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Abstract

We deal with the following fractional generalization of the Laplace equation for
rectangular domains (x,y) € (20, Xo0) X (y0,Yo) C Ry x Ry, which is associated
with the Riemann-Liouville fractional derivatives

APu(z,y) = X u(z,y), AP = D}U;rf + D;;rf,

where A\ € C, (a, ) € [0,1] x [0,1]. Reducing the left-hand side of this equation to
the sum of fractional integrals by = and y, we then use the operational technique for
the conventional right-sided Laplace transformation and its extension to generalized
functions to describe a complete family of eigenfunctions and fundamental solutions
of the operator A®# in classes of functions represented by the left-sided fractional
integral of a summable function or just admitting a summable fractional derivative.
A symbolic operational form of the solutions in terms of the Mittag-Leffler functions
is exhibited. The case of the separation of variables is also considered. An analog
of the fractional logarithmic solution is presented. Classical particular cases of
solutions are demonstrated.

*E-mail: syakubov@fc.up.pt. Work supported by Funda¢ao para a Ciéncia e a Tecnologia (FCT, the
programmes POCTI and POSI) through the Centro de Matemdtica da Universidade do Porto (CMUP).
Available as a PDF file from http://www.fc.up.pt/cmup. The author thanks Vladimir Mityushev for the
statement of the problem and fruitful discussions of possible applications during the 7th ISAAC Congress
at Imperial College London in July of 2009.



2 Semyon Yakubovich

Key words: Laplace equation, Riemann-Liouville fractional integrals and derivatives,
generalized functions, Laplace transform, operational calculus, Mittag-Leffler function,
logarithmic solution, strong and weak solutions, Hypergeometric functions

2000 Mathematics Subject Classification: 35J05, 26A33, 35A22, 44A10, 35C05, 33E12,
34B27, 33C20, 35D05

1 Introduction

Let D), f and 1], f be the Riemann-Liouville fractional derivative and integral of order
v > 0 defined by [3, 4]

(DI, f)(x) = (%)" . 1 . /x . _ft()?_n+1dt, a,r>0 n=nH+1, (L1

n —

(0, f)(x) = r(lfy) / . f(gl_vdt, a,z >0, (1.2)

where [ | means the integer part of . Consider a class of the linear non-homogeneous
differential equations

(Drsu)(@,y) + Dy u) (@, y) = u(z,y) = f(z,y), (1.3)
where A € C, (o, 3) € [0,1] x [0,1], f(z,y), 0<zi <2< Xg<oo, 0<yy<y<Yy<
oo is a prescribed function and u(zx,y) is to be determined. Denoting by

A* P .= plte 4 pltp (1.4)

To+ Yo+

equation (1.3) can be written in the form (A* ? —XE)u = f, where E is the identity
operator. When o« = # = 1 we come out with the classical Poisson equation. Therefore
we call fractional partial differential equation (1.3) the fractional two-parameter Poisson
equation (FPE). Its homogeneous analog it is naturally to call the fractional Laplace
equation (FLE) or fractional two-parameter Laplacian.

In this paper we present a general operational approach [1] to describe eigenfunc-
tions and fundamental solutions of the fractional two-parameter Laplacian basing on the
conventional right-sided Laplace transform [5]

F(s) = f(t)e™*dt, Ty > 0, Re s > ag (1.5)
Ty
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of absolutely integrable functions f € Li((T}, 00); e %'dt) with respect to the measure
e~ %!dt and its distributional analog

F(s) = (f(t),e™™) (1.6)

in Zemanian’s space L'(ag) defined below. Operational solutions will be written in terms
of the generalized Mittag-Leffler function £, ,(2), [2], [3], [4] which is defined in terms of

the power series
n

- z
E, .(z)= ——, u>0,veR, zeC. 1.7
s (Z) ;F(/m—l—l/) H v Z ( )
In particular, the function E,,(2) is entire of the order p = % and type ¢ = 1. The

exponential function, trigonometric and hyperbolic functions are expressed through (1.7)
as follows
E11(2) = €*, Ey1(—2%) =cosz, Fy () = coshz, (1.8)

ZE272(—22) = sin z, ZE272(22) — sinh z. (1‘9)

We will consider in the sequel the existence and uniqueness of general solutions of the
fractional Laplacian and its particular cases. Possible applications and an investigation
of the fractional two-parameter Poisson equation (1.3) are still out of the framework of
this paper and will be done in forthcoming articles of the author.

2 Eigenfunctions and fundamental solutions of the
fractional Laplace equation

We begin with

Definition 1 [3]. By AC"([a,b]), n € N we denote the class of functions f(x), which
are continuously differentiable on the segment [a,b] up to the order n—1 and f=V(z) is
absolutely continuous on [a,b].

It is known [3], that the class AC™([a,b]) contains only functions represented in the

form

1 v » <
f(z) = CE=] /a (x — )" p(t)dt + kz:;ck(x —a)", (2.1)

where p(t) € Li(a,b) and ¢, are arbitrary constants. It is not difficult to find that
o(t) = f™(t), ex = f*(a)/k!. Moreover, if f(z) € AC"([a,b]) then fractional derivative
(1.1) exists almost everywhere and can be represented by the formula

n—1

") (g
DLH) = X iy o=

k=0
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L
+F(n —) /a (z — t)r—ntl dt, n =[]+ 1. (2.2)

Definition 2 [3]. By I),(L1) we denote the class of functions f represented by the
left-sided fractional integral (1.2) of a summable function, i.e. f =1 ¢, ¢ € Li(a,b).

A description of this class is given by the following

Theorem 1 [3]. A function f(x) € I],(L1), v > 0 if and only if (1,7 f)(x) €
AC™([a, b)), n=[y]+1 and (I}7"f)®(a) =0,k =0,1,...,n — 1.

Definition 3 [3]. We will say that a function f € Li(a,b) has a summable fractional
derivative (D), f)(z) if (1,7 f)(x) € AC"™([a,b]), n=[y]+ 1.

If (D), f)(z) = (L) (177 f)(x) exists in the ordinary sense, ie. (1077 f)(z) is dif-
ferentiable in each point up to the order n, then f(z) evidently admits the derivative
(D, f)(x) in the sense of Definition 3.

So, if f(x) € 1] (Ly), then (I, D), f)(xz) = f(z). Otherwise if f just admits a
summable fractional derivative, then the composition of fractional operators (1.1), (1.2)
can be written in the form (see [3])

(Lay Doy f)(@) = f(z) - Z_: %

(Lo "N @), n=[]+ L (2.3)

Nevertheless we note, that (D), 1), f)(xz) = f(z) for any summable function f.
Consider now the eigenfunction problem for the fractional Laplace equation in the
rectangular domain (z,y) € (zo, Xo) X (yo, Yo)

(Drzu)(a,y) + Dy w)(@,y) = A ula, ), (2.4)
where A € C, (o, ) € (0,1] x (0, 1] in the following three cases:

i) u(x,y) belongs to classes I;7*(L1), I;;rf(Ll) by = € [z, Xo] and y € [yo, Yo], respec-
tively;

ii) u(x,y) admits a summable fractional derivative (D, "u)(z,y) by x € [z, Xo] and be-

longs to [yljf(Ll) by y € [yo, Yo| or vice versa;

iii) u(z,y) admits summable fractional derivative (D, u)(z,y), (D;;fu)(x,y) by x €
[z0, Xo] and y € [yo, Yo, respectively.
Theorem 2. In the case i) trivial solution of the equation (2.4) is the only solution.
Proof. Indeed, taking the operator I, from both sides of the equation (2.4) and
using the identity (1,70 DL ¢u)(z,y) = u(z,y) it becomes
ulz,y) + (L Dy} w)(w,y) = MLy u) (e, y) = 0, (2.5)

Yo+
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Hence, applying the operator ];;rf to both sides of the equation (2.5), we use the fact

that due Fubini’s theorem this operator commutes with [;;Zf‘ Then we obtain
(Lot w) () + (L) (2, y) = ML L ) (2, y) = 0. (2.6)

Hence from conditions of the theorem we observe that fractional integrals of the equation
(2.6) are Laplace-transformable functions. Therefore we may act on (2.8) by the conven-
tional right-sided Laplace transform (1.5), let say, by y with T = y,. Taking into account
its convolution and operational properties [1] after straightforward calculations we arrive
at the following second kind homogeneous integral equation of the Volterra type

Ulx,s)+ (77 =) /x(x —t)*U(t, s)dt = 0, (2.7)

rl+a) J,

where A € C,s € C, Res > ag > 0, s = [s|'TPe? 0 =arg s € <_%7 %) and

U(a:,s):/ Oe_Stu(x,t)dt. (2.8)

Yo

Appealing to [2, Chapter 3] we find that (2.7) has the only trivial solution in the space
of summable functions and U(x,s) € Ly(zg, Xo) because U(x,s) € I,7*(L;) for each
s. Cancelling the Laplace transform and using its uniqueness property for summable
functions we get u(x,y) = 0. Theorem 2 is proved.

In the case ii) equation (2.6) should be substituted by the following equalities (see
2:3))

(I u)(z,y) + (I u) (2, y) — NI u) (2, y)
B (x — xo)o‘_l

(o)

(I w)(x,y) + (1 u) (o, y) — AIER L ) (2, y)

IR0+ S R L) ), 29)

or

_ w0 (Y =) 1t
= +W(Ixo+ ho) () + W(Ixﬁ hy)(z), (2.10)

where we denoted by
fO(y) = (‘[xlo_-‘féu)(x()) y)a
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Cauchy’s fractional initial conditions. Treating, for instance, equation (2.9) we take the
Laplace transform from its both sides and arrive at the following integral equation

gH6 _ .
Ulz,s)+ ﬁ /zo (x —t)*U(t,s)dt = F(x,s), x € (xg, Xo), A € C, (2.15)
where
_ (x — mg)*? (x — x0)®
F(z,s) —F(a) Fo(s) + —F(l o) Fi(s) (2.16)
and Yo
Fi(s) = / et fi(t)dt, i =0, 1. (2.17)

Yo
It is known [2], that a unique solution of the equation (2.15) in the class of summable
functions is

Uz, s) = F(z,s) — (s = ) /m(m — )

o
X Eiraita (—(8"7 = X)(x — t)"F) F(t, s)dt, (2.18)
which involves as the kernel the generalized Mittag-Leffler function (1.7). Next, substi-

tuting (2.16) into (2.15), using (1.7), (2.17), index laws for fractional operators [3] and
the estimates

(549 =) [ (@ = 0" Errasa (<65 = N = ) F(t. )

Zo

< ‘FO ‘ i |1+ﬁ + |/\|)n+1 /x(x _ t)n(1+a)+a<t _ xo)afldt
I'( n+1 )1+ a))l(a) /g,

—|—|F | io: |1+ﬂ + |)\Dn+1 /:c(x _ t)n(1+a)+o¢(t _ CBo)adt
I'( n+1 1 +a)T(1+a) /,

n=

Yo
< (17 5 Do = 20 | Brva, s (514 A0 = ') [ el ool

Yo

Yo
+(Xo = 20) Ei4q, 2(a+1) ((| |1+5 + A (Xo — $0)1+a) [/ €_a0t|f1(t>|dt

Yo

we write solution (2.18) of the Volterra type equation (2.15) in terms of the Mittag-Leffler
functions

U(z,s) = (x — 20)* " Eita, o (—(s"7 = X) (2 — 20)"™) Fy(s)
+(# — 20)*Erta, 14a (— (57 = X) (@ — 20)') Fi(s). (2.19)
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In order to cancel the Laplace transformation by s in (2.19) we will appeal to its distribu-
tional form (1.6) in Zemanian’s space £'(0) (see [5]), which is dual of the countable-union
space of test functions £(0) defined by

L£(0) = UJZ, La, ,

where {a, }52, is a sequence of real numbers a, > 0, which converges monotonically to 0+
as v — oo and each £, is a testing-function space of smooth functions ¢(y),y € (yo, 00)
and for each nonnegative integer k it satisfies

peu(p) = supye(yoyoo)e“”yho(k) (y)| < o0, k € Ny. (2.20)

According to [5, Chapter III] we assign £,, a topology generated by the multinorm (2.20).
Consequently, £, is a countably multinormed space and the kernel of the Laplace trans-
form e~** is a member of L,, if and only if Res > a,. Taking the space £(0) we have
an advantage that the space of smooth functions with compact support D is dense in
L£(0) and the members of the dual £'(0) are distributions. Moreover, any f € £'(0) is
a right-sided Laplace-transformable generalized function via the formula (1.6) with the
right half-plane Re s > 0 as a region of definition. Meanwhile, any analytic function F(s)
on the half-plane Re s > a > 0, which satisfies the estimate

|F(s)] < e ™e*P(|s]), Res>a (2.21)

where P(z) is a polynomial, may be identified as the Laplace transform (1.6) of a right-
sided Laplace -transformable generalized function which is concentrated on T' < t < oo.
Finally, the uniqueness and inversion properties are true and the inversion formula has

the form '
o+ar

f(t) = Tli_)IilQ F(s)eds, (2.22)
in the sense of convergence in D’ for any o > 0.

So in order to find eigenfunctions and general fundamental solutions of the fractional
Laplace equation (2.4) we will invert the Laplace transform in (2.19) by using formula
(2.22). Of course, we understand that the conventional right-sided Laplace transform
(1.5) is a particular case of (1.6) being applied to a regular generalized function f €
Ly((Ty, 00); e~tdt), ag > 0.

Further, we have

o+ir d nA+P)+1  podtir
lim sUHD E(s)e¥ds = lim (d_) / s+ B (§)eVds
r—00 . r—00 y p

o—ir —r

= (DPUHO £)(y), i =0,1, n € Ny,

0
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where { } is a fractional part of the number, the convergence is in D’ and we assume that

(I n+8)} 1, )(y) € ACIMUIFAIFL [y V] for any n € Ny. Therefore, canceling the Laplace
transformatlon in (2.19) and taking into account (2.16) after straightforward calculations
we get the expression for a family of eigenfunctions of the equation (2.4)

n

— (—1
un(eg) = 3 Sl @ - e

n=0

<10 (Ln+1); (14 a,n(l+a) 4+ a); Mz — 20)"*) (D f3)(y)

’I’L

5

n=0

(= 20)" MWy ((1n+ 1) (1+ o, (R4 2)(1 + @)); Mz — @)+

(D) f1)(y), (2.23)
where 1V ((a1,b1); (c1,d1); 2) is the generalized Wright function [4]

‘ L =T(am+by) 2"
191 ((a1,01); (c1,dr); 2) = Z L(bym + by) m!

m=0

and the convergence of series in (2.23) is in D’. Letting in (2.23) A = 0 we immediately
come out with a classical fundamental solution of the equation (2.4)

00 (ZE' . l,o)n(1+a)+afl

up(z,y) =Y (-1)" Tl 1) £ o) (D) fo) (y)
+Z — o)t (DA f1) (). (2.24)
n+1)(1+a)) v

Taking into account definition (1.7) of the Mittag-Leffler function, solution (2.24) may be
written in the operational form

Uf(xa y) = (v — $0>a71E1+a,a (—(I - JJO)HQD;:B) fo(y)
= 20) Eranra (~(@ = 20)** D7) fi(y) (225)
Analogously, in the case of equation (2.10) we show that

0 n:

101 (Ln+1); (14 6,n(140) + B); Aly — yo) ™) (Dp % ho) ()
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n

+y (_nll) (y = o) MW ((Ln+ 1) (145, (n+2)(1+ 8)); Ay — %))
X(Dyy U h) (@), (2.26)
and
up(z,y) = (y — yo)ﬂflEHﬁﬁ (—(y - yo)“ﬁDij“) ho(z)
+(y — 1) Eripais (—(y — yo) TP DL) by (x) (2.27)

are also correspondingly eigenfunctions and a fundamental solution of the equation (2.4).
On the other hand we may write solutions (2.25), (2.27) in the form of the generalized
Neumann series. Namely, we find

20) = iy DAV IS =™ (D )y
n=0
+ﬁ D (DM @ — o) (DO A1) (), (2.28)

taking in mind the analyticity of series in (2.28) by z in the interval 0 < e < |z —x¢| < R
and by y € (yo, Yp). In the same manner, we represent (2.27) by the expression

1 - nn - n(l4+a
uh<xay) = _Z(_l) [yo(lJrﬁ)(y - yO)ﬁ ! (Dx(ElJr )h0)<$>

n=0
+m Z(—l)n[ﬁflw) (y — y0)” (DR hy) () (2.29)
n=0

with arbitrary hg, h; assuming analyticity of the corresponding series by y in the interval
0 <e<|ly—wl < R and by z € (29,X0). Now taking into account zero values
Dyti(w — 20)* ' = 0, Diff(z —m0)* = 0, Dyil(y —90)° ' = 0, D (y —90)* = 0
it is not difficult to verify that (2.28), (2.29) are classical fundamental solutions of the
fractional Laplacian APy = 0 subject to conditions (2.11), (2.12) and (2.13), (2.14),
respectively. Thus we have proved

Theorem 3. In the case ii) functions (2.23), (2.26) represent eigenfunctions of the
fractional Laplacian (2.4) and expressions (2.24), (2.27) are unique classical fundamental
solutions subject to conditions (2.11),(2.12) and (2.13), (2.14), respectively. These solu-
tions can be written in the corresponding form of generalized Neumann series (2.28), (2.29)
under additional conditions of analyticity.

Finally, in the case iii) an analog of equations (2.9), (2.10) is

(I35 W)@ y) + (P u)(, y) = ML ) ()

Y
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(= mp)*! 7+ (z —20)* I+
- F(Oé) ( yo—i—ﬁf(])( ) F(l—l—()é) ( yo—il-gf1>( )
(W =90)"" vy vy o W= 807 ey

Consequently, in the right-hand side of Volterra’s equation (2.15) we get an additional
term

81+ﬁ o T
Ux,s)+ ﬁ /xo (x —t)*U(t, s)dt = F(z,s)
+e V(I (sho + M) (2), (2.31)

which will give a source for generalized eigenfunctions and fundamental solutions of the
fractional Laplacian (2.4). In fact, owing to the estimates

(52 [ 0 Brrai (<67 = N =0 B o)

Zo

(Is["7 + [AD™*

= 12, T+ )1+ ) / (o=

Zo

00 1+ﬁ+)\n+1 T (o)t .
+|F1(s)\zr<<nﬂi)(1+|a)|))r(1+a> / (= )"t — o) dt

|1+B_|_|)\Dn+1 xx_ n(lta)ta t e .
+ZF FaprTe J, O [ (e oot

Zo

1+5+ by n+1 x n
+ Z ‘ 1 - ’a)‘))r(l - a) / (;p — t)n(l—i—oz)—i—a/ (t N U)a|h1(v)|dvdt

Yo
< (17 5 DKo = 20 | Bra, zsr (51724 A0 = ') [ el

Yo

Yo
+(Xo — 20) Erya, 23041) (|87 + A (Xo — 20)' ") {/ e fi(t)|dt

Yo
XO XO
sl [ h0ldt+ [ puate)
z0

o

)

we write solution of the Volterra type equation (2.31) in terms of the Mittag-Leffler
functions and generalized Neumann series

U(z,s) = (2 — 20)* ' Erya, o (—(s"7 = X (2 — 20)"") Fy(s)
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(@ = 20)* Erya, 14a (= ("7 = N)(& = 20)*) Fi(s)
ey (=) (s = N (10D (s g + hy)) (2).
n=0
Cancelling the Laplace transformation we take in mind the relations
o+ir

lim "(1+8) os(y=y0) g ¢

— .
r—00 o—ir

d [n(146)]+1 o+ir ti{n(H_ﬁ)} .
= lim | — / x0(t — o), e *" ) e¥ds
r—o0 (dy) oir \T(L—={n(1+73)}) (€= 30)

_ (i) [n(146)]+1 t;{”(l—&-ﬁ)} eS| () = (D"(Hﬁ)é) W)
dy I'(1=A{n(1+p8)}) . ’

where ¢ is Dirac’s delta-function and * denotes the convolution product. Therefore, after
straightforward calculations we get the expression for a family of eigenfunctions of the
equation (2.4)

OO (_1)71 n(l4+a)+a—
ur(z,y) = Z I (z — o) (ra)tat

n.
n=0

10 (L,n+1); (1+a,n(l+a)+a); ANz —2) ") (DZO(HB)fO)(y)

+ 3 (_nll)n (z — @) )+ g (Ln+1); (14 (n+2)(1+ a)); Mz — 20)'*)

<O + [y S

n:
z n=0

x(z — )" Py ((Ln+1); (L4 a, (n+2)(1 + a)); Ma — £)17)

X (D;él‘f‘ﬁ)(;) (y)dt =+ /m ho(t) i _1)n (]3 . t)n(1+a)+a

zo

10y ((1,n+1); (14 o, (n+2)(1+a)); Az — 1)19)
x (D)6 (y)dt, (2.32)

0

where the convergence of series in (2.32) is in D’. Letting in (2.32) A = 0 we derive a
generalized fundamental solution of the equation (2.4)

00 . (ZU . xo)n(1+a)+o¢—1

ue9) = () e R )

n=0
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n(l+a)+a

+3 (-1 (z = 20)

rr ATy Pe )

) (1) -1

D M e AL

z 00 o — ) (D (1+a)-1
o 0 F gy (O e 239

which may be written in the operational form
w(z,y) = (& — 20)* " Eriaa (—(z - xo)HaD;:ﬁ) fo(y)
+(5L’ - xO)aE1+a,l+a (—(1’ - xo)HaD;jﬁ) fi (y)

+/ (=) Bryara (—(@ = )FDP) 6(y)ha (t)dt

+ / (z — 1) Ergaita (— (@ — ) T*DIF) & (y) ho(t)dt. (2.34)
Zo
Analogously, functions

n

U)\<13,y) = Z (_1)

- (y i y0>n(1+ﬂ)+ﬁ71

n=0

101 (Ln+1); (14 6,n(146) + B); Aly — yo) ™) (Dp % ho) ()

+ Z (_nll)n (y — yo)" 0y (1, +1); (14 B, (n+2)(1+ B8)); A(y — yo)7)

X(DZél+a)h1>(ZL') + /y hy(t) Z (—1')"

% ~ nl

x(y — )" ((Ln 4+ 1); (148, (n+2)(1+ B); Ay — 1))

Yy e —1)"
x(DZ(EHa)(s) (x)dt +/ ho(t) Z ( n') (y — t)n+D+0
Yo n=0 .

<10y (L +1); (148, (n+2)(1+ 5)); Ay — 1))
x (DT ) (z)dt, (2.35)

and
u(z,y) = (y—v0)" ' Erips (_(2/ - Z/O)HBD%FQ) ho(x)
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+(y = %0)" Eripars (—(y — 1) D) ha ()
y
+/ (y — t)ﬁE1+ﬁ,1+B (‘(?J - t)HﬁDglc;ra) 6(x) fr(t)dt
Yo
y
+/ (v — t)BEHﬁ,HB (—(y - t)HBDalc;ra) o' (z) fo(t)dt (2.36)

Yo
are also correspondingly eigenfunctions and generalized fundamental solutions of the equa-
tion (2.4).

Theorem 4. In the case iii) functions (2.32), (2.35) represent eigenfunctions and
expressions (2.33), (2.34),(2.36) are generalized fundamental solutions of the fractional
Laplacian (2.4).

Example 1. As a particular case, it is not difficult to obtain from (2.24), (2.27) the
classical fundamental solution u(x,y) = 3 log((x—x0)?+ (y—yo)?) of the Laplace equation
Au=0 (a=p=1). Indeed, putting fi(y) = hi(z) =0, fo(y) =log(y —yo), ho(z) =

log(z — xo) we assume, correspondingly, 2:28 <1, ﬁ > 1in (2.24), (2.27) and, for

instance, solution us(xz,y) becomes

up(erg) = 3 C @20 )@ — log(y — o)

— (2n)!
+§: (_1)n+1 (a: —iUo)
~ 2n Y=Y
o0 _1)n T — xo 2(n+1)
=1 —yo) + =1 —
0g(y — o) ;2 —— (y_yo) 0g(y — o)
T — 2o 2
Zlog (1 = ~log(( — 0)% + (y — 40)?
*2%<+<wwﬂ> S1os((z — a0)? + (y — o))

Analogously we treat solution (2.27).

3 Separation of variables. Analytic solutions

The method of separation of variables allows us to simplify eigenfunctions and fundamen-
tal solutions of the fractional Laplacian. Indeed, putting u(x,y) = ui(x)ua(y), substi-
tuting in (2.30) and taking into account initial conditions (2.11), (2.12), (2.13), (2.14) it
becomes

up(y) (L8 wn) (@) + () (gL uz) () = MLt un) (@) (1 P uz) (y)

13
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(x — o)t

— L )+ o 1))
B-1 _
e ) ) + 0 1 ) ), (3.)
where a;,b; € C, i = 1,2 are arbitrary constants. If (1,7 ul)(x)(léjqu)(y) #0,(z,y) €

(20, Xo) X (yo,Yp) we divide (3.1) by this product and separate variables, getting two
Abel’s type second kind integral equations to define u;, ¢ = 1,2, namely

_ a—1 _ o
wle) + (IS (o) = 52)
148, =)t (y—w)’
waly) = O )P ) = g, I (33
where A, 1 € C are constants. We note that the equality (I, uy)(x )(Iy(ff 2)(y) =0

for at least one point (£,7n) agrees with (3.1) and (3.2), (3.3). So we solve the latter
equations similarly to (2.18), arriving at the following family of eigenfunctions uy ,(z,y) =
ur(2)ua(y), where

ui () = ar(x — 20)* " Biya, o (1l — 20))
Fag(x — 20)* Brya, 140 (1(x —20)77) (3.4)
us(y) = ba(y = %0)" " Erip, 5 (A = 1)y — o))
+b2(y = 90)" Eres, 116 (A = 1) (y — 50) 7). (3.5)

On the other hand, we may write these solutions in terms of the generalized Neumann
series. Precisely, denoting by

(w =)t (x — x0)”

Va(T) = @1 (o) + azma (3.6)
L y= yo)" ! (y — y0)”

vs(y) = b OB b (3.7)

1+ 05)

and recalling index properties for the fractional integral (1.2) we get representations
of (3.4), (3.5) in the respective resolvent form for fractional integral operators I, t® :
Ly(9, Xo) — La(z0, Xo), 17+ Li(yo, Yo) = L1(yo, Yo)

S St = (Bl = R v )
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- n n -1
y) =Y I ug(A— )t = (B = (A=), 7) " g
n=0
=R (A= 1,,"7) vs, (3.9)
where E as usual is the identity operator. It’s easily seen that series (3.8), (3.9) are
analytic with respect to x € (x9, Xo) and y € (yo, Yp). Further, since (see (1.2))

N (XO - xo)a+1
125 Fl] L (w0, x0) < waHLl(wo,Xo)

we have

a+1
IR ()= el < Y (S )

Therefore the resolvent functions R (z; I;.7) , R (z; IL) are analytic in the open discs

T(1+a) I(1+ )

2| < e 2| < e,
< X e U< 3 =

respectively. Thus we write a family of eigenfunctions for the equation (2.4) in the resol-
vent form
ur(@,y) =R (1 L) va R (A= 157 0. (3.10)

Indeed, substituting (3.10) into (2.4) taking into account the values Dyt v, = D;:f vg =0

after a simple change of the summation index into the series we easily satisfy equation
(2.4). But we will extend our family of eigenfunctions considering

ux(z,y) = R( [HO‘) fR ()\ 1 [10+ﬁ) g, peC, (3.11)

with arbitrary f(z), g(y) such that I ™7 e AC2 ([, Xo]), I g € AC(Jyo, Vo))
and the corresponding resolvent functions (3.8), (3.9) are analytic by x and y. So sub-

stituting (3.11) into (2.4) and ignoring trivial cases D}c;rff = D;;rfg = 0 which drive

immediately to (3.11) with f = v,, g = vg (see (2.3)), after separation of variables we
obtain fractional differential equations to define f, g

Dy f = cR (i 1) f, (3.12)

D;:fg =—cR (A= 1F7) g, (3.13)

where ¢ is an arbitrary constant. Hence acting by inverse operators E — pJ;;ra and
E— (A= p)I; on (3.12), (3.13) with the use of (2.3) we get, correspondingly,

Doyt f = (u+e)f(x) + p va,
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Dy Fg=(A—u—cgly) + (A = pus.
The latter equations are solved, for instance, in [3], [4] and we obtain the following solu-
tions (¢;, d;, i = 1,2 are constants)

f(x) = Cl(l' - 370)0471E1+a, a ((/L + C)(:L‘ - x0)1+a)

+ea(a = 20)" B, 140 (1 + ¢)(x — 20)*7)
+par (@ — 20)** Eria, 2041 ((1+ ) (@ — 29)' )
+pas(z — 20)** T Erya, 241 (104 ¢)(x — 20)' %) | (3.14)

9(y) = di(y = y0)" " Erys 5 (A —p—c)(y —y0)'"7)
+da(y — yo)ﬁEHﬂ, 148 (()\ —p—c)(y — ZJO>1+B)
+(A = )by (y — yO)QﬁEHB, 28+1 (()\ —p—c)(y — y0)1+ﬂ)

+A = b2y — 90)* " Ers, 2y (A= =)y —9o)'™*7) . (3.15)

Consequently, equation (2.4) has families of eigenfunctions (3.10) and (3.11) with f and
g given by (3.14), (3.15). The case A = 0 naturally gives classical fundamental solutions
uo (2, y) = ui(z)ug(y) with s, us, for instance, in the form (3.4), (3.5).

Remark 1. Letting @ = = 11in (3.4), (3.5) and using (1.8), (1.9) we obtain familiar
trigonometric eigenfunctions of the Laplace equation Au = Au.

Returning again to functions f;(y), hi(z), ¢ = 0,1 from Section 2 we suppose the
following power-logarithmic analytic expansions in the neighbourhood of points g, xg, 0 <
<y —yol 2= Yo —wol, 0 <p1 < |z —w0| < p2 =|Xo — 20|, namely

fily) = a;log(y — yo) + (y — yo)* Z air(y —yo)*, i = 1,2, i > —1, (3.16)
k=0

hi(x) = b;log(z — x0) + (z — 20)" > _ bir(y — yo)*, i = 1,2, v; > —1. (3.17)
k=0

Hence owing to [3] and straightforward calculations we get for each n € Ny

(DY) £ (y) = a;:Da D log(y — yo) + (y — yo) i "0HP)

o

sin (m ({n} — 1) Y _ (= 1)¥as T(k + pi + DI (n(1 + B8) — i — k) (y — yo)",

k=0

(D;Lél+a)hi>(x) = biDZOIJra) log(;z; — 550) + (37 _ xQ)uﬁn(lJra)

(=D"

X
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D" i (m ({na} — ) Y (=1)" b D(k + v + DT (n(1 + @) — v; — k) (z — 20)",
k=0

where i = 0, 1. Substituting the latter expressions into (2.28), (2.29) we get

o0

T —1 n(l+a)+a—1 T — r)a
ugle) = Y (-1 ) o+ I Dyt gy — )

— I'(n(1+4 «a) + «) (1+a)+«
=0~ o)~ S (1) agesin (x ({05} — o)

D014 5) — o~ KI(k + i+ 1) ((m - w>) (v — )"

F(n(l+a)+ a) (y — 10)1*P
=0 — )~ 37 (~)agesin (x ({n} — )
k,n=0

T(n(1+B) = — BTk +pm +1) ((@—z0)*\",
’ L((n+1)(1+a)) ((y_yo)w) (= %0)",

- (?J - y0>n(1+ﬁ)+ﬂfl (y - ?Jo)b1
— —1)" b n(l+a)
up(,y) E (—1) o + 123 +3

(3.18)

Dy log(x — x0)

2 T+ 5) + ) Qv 5+ 5
Hy = 90) e = 0~ S (~1)kbugsin (x ({na} — )
Tn(l+a)—vo— kT (k+vy+1) [ (y—yo)+P\" !
" D(n(t+5)+5) ((x—xo>1+a) )
H =90’ — 20— S (~1)¥byesin (x (fna} — 1))
k,n=0

T((n+1)(1+p)) (& — ag) 170 (3.19)

where double series in (3.18), (3.19) are absolutely and uniformly convergent on the

compact 0 <7 < |y —yo| <79 =Yy —wo|, 0 < p1 < |z — o] < p2 = | Xy — x| owing to
conditions

e (= y())w)n (& — o),

o0

oD (n(1+ B) = pu — W)Lk + i +1) (A",
k,;o C((n+1)(1+a)) (ri”) ry < 00, (3.20)
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0o b1 (n(1+a) — vy — k)|T(k+ 11+ 1) T;-‘rﬁ " .
k;O k D((n+1)(1+8)) <p1+a) pay < 00. (3.21)

The ordinary series in (3.18), (3.19) we will call fractional logarithmic solutions. Taking
into account, for instance, the representation (see (1.1))

1—{np}

d [n(1+8)]+1
) [(?J — )

Dyt log(y — yo) = (d—y
1
< [[a=0 0 gy -
0

ey, o y-naes | F(n(1+5)) ~ log(y — wo)
- =) [F({nﬁ}—l) {d" {nﬁ}—l}

(n(1+ 8]+ )" T +8) —m)
Ty mZ m(n(L+B) +1—m) |’

where d,, = fol(l — t)~{"Ptlogt dt, we may substitute it in (3.18) to write the ordinary
series in a different form and to guarantee its absolute convergence in the region (z —
1)/ (y — yo)' P < 1. Finally we note that in the similar manner we treat the ordinary
series in (3.19).
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