(7)

. Substituting this expression into (4.5) we find

1 cosh 77 K [¢g]

Beelf o W = o M) =3 e )

= Ki[g]-

So by the uniqueness property for the Kontorovich-Lebedev transform equation (4.1) is satisfied, and (4.
its unique solution from the clads;((1, 0); dz) N L,((1,00); dx). Theorem 5 is proved.

Equation (4.2) can be treated similarly by using composition representation (3.14). Indeed, under col
ditions of Theorem 5 after applying the Kontorovich-Lebedev transform to both sides of (4.2) and taking
into account factorization identity (4.5) we get the following algebraic equality

%\/g MF(f)(r) + MF[f)(r)MF[R)(r) = cosh 77K g), (4.6)
which can be solved with respectid F'[f](7) if

3\/g+ MPF[R)() £ 0, T € R,.

(

Hence

MF[f](r) = cosh 7r K[ [3 2 MF[) (T)] (4.7)

s ™
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and we come out with the following result.

Theorem 6. Under conditions of Theoremfor the solvability of equationi4.2) in Ly((1,00);dz) N
L,((1,00);dx), 1 < p < 2itis necessary and sufficient that the right-hand sidetdf) belongs taM £, .
Then the corresponding solutigifx) is unique and given by the formula

[e.9]

fz) = /Tsinh 7T P_1jayir (2) Kir[g] [%\/g—i- MFh] (7')] dr, r > 1, (4.8)

0

where the convergence is with respect to the normif{1, co); dx).

Let us indicate a special case of the equation (4.2) when its solution (4.8) can be represented in tl
resolvent form. Suppose thatzr) is the modified Laplace transform (3.13) of some functign) <
Ly((1,00);dt) N Ly((1,00);dt), 1 <p < 2,i.e.

g(x) = /10O e " op(t)dt. (4.9)

A class of such functiong belongs toL,(R;dx). In fact, by virtue of the generalized Minkowski and
Holder inequalities we have the estimate

00 1/2 oo 00 1/2
ol = ([ looPar) < [ (7o) ptola

[e] dt 1/q
\/_/ I\/_ \/—H<PHLP (1,00)5d2) </1 W)

71 92— 1 p
==l <o 0= 5
Therefore by composition representation (3.14) and inversion formula (1.21) for the Mehler-Fock transforr
solution (4.8) becomes in the form

flz) = /TSinhﬂ'T P_1/01ir(2) Kir[g] [% %+ MF[h](T)] dr

2 /2 —l—MF[h](T)] dr

™ w

/T
= —— [ 7tanh7t P_ij9pir(x) M F
= | s (@MF]
0

77_)\ /Ttanh T P_yjotir () M FpldT
0
o0 -1
2 A2
N Ttanh 7 Py oy (0) MF[]M F[R)(T) | =\/ = + MF[h](T)| dr
V7
0
w2 r
=53 o(x) — /Ttanh TTP_194ir (2) M F @] M F[h](T)

0

X [%\/gnLMF[h](T)] dT] , A#£ 0. (4.10)
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Finally, let us consider an example of the equation (4.2), letting[h](7) = [cosh77]~!. In order to
find an original we use the inversion formula (1.21) and integral representations (1.14), (2.19). So we hav
correspondingly, changing the order of integration and calculating elementary integrals

tanh 77 d
h(u) = / COShTI‘TP 1/2+4ir (W) dT = ”7r3 /Ttanhﬂ'T e_y“KiT(y)%dT

0
1 [ 1
= —/ eV gy = — —
T Jo m(u+1)

Equation (4.2) in this case can be written in the form (see (4.9))

/1 T e (y) — )y + / " Kl ) fy)dy =0, (4.11)

where the kernek,(x, y) can be calculated explicitly by using relation (2.16.51.10) in [7]. Precisely we
obtain

o

Kp(z,y) = % OooTtaIlh(ﬂ'T>KiT(I)/e_tyKiT(t>%dT
\/;e / —\/gewm(—x(w ),

where Ei(z) is the integral exponentlal function [7]. Now taking= =+/7/2 in (4.11), consider the
integral equation

e " (ﬂ\/gf(y) - w(y)) dy — \/g/loo eV Ei(—z(y+1))f(y)dy =0, z > 0. (4.12)

According to (4.10) under the corresponding conditions its unique solution is given by the formula

T 1 T Ttanh 71
/ P oy (x) MF ] (r)d7 | (4.13)

Jx) = 2 ple) = 2 cosh?(77/2)

Meanwhile, substituting the value af F'[¢] by formula (3.5) into (4.13) and changing the order of inte-
gration, we will have the inner integral of the form

o0

7tanh 71
—— P () P_ i (y)dT.
0

Its value is still unknown. However, one can represent it in another form employing integral (1.1) anc
relation (2.16.33.2) in [7]. Indeed, by straightforward calculations this gives the result

o0

O/%Pl/2+i7(x)f)1/2+i~r(y)d7': (2)3/2/0 et <t\/ 2 —1)(y? —1)> Ko(t)Vtdt.

™

Hence taking into account (4.3) the unique solution (4.13) of the integral equation (4.12) can be written i

the equivalent form
flz) = \/g [cp(m) - /Kg,(:c,t)Ko(t)\/zdt:| , x> 1
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where

Ky(z,t) = W—\\//i /OOO e "1, (75\/(962 —(y* — 1)) p(y)dy.
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