
DOUBLE STANDARD MAPS

MICHA L MISIUREWICZ AND ANA RODRIGUES

Abstract. We investigate the family of double standard maps of the circle onto
itself, given by fa,b(x) = 2x+a+ (b/π) sin(2πx) (mod 1), where the parameters a, b
are real and 0 ≤ b ≤ 1. Similarly to the well known family of (Arnold) standard
maps of the circle, Aa,b(x) = x + a + (b/(2π)) sin(2πx) (mod 1), any such map has
at most one attracting periodic orbit and the set of parameters (a, b) for which such
orbit exists is divided into tongues. However, unlike the classical Arnold tongues,
that begin at the level b = 0, for double standard maps the tongues begin at higher
levels, depending on the tongue. Moreover, the order of the tongues is different. For
the standard maps it is governed by the continued fraction expansions of rational
numbers; for the double standard maps it is governed by their binary expansions.
We investigate closer two families of tongues with different behavior.

1. Introduction

It is a usual procedure that in order to understand the behavior of a system in higher
dimension one investigates first a one-dimensional system that is somewhat similar.
The classical example is the Hénon map and similar systems, where a serious progress
occurred only after unimodal interval maps have been thoroughly understood.

Another example of this type was investigation by V. Arnold of the family of
standard maps of the circle, given by the formula

(1.1) Aa,b(x) = x + a +
b

2π
sin(2πx) (mod 1)

(when we write “mod 1,” we mean that both the arguments and the values are taken
modulo 1). Those maps, called also Arnold maps, should not be confused with Taylor-
Chirikov maps, which are defined by similar formulas in the annulus, and are also
called standard maps. The family (1.1) appeared in [1] and its study was useful in the
creation of the KAM Theory. This family has been investigated by various authors
since then, see for instance [12, 6] and other papers cited there.

Recently, very interesting families of branched covering maps in the plane have
been studied, [3, 4, 5]. It motivates finding similar (in some sense) one-dimensional
maps and studying them. If we consider a branched covering map of the plane that
has only one branching point and degree 2, a good choice is to study degree 2 circle
maps. To begin with, one should concentrate on some specific family of such maps.
Perhaps the most natural choice is the family similar to standard maps, but with
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the sinusoid added not to the identity but to the doubling map (we also rescale the
parameter b in order to keep its critical value at 1). In such a way we get the following
family of double standard maps

(1.2) fa,b(x) = 2x + a +
b

π
sin(2πx) (mod 1).

There are also other reasons for studying this family. It is a hybrid between the
family of standard maps and the family of expanding circle maps (see, e.g., [11]).
Both families are of special interest, so it is an important problem to investigate
what the result of the cross-breeding may be. Moreover, the circle maps with cubic
critical points (this is what we get when we put b = 1 in (1.2)) already proved to be
interesting (see, e.g., [8]).

A widely accepted method of investigating new dynamical system or their families
consists of initial numerical investigation, formulating questions and conjectures based
on it, and subsequent attempts to answer the questions and prove the conjectures.
We will follow this scheme. In this paper we study this family for the values of b
from 0 to 1. In this range, the maps are local homeomorphisms, while for b > 1 they
are bimodal circle maps – a class with quite different features, similar to unimodal
interval maps.

In Section 2 we realize the first, easiest part of the plan. Namely, we make computer
experiments, look at the pictures and try to understand what we see. In Section 3 we
develop some tools that will be useful in the next sections. In Section 4 we explain
the order in which tongues appear as the parameter a increases. In Section 5 we look
closer at the only tongue for which the direct computations are reasonably simple,
namely at the period 1 tongue. We describe its shape and produce explicit estimates
for which values of b this is the only tongue. In Sections 6 and 7 we investigate,
for b = 1, two families of attracting periodic orbits with opposite behaviors. One of
them consists of orbits which would be very strongly repelling if it did not happen
that one point of such orbit is very close to the critical point. The other one consists
of intermittent orbits, for which repelling properties are extremely weak. For both
families we estimate the size of the windows in the parameter space and in the phase
space. Finally, in Section 8 we estimate the size of the tongues in the direction of the
parameter b for those two families.

2. Numerical results

In this section we will present several computer generated pictures for the family
of double standard maps and describe the apparent features of this family, based on
the pictures.

The usual pictures produced for the standard (Arnold) family of maps present
the situation in the (a, b)-plane and show the parameter values for which there is
an attracting periodic orbit (phase locking regions). Those parameter values are
grouped in regions called Arnold tongues (see Figure 1). Note that (mod 1) we have
A−a,b(−x) = −Aa,b(x), so A−a,b is conjugate to Aa,b via the map x 7→ −x (mod 1).
Therefore the picture is symmetric with respect to the line a = 1/2 and therefore we
only need to show it for 1/2 ≤ a ≤ 1. The same applies to the maps fa,b replacing
Aa,b.



DOUBLE STANDARD MAPS 3

Figure 1. Arnold tongues for the family of standard maps

Figure 2. Arnold tongues for the family of double standard maps

Let us describe Figure 1 precisely. The vertical axis is b, from 0 to 1. The horizontal
axis is a, from 1/2 to 1. The tongues shown are all tongues of period 5 or less, and
their order from left to right is 2, 5, 3, 4, 5, 1. They correspond to the rotation
numbers 1/2 < 3/5 < 2/3 < 3/4 < 4/5 < 1/1.

Let us compare this picture to the analogous one for the double standard maps
(see Figure 2). Here the vertical axis is b, from 1/2 to 1. The horizontal axis is a,
from 1/2 to 1. The tongues shown are all tongues of period 5 or less (in fact, almost
all, because the last one is so small that it does not show on the picture), and their
order from left to right is 1, 5, 5, 4, 5, 5, 4, 3, 5, 5, 4, 5, 5, 4, 3, 5, 5, 2, 5, 5,
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Figure 3. The (a, x)-plot, with a and x from 0 to 1 and b = 1

4, 5, 3, 5, 4, 5. As we will explain later, they correspond to the rational numbers
0/1 < 1/31 < 2/31 < 1/15 < 3/31 < 4/31 < 2/15 < 1/7 < 5/31 < 6/31 < 3/15 <
7/31 < 8/31 < 4/15 < 2/7 < 9/31 < 10/31 < 1/3 < 11/31 < 12/31 < 6/15 <
13/31 < 3/7 < 14/31 < 7/15 < 15/31 (the denominators are of the form 2n − 1,
where n is the period). This order is completely different than for the standard maps.
Another big difference is that here the tongues begin not at the level b = 0, like for
standard maps, but at much higher levels. The lowest tongue tip is at b = 1/2, for
the period 1 tongue. There cannot be anything lower, because if 0 < b < 1/2 then
the map is expanding.

Thus, the natural conjecture is that for the double standard family of maps the
phase locking regions come in tongues, whose shapes are similar to the classical Arnold
tongues. We have to explain their order. It seems that for a given value of b ∈ [0, 1)
there are only finitely many of them (however, we will see in Section 8 that this is
not true). In particular, only the period 1 tongue begins as low as 1/2.

We would like to know the size of the tongues in both a and b directions. The
a-size should be measured at the level b = 1. Then, since we fix the value of b, it
makes sense to look at the picture in the (a, x)-plane (like the classical pictures for
the family of the logistic or real quadratic families of maps). Figure 3 presents the
global picture, with both a and x varying from 0 to 1.

Since 1/2 is the unique critical point of fa,1 and the map has negative Schwarzian
derivative, for every a there is at most one attracting periodic orbit (see, e.g., [9]).
If such an orbit exists, one of its points must be close to 1/2. Since fa,1(1/2) = a,
there must be a point of such orbit close to a. Figure 3 suggests that in order to see
well how the attracting periodic orbit varies with a, it is better to look close to the
diagonal x = a, rather than close to the line x = 1/2, where the line is very steep
unless the period is very small. And indeed, blow-ups at many regions close to the
diagonal show a graph of a periodic point as a function of a that is not so steep in its
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Figure 4. The (a, x)-plot, with a and x from 0.69053 to 0.69055 and
b = 1

Figure 5. The (a, x)-plot, with a and x from 0.61087 to 0.61093 and
b = 1

middle part (although of course it has to be vertical at the boundary of the window).
This is illustrated on Figure 4, where a and x vary from 0.69053 to 0.69055. However,
there are periodic orbits close to the boundaries of tongues of small period, that we
can call resonant or intermittent, for which this graph is much steeper. Figure 5
shows what happens near the boundary of the period 1 tongue. There a and x vary
from 0.61087 to 0.61093.
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3. Tools

In this section we prove some preliminary results, that will serve as tools for more
detailed investigation of the family of double standard maps. In most of the paper,
fa,b will denote the standard map given by equation (1.2) and Fa,b its lifting to the
real line, that is, the map given by the same formula, but not considered modulo
1. However, in this section (except the very end), we prove some properties of those
maps, which do not depend on the precise formula. Therefore at the moment we will
only assume that Fa,b are maps from the real line to itself, satisfying the following
properties:

(1) Each Fa,b is continuous increasing (as a function of x),
(2) Fa,b(x + k) = Fa,b(x) + 2k for every integer k,
(3) Fa,b(x) is increasing as a function of a and continuous jointly in x, a, b.

While the fact that local homeomorphisms of the circle of degree 2 are semiconju-
gate to the doubling map is well known, we need additionally monotonicity properties
of the semiconjugacy as the function of a. Therefore we include a simple proof which
also gives us this monotonicity.

The first lemma establishes semiconjugacy as a certain limit.

Lemma 3.1. Under the assumptions (1) and (2), the limit

(3.1) Φa,b(x) = lim
n→∞

F n
a,b(x)

2n

exists uniformly in x. The limit Φa,b(x) is a continuous increasing function of x.
Moreover, Φa,b(x + k) = Φa,b(x) + k for every integer k and Φa,b(Fa,b(x)) = 2Φa,b(x)
for every x, so Φa,b semiconjugates Fa,b with multiplication by 2.

Proof. Since Fa,b is continuous and satisfies (2), it has a fixed point xa,b. For this fixed
point we know that Fa,b(xa,b) = xa,b, and therefore by (2), Fa,b(xa,b + k) = xa,b + 2k.
From this by induction we get F n

a,b(xa,b + k) = xa,b + 2nk for any integer k and n ≥ 0.
Now, if we take any x and large m, we know that there exists an integer k such that
xa,b + k ≤ Fm

a,b(x) ≤ xa,b + k + 1. Then for any n ≥ 0 we get xa,b + 2nk ≤ Fm+n
a,b (x) ≤

xa,b + 2n(k + 1), and therefore

xa,b

2m+n
+

k

2m
≤

Fm+n
a,b (x)

2m+n
≤ xa,b

2m+n
+

k + 1

2m
.

This implies that for every r, s ≥ n and every x we have

(3.2)

∣∣∣∣F r
a,b(x)

2r
−

F s
a,b(x)

2s

∣∣∣∣ ≤ 1

2m
.

Therefore the sequence
(

F r
a,b(x)

2r

)∞
r=1

satisfies the uniform Cauchy’s condition, so it

converges uniformly.

Since the limit in (3.1) is uniform and the functions
F n

a,b(x)

2n are continuous and
increasing, the function Φa,b is also continuous and increasing.



DOUBLE STANDARD MAPS 7

Since

Φa,b(x + k) = lim
n→∞

F n
a,b(x + k)

2n
= lim

n→∞

F n
a,b(x) + 2nk

2n

= lim
n→∞

F n
a,b(x + k)

2n
+ k = Φa,b(x) + k

and

Φa(Fa,b(x)) = lim
n→∞

F n
a,b(Fa(x))

2n
= 2 lim

n→∞

F n+1
a,b (x)

2n+1
= 2Φa,b(x),

the last two properties of Φa,b also hold. �

Lemma 3.2. Under the assumptions of Lemma 3.1, the map Φa,b is a lifting of a
monotone degree one map ϕa,b of the circle to itself, which semiconjugates fa,b with
the doubling map D : x 7→ 2x (mod 1). Moreover, if p is a periodic point of fa,b of
period n then ϕa,b(p) is a periodic point of D of period n.

Proof. The first statement follows directly from Lemma 3.1. Assume that p is a
periodic point of fa,b of period n. Since fn

a,b(p) = p, we get Dn(ϕa,b(p)) = ϕa,b(p).
Suppose that the period of ϕa,b(p) for D is not n. Then it has to be a factor of n
and there must be points x 6= y on the orbit of p which are mapped to the same
point under ϕa,b. Since ϕa,b is monotone, a whole arc A joining x with y has to be
mapped by ϕa,b to one point. We may assume that this arc goes from x to y in
the anticlockwise direction. For every point q of the orbit of p there is k such that
fk

a,b(x) = q. Then fk
a,b(A) contains an arc joining q with its anticlockwise neighbor

from the orbit of p, and it is mapped by ϕa,b to one point. This proves that the whole
circle is mapped by ϕa,b to one point, a contradiction. Hence, the period of ϕa,b(p)
for D must be n. �

The next lemma adds monotonicity with respect to a.

Lemma 3.3. Under an additional assumption (3), Φa,b(x) is increasing as a function
of a and continuous as a function of x, a, b (jointly).

Proof. The inequality (3.2) is uniform jointly in x, a, b, so by (3), the limit (3.1) is
continuous jointly in x, a, b. Since Fa,b(x) is increasing in a and x, the iterates F n

a (x)
are increasing in a, and therefore the limit (3.1) is increasing in a. �

The fourth lemma is of a different nature. It deals with a map close to a saddle-node
(in the intermittency regime). While other, in a sense stronger, tools can be used
for this purpose (see [10]), this one has a simple proof and gives explicit estimates
unavailable otherwise.

Lemma 3.4. Let f : R → R be a C1 orientation preserving diffeomorphism. Choose
x0 ∈ R and set xi = f i(x0) for i ∈ Z. Assume that x−1 < x0 < · · · < xn < xn+1.
Then:

(1) If f ′ is increasing on (x−1, xn−1) then

(fn)′(x0) ≥
xn − xn−1

x0 − x−1

.
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(2) If f ′ is decreasing on (x0, xn) then

(fn)′(x0) ≥
xn+1 − xn

x1 − x0

.

(3) If f ′ is increasing on (x0, xn) then

(fn)′(x0) ≤
xn+1 − xn

x1 − x0

.

(4) If f ′ is decreasing on (x−1, xn−1) then

(fn)′(x0) ≤
xn − xn−1

x0 − x−1

.

Proof. We have

(fn)(x0) =
n−1∏
i=0

f ′(xi).

By the Mean Value Theorem, for each i there is ξi ∈ (xi−1, xi) such that (xi+1 −
xi)/(xi − xi−1) = f ′(ξi). If f ′ is increasing, we have f ′(ξi) ≤ f ′(xi), so

(fn)′(x0) ≥
n−1∏
i=0

xi+1 − xi

xi − xi−1

=
xn − xn−1

x0 − x−1

.

If f ′ is decreasing, we have f ′(ξi) ≤ f ′(xi−1), so

(fn)′(x0) ≥
n−1∏
i=0

xi+2 − xi+1

xi+1 − xi

=
xn+1 − xn

x1 − x0

.

The last two inequalities are proved in the same way. �

Let us now return to double standard maps. The way we think of the circle on
which the maps fa,b act, this is the circle R/Z.

Theorem 3.5. If 0 ≤ b ≤ 1 then the double standard map fa,b, given by (1.2), has
at most one attracting or neutral periodic orbit.

Proof. We can complexify fa,b by conjugating it via e2πix. Then we get the map

(3.3) ga,b(z) = e2πiaz2eb(z− 1
z ),

of the unit circle to itself. This map is the restriction of the map of C \ {0} to itself
given by the same formula. By the results in the theory of iterations of complex maps
(see [2], Theorem 7), it follows that for a map (3.3) any attracting periodic orbit of ga,b

has to attract a critical point. A neutral periodic orbit on the unit circle is parabolic,
so it is on a boundary of a periodic Leau domain. Therefore this result applies also
to such orbit. If b < 1 then here is only one pair of critical points, symmetric (in the
complex sense) with respect to the unit circle, and the map preserves this symmetry.
If b = 1, there is just one critical point, −1. Therefore, there can be at most one
attracting or neutral periodic orbit. �
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4. Order of tongues

Suppose that a double standard map fa,b has an attracting periodic orbit P of
period n. By Theorem 3.5, the trajectories under gn

a,b of both critical points of ga,b

(or of the critical point −1 if b = 1) converge to e2πip for some p ∈ P . Let ϕa,b be
the semiconjugacy from Lemma 3.2. Then by that lemma, ϕa,b(p) is a periodic point
of period n of the doubling map D. We will denote this point by T (P ) and call the
type of the orbit P .

For a periodic point T of D we define the tongue of type T as the set of parameter
values (a, b) (where we think of a as taken modulo 1 and b is from [0, 1]) for which
there exists a periodic orbit of type T . If the period of T is n, we will say that the
tongue of type T has period n.

Since ga,b and ϕa,b depend continuously of (a, b), each tongue is open.
We first investigate some properties of double standard maps with an attracting or

neutral periodic orbit. We will use them later in this section in the case b = 1, but
we state and prove them in a more general case.

Lemma 4.1. Assume that p is an attracting or neutral periodic point of fa,b of period
n. Let J be the set of all points x for which ϕa,b(x) = ϕa,b(p). Then J is either
a closed interval (modulo 1) or a singleton and fn

a,b|J is an orientation preserving
homeomorphism of J onto itself. The endpoints of J are fixed points of fn

a,b, and one
of the following four possibilities holds (see Figure 6). In the first three cases J is an
interval.

(1) The left endpoint of J is neutral, topologically attracting from the right and
topologically repelling from the left; the right endpoint of J is repelling; there
are no no other fixed points of fn

a,b in J .
(2) The right endpoint of J is neutral, topologically attracting from the left and

topologically repelling from the right; the left endpoint of J is repelling; there
are no no other fixed points of fn

a,b in J .
(3) Both endpoints of J are repelling; there is an attracting fixed point of fn

a,b in
the interior of J ; there are no no other fixed points of fn

a,b in J .
(4) The set J consists of one neutral fixed point of fn

a,b, repelling from both sides.

Proof. By Lemma 3.1, ϕa,b is an increasing continuous function. Therefore J is a
closed interval or a singleton. Since ϕa,b(J) is a set consisting of a fixed point of Dn

and fa,b is an orientation preserving local homeomorphism, we see that fn
a,b|J is an

orientation preserving homeomorphism of J onto itself. It follows that the endpoints
of J are fixed points of fn

a,b. None of them can be attracting from the “outside”,
because the whole immediate basin of attraction would be contained in J .

Since fn
a,b is analytic, it has finitely many fixed points in J and if x < y are

consecutive fixed points, either x is attracting from the right and y is repelling from
the left, or x is repelling from the right and y is attracting from the left (here by
attracting and repelling we mean topologically attracting and repelling; such a point
can be neutral). By Theorem 3.5, there can be at most one fixed point topologically
attracting from one or both sides. All this restricts the possibilities to the four ones
listed in the statement of the lemma. �
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Case (1) Case (2) Case (3) Case (4)

Figure 6. Four cases

Since fn
a,b and its derivative depend continuously on (a, b) and a change of (a, b)

that strictly increases (respectively decreases) fa,b also strictly increases (respectively
decreases) fn

a,b, we get immediately (look at Figure 6 and trace possible changes of
the graph) the following lemma.

Lemma 4.2. A small change in (a, b) that strictly increases fa,b, applied to case (1) of
Lemma 4.1, or a small change in (a, b) that strictly decreases fa,b, applied to case (2),
results in case (3), with the periodic point p depending continuously on (a, b). A
small change in (a, b) that strictly decreases fa,b, applied to case (1) of Lemma 4.1,
or a small change in (a, b) that strictly increases fa,b, applied to case (2), results in
disappearing of an attracting or neutral periodic point of period n. A small change
in (a, b) applied to case (3), results in case (3), with the periodic point p depending
continuously on (a, b).

We are interested in the order of the tongues as we vary a. While Lemma 3.3 gives
us monotonicity of ϕa,b with respect to a, we cannot be sure where the point p from
the definition of T (P ) is located. Fortunately, if b = 1, we know where on the circle
the critical point of fa,b is located. Elementary computations show that this point is
at 1/2 and that fa,1 has negative Schwarzian derivative. Therefore the whole interval
joining p with 1/2 is attracted to p under the iterates of fn

a,1, where n is the period
of P .

To simplify notation, we will write fa for fa,1 and ϕa for ϕa,1.

Lemma 4.3. If fa has an attracting periodic orbit P then T (P ) = ϕa(1/2).

Proof. Let p be the point of P from the definition of T (P ) and let n be the period
of P . As we observed, the whole interval joining p with 1/2 is attracted to p under
the iterates of fn

a,1. Then from the definition of Φa,b it follows that ϕa(p) = ϕa(1/2).
Thus, T (P ) = ϕa(1/2). �

The next result is a kind of converse to Lemma 4.3. It describes the situation when
ϕa(1/2) is a periodic point of D.
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Proposition 4.4. Let q be a periodic point of D of period n. Then the set of values
of a for which ϕa(1/2) = q is a closed interval I (modulo 1). If a ∈ I then fa has an
attracting or neutral periodic point p(a) of period n. The set J(a) = ϕ−1

a (1/2) is a
closed interval (modulo 1). Its interior (together with p(a) if p(a) is an endpoint of
J(a)) is the immediate basin of attraction of p(a) and contains 1/2. If a is the left
(respectively right) endpoint of I then the left (respectively right) endpoint of J(a) is
p(a) and it is neutral; the other endpoint of J(a) is a repelling periodic point of period
n and there are no periodic points in J(a) other than these two. If a is in the interior
of I, then p(a) is attracting; both endpoints are repelling periodic points of period n
and there are no periodic points in J(a) other than these three.

Proof. By Lemma 3.3, a 7→ ϕa(1/2) is an increasing continuous function. Therefore I
is a closed interval or a singleton. Assume that a ∈ I. By Lemma 4.1, J(a) is a closed
interval or a singleton, fn

a |J(a) is an orientation preserving homeomorphism of J(a)
onto itself, the endpoints of J(a) are fixed points of fn

a , and one of the cases (1)-(4)
of that lemma holds. By the definition, 1/2 ∈ J(a). If J(a) is a singleton, then 1/2
is periodic for fa, and since f ′a(1/2) = 0, it is superattracting. On the other hand, by
Lemma 4.1, it is neutral, a contradiction. This proves that J(a) is an interval and
leaves only cases (1)-(3).

In all three cases there is an attracting or neutral fixed point p(a) of fn
a and its

immediate basin of attraction is the interior of J(a) (together with p(a) if p(a) is
an endpoint of J(a)). Since 1/2 is in the interior of J(a), it belongs to the im-
mediate basin of attraction of p(a). The sets fk

a (J(a)) are disjoint from J(a) for
k = 1, 2, . . . , n− 1, so the fixed points of fn

a |J(a) are periodic points of period n of fa.
It remains to prove that I is an interval and that the cases (1), (2) and (3) corre-

spond to a being the left endpoint, right endpoint and an interior point of I, respec-
tively. However, this is a straightforward consequence of Lemma 4.2. �

Now, Lemma 4.3, Proposition 4.4 and the fact that the function a 7→ ϕa(1/2) is
increasing and continuous, imply the main theorem of this section.

Theorem 4.5. As a increases, the types of the tongues of fa vary in the order of
rational numbers.

In particular, this theorem explains the order mentioned in Section 2. As a varies
from 1/2 to 1, the periodic points of D of period 5 or less are 0/1 < 1/31 < 2/31 <
1/15 < 3/31 < 4/31 < 2/15 < 1/7 < 5/31 < 6/31 < 3/15 < 7/31 < 8/31 < 4/15 <
2/7 < 9/31 < 10/31 < 1/3 < 11/31 < 12/31 < 6/15 < 13/31 < 3/7 < 14/31 <
7/15 < 15/31, and they have periods 1, 5, 5, 4, 5, 5, 4, 3, 5, 5, 4, 5, 5, 4, 3, 5, 5, 2, 5,
5, 4, 5, 3, 5, 4, 5, respectively.

If we want to apply the same methods to the tongues at the level b = b0 with
b0 < 1, the problems arise already when we want to prove an analogue of Lemma 4.3.

Observe that the derivative of fa,b attains its minimum at x = 1/2. It is a natural
conjecture that if there is an attracting periodic orbit P then 1/2 is in its imme-
diate basin of attraction, which would prove the desired lemma. While numerical
experiments seem to support this conjecture, it is nevertheless false.

Let (a0 , b0) be the coordinates of a tip of a period 2 tongue in the parameter plane.
To be more precise, b0 is the infimum of the values of b for which fa,b has an attracting
periodic orbit of period 2 and there is a sequence (an, bn)∞n=1 convergent to (a0 , b0)
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such that fan,bn has an attracting periodic point xn of period 2. We may assume that
xn → x0 as n →∞. Then x0 is a periodic point of period 2 of fa0 ,b0

. By Lemma 4.2,

for (a0 , b0) case (4) of Lemma 4.1 has to occur. In particular, (f 2
a0 ,b0

)′′(x0) = 0.

Small change of (a, b) cannot produce a large basin of attraction of a periodic point
of period 2, so the length of the immediate basin of attraction of xn shrinks to 0.
Therefore, if 1/2 is always in this basin of attraction, we must have x0 = 1/2. We
will show that this is impossible.

Let f = fa0 ,b0
and assume that x0 = 1/2. Since (f 2)′′ = (f ′′ ◦ f)(f ′)2 + (f ′ ◦ f)f ′′

and (f 2)′′(1/2) = 0, we get f ′′(f(1/2))(f ′(1/2))2 + f ′(f(1/2))f ′′(1/2) = 0. However,
f ′′(1/2) = 0, so f ′′(f(1/2))(f ′(1/2))2 = 0. Since f ′(1/2) 6= 0, we get f ′′(f(1/2)) = 0.
The only points at which f ′′ vanishes are 0 and 1/2 (modulo 1), so either f(1/2) = 1/2
or f(1/2) = 0 (modulo 1). In the first case, 1/2 is a fixed point of f , and since
b0 > 1/2, this point is attracting, a contradiction. In the second case, since f(0) = a0

and f(1/2) = 1+a0 (modulo 1), we get 1/2 = a0 = 0 (modulo 1), also a contradiction.
This proves that in a period 2 tongue, close to its tip, there must be values of a, b

such that 1/2 is not in the immediate basin of attraction of the attracting periodic
orbit of period 2.

We finish this section with a corollary to Lemma 4.2.

Proposition 4.6. Whenever a piece of the boundary of a tongue consists of points
for which the case (1) or (2) of Lemma 4.1 holds, it has slope with the absolute value
at least π.

Proof. Observe that the partial derivative of fa,b(x) with respect to a is 1, while the
partial derivative with respect to b is sin(2πx)/π, which has modulus at most 1/π.
Therefore any change in (a, b) in the direction of a vector (1, y), where |y| < π, strictly
increases fa,b. Similarly, any change in (a, b) in the direction of a vector (−1, y), where
|y| < π, strictly decreases fa,b. The statement of the lemma follows from this and
Lemma 4.2. �

The problem with the application of this proposition is that we have to exclude the
possibility of pieces of the boundaries of tongues consisting of points for which case (4)
holds. This would require the solution to three analytic equations: fn

a,b(x) = x,
(fn

a,b)
′(x) = 1 and (fn

a,b)
′′(x) = 0 in the (a, b, x)-space to contain a curve. Generically,

this is not a case. However, we do not know how generic the family of double standard
maps is.

5. Period 1 tongue

Let us investigate closer the tongue corresponding to period 1. Elementary com-
putations show that its boundary is given by the curves

(5.1) a =
1

2
±
√

4b2 − 1− arctan
√

4b2 − 1

2π

and the corresponding fixed point is then

x = −1

2
± arctan

√
4b2 − 1

2π
.
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Set b = 1/2 + t. Then (5.1) becomes

(5.2) a =
1

2
± 2

√
t + t2 − arctan(2

√
t + t2)

2π

and the derivative of the right-hand side of (5.2) is

2
√

t + t2

π(1 + 2t)
.

At t = 0 this is of order t1/2, so the tangency of the two lines bounding period 1
tongue is of order t3/2.

This tongue begins at the level b = 1/2. We will show that all other tongues begin
substantially higher.

For the double standard maps we have

(5.3) f ′a,b(x) = 2 + 2b cos(2πx).

Therefore, f ′a,b has one minimum, at x = 1/2 (mod 1), one maximum, at x = 0
(mod 1), is decreasing on (0, 1/2) and increasing on (1/2, 1). This allows us to apply
Lemma 3.4 to fa,b, or rather, since we use inequalities, to Fa,b. Clearly, the formula
for F ′

a,b is the same as for f ′a,b.

Lemma 5.1. Assume that x ∈ (0, 1), k ≥ 1, F k−1
a,b (x) ≤ 1 and Fa,b(t) > t for

t ∈ (x, F k
a,b(x)). Then

(5.4) (F k
a,b)

′(x) ≥
F k

a,b(x)− F k−1
a,b (x)

Fa,b(x)− x
· (Fa,b)

′(1/2).

Proof. Assume first that x < 1/2 and F k
a,b(x) > 1/2. Then the orbit of x is x0 <

· · · < xn < y0 < · · · < ym < . . . , where 1/2 is between xn and y0 and n + m + 1 = k
(so F k

a,b(x) = ym. Then by Lemma 3.4,

(F k
a,b)

′(x) ≥ y0 − xn

x1 − x0

· (Fa,b)
′(xn) · ym − ym−1

y0 − xn

≥ ym − ym−1

x1 − x0

· (Fa,b)
′(1/2).

If F k
a,b(x) ≤ 1/2 (that is, there are no yi’s), then the estimate that we get from

Lemma 3.4

(F k
a,b)

′(x) ≥ Fa,b(xn)− xn

x1 − x0

,

so by the Mean Value theorem we get

(F k
a,b)

′(x) ≥ Fa,b(xn)− xn

xn − xn−1

· xn − xn−1

x1 − x0

≥ (Fa,b)
′(1/2) · xn − xn−1

x1 − x0

.

Similarly, if x ≥ 1/2 (that is, there are no xi’s), then we get

(F k
a,b)

′(x) ≥ ym − ym−1

y0 − (Fa,b)−1(y0)
≥ (Fa,b)

′(1/2) · ym − ym−1

y1 − y0

.

�
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0 11/2p 1-p
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0

1

2

q

Figure 7. The graph of Fa,b for a = −0.3, b = 0.7

By our analysis of the derivative F ′
a,b, if 1/2 < b < 1 then on [0, 1] there are 2

points where it is equal to 1. The first of them is in (0, 1/2):

(5.5) p =
1

2π
arccos

(
−1

2b

)
,

and the other one is 1 − p (note that the graph of Fa,b is centrally symmetric about
the point (1/2, Fa,b(1/2)), see Figure 1. If Fa,b has no attracting or neutral fixed
point then it has a unique fixed point q. If −1/2 < a ≤ 0 then Fa,b(0) = a ≤ 0 and
Fa,b(1/2) = 1 + a > 1/2, so 0 ≤ q < 1/2 (see Figure 1).

Lemma 5.2. Assume that −1/2 < a ≤ 0, 1/2 < b < 1, Fa,b(1 − p) ≤ 1, fa,b has no
attracting or neutral fixed point, and

(5.6)
(
1− F−1

a,b (1)
)
F ′

a,b(1/2) > Fa,b(p)− p.

Then every periodic orbit of fa,b is repelling.

Proof. Any periodic orbit of fa,b of period larger than 1 can be divided into blocks as
follows. Any point of the orbit that is in [0, q) forms a block of length 1. The rest
of the points of the orbits are divided in a natural way into maximal blocks of the
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form (x, fa,b(x), . . . , fk−1
a,b ) satisfying the assumptions of Lemma 5.1 (on those blocks

we can replace fa,b by Fa,b). In order to prove the lemma it is enough to show that
the derivative of Fa,b along any block is larger than 1. This is true for the blocks of
length 1 with the point in [0, q), because F ′

a,b is decreasing in [0, q] and is larger than
1 at q. It is also true for the other blocks if the right-hand side of (5.4) is larger than
1.

Look at such a block. If x > 1 − p then F ′
a,b is larger than 1 at all points of the

block, so the product of those derivatives is also larger than 1. Assume now that
x ≤ 1− p. Then

Fa,b(x)− x ≤ Fa,b(p)− p.

Moreover, since Fa,b(1− p) ≤ 1 and F ′
a,b is increasing in [1− p, 1], we get

F k
a,b(x)− F k−1

a,b (x) ≥ 1− F−1
a,b (1).

Therefore, the right-hand side of (5.4) is larger than 1 by the inequality (5.6). �

We get a similar result also in another situation, not involving intermittency.

Lemma 5.3. Assume that −1/2 < a ≤ 0, 1/2 < b < 1, fa,b has no attracting or
neutral fixed point, and

(5.7) F ′
a,b(1/2) · F ′

a,b(fa,b(p)) > 1 and F ′
a,b(1/2) · F ′

a,b(fa,b(1− p)) > 1.

Then every periodic orbit of fa,b is repelling.

Proof. From (5.7) it follows that Fa,b(p) > 1 − p and Fa,b(1 − p) < p + 1. Therefore
Fa,b([p, 1− p]) ⊂ [1− p, p + 1]. If x ∈ [p, 1− p] then F ′

a,b(x) ≥ F ′
a,b(1/2) and

F ′
a,b(Fa,b(x)) ≥ min

(
F ′

a,b(p), F ′
a,b(1− p)

)
.

By (5.7) we get F ′
a,b(x) ·F ′

a,b(Fa,b(x)) > 1. Therefore, we can divide any periodic orbit
of fa,b into blocks of length 1 or 2 (if the point x on the orbit is in [p, 1 − p] then it
is the first point of a block of length 2), and the derivative of fa,b along any block is
larger than 1. This completes the proof. �

Now we can prove the main theorem of this section.

Theorem 5.4. If 0 ≤ b < 0.5 then all periodic orbits of fa,b are repelling. Set
b0 = 0.578. If 0.5 ≤ b ≤ b0 then all periodic orbits of fa,b, except perhaps one fixed
point, are repelling.

Proof. If 0 ≤ b < 0.5 then f ′a,b is larger than 1 everywhere, so all periodic orbits are
repelling. Similarly, if b = 0.5 then there cannot be attracting periodic orbits, and
the only neutral periodic orbit can have period 1. Assume that 0.5 < b ≤ b0 . If there
is an attracting or neutral fixed point, then by Theorem 3.5 that there are no other
attracting or neutral periodic orbits. Therefore it remains to consider the case when
there is no attracting or neutral fixed point.

Further reduction can be made in the range of the parameter a. Since we consider
our map modulo 1, we may assume that a ∈ [−1, 0]. Moreover, the map x 7→ 1 − x
conjugates fa,b with f−1−a,b. Therefore we may assume that a ∈ [−1/2, 0]. If a = −1/2
then the point 1/2 is attracting, so our final assumption on a is that −1/2 < a ≤ 0,
the same as in Lemmas 5.2 and 5.3.
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Set a0 = −0.285. If a ≤ a0 , we would like to apply Lemma 5.2. To do this, we
have to check that fa,b(1− p) ≤ 1 and that (5.6) is satisfied.

For a fixed b, the largest value of Fa,b(1 − p) is attained when a = a0 . Thus, we
have to check that Fa0 ,b(1− p) ≤ 1. Since

arccos
−1

2b
=

√
1− 1

4b2
,

this inequality is equivalent to

(5.8) 2π(1 + a0) ≤ 2 arccos
−1

2b
+
√

4b2 − 1.

The derivative of the right-hand side of (5.8) is

1√
4b2 − 1

(
4b− 2

b

)
,

so the right-hand side of (5.8) attains its minimum at b =
√

2/2. The value of this
minimum is (3/2)π +1 > 5.7, while the value of the left-hand side of (5.8) is less than
4.5. This proves that Fa,b(1− p) ≤ 1.

Fix b and consider both sides of (5.6) as functions of a. Since p is independent of a,
the derivative of the right-hand side with respect to a is 1. On the left-hand side the
factor F ′

a,b(1/2) is independent of a and smaller than 1. Since Fa,b(1− p) ≤ 1, we get

that F−1
a,b (1) ≥ 1 − p, so F ′

a,b(F
−1
a,b (1)) ≥ 1. Therefore, since the derivative of Fa,b(x)

for any fixed x is 1, and by the Implicit Function Theorem, the absolute value of the
derivative of F−1

a,b (1) with respect to a is smaller than or equal to 1. Therefore the
derivative of the left-hand side with respect to a is smaller than 1. This means that
we have to check (5.6) only for a = a0 . Now, for the fixed value of a, as b increases,
on (1/2, 1) fa,b decreases, so 1−F−1

a,b (1) decreases, F ′
a,b(1/2) decreases, and on (0, 1/2)

x 7→ Fa,b(x)− x increases (as a function of b), so Fa,b(p)− p increases. Therefore we
have to check (5.6) only for b = b0 . For those values of a and b the left-hand side of
(5.6) is larger than 0.224, while the right-hand side is smaller than 0.224. This shows
that (5.6) holds, so by Lemma 5.2, if a ≤ a0 (plus the assumptions of the theorem)
then all periodic orbits of fa,b, except perhaps one fixed point, are repelling.

Assume now that a > a0 . Then we would like to use Lemma 5.3, so we have to
verify that (5.7) holds. Consider the first inequality of (5.7). Since p < 1/2 and
b > 1/2, we have Fa,b(p) > Fa,1/2(p). Therefore it is enough to show that

F ′
a,b(1/2) · F ′

a,b(Fa,1/2(p)) > 1.

The value of p decreases as b increases. Therefore

1/2 > p ≥ 1

2π
arccos

(
−1

2b0

)
> 0.4163,

so
1 = f0,1/2(1/2) > (fa,1/2(p)) > fa0 ,1/2(0.4163) > 0.627.

This shows that Fa,1/2(p) is in the region where F ′
a,b increases. Hence,

F ′
a,b(fa,1/2(p)) > 2 + 2 · 0.578 · cos(2π · 0.627) > 1.19,

so
F ′

a,b(1/2) · f ′a,b(fa,1/2(p)) > 0.844 · 1.19 > 1.004.
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Figure 8. The map fa for a ∈ (a
l
, ar)

Consider now the second inequality of (5.7). Since p > 0.4, we have 1− p < 0.6, so
Fa,1/2(1− p) < 1.2. Moreover, 1− p > p. The derivative of Fa,b is the same at 1 + t
and at 1− t, so we get

F ′
a,b(Fa,1/2(1− p)) > min(F ′

a,b(0.627), F ′
a,b(0.8)) = F ′

a,b(0.627) > 1.19,

and then we get the same estimate as for the first inequality. This completes the
proof. �

6. Mostly repelling attracting periodic orbits

In this section we consider again the case b = 1, and we use the same notation as
in Section 4.

We will consider here a special class P of attracting periodic orbits. They are
attracting periodic orbits for fa of type 0.0001 ∗ 1 ∗ 1 · · · ∗ 1 (the line over a finite
sequence means that it is repeated periodically), where each ∗ can be 0 or 1. There
are values of a, a

l
≈ −0.32221099 and ar ≈ −0.28609229 for which Φa

l
(1/2) = 1/16

and Φar
(1/2) = 1/8. We have 1/16 = 0.00010 and 1/8 = 0.0001. The numbers of the

form 0.0001 ∗ 1 ∗ 1 · · · ∗ 1 are between those two, so any a for which fa has a periodic
orbit of such type is in (a

l
, ar).

Let z(a) be the fixed point of Fa − 1 (see Figure 8). Then Φa(z(a)) = 1. If P ∈ P
then z(a) is not in the basin of attraction of P , so the sets Φ−1

a (1), as well as Φ−1
a (1/2j)
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for j = 1, 2, . . . , consist of one point each. We have Far
(1/2) = ar + 1 > 2/3, so

F 2
ar

(2/3) < z(ar). As a decreases, F 2
a (2/3) decreases, while z(a) increases. Therefore

2/3 < F−2
a (z(a)) for all a ∈ (a

l
, ar). The point F−2

a (z(a)) is the unique point whose
image under Φa is 1/4, so the binary expansion of Φa(2/3) starts with 0.00. On the
other hand, z(a

l
) < 4/3, so z(a) < 4/3 for all a ∈ (a

l
, ar). Since the only points

where F ′
a ≤ 1 are in [1/3, 2/3] and the integer shifts of this interval (note that F ′

a

does not depend on a), we see that there exists a constant λ > 1 such that whenever
a ∈ (a

l
, ar) and the binary expansion of Φa(x) does not start with 0.00, we have

F ′
a(x) > λ.
Assume that P ∈ P is an orbit of period n and let p ∈ P be the point for which

1/2 is in the immediate basin of attraction of p for fn
a (we need p not modulo 1, so we

choose p ∈ [0, 1)). Since Fa
l
(1/3) = 2/3+a

l
+
√

3/(2π) > 1/2, there exists a constant
c > 0 such that whenever a ∈ (a

l
, ar) and x ∈ [1/3, 2/3] then f ′a(fa(x)) > c. Thus,

if p ≥ 1/3 then f ′a(fa(p)) > c. We cannot easily exclude the case p < 1/3. However,
then [1/3, 1/2] is contained in the basin of immediate attraction of p for fn

a . Then
there is ε > 0 such that the length of the basin of immediate attraction of fa(p) for
fn

a is larger than ε, independently of a. We have to have ελn−2 < 1, so there is N
such that if n ≥ N , this is impossible. From now on, we exclude from P the orbits
of period less than N .

Moreover, we have p ≤ 2/3, since otherwise our periodic orbit would not contain a
point with derivative less than 1, so it would not be attracting.

To summarize, we get the following structure of an orbit P ∈ P . There is a point
p ∈ [1/3, 2/3] ∩ P , such that 1/2 is in the basin of immediate attraction of p for fn

a .
The derivative of fa at fa(p) is larger than c and at the points of P other than p and
fa(p) is larger than λ.

To describe the situation in more geometrical terms, let us look at Figure 8. The
interval J consists of points whose image under Φa has binary expansion starting with
0.1. For the intervals I1 and I2 this is respectively 0.01 and 0.11. The point p is in
[1/3, 2/3]. Its image under f 2

a is in I1, and further images under the iterates of f 2
a

are in I1 and I2. Since fa(I1) = fa(I2) = J and fa(J) is the whole circle, we can get
periodic orbits that under the iterates of f 2

a go through I1 and I2 in the prescribed
order. Moreover, the derivative of fa on I1 ∪ I2 ∪ J is larger than λ.

We are interested in the sizes in the directions of a and p of the region where our
orbit P ∈ P is attracting (we will refer to them as the P -windows in the directions of
a and p). Denote those windows by [a1, a2] and [p1, p2] respectively. Since p depends
on a, we will write p(a). Thus, we have pi = p(ai) for i = 1, 2. We will express those
sizes in terms of the exponent of P \ {p(a)}

(6.1) α(a) = (fn−1
a )′(fa(p(a)).

We have to choose some specific value of a, and the most natural such value is a0 for
which p(a0) = 1/2.

Theorem 6.1. There exist positive constants K1, K2, K3, K4 such that if a periodic
orbit P belongs to P then for the P -windows [p1, p2] in the direction of p and [a1, a2]
in the direction of a we have

(6.2) K1(α(a0))
−1/2 ≤ p2 − p1 ≤ K2(α(a0))

−1/2
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and

(6.3) K3(α(a0))
−3/2 ≤ a2 − a1 ≤ K4(α(a0))

−3/2.

In particular, the size of the P -window in the direction of a is of order of the cube of
the size of the P -window in the direction of p.

Proof. Let us compute the partial derivatives of the iterates of fa with respect to a.
We have to treat f as a function of 2 variables. Use notation f(a, x) = fa(x). Then:

∂fn+1
a (x)

∂a
=

∂f(a, fn
a (x))

∂a
=

∂f

∂a
(a, fn

a (x)) +
∂f

∂x
(a, fn

a (x)) · ∂fn
a (x)

∂a
.

Since in our case ∂f/∂a = 1, we obtain

∂fn+1
a (x)

∂a
= 1 + f ′a(f

n
a (x)) · ∂fn

a (x)

∂a
.

Therefore by induction we get

(6.4)
∂fn

a (x)

∂a
=

n−1∑
i=0

(f i
a)
′(fn−i

a (x)).

We have fn
a (p(a)) = p(a). Differentiate both sides of this equality with respect to

a:
∂fn

a

∂a
(p(a)) + (fn

a )′(p(a)) · p′(a) = p′(a).

Therefore we get, substituting the formula (6.4),

(6.5) p′(a) =

∑n−1
i=0 (f i

a)
′(fn−i

a (p(a)))

1− (fn
a )′(p(a))

.

Using notation (6.1), we get

(fn
a )′(p(a)) = f ′a(p(a)) · α(a).

We have ∑n−1
i=0 (f i

a)
′(fn−i

a (p(a)))

α(a)
=

n−1∑
i=0

1

(fn−i
a )′(p(a))

=
n−1∑
i=0

1

(f i
a)
′(p(a))

.

The term of the last sum above corresponding to i = 0 is equal to 1, so the whole sum is
larger than or equal to 1. On the other hand, if i > 0 then we have (f i

a)
′(p(a)) ≥ cλi−1,

so
n−1∑
i=0

1

(f i
a)
′(p(a))

≤ 1 +
∞∑
i=1

1

cλi−1
= 1 +

λ

c(λ− 1)
.

Thus, there is a constant C > 0, independent of P ∈ P , such that

(6.6) C ≤ α(a)∑n−1
i=0 (f i

a)
′(fn−i

a (p(a)))
≤ 1

Now we can rewrite the differential equation (6.5) as

(6.7)
da

dp
=

α(a)∑n−1
i=0 (f i

a)
′(fn−i

a (p))

(
1

α(a)
− f ′a(p)

)
.
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The right-hand side of (6.5) is positive if a ∈ (a1, a2) and infinite if a = ai, i = 1, 2.
Therefore the right-hand side of (6.7) is positive if a ∈ (a1, a2) and zero if a = ai,
i = 1, 2. In particular, 1/α(ai) = f ′ai

(pi).

Let us estimate the distortion of α as a varies from a1 to a2. Then p(a) increases
and a increases, so f i

a(p(a)) increases for every i ≥ 0. If additionally i ≤ n, then

fn
a1

(p1) = fn−i
a1

(f i
a1

(p1)) ≤ fn−i
a1

(f i
a2

(p2)) ≤ fn−i
a2

(f i
a2

(p2)) = fn
a2

(p2).

Since fn
a1

(p1) = p1 + k and fn
a2

(p2) = p2 + k for the same integer k, we get

fn−i
a1

(f i
a2

(p2))− fn−i
a1

(f i
a1

(p1)) ≤ p2 − p1 < 1.

For j = 2, 3, . . . , n− 1 the interval [f i
a1

(p1), f
i
a2

(p2)], and therefore also its subinterval

[f i
a1

(p1), f
i
a1

(p2)], is in the region where the derivative of fa (which is independent of

a) is larger than λ; if j = 1, we should replace λ by c. Therefore if 2 ≤ i ≤ n, we get

f i
a2

(p2)− f i
a1

(p1) <
1

λn−i
,

and

fa2
(p2)− fa1

(p1) <
1

cλn−1
.

In those regions the logarithm of the derivative of fa is Lipschitz continuous with
some constant L, so by the chain rule we get for any a, b ∈ [a1, a2]

| log α(a)− log α(b)| ≤ L

(
1

cλn−1
+

n−1∑
i=2

1

λn−i

)
≤ L

(
1

c
+

∞∑
j=1

1

λj

)
.

The right-hand side of this inequality is a constant independent of the orbit P ∈ P .
Therefore there exists a constant D > 1, independent of the orbit P ∈ P , such that

(6.8)
1

D
≤ α(a)

α(b)
≤ D

for every a, b ∈ [a1, a2].
We have

f ′a

(
1

2
+ t

)
= 2(1− cos(2πt)),

so there exist positive constants E1, E2 such that if 1/3 ≤ 1/2 + t ≤ 2/3 then

(6.9) E1t
2 ≤ f ′a

(
1

2
+ t

)
≤ E2t

2.

For i = 1, 2, since 1/α(ai) = f ′ai
(pi), we get

(6.10) E1

(
1

2
− pi

)2

≤ 1

α(ai)
≤ E2

(
1

2
− pi

)2

.

From inequalities (6.8) and (6.10) we get

(6.11)

√
1

DE2

· 1

α(a0)
≤
∣∣∣∣12 − pi

∣∣∣∣ ≤
√

D

E1

· 1

α(a0)
.

Therefore (6.2) holds for some positive constants K1, K2 independent of P ∈ P .
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By (6.8), we have 1/α(a)− f ′a(p) ≤ D/α(a0), so from (6.7) and (6.6) we get

(6.12) a2 − a1 ≤
D

α(a0)
(p2 − p1).

On the other hand, the right-hand side of (6.7) is non-negative, so in view of (6.6)
and since (by (6.8)) 1/α(a) ≥ (1/D)(1/α(a0)),

(6.13) a2 − a1 ≥ C

∫ 1/2+s

1/2−s

(
1

D
· 1

α(a0)
− f ′a(p)

)
dp,

where

s =

√
1

DE2

· 1

α(a0)

(note that by (6.11) we have [1/2− s, 1/2 + s] ⊂ [p1, p2]). By (6.9) we have∫ 1/2+s

1/2−s

f ′a(p) dp ≤ E2

∫ 1/2+s

1/2−s

t2 dt =
2E2

3
s3 =

2

3
· 1

D
√

DE2

(α(a0))
−3/2.

Therefore, from (6.13) we get

a2−a1 ≥ C

(
2s

D
· 1

α(a0)
− 2

3
· 1

D
√

DE2

(α(a0))
−3/2

)
= C

(
4

3
· 1

D
√

DE2

(α(a0))
−3/2

)
.

From this, (6.12) and (6.2) we get (6.3) for some positive constants K3, K4 indepen-
dent of P ∈ P . �

Let us make several comments about Theorem 6.1. The first one is that if instead
of looking at the point p of the orbit P for which 1/2 is in its immediate basin of
attraction, we look at the next point along the orbit, q = fa(p) (the one that has a in
its basin of attraction), then the scaling of the P -window in the direction of q will be
the same as the scaling of the P -window in the direction of a. Indeed, if this window
is [q1, q2] then

q2 − q1 = Fa2
(p2)− Fa1

(p1) = (Fa1
(p2)− Fa1

(p1)) + (a2 − a1)

and since the map fa1
in [1/3, 2/3] is cubic up to a multiplicative constant (and in

view of (6.3)), we get

(6.14) K5(α(a0))
−3/2 ≤ q2 − q1 ≤ K6(α(a0))

−3/2

for some positive constants K5, K6 independent of P ∈ P . Therefore we get the
following corollary to Theorem 6.1. It is consistent with Figures 3 and 4 (remember
that when we consider fa, we take a modulo 1).

Corollary 6.2. There exist positive constants K7, K8 such that if a periodic orbit P
belongs to P then for the P -windows [q1, q2] in the direction of q and [a1, a2] in the
direction of a,

K7 ≤
q2 − q1

a2 − a1

≤ K8.
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The second comment is that since we expressed the sizes of the P -windows in terms
of α(a0), we have some information how those sizes behave as the period of P ∈ P
goes to infinity. Then α(a0) grows exponentially with the period n, in the sense that

(6.15) c1λ
n−2 ≤ α(a0) ≤ c2Λ

n−2

and c1, c2 > 0, Λ ≥ λ > 1 (this follows immediately from the definition of α and
our earlier estimates). However, whether (1/n) log α(a0) is closer to log λ or log Λ,
depends on a concrete orbit P .

The third comment is that although the orbits from P are kind of special, there
are infinitely many of them. Moreover, the only properties of P that we used were
that the growth of the derivatives along the pieces of the orbit P ∈ P not passing
through p is exponential in the length of the piece, uniformly in P . Thus, there are
many other families similar to P for which the same properties can be proved.

7. Intermittent periodic orbits

Now we consider periodic orbits with the behavior in a sense opposite to the be-
havior of the orbits considered in Section 6. Again the case is b = 1, so we work with
the maps fa and their liftings Fa. Set

a
I

=

√
3

2π
− 2

3
≈ −0.3910022190.

We have Fa
I
(2/3) = 2/3 and F ′

a
I
(2/3) = 1. Thus, 2/3 is a neutral fixed point and if

a is slightly larger than a
I

then we observe intermittency for fa. The trajectories of
points in a rather large interval containing 1/2 are increasing and spend a lot of time
very close to 2/3.

We denote by R the class of attracting periodic orbits for fa such that if p ∈ P ∈ R
and 1/2 is in the immediate basin of attraction of p and n is the period of P then
p < Fa(P ) < F 2

a (p) < · · · < F n−1
a (p) and p = F n

a (p) − 1. It follows that Φa(p) =
Dn(Φa(p))−1, so Φa(p) = 1/(2n−1). Therefore the type of such an orbit is 1/(2n−1).
Since we encounter all those types for the values of a slightly larger than a

I
, they

cannot appear anywhere else, and they are our intermittent ones.
The general philosophy for intermittency is that as the period of the attracting

periodic orbits increases, we have the same behavior (even quantitatively) in the
directions of the variables x and b, while in the direction of a we have scaling depending
on the order of tangency of the graph of Fa

I
to the diagonal. This we will see in

Theorems 7.2 and 8.2. We can also observe the repetition of the same behavior on
Figures 9 and 10. Note that we see there wide windows coming in pairs. Such a pair
consists of orbits of types 1/(2n − 1) and 2/(2n+1 − 1). Clearly, our considerations
can be applied also to the latter types, as well as to every intermittent family.

As in the preceding section, we want to estimate sizes of the P -windows for P ∈ R.
This time we will do it in terms of the period of P .

We will be using a result of Jonker [7]. Although stated formally for circle home-
omorphisms, it is local and applies to any intermittent behavior in one dimension.
Let us restate it for our family of maps. Lemma 2.5 of [7] (we skip the dependence
of some constants on other constants) gives us the following lemma.
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Figure 9. The (a, x)-plot, with a from 0.6107 to 0.6111, x from 0 to
1 and b = 1

Figure 10. The (a, x)-plot, with a from 0.6089 to 0.6129, x from 0 to
1 and b = 1

Lemma 7.1 ([7]). There are ε, τ > 0 such that if m ≥ 1 then there exist constants
K1, K2 > 0 such that

K1(a− a
I
)−3/2 <

∂f q
a(x)

∂a
< K2(a− a

I
)−3/2

whenever a
I

< a0 < a
I

+ ε, x ∈ [2/3 − τ, Fm
a (2/3 − τ)) and F q

a (x) ∈ [F−m
a (2/3 +

τ), 2/3 + τ).

The main result of this section is the following theorem.



24 MICHA L MISIUREWICZ AND ANA RODRIGUES

Theorem 7.2. There exist positive constants M1, M2, M3, M4 such that if Pn is the
periodic orbit of R of period n then for the P -windows [p1, p2] in the direction of p
and [a1, a2] in the direction of a, then

(7.1) M1 ≤ p2 − p1 ≤ M2

and

(7.2) M3n
−3 ≤ a2 − a1 ≤ M4n

−3.

Moreover, there exist positive constants M5, M6 such that if cn is the value of the
parameter a for which 1/2 ∈ Pn, then

(7.3) M5n
−2 ≤ cn − a

I
≤ M6n

−2.

Proof. We need estimates of the partial derivative with respect to a along our periodic
orbit. If we start and end close to 1/2 then we can split a trajectory piece of length
n into 3 pieces of lengths k, n − 2k and k, so that Lemma 7.1 applies to the middle
piece. As the parameter a approaches a

I
, the maps fa converge to fa

I
, so we can find

k that will work for all sufficiently large periods.
Computations similar as in Section 6 give us the following formulas:

(7.4)
∂fn−k

a

∂a
(fk

a (p)) =
∂fk

a

∂a
(fn−k

a (p)) + (fk
a )′(fn−k

a (p))
∂fn−2k

a

∂a
(fk

a (p))

and

(7.5)
∂fn

a

∂a
(p) =

∂fn−k
a

∂a
(fk

a (p)) + (fn−k
a )′(fk

a (p))
∂fk

a

∂a
(p).

By substituting (7.4) to (7.5) we get
(7.6)

∂fn
a

∂a
(p) =

∂fk
a

∂a
(fn−k

a (p)) + (fk
a )′(fn−k

a (p))
∂fn−2k

a

∂a
(fk

a (p)) + (fn−k
a )′(fk

a (p))
∂fk

a

∂a
(p).

Let us now estimate the derivative with respect to x. The point p has 1/2 in its
immediate basin of attraction, while other points of the orbit of p do not. Therefore
Fa(p) > 1/2 and p < Fa(1/2). If n is the period of p, then Fa(F

n−1
a (p)) = p + 1 <

Fa(1/2) + 1 = Fa(1), so F n−1
a (p) < 1. This proves that for i = 1, 2, . . . , n the

points F i
a(p) belong to the interval (1/2, 1) on which F ′

a is increasing. Therefore by
Lemma 3.4 we get

(7.7) (F n−2
a )′(Fa(p)) ≤ F n

a (p)− F n−1
a (p)

F 2
a (p)− Fa(p)

≤ (F n−2
a )′(F 2

a (p)).

To get estimates from both sides of (F n−1
a )′(Fa(p)) we need additionally the upper

estimate of F ′
a(F

n−1
a (p)) and the lower estimate of F ′

a(Fa(p)). The first one is simple,
because the maximal value of the derivative of Fa is 4. The second one requires the
proof that Fa(p) cannot be too close to 1/2.

In the same way as (7.7), we get

(F n−3
a )′(Fa(x)) ≤ F n−1

a (x)− F n−2
a (x)

F 2
a (x)− Fa(x)
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for every x ∈ [1/2, Fa(p)]. Since, as we noticed, F ′
a ≤ 4, we get

(7.8) (F n−1
a )′(Fa(x)) ≤ 16

F n−1
a (x)− F n−2

a (x)

F 2
a (x)− Fa(x)

.

Since [1/2, Fa(p)] ⊂ [1/2, Fa(1/2)], for a sufficiently close to a
I
the values of of F 2

a (x)−
Fa(x) are uniformly (in a and x) bounded away from 0. Clearly, F n−1

a (x)−F n−2
a (x) are

uniformly bounded from above, so together with (7.8) we get that (F n−1
a )′(Fa(x)) is

uniformly bounded from above. Therefore there is δ1 > 0 such that if a is sufficiently
close to a

I
and Fa(p) < 1/2 + δ1 then (F n

a )′(Fa(x)) < 1 for all x ∈ [1/2, Fa(p)]. This
means that 1/2 is in the immediate basin of attraction of Fa(p), which is impossible.
Therefore we must have Fa(p) ≥ 1/2 + δ1. Consequently, there is δ2 > 0 such that if
a is sufficiently close to a

I
then F ′

a(Fa(p)) > δ2.
This estimate together with F ′

a(F
n−1
a (p)) ≤ 4 and (7.7) gives us

(7.9) δ2
F n

a (p)− F n−1
a (p)

F 2
a (p)− Fa(p)

≤ (F n−1
a )′(Fa(p)) ≤ 4

F n
a (p)− F n−1

a (p)

F 2
a (p)− Fa(p)

The same type of estimates as in the preceding paragraph show that if a is suf-
ficiently close to a

I
then F n

a (p) − F n−1
a (p) is uniformly bounded from above and

F 2
a (p)− Fa(p) is uniformly bounded away from 0. By this and by (7.9) we conclude

that there are constants K3, K4 > 0 such that

(7.10) K3 ≤ (F n−1
a )′(Fa(p)) ≤ K4.

This estimate holds for all a sufficiently close to a
I
. This leaves out finitely many

periods, and for each of them clearly an estimate of this type holds. Therefore, by
changing constants K3 and K4, we get (7.10) for all orbits from R.

Let us return to (7.6). As we said, Lemma 7.1 applies to the middle piece, so there
are constants K1, K2 > 0 such that

K1(a− a
I
)−3/2 <

∂fn−2k
a

∂a
(fk

a (p)) < K2(a− a
I
)−3/2.

As n goes to infinity, a approaches a
I
, so ∂fk

a /∂a(fn−k
a (p)), (fk

a )′(fn−k
a (p)) and ∂fk

a /∂a(p)
converge to continuous positive functions of p. Thus, they are bounded from above
and bounded away from 0 by constants independent of n and p. Clearly, the consid-
erations that led to (7.10) give the same results for (fn−k

a )′(fk
a (p)). Taking all this

into account, we get from (7.6)

K5 + K6(a− a
I
)−3/2 ≤ ∂fn

a

∂a
(p) ≤ K7 + K8(a− a

I
)−3/2,

where K5, K6, K7, K8 are positive constants. Since (a − a
I
)−3/2 goes to infinity as

a → a
I
, we conclude that there are constants K9, K10 > 0 such that

(7.11) K9(a− a
I
)−3/2 ≤ ∂fn

a

∂a
(p) ≤ K10(a− a

I
)−3/2.

Although this does not appear explicitly in (7.10) and (7.11), the point p depends
on a, so we will write p(a) instead of p now. As for the case of mostly repelling
attracting orbits, we have

(7.12) p′(a) =
∂fn

a

∂a
(p(a))

1− (fn
a )′(p(a))
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(this is (6.5) without (6.4) plugged in).
As in Section 6, denote α(a) = (fn−1

a )′(fa(p(a))) and for P ∈ R of period n consider
P -windows [a1, a2] and [p1, p2] in the directions of a and p respectively. In view of
(7.10), (6.8) holds in the present case, too, so in the same way as in Section6, we
get (6.2). Applying (7.10) again, we conclude that there are constants M1, M2 > 0,
independent of n, such that (7.1) holds.

In order to estimate the size of the P -window in the direction of a, we have to solve
approximately (up to a multiplicative constant) (7.12). Observe that in the region
where we want to solve it both the numerator and denominator of the right-hand side
of (7.12) are positive. Therefore p is a strictly increasing function of a, and thus we
can write a as a function of p, a = a(p). We have p(ai) = ai for i = 1, 2 and thus

(7.13)

∫ p2

p1

(1− (fn
a(p))

′(p)) dp =

∫ a2

a1

∂fn
a

∂a
(p(a)) da.

Clearly, 1 − (fn
a(p))

′(p) ≤ 1, so by (7.1) the left-hand side of (7.13) is bounded

from above by M2. On the other hand, (fn
a(p))

′(p) = α(a(p))f ′a(p)(p). By (7.10),

α(a(p)) is bounded from below by K3 and from above by K4. Moreover, f ′a(p)(p) =

2(1 − cos(2π(1/2 − p))). There is s > 0, independent of n, such that |p − 1/2| < s
then

1− cos(2π(1/2− p)) <
1

2K4

.

Then

(fn
a(p))

′(p) = α(a(p)) · 2(1− cos(2π(1/2− p))) < K4 ·
2

2K4

= 1,

so [1/2− s, 1/2 + s] ⊂ [p1, p2]. Therefore∫ p2

p1

(1− (fn
a(p))

′(p)) dp ≥
∫ 1/2+s

1/2−s

K3 · 2(1− cos(2π(1/2− p))) dp.

The right-hand side of the above equation is a positive constant, call it K11, indepen-
dent of n. Thus, we have

(7.14) K11 ≤
∫ p2

p1

(1− (fn
a(p))

′(p)) dp ≤ M2.

Let us consider the right-hand side of (7.13). By (7.11), we have

2K9((a1 − a
I
)−1/2 − (a2 − a

I
)−1/2) =

∫ a2

a1

K9(a− a
I
)−3/2 da

≤
∫ a2

a1

∂fn
a

∂a
(p(a)) da

≤
∫ a2

a1

K10(a− a
I
)−3/2 da

= 2K10((a1 − a
I
)−1/2 − (a2 − a

I
)−1/2).

Together with (7.13) and (7.14) this gives us the existence of constants K12, K13 > 0,
independent of n, such that

(7.15) K12 ≤
1

√
a1 − a

I

− 1
√

a2 − a
I

≤ K13.
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Now we have to investigate the dependence between a−a
I

and n. Recall that Pn is
the periodic orbit from R of period n and cn is the value of the parameter a for which
1/2 ∈ Pn. As a moves from cn+1 to cn then F n

a moves from F n
cn+1

(1/2) = F n
cn+1

(p(cn+1))
to F n

cn
(1/2) = 1/2, so the distance it covers is between 1/2 and 1. The estimates that

resulted in (7.11) hold also in this situation (maybe with slightly worse constants),
so we get

K14(a− a
I
)−3/2 ≤ ∂fn

a

∂a
(1/2) ≤ K15(a− a

I
)−3/2

for all a ∈ [cn+1, cn], where the constants K14, K15 > 0 are independent of n. Therefore

1 ≥
∫ cn

cn+1

K14(a− a
I
)−3/2 da = 2K14

(
1

√
cn+1 − a

I

− 1
√

cn − a
I

)
and

1

2
≤
∫ cn

cn+1

K15(a− a
I
)−3/2 da = 2K15

(
1

√
cn+1 − a

I

− 1
√

cn − a
I

)
.

Thus,

(7.16)
1

4K15

≤ 1
√

cn+1 − a
I

− 1
√

cn − a
I

≤ 1

2K14

.

Summing it from n = 1 to m− 1 we get

m− 1

4K15

+
1

√
c1 − a

I

≤ 1
√

cm − a
I

≤ m− 1

2K14

+
1

√
c1 − a

I

.

Therefore there exist constants K16, K17 > 0, independent of n, such that

K16n ≤
1

√
cn − a

I

≤ K17n.

This gives us (7.3) with M5 = 1/K2
17 and M6 = 1/K2

16.
Now, by (7.15), (7.3), the identity

x− y = (x
√

y + y
√

x)

(
1
√

y
− 1√

x

)
,

and since cn+1 < a1 < a2 < cn−1, we conclude that there exist constants M3, M4 > 0,
independent of n, such that (7.2) holds. �

The scaling we obtained for orbits from R is completely different than the scaling
for the orbits from P . In particular, switching from the point p to its image q will
not change this scaling.

8. Length of tongues

Despite a clear picture emerging from the numerical experiments, we do not know
much about the shape of the tongues, except the tongue of period 1. We do not
even know whether the tongues are connected. Therefore, since the bulk of our
knowledge concerns the level b = 1, it makes sense to define proper tongues as those
components of the tongues that have non-empty intersection with the line b = 1.
By Propositions 4.3 and 4.4, the intersection of any tongue with the line b = 1 is
connected and nonempty, and therefore there is exactly one proper tongue of each
type.
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For the types considered in Section 6, we have enough information to estimate the
length of the proper tongues. We measure the length of a tongue in the direction of b.
The first result seems to confirm the conjecture that at a given level b < 1 there are
only finitely many tongues.

Theorem 8.1. Let s, t be periodic points of D with 1/16 < s < t < 1/8. Then
there exist constants λ > 1, N > 0 and K5 > 0 such that any proper tongue of a
type between s and t, period n ≥ N , and such that the orbit of this type for some fa

belongs to P, has length smaller than K5λ
−n.

Proof. There are as, at such that fas has a periodic attracting orbit of type s and
fat has a periodic attracting orbit of type t. If ε is sufficiently small, then for any
b ∈ [1 − ε, 1] the map fas,b has a periodic attracting orbit of type s and fat,b has a
periodic attracting orbit of type t. Since tongues are pairwise disjoint, the proper
tongue of any type r ∈ (s, t) intersected with the set [0, 1)× [1− ε, 1] is contained in
(as, at)× [1− ε, 1].

If ε is sufficiently small and b ∈ [1 − ε, 1], the maps fa,b are uniformly close to
the maps fa. Therefore for the orbits of the types described in the statement of the
theorem, the same estimates for the derivatives (with respect to x) as in Section 6
hold, perhaps with slightly smaller λ and c. Therefore, using the notation of that
section, we get

(fn−1
a,b )′(fa,b(p)) ≥ cλn−1.

On the other hand, the minimum of f ′a,b occurs at 1/2 and is equal to 2 − 2b. If

our orbit is attracting, we get (2 − 2b)cλn−1 < 1, so 1 − b < (λ/(2c))λ−n. Thus, if
K5λ

−n < ε, where K5 = λ/(2c), we see that the length of the proper tongue that we
consider is smaller than K5λ

−n. To complete the proof, we note that there exists N
such that if n ≥ N then K5λ

−n < ε. �

Let us now consider periodic orbits of the types considered in Section 7. Here we
will see that if b < 1 is sufficiently close to 1 then there are infinitely many tongues at
that level. Once we know where they are situated, we can produce a picture showing
them (see Figure 11). Let us remark that a straightforward method used to detect
attracting periodic orbits does not work well here, since a point that moves only
slightly due to intermittency may be mistaken for a fixed point.

Theorem 8.2. There exists a constant L > 0 such that any proper tongue such that
the orbit of this type for some fa belongs to R, has length larger than L.

Proof. As we noticed in Section 7, the type of an orbit from the statement of the
theorem is 1/(2n − 1) if its period is n. For each value of b and each n there ex-
ists a unique value, a(b, n) of a, such that for fa(b,n),b the point 1/2 is periodic and
Φa(b,n),b(1/2) = 1/(2n− 1). Clearly, if n is fixed, then a(b, n) depends continuously on
b.

If b is sufficiently close to 1, then the inequality (7.7) with p replaced by 1/2 and Fa

replaced by Fa(b,n),b can be proved in exactly the same way as in Section 7. The upper
estimate of the derivative of Fa(b,n),b by 4 still holds. Therefore we get an analogue of
the estimate from (7.10),

(F n−1
a(b,n),b)

′(Fa(b,n),b(1/2)) ≤ K4
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Figure 11. Tongues of period 50 or less in the intermittent region,
0.6 ≤ a ≤ 0.64, 0.96 ≤ b ≤ 1

with the value of K4 possibly changed (but independent of n and of b provided b is
sufficiently close to 1). Now, if b is sufficiently close to 1 then F ′

a(b,n),b(1/2) < 1/K4,
so

(F n
a(b,n),b)

′(Fa(b,n),b(1/2)) ≤ 1.

This proves that (a(b, n), b) belongs to the tongue of type 1/(2n−1). The estimates on
how close b should be to 1 are independent of n and since a(b, n) depends continuously
on b, this is the proper tongue. This completes the proof. �
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