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Abstract

This paper deals with the existence, or absence, of certain "simple" contractions of a
contractible space; the main concept involved is that of a coalescent contraction: when the
tracks of any two points meet, at time t0, they remain together thereafter. Examples of
contractible spaces where no coalescent contractions exist are simplicial complexes, like the
dunce hat, with no free simplices. We introduce two notions for measuring the complexity
of a homotopy: its volume and its energy. We relate the problem of the existence of a coa-
lescent contraction with ways of minimalizing the volume and energy, in a suitable space of
contractions. The main results and problems - considered as a start for a research project,
and for some of which we advance supporting heuristics based on the analysis of the three di-
mensional cases - are about the existence of coalescent contractions in compact, triangulable,
contractible manifolds.

1 Introduction

(...) Mathematics rigorously treated from [the] point of view [of] deducing theorems
exclusively by means of introspective construction, is called intuitionistic mathematics...

(...) I hope I have made clear that intuitionism on the one hand subtilizes logic, on
the other hand denounces logic as a source of truth. Further that intuitionistic mathematics
is inner architecture, and that research in foundations of mathematics is inner inquiry with
revealing and liberating consequences, also in non-mathematical domains of thought.

( Brouwer, L. E. J.,[1])

This paper is about contractible spaces and our main purpose is to search for simple con-
tractions. Of course, we have to establish meanings to the word ’simple’, in this context. One
such meaning is given by the notion of coalescence: we say that a homotopy, H : X £ I ¡! Y ,
is coalescent if

H(a; t0) = H(b; t0) ) H(a; t) = H(b; t) 8t ¸ t0

that is, when the tracks of any two points, a; b 2 X meet, at time t0, they remain together
thereafter; other meanings are relative to two notions we introduce, in section 4, as a way of
measuring the complexity of a homotopy: its volume and its energy.

In section 2 we revisit the dunce hat : this is the simplest example of a contractible finite
simplicial complex which is non-collapsible, [2]. It is not collapsible, simply because there is
no free simplex to start a collapse. The easiest proof that it is contractible goes like this: one
readily sees that the dunce hat can be embedded in euclidian space, E3, where it is a (strong)
deformation retract of a neighbourhood (a regular neighbourhood) homeomorphic to the 3-ball,
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B3, and is therefore contractible 1. While it is reasonably easy to visualize, in E3, the embedding
of the dunce hat, its thickening to a 3-ball and the corresponding deformation, it is far more
difficult to visualize an actual contraction of the dunce hat, a least until one gets used to that
mental exercise. What we shall do, in section 2, is to describe, in intrinsic terms, a contraction
of the dunce hat; our intention is that the picture thus formed will serve as a role model, to be
contrasted with the heuristic arguments that lie ahead.

In section 3 we prove that the dunce hat doesn’t have any coalescent contractions. This
comes as a consequence of the dunce hat not having free simplices, which also prevents it from
being collapsible; of course, for a collapsible space, K, we can associate to each collapse, K & ¤,
a coalescent contraction. The arguments used in this section can be generally described as
variations on Brower’s fixed point theorem and degrees of maps between spheres; for simplicity,
we focus on the dunce hat, but the arguments can be generalized for other finite simplicial
complexes with no free simplices.

In section 4 we introduce the notions of volume and energy of a homotopy. These are
intended to be measures of the waste, that is unnecessary moves, in the timely process of a space
contracting in itself: in very simple heuristic terms, the volume measures the folding of the space
and the energy measures the wandering of the point paths. Given a contractible, finite simplicial
complex, K, we will think mainly in terms of simplicial contractions, H : (K £ I)sub ¡! Ksub,
the upper-scripts denoting simplicial subdivisions, including the baricentric ones, denote by (r)
1 , and their limits in the space C of contractions endowed with the supreme metric. Volume and
energy are lower semi-continuous functions in that space, therefore the existence of contractions
with minimal energy and volume follows when we restrict to a suitable compact subspace, G.

In section 5 we consider the case when the contractible finite complex K is a manifold : we
sketch a general argument, some details of which are essentially heuristic - since we only work
them in dimension three - to provide evidence and support to the conjecture that coalescent
contractions exist in this case when a certain geometric condition is assumed - convexity at the
boundary. The idea is to consider homotopies with minimal energy and volume and argue that,
for those, the nature of a manifold, endowed with a metric which is locally geometric - in the
sense that geodesics intersect transversely - doesn’t allow non coalescence to occur: although the
spaces G are quite restricted in the space of all possible contractions, they still allow enough local
flexibility for the arguments to be carried through. This is intended to start a research project
on the subject of coalescence; We end the paper with some general remarks on the relations
between, coalescence, collapsibility and compactness.

This is the second paper on a series started with [6]. In there, a longer list of references can be
found, as well as a short introduction to contractible spaces and the Poincaré conjecture and its
history, which are relevant to the issues dealt with in the present paper. As a matter of fact, the
notions of volume and energy we are using, were inspired by the mechanical picture underlying
the ’heuristic tour’ we took in that paper, and actually can be used to give mathematical content
to some of the heuristic views in that tour; but the present paper is totally independent and can
be read without any reference to that previous one; it is also, we hope, much less heuristic.

1For the background notions just invoked (simplicial complexes, collapsible complex, regular neigbhourhoods,
etc.), see [3, Chapter 2] for a quick introduction and [4], [5] for deeper treatments.
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2 From inside the dunce hat I: contraction

Recall that the dunce hat, D, is the quotient space obtained from a triangle (2-simplex) by
identifying the three oriented edges where the orientations of two of the edges are pointing to
the same vertex. See Figure 1, bellow.
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Figure 1

The three vertices of the triangle are all identified to the same point V of D, which we
call the vertex of the dunce hat: as we shall see, this point plays an essential part in several
properties of D. Represented in shade is a typical neighbourhood of V : it is easy to see that
it is homeomorphic to a disc - the bottom right triangle AV C - with two cones glued along
generators, V A and V B: see Figure 2 for a picture of an embedding of that neighbourhood in
three space.

We start now, describing a contraction of the dunce hat. We look first at the cone corre-
sponding to the top triangle in Figure 1. We divide it into three regions, depicted in Figures
1 and 2, as follows. Consider the perpendicular segment from V to the foot V0, and divide it
in thirds by the points V1, V2. Consider next the two pairs of lines from A to V1 and V2: each
gives a loop based in A and going through Vi. The perpendicular from a generic point P , in the
generator AV , to its foot P0, gets divided into thirds by the intersections with those loops, P1
and P2: one such perpendicular is represented in Figure 2.

We construct the contraction of D as a sequence of several homotopy movements which we
describe in order.

The first movement fixes all points outside the cone, and also those on the base of the
cone, that is on loop AV0A, as well as on the generator AV and moves just those points in the
interior of the top triangle, in Figure 1. The tracks of the points in the interior of the triangle
follow the perpendicular segments: for each perpendicular segment PP0, the homotopy fixes the
end points, shrinks the segment P2P to the end point P and stretches the segment P0P2 to a
homeomorphism into P0P . At the end of the movement, for any point V 0 in the perpendicular
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segment V2V each of the two arcs from A to V 0 is sent homeomorphically to AV : so that the
region between the loops AV0A and AV2A is stretched to give the original cone by identification
of the two arcs AV2 to AV , while the complementary region of the cone closes down to AV - as
a fan made of those loops AV 0A.
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Figure 2

The second part of the homotopy keeps moving just those points interior to the "fan region"
just mentioned, and the movement takes place entirely within the segment AV , where they all lie
by the end of the first movement. Recall that for a generic P 2 AV , the "perpendicular segment"
P2P was squeezed to P ; now, the points P1 move along AV , from P to A and correspondingly
the two segments PP1 and P2P1 expand again, keeping the other end points P and P2 fixed at P ,
to fill the segment PA homeomorphically. Note that at the end of this process, the loop AV1A is
shrunk to the point A. In Figure 3 bellow, we try to give a visual impression of the combination
of the first two homotopy movements, just described. But note that it is not a realistic picture:
the two arrows to the right, pointing downward, suggest rightly the first movement, that of
closing the fan and the third arrow, pointing to the left, suggests the second movement, with
the thick loop AV1A shrinking in the direction of point A; but in this respect it is a fake picture,
since the second movement happens all inside the segment V A: lets say it’s an "infinitesimal
vision" from inside AV , allowing us to keep seeing all the elements of the closed fan - like the
points P2 and P or the segments P2P1 and P2P1in the picture - set apart ! Anyway, if the reader
doesn’t find this picture helpful he/she may simply ignore it.

The third part of the homotopy starts by pushing the segment AV , keeping the end points
fixed, slightly inside the disc that corresponds to the bottom right triangle AV B, sending it
to an inside arc AdV , as represented in Figure 2: by ’pushing’ we mean to perform a strong
deformation retraction of the disc through the shaded area. In the process, we must drag along
all the points from the interior of the top most region of the triangle - the part of the fan above
loop AV1A - that by the end of the first two movements were all laid inside the segment AV : the
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important point now is that since the loop AV1A was shrunk to the point A that now remains
fixed, the dragging gives a continuous function!
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This is the stage where the image of the dunce-hat by the homotopy is no longer surjective.
Figure 4 represents the state of affairs at this point.

v1

v2

VV

V

d

A A

B

B

B

A

v0 p0

P

c

Figure 4

5



The image of the dunce-hat D, after the small deformation retraction of disc AV B from
AV across the disc ¢AV d, is the image after the first two movements of the shaded region plus
the segment AV which remains the image, after those previous movements, of the upper region
enclosed by the loop AV2A - recall that each one of the arcs AV2 was mapped homeomorphically
into AV - and the loop AV1A which was shrunk to A; the image of the top region is now the
arc AdV , with the segment V1V - represented thick - mapped homeomorphically from A to V .

The interior of the triangle ¢AdV is what is missing from the image of D at this point.
The fourth part of the contraction of D is the continuation of the previous small deforma-

tion retraction all the way across the interior of the shaded region, from the arc AdV to the
complementary part of the boundary of that region, as suggested in Figure 5 bellow, composed
with the final map of the first two movements. At the end of this deformation, the image of D
will just be the image of segment V A plus the image of arc AV1A by that map. That map was
the identity on V A and on arc AV1A was the constant map to A. Therefore the image of D at
the end of this fourth part will be an arc, namely V A.

Since an arc is a contractible space, the fifth and last part of the contraction of D will
be a contraction of the arc V A: note that if we choose this final contraction to be a strong
deformation retraction to the end point V , this point - the vertex of D - will have remained
fixed through out all the contraction of D.

This finishes the description of a contraction of the dunce hat, as seen from the inside.
We should note that many points that meet at a certain stage of the contraction - in the

terminology of the introduction, they coalesce - separate again at later stages. As we shall see
in the next section, that phenomenon can’t be avoided in any contraction of D.
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Note: In the first two parts of the contraction we only moved points in the cone with
generator AV , until we were able to dig a hole near the vertex V , by pushing along AV ; note
that we can take the cone - equivalently the generator AV - to be arbitrarily small. If we consider
an infinitesimal cone (more formally, the uniform limit of a sequence of homotopies defined, as
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the one before, on a sequence of cones converging to vertex V ...) the hole near V , that is non-
surjectiveness, appears right from the start of the homotopy: 8" > 0; 9t < " : Ht(D) 6= D,
where Ht; t 2 [0; 1] denotes the contraction. That is not always the case for contractible spaces;
the reader may convince himself of that fact after solving the following exercise on another
famous contractible non-collapsible space, Bing’s house with two rooms (Figure 6)

The house is built in the following way. Start with a closed rectangular box, and add a slab
in the middle; then add two more boxes, as shown in Figure 6, one from the mid slab to the top
and another one from the mid slab to the bottom; remove then the base and top from each of
these two chimneys. You got a house with two separated rooms: you can get into the bottom
room through the top entrance and into the top room from the bottom entrance (see[7]). Finally
add two walls, one in each room as shown shaded in Figure 6. You can easily see that a regular
neighbourhood of this object in R3 is a 3-ball, therefore it is contractible; but it is not collapsible
since there are no free simplices.

Exercise 1 Describe a contraction of Bing’s house: the essential point is the art of digging a
hole somewhere, as we did for the dunce-hat...

Hint: having experienced with the dunce hat D before, what you should expect now is to be
able to dig a hole near one of the "special" corners of the house where, as in the vertex V of D,
there is some complexity in the way the several walls meet at that point (intuitively, and as we
shall see later, one can not do such a thing as digging a hole near a manifold point); but, after
some trials, you will soon find that you can not act locally near just one such point, instead you
will have to work in a larger region with several of them.

Figure 6
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3 From inside the dunce hat II: coalescence

We have already said, in the introduction, what it means for a homotopy H : X £ I ¡! Y to
be coalescent :

H(a; t0) = H(b; t0) ) H(a; t) = H(b; t);8t ¸ t0

that is, if the the tracks of two points, a and b, meet at time t0, they remain together thereafter.
What we shall establish, in this section, is the impossibility of coalescent contractions of the

dunce-hat; the arguments apply equally well to other contractible spaces, for instance Bing’s
house. Before proceeding, we want to draw attention to a specially nice feature of coalescent
contractions.

From now on we will assume, unless otherwise stated, that all spaces are finite simplicial
complexes, although most of the arguments can be carried over to more general classes of spaces,
especially compact metric spaces.

Let Y be a contractible space and H : Y £ I ¡! Y a contraction that is coalescent. Let,
for each t 2 I, Yt be the image of Y at time t: Yt = Ht(Y ) = H(Y £ t). Since H is continuous,
each Yt is a compact subspace of Y , homeomorphic to the identification space Y=R where R
is the relation of coalescence at time t, aRb , Ht(a) = Ht(b). The nice feature of coalescent
contractions we were alluding to is that given any Yt0 , what we see during the contraction, from
time t0 until the end, is also a contraction of subspace Yt0 in the ambient space Y . This is an
immediate consequence of transgression for identification spaces that we recall:

Theorem 2 Let f : X ¡! Z be a continuous map and p : X ¡! Y an identification map such
that h = fp−1 is well defined (that is, f is constant on each fibre p−1(y)).Then:

a) h : Y ¡! Z is a continuous map.

b) In the particular case when Y = Xf = X=Kf with Kf the relation induced by f , defined by
aKfb , f(a) = f(b), h is injective. Therefore each continuous map, f , factors through
the composition of a continuous surjection and a continuous injection.

c) If, furthermore, f is surjective, then h = fp−1 : Xf ¡! Z is a continuous bijection and is a
homeomorphism, h : Xf

»= Z , if and only if f is an identification map.

Proof. See, for instance, [8, Chapter VI].

We can now give the precise formulation of that nice feature we described above:

Remark 3 Let Yt0 be the image of Y at time t0, and let p : Y £ [t0; 1] ¡! Yt0£ [t0; 1] be defined
by p(y; t) = (Ht0y; t). Since we are assuming that H is coalescent, J = p−1H is single-valued,
thus defines a function J : Yt0£[t0; 1] ¡! Y . Because Y £[t0; 1] is compact, p is an identification
map and so, by a) of the previous theorem, it is continuous. Furthermore, it’s clear that for
each y 2 Yt0, J(y; t0) = y, that is Jt0 is the identity map on Yt0 , and since H1 is constant we
have that J1 is also constant and therefore J realizes a contraction of Yt0 in the ambient space
Y . Clearly, J is also coalescent.

Let H : Y £ I ¡! Y be a contraction. Define the opening time, top, by
top = sup ft : Ys = Y ; 8s ∙ tg. The opening time is the time when space Y first opens, in the
sense that we start seeing non-surjectiveness. It is an easy exercise to show that Ytop = Y .
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After our construction, in the previous section, of a contraction for the dunce-hat D, we
explained in a note how it could be modified, through a limiting process, to yield a contraction
H such that 8" > 0; 9t < " : Ht(D) 6= D. This means that top = 0, the opening time is 0. The
next result shows that if there is a coalescent contraction, there is a contraction with opening
time 0.

Theorem 4 Let H : Y £ I ¡! Y be a coalescent contraction. Then there is a (coalescent)
contraction Ks, s 2 I, of Y with opening time sop = 0.
Proof. Let top be the opening time of H and consider Ytop . As we’ve just stated above,
Ytop = Y : with the usual notation for " > 0 neighbourhoods of subspaces A ½ Y , Nε(A) =
fy 2 Y : d(y;A) < "g, where d is a metric for Y and d(y;A) = inf fd(y; a) : a 2 Ag, we have:
given an arbitrary Yt0and neighbourhood Nε(Yt0), using the uniform continuity of H, due to the
domain being compact, we can get a ± > 0 such that jt¡ t0j < ± ) Yt ½ Nε(Yt0); in particular,
if Yt0 6= Y , since Yt0 is compact, we have d(a; Yt0) > 0 for a 2 Y ¡Yt0 and so taking " < d(a; Yt0)
we have that Yt 6= Y for all t such that jt¡ t0j < ±; therefore, by the definition of opening time,
it has to be the case that Ytop = Y .

Refer back to the discussion in the remark above: with p : Y £ [top; 1] ¡! Ytop £ [t0; 1] =
Y £ [top; 1], we have that J = Hp−1 : Y £ [top; 1] ¡! Y realizes a (coalescent) contraction of Y
and clearly, by definition of top as a supremum, 8" > 0; 9t < top + " : Jt(Y ) 6= Y . The final
contraction Ks, s 2 I, is obtained by an obvious reparametrization of J: t = s(1 ¡ top) + top;
clearly, sop = 0.

We are now in the position of establishing the non-existence of coalescent contractions of
the dunce-hat D. But we look first at Bing’s house; let’s denote it B. Let H be a contraction
of B and assume that it is coalescent: by the previous theorem we can assume, without loss of
generality, that the opening time for H is 0, that is 8" > 0; 9t < " : Ht(B) = Bt 6= B. Let
tn, n 2 N, be a sequence convergent to 0, such that Btn 6= B for all n, and, for each n, choose
some point cn 2 B ¡Btn ; without loss of generality, considering a subsequence if necessary, we
can assume that cn converges to a point, say cn ¡! c. So, as soon as the contraction of B gets
started, we see points arbitrarily close to c that are missed at arbitrarily early stages.

Assume B is endowed with a triangulation by 2-simplices linearly embedded in 3-space: this
means that the corners of the house are vertices of the triangulation and that the edges of the
house are contained in the 1-skeleton. Looking at the star of point c, St(c), the union of all
simplices that contain c, we can assume without loss of generality that the points cn all belong
to the same simplex ¾ 2 St(c). It should be clear, looking at B, that we can always get an
embedded disc ¢, made up of simplices of St(c) including ¾, and with c in its interior. Here
interior means interior of the manifold - the points not in boundary circle § = @¢ - not the
interior of ¢ as a subspace of B: for those points of B which are not manifold points - there
are eight of them at the corners of the two shaded walls in Figure 6 - we have several ways of
constructing ¢. We can also assume that, alongside with c, all the cn are also in the interior of
¢. Now, we just need to look at (the first stages of) the contraction of disc ¢ in B, that is, to
look at the restriction of H to ¢£ I.

Let us first recall some results about self-maps of n-balls and spheres. Given the n-ball
Bn = fx 2 Rn : kxk ∙ 1g and an interior point x, let rx : Bn ¡ fxg ¡! Sn−1 denote the usual
retraction given by radial projection from x.

Lemma 5 Let xn, n ¸ 1, be a sequence of interior points of Bn converging to an interior point
x0 and N a closed neighbourhood of Sn−1 disjoint from the set of points xi; i ¸ 0. Then the

9



restrictions to N of the set of retractions frxngn≥0 is equicontinuous, that is,

8" > 0;9± > 0 : 8x 2 N;8n ¸ 0; krxn(x)¡ xk < "

Proof. We leave the proof as an exercise for the reader.

The next result says that continuous self-maps of the sphere which are sufficiently close to
the identity are homotopic to the identity. In fact more can be said:

Lemma 6 Let f : Sn−1 ¡! Sn−1 be a continuous map such that no point is sent to its antipodal,
that is, f(x) 6= ¡x;8x 2 Sn−1. Then f is homotopic to the identity.
Proof. Consider for each point x 2 Sn−1 the segment in Bn with end points x and f(x). We
leave it for the reader to check that we obtain a homotopy H : Sn−1 £ I ¡! Sn−1 between
the identity and f by sliding from x to f(x) along those segments and compose with the radial
projection, r, from the origin - more specifically H(x; t) = r(x+ t(f(x)¡ x)) (the track of each
point is the (shortest) arc of great circle that joins it to its image).

Consider again the disc ¢ and the contraction H. Through some specific homeomorphism
(¢;§) ¡! (B2; S1) we get the analogous of the two previous lemmas for the pair (¢;§), namely
a set of retractions rcn : ¢ ¡ fcng ¡! §, n ¸ 0 (with c0 = c), which is equicontinuous on any
closed neighbourhood N(§) disjoint from the ci; i ¸ 0, and a positive constant k such that any
continuous map of f : § ¡! § with d(f; idΣ) ∙ k
(d the sup metric) is homotopic to idΣ. Fix a ®-closed neighbourhood of § in ¢, Nα(§) =
fx 2 ¢ : d(x;§) ∙ ®g which doesn’t contain any of the points ci: by equicontinuity, there exists
± > 0 such that 8x 2 Nα(§);8n ¸ 0; krcn(x)¡ xk < k=2. Let, for each " > 0, Mε denote the
"-neighbourhood of ¢ in B: it is clear that for sufficiently small " there is a (strong deformation)
retraction rε ofMε into ¢, such that, for all y 2 Mε¡¢, rε(y) 2 § and d(y; rε(y)) ∙ " . Choose
such an ", with " ∙ min f®; ±; k=2g. By uniform continuity of H, there is a time t0 > 0 such
that for all x 2 B and for all t ∙ t0 we have d(x;H(x; t)) < "; choose a time tcn < t0, call
it s to simplify notation and let f be the restriction of Hs to the disc ¢. Let g : ¢ ¡! §
be defined by g = rcn ± rε ± f : by the choice of s = tcn < t0, f(¢) ½ Mε, so rε ± f is well
defined. Let x 2 §: if f(x) 2 Mε ¡ ¢ we have g(x) = rε ± f(x) and d(f(x); rεf(x)) ∙ ", so
d(x; g(x)) ∙ d(x; f(x)) + d(f(x); rε ± f(x)) ∙ "+ " ∙ k; if f(x) 2 ¢, g(x) = rcn ± f(x), and since
d(x; f(x)) < " ∙ min f®; ±; k=2g, we have that f(x) 2 Nα; therefore, since d(x; f(x)) < ± )
d(f(x); rcn ± f(x)) < k=2 we have d(x; g(x)) ∙ d(x; f(x)) + d(f(x); rcn ± f(x)) ∙ k=2 + k=2 = k.
In both cases we conclude that 8x 2 § ; d(g(x); x) < k and so, by the choice of K above,
the restriction of g to § is homotopic to the identity and so has degree 1; on the other hand,
being the restriction of a map defined on the disc ¢ it is nulhomotopic and so has degree 0,
contradiction2.

We have thus finished a proof that no contraction of space B has opening time 0 - a result
we hinted at in the note of the previous section - and as a corollary that no contraction of B is
coalescent:

Theorem 7 No contraction of Bing’s house, B, has opening time top = 0; therefore no con-
traction of B is coalescent.

2The reader who hasn’t yet learned about this most important notion of degree - and the associated results on
maps between spheres - introduced by Brower, is urged to do so: see [8, Chapters XV-XVII] or books on algebraic
topology, for instance [3], [9], [10].
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We should stress what was the key factor in the previous proof: given any point c where
space B "opens up" (at time 0) and whatever simplex, ¾ 2 St(c), contains points arbitrarily
close to c from the complements of images Ht(B), it is possible to get an embedded disc ¢
containing ¾ and with c an interior point.

Definition 8 We say a point c in a simplicial complex C has the star-disc property if for each
simplex ¾ 2 St(c) there is an embedded disc ¢ that contains ¾ and with c an interior point
(note that, in particular, this property implies that there are no free simplices and so C is non-
collapsible)

It is straightforward - we leave it as an exercise for the reader - to generalize the proof to
higher dimensions to get:

Theorem 9 Let C be a finite, contractible simplicial complex such that every point c has the
star-disc property (therefore C is non-collapsible)

Then, every contraction of C has opening time top > 0 and so is non-coalescent.

The dunce-hat D doesn’t satisfy the hypothesis of the theorem: there is exactly one point
which doesn’t have the required property, the vertex V . Referring back to Figures 1 and 2, it
is clear that a simplex in St(V ) that comes from the right-bottom part, like triangle AV B, can
not be extended to an embedded disc with V an interior point. This fits in well with our note
in the previous section, where it was observed that our construction of a contraction of D would
have opening time 0 if it was done with an infinitesimal cone; on the other hand any contraction
of D with top = 0 will have to open up at the vertex V since it’s easily seen that any point other
than V has the star-disc property.

Although the dunce-hat has contractions with opening time 0, it doesn’t have any coalescent
contractions, but to settle this some further arguments are needed to deal with the special
situation of the vertex. We start by establishing a lemma to the effect of getting rid of a certain
type of possible wilderness of the track of vertex V under a contraction H of D: for technical
reasons, that will become apparent in the course of the final proof, we do not want the track
H(fV g £ I) to cover the complements of images Ht(D) that arise after opening time.

Lemma 10 Let H be a (coalescent) contraction of D and p any manifold point of D (that is, p
is any point in the interior of the identification triangle in Figure 1). Then there is a (coalescent)
contraction, J, such that the track of V under J misses p.
Proof. Let °(t) = H(V; t). Let B be a closed neighbourhood of p, homeomorphic to a disc (see
Figure 7) and disjoint from V .

Let uo be any time such that °(uo) = p,
t0 = inf ft 2 I : °([t; u0]) ½ Bg and s0 = sup ft 2 I : °([u0; t]) ½ Bg; this means that in the
interval [t0; s0] the track of V stays in disc B. Note that Figure 7 is an over simplified picture,
with °([t0; s0]) represented by a very simple polygonal arc: the point is that it could be much
complicated, even with °([t0; s0]) filling the whole of B ! If there is another time u1 outside this
interval such that °(u1) = p, we have another interval, [t1; s1], similarly defined and disjoint from
the first: it’s clear that we can repeat this process until we get a finite number of disjoint closed
intervals [ti; si] ; i = 0; :::;m whose union contains the pre-image °−1(p). For each i = 0; :::;m
we modify the homotopy H in each time period [ti; si]. Starting with [t0; s0]: let E be another
disc surrounding B as shown in Figure 7; consider an isotopy of D, K : D £ I ¡! D which
is the identity outside E and on E is the identity on the boundary and moves interior points
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so as to push disc B to a final position k(B), k = K1, disjoint from point p; as suggested in
Figure 7, we can further assume that the isotopy is also fixed in an neighbourhood of an arc in
@B that contains the two points °(t0) = Ht0(V ) and °(s0) = Hs0(V ): just expand the shaded
portion of the ring, keeping the complementary white part fixed, while pushing disc B along the
corresponding boundary arc.

k(B)

E

B

EHt0(V)

Hs0(V)

Ht0(V)

Hs0(V)

p p

Figure 7
Let Nε(°(t0)) and Nε(°(s0)) be neighbourhoods of those two points, contained in E and fixed
through the isotopy. Let ±0 > 0 be sufficiently small so that [t0 ¡ ±0; s0 + ±0] is still disjoint from
the other intervals [ti; si] and such that °([t0 ¡ ±0; t0]) ½ Nε(°(t0)), °([so; s0 + ±0]) ½ Nε(°(s0)).
Now we modify H in the time period [t0 ¡ ±0; s0 + ±0]: consider the reparametrizations s(t) =
(1=±0) [t¡ (t0 ¡ ±0)], t0 ¡ ±0 ∙ t ∙ t0, and r(t) = (1=±0) [t¡ s0], s0 ∙ t ∙ s0 + ±0, and define
J : D £ I ¡! D by

J(x; t) = H(x; t) if t ∙ t0 ¡ ±0

J(x; t) = K(H(x; t); s(t)) if t0 ¡ ±0 ∙ t ∙ t0

J(x; t) = k(H(x; t)) if t0 ∙ t ∙ s0

J(x; t) = K(H(x; t); 1¡ r(t)) if s0 ∙ t ∙ s0 + ±0

J(x; t) = H(x; t) if s0 + ±0 ∙ t

In short, between times t0¡ ±0 and t0 we combine, through a suitably reparametrization, H with
the isotopy K, next from t0 until s0 we compose H with the final map k = K1 of that isotopy,
and finally between times s0 and s0+ ±0 we combine H with the time reversed isotopy. It should
be clear that under this new homotopy, J, the track of V misses p during period [t0; s0] and
was unchanged before or after. We next repeat the process, in turn, for the other time periods
[t1; s1],[t2; s2] ; :::; [tm; sm]. The proof ends by noting that, since each changing of H was achieved
by combining it with an isotopy, if H is coalescent so J will be.

With the previous lemma in hand, we can now adjust the arguments we used in proving
theorem 7 to the exceptional situation of vertex V in D.

Let H be a coalescent contraction of D. Choose any manifold point p in a complement of an
image D ¡Ht(D), for some t > top (of course we could assume, without loss of generality, that
top = 0 but there is no gain in assuming that). By the previous lemma, there is a coalescent
contraction J such that the track of V misses p. By usual reasoning with uniform continuity and
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compactness we can assume there is a neighbourhood of V , Nε(V ), such that the track of each
of its points also misses p, that is p =2 J(Nε(V )£I). Refer back to Figures 1 and 2 that represent
a neighbourhood of V : consider in each of the two cones a closed segment of a generator with
end point V and contained in Nε(V ) and glue to the dunce-hat, by an homeomorphism, a disc
E along the union of both segments as represented in Figure 8.

E

L L
N

d

c

B

V

A

x

Figure 8

Labelled L, the union of those two segments is represented thick. Denote the resulting space
by F .

Remark 11 Observe that the only points c 2 F that do not satisfy the star-disc property (Def-
inition 8) are the points on the free arc of E, including the two end points where that arc meets
L; but even for these extreme points the property only fails for those simplices ¾ 2 St(c) in the
complement of D.

F is of course contractible: there is an obvious strong deformation retract of F into D -
across the disc E from the free arc to the gluing arc L - and therefore we can follow this first
homotopy by a contraction of D. But we are going to construct a different contraction of F .
Consider a regular neighbourhood N of L in E, homeomorphic to L £ I (represented shaded
gray in Figure 8). We define a contraction K : F £ I ¡! F in two steps, first for t ∙ 1=2 and
second for 1=2 ∙ t ∙ 1. In the first part: if x 2 D we define K(x; t) = J(x; 2t), if x 2 E ¡N we
have K(x; t) = x and for those points in the region N »= L£I the homotopy stretches each stalk
Sx = fxg£ I ; x 2 L (one of those is depicted in Figure 8), keeping the top end-point in E ¡N
fixed, so as to follow x along its track under J - we leave it as an exercise for the reader to define
suitable formulas for this. At the end of this first part, we have K1/2(F ) = E [ J(L £ I): D
was contracted to a point, say q, by J (with double speed), and for each x 2 L we developed
its former track under J as we’ve just explained. In the second part of the homotopy, for times
1=2 ∙ t ∙ 1, we contract K1/2(F ) in itself, to the point q, in the obvious way: we first use a
strong deformation retraction of E[J(L£ I) into J(L£ I), across the disc E, as alluded above;
then we contract J(L£ I) to q erasing all the tracks - we also leave the appropriate formulation
of this erasing to the reader.
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It is easy to check that each step of the construction of K preserves the given coalescence of
J , so K is also coalescent.

By our assumptions about J , and the fact that L ½ Nε(V ), the tracks under K of all points
x 2 L miss p and so K1/2(F ) 6= F ; therefore the opening time for K is strictly less than 1=2 -
recall that at its opening time any homotopy is still surjective. So, by theorem 4, we can assume
that top = 0 - starting afresh at opening time and reparametrizing, which we do here by sending
[top; 1=2] to [0; 1=2] and keeping the other times fixed. Now, as in the proof of theorem 7, let
tn, n 2 N, be a sequence of times convergent to 0, and cn ¡! c a sequence of points, all in a
simplex ¾ 2 St(c), and such that, for each n, cn 2 F ¡Ktn(F ). Since for all t ∙ 1=2 we have
E ½ Kt(F ), the simplex ¾ is not contained in E and therefore - see Remark 11, above - the
point c has the star-disc property that allows us to carry on the argument of theorem 7 to arrive
at a contradiction.

We have thus proved:

Theorem 12 Any contraction of the dunce-hat is non-coalescent.

We end this section with two problems for the reader:

Exercise 13 Generalize last theorem to arbitrary finite contractible simplicial complexes.

The troublesome part of the generalization will be to work out appropriate analogues of the
previous gluing of disc E: that is, to add appropriate pageants near a point where the star-disc
property fails.

The second problem is just a fun-exercise about contractions: it asks about a property, whose
existence is not at all revealing of the structure of the space.

Exercise 14 Let H be a (coalescent) contraction of space Y . Is there always a (coalescent)
contraction of Y that is descending in the sense that t0 > t ) Ht0(Y ) ½ Ht(Y )?

4 Shrinking complexity I: volume and energy

In our construction, in section 2, of a contraction of the dunce-hat D we needed first to perform
some folding of that space (recall the visual suggestion in "fake" Figure 3) to be able, in a
second movement, to open up the space, thus effectively starting its shrinking; on the other
hand, the existence of contractions of D with opening time 0 - recall the note in that section
- suggests that we can keep that initial folding phase to a minimum. We also needed, in the
course of establishing the non-existence of coalescent contractions of the dunce-hat (theorem
12), a technical result, lemma 10, to deal with the situation where the track of a single point,
wandering wildly, may cover up the shrinking - for instance, by filling whole manifold regions.
This sort of wild wandering is also relevant to the exercise in the end of last section.

In this section we introduce ways of measuring the complexity - or waste - due to those
folding and wandering, and ways of minimizing it.

We will be working mainly in the piecewise-linear setting 3, with simplicial contractions,
H : (K £ I)sub ¡! Ksub, where the upper-scripts denote simplicial subdivisions (with the usual
notation K(r) for the r-th baricentric subdivision), and their limits in the space of contractions
endowed with the supreme metric. Of course, for simplicial homotopies the tracks of points

3See footnote 1 on page 2.
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don’t suffer from the sort of wild wandering we’ve just referred, nevertheless they can still be
pretty complicated in view of the well known fact - see theorems 16 and 17 bellow - that any
continuous map f : K ¡! L, between simplicial complexes, can be arbitrarily approximated,
in the supreme metric, by a simplicial one, g : K(r) ¡! L(n). A question is in order here: why
haven’t we consider such simplicial approximations in the last section, thus avoiding the need for
lemma 10? The answer is that we were dealing with coalescence and so we would need simplicial
approximations that preserved coalescence also: and the proofs we know of the existence of
simplicial approximations don’t provide that.

Let us recall the fundamental facts about approximating continuous maps by simplicial ones
(see [3, Chapter 2]).

Given simplicial complexes K and L and a continuous map f : K ¡! L, a simplicial map
g : K ¡! L is called a simplicial approximation to f if for each vertex c of K, f(StK(c)) ½
StL(g(c)).

Proposition 15 Let f : K ¡! L be a continuous map between simplicial complexes. Then f
is homotopic to any simplicial approximation g; moreover the homotopy can be defined so that
it is relative to the subspace of K where f and g coincide.

The fundamental result is the famous Simplicial Approximation Theorem, due to James
Alexander [11] and Oscar Veblen [12].

Theorem 16 (Simplicial Approximation Theorem) Let K and L be simplicial complexes
and f : K ¡! L a continuous map. Then there is r 2 N such that f : K(r) ¡! L has a
simplicial approximation.

As a corollary to the theorem we can approximate any continuous map by a simplicial
one, less than any given " > 0. If g is a simplicial approximation to f , since we also have
g(StK(c)) ½ StL(g(c)), for each x 2 StK(c), d(g(x); f(x)) ∙ ±(StL(g(c))) where ± stands for
diameter. Therefore all we need to do is to first substitute L by an iterated baricentric subdivision
L(n) such that mesh L(n) < ", where mesh denotes the supremum of the diameters of all the
stars of vertices of L: mesh L = sup

©
St(c) : c 2 L0

ª
; then for any simplicial approximation to

f , g : K(r) ¡! L(n), we have d(f(x); g(x)) ∙ ", for all x 2 K.
What we actually need, for our purposes, is the relative version of the previous theorem, due

to Zeeman [13].

Theorem 17 (Relative Simplicial Approximation Theorem) Let f : K ¡! L be a con-
tinuous map between simplicial complexes, such that its restriction, f jM , to a subcomplex
M ½ K, is simplicial. Then there is a natural r 2 N and a simplicial map g : (K;M)(r) ¡! L
such that g = f on M , and g ' f rel M .

In the statement of the theorem, (K;M)(r) denotes the (r-th) baricentric subdivision relative
to M , where relative means: obtained by introducing as new vertices the baricentres of all
simplices except those in M . There are examples that show one can not get what would be a
full relative version of the simplicial approximation, with g a (true) simplicial approximation to
f ; nevertheless the proof of the theorem (see [3, page 55]) shows that, starting with sufficiently
fine subdivisons K(n) and L(n), we can get g as "-close to f as we like it.

For a simplicial complex K, K £ I has a natural associated triangulation with vertices the
points K0 £ f0; 1g, that is the vertices of K at levels 0 and 1, plus another vertex at (¾̂; 1=2),
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where ¾̂ denotes the baricentre, for each simplex ¾ 2 K. Given a contraction,
h : K £ I ¡! K, by taking in the previous theorem K = K £ I, L = K and M = K £ f0; 1g,
the simplicial map we get, H : (K£I;K£f0; 1g)(r) ¡! K, is also a contraction. For simplicity,
we shall denote the subdivisions of K £ I relative to the base-and-top, M = K £ f0; 1g, by
[K £ I](r).

Let us now establish the precise metric settings in which the measures volume and energy
will be defined. Let K be a simplicial complex; consider for each simplex of dimension n,
¾ 2 Kn a linear embedding in euclidian n-space, En, in such a way that all those embeddings
are compatible: for any two simplices with a common face, the restrictions to that face agree
(or agree up to some isometric motion of En) - a simple way of getting such a compatible set of
embeddings is to consider for each simplex of top dimension, say n, a linear embedding to the
standard regular n-simplex, ¢n ½ En, and for each simplex of smaller dimension j < n, a linear
embedding into a j-face of ¢n. Clearly we can extend, in a natural way, the set of compatible
linear embedding to a set of compatible linear embeddings of simplices in K £ I. Each simplex
in K, or in K£ I, has a transport-metric brought by its linear embedding, and all those metrics
are compatible. Now, using those transport-metrics, each piecewise-linear path ° : I ¡! N ,
where N stands for either K or K £ I, has a well defined length, l(°). We take, in both K and
in K£I, the length-metric, d(x; y) = infγ:x→y l(°) (the infimum over all pl-paths joining x to y);
obviously, in each simplex the length-metric and the transport-metric coincide; by compactness,
that is, one’s having only a finite number of simplices, there is at least one path from x to y
- a geodesic - which minimizes length, and since in each simplex the metric is euclidian, the
geodesics are also pl-paths.

Exercise 18 Prove the existence of geodesics.

We can now define volume and energy: although these can be defined for general homotopies,
we will be talking only of contractions to keep the notation slim. The generalizations to arbitrary
homotopies are straightforward. The definition of volume follows.

4.1 Volume

Consider a simplicial contraction H : [K £ I]sub ¡! Ksub. Let M = [K £ I]suband for each
t 2 I, Mt = K £ ftg. The idea is to measure, for each t 2 I, the area of Ht(M) = H(Mt):
the word area comes from the consideration of 2-dimensional cases, like the dunce-hat or Bing’s
house. To keep the discussion simpler, we will assume that each simplex in K is the face of a
top-dimensional simplex, say of dimension m: we say, in these circumstances, that K is a full
m-complex; then, for all i; r 2 N, Ksub is a full m-complex and [K £ I]sub is an full m + 1-
complex. Take all the intersections of Mt with m + 1 simplices of M . By the way K £ I is
triangulated, we have that for each simplex ¾ 2 M m+1, the intersection ¾t = ¾\Mt is just like
the intersection of an m + 1 simplex in euclidian space En+1 with an hyperplane: it is either
a face of ¾, maybe a single vertex - those cases happen for t = 1=2 and for other heights of
baricentres - or, more generally, the convex span of j ¸ m+ 1 points in the 1- skeleton, ¾1, of
¾ - in this case, it is either an m-face of ¾ or a properly embedded (affine) m-disc. Since H is
linear on ¾, the image H(¾ \Mt) is the convex span of k ∙ j points in the 1- skeleton of the
simplex ½ = H(¾); we consider the m-area of that image, A(H(¾t)): of course it is non zero only
if k ¸ m+ 1. Naturally, the idea now is to sum these areas over all the intersections ¾t of top
dimensional simplices with Mt, but avoiding replicating contributions; if two such intersections
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coincide, say ¾t = ¿ t, then it is a face common two both ¾ and ¿ and it doesn’t matter which
of the two simplices, H(¾) or H(¿), we choose to take in the sum: H(¾t) = H(¿ t) has a well
defined m-area independently of the simplices where it lies (the metric in K was built from
compatible transport metrics in the simplices). We thus define the area of H at time t by

AH(t) =
X

σt:σ∈Mm+1

A(H(¾t))

The volume of the contraction H is now defined by integration:

V (H) =

Z 1

0
AH(t)dt

Note that if ¾ intersects Mt, then, for a sufficiently small " > 0, it intercepts Mt0 for all t0

belonging to one of the intervals [t; t+ "], [t¡ "; t] , or to both: obviously, whatever is the case,
A(H(¾t)) varies continuously with t; considering all the m+ 1 simplices that intersect Mt and
the combination of their intersections with nearby levels it is not difficult to see that AH(t) is a
continuous function of t: this we leave as an exercise for the reader.

Note: the heuristic idea of introducing a notion of volume as a mean to measure the folding
of a space during a contraction, could be implemented in a variety of ways; for instance, we
could have defined the volume, more simply and directly, to be the sum over all top dimensional
simplices ¾ 2 Mm+1 of the m-areas A(H(¾)), without ever bothering to consider levels and
dropping the final integration; but the definition we adopted, has some technical advantages,
which will be put to an use in the next section: it can be combined with the energy that we
will define shortly, when it comes to control the effect of local changes caused by choosing to
perform certain movements at earlier or later stages; as we will see next, it has the disadvantage
of not being sensible to arbitrary reparametrizations.

Let C denote the space of all contractions of the space K, endowed with the supreme metric
and S the subspace of all simplicial contractions H : [K £ I]sub ¡! Ksub, for all simplicial
subdivisions sub. It is easy to see that the volume function V : S ¡! [0;+1) doesn’t have a
minimum. On the one hand, for all H 2 S we have V (H) > 0, since AH(t) : I ¡! [0;+1)
is continuous and not constant equal to 0: at t = 0 its value is the total area of K: AH(0) =
A(K) =

P
ρ∈K A(½). On the other hand, given any H 2 S, we can reparametrize it in such

a way as to perform the whole contraction in an arbitrarily small initial time interval [0; ±],
± = 1=rn, n 2 N, and stay constant thereafter: clearly the infimum of the respective volumes
when ± ¡! 0 is 0.

The volume function V : S ¡! [0;+1) is not continuous because it is not upper-semi-
continuous: there are contractions H 2 S such that for all " > 0 we can find other contractions
J 2 S such that d(H;J) < " but V (J) ¸ V (H)+ c, c a positive constant. Let’s describe an easy
example with contractions of the unit interval I: refer to figure 9 bellow.

In this figure there are represented the six 2-simplices of I £ I, where we took I with the
trivial simplicial decomposition consisting of the two vertices, 0 and 1, and the one edge: those
are the triangles defined by the two diagonals plus the segment t = 1=2 (remember how one
triangulates K £ I). The four chained rectangles centred at (1=2; 1=2) are just a schematic rep-
resentation. Consider a subdivision [I £ I](r) with r ¸ 2. Let S be the union of the two vertical
edges of [I £ I](r) with common vertex (1=2; 1=2); it is easy to see they will be the two points
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(1=2; 1=2§1=2r−13); the first subdivision introduces the two baricentres for the top and bottom
triangles, since the medians of a triangle trisect each other we get the points (1=2; 1=2 § 1=3);
the next subdivisions will introduce the baricentres for the two segments that make up S, thus
halving them.

I

S

St 4

St 2

t=1/2

(1,0)

(0,1)

(0,0)

(1,1)

t0

Figure 9

Consider to further subdivisions, M = [I £ I](r+2) The outer most rectangle represents a
neighbourhood N of S, N = St(S), the star of S in M . Note that this is just schematic: in
reality, stars are not rectangles, sometimes are not even convex; but St(S) is a regular neigh-
bourhood and as such a manifold with boundary that collapses to S and therefore, since S is
contractible, it will be a disc whose boundary is the link of S inM , Lk(S). Consider a simplicial
contraction H : M ¡! I such that H(St(S)) = 0; in this very simple case we can do it by
hand, specifying the images of the vertices: since there are only the two vertices 0 and 1 in I,
there is always compatibility whatever choice we make - we can choose to send (0; 0) to 0 and
(1; 0) to 1, thus getting the identity in I £ f0g, and all the other vertices to 0; we could be
more sophisticated: first extend the map from I £ f0; 1g [ St(S) to I which is the identity in
I£f0g and is constant 0 in the complement to a continuous map on the whole of I£I, invoking
Tietze’s characterization of normality (the Extension Lemma) (see [8, Chapter VII]), and then
use Theorem 17. For each n 2 N consider M (2n): in this complex let St0 = S, St1 = St(S),
St2 = St(St1),..., Sti = St(Sti−1), ..., St2n = St(St2n−1), and for each i = 1; :::; 2n, denote
the respective link by Lki; these (Sti; Lki) form a chained sequence of discs, and respective
boundary circles, the last one, St2n , being the original N : figure 9 represents the situation when
n = 2, with the two rectangles with thicker edges representing the case n = 1. Now, construct
a simplicial contraction Jn : M (2n) ¡! I(2

n) as follows; in the closure of M (2n)¡ N , whose
boundary is Lk2n , Jn coincides with H, in particular it is constant 0 in Lk2n : since H is linear
on each simplex ¾, the 2n baricentric subdivisions of ¾ naturally match, under the image by H,
the 2n baricentric subdivisions of H(¾) in I; in N , Jn is defined by stipulating that the vertices
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of the links Lki with i even go to 0 and the vertices on the others go to 1=2n, the vertex next to
0 in I(2

n). For any level I £ t0 that intersects S - represented dashed in the figure - the segment
has to cross all links in succession - at least once each, but maybe more since the discs Sti are
not necessarily convex - until it reaches S, and then cross them over again in reverse order to
leave N , correspondingly the image by Jn goes back and forth between 0 and 1=2n at least 2n+1

times; therefore, the area - which, in the present situation, should be called more appropriately
length - at time t0, AJn(t0) is greater or equal to 2. So, the volume V (Jn) is greater than twice
the length of S, which is 1=2r−23. We concluded then that for all n 2 N, V (Jn) > 1=2r−13; on
the other hand, by the definition of Jn we have d(H;Jn) ∙ 1=2n. This completes the example,
showing that the volume function is not upper-semi-continuous in the space S.

Although the volume function V : S ¡! [0;+1) is discontinuous, it is lower-semi-continuous:
given any H 2 S we have 8" > 0, 9± > 0 : d(H;J) < ± ) V (J) > V (H) ¡ ". This means sim-
ply that while the volume can increase suddenly (upper-semi-discontinuity), it can not decrease
suddenly.

Consider the area of H at time t, AH(t). Let ¾ be a top dimensional simplex that intersects
Mt = K £ ftg, where, as above, M = [K £ I]sub. Since we are dealing with the question of
lower-semi-continuity, we consider only those simplices that contribute positively to AH(t), that
is such that A(H(¾t) > 0; in those cases, ¾t = ¾ \Mt has to be the convex span of j ¸ m+ 1
points in the 1- skeleton of ¾, that is ¾t is an m-face of ¾ or a properly embedded (affine)
m-disc, and furthermore H(¾t), which the convex span of j ∙ k points in the 1-skeleton of the
m-simplex ½ = H(¾) will have to be an m-disc also (possibly the whole of ½ but, apart from this
very exception, not properly embedded in ½): then, because H is linear its restriction to ¾t is
a homeomorphism between the two m-discs. As we noted before, for a sufficiently small ® > 0,
we can consider ¾t0 for t0 belonging to one of the intervals [t; t+ ®], [t¡ ®; t] , or to both. In the
case ¾t is an m-face of ¾, ¾ is all in one side ofMt and we have intersections ¾t0 for t0 in just one
of those intervals: for t0 in the other interval there is another simplex º¾ in the opposite side of
¾, withº¾t = ¾t and for whichº¾t0 6= ;; we will not distinguish the two cases and will refer simply
to all t0 close to t. When ¾t intersects the interior of ¾ (is a properly embedded m-disc) we have
intersections for t0 2 [t¡ ®; t+ ®]. In any case the nearby intersections, ¾t0 , are all properly
embedded m-discs close to ¾t and we have natural homeomorphisms ht0 : ¾t ¡! ¾t0 such that
for all x 2 ¾t d(x; ht0(x)) < c® for some constant c ¸ 1. Consider the m-disc ¢ = H(¾t) in the
m-simplex ½ = H(¾) and let § = _¢ be its boundary-sphere. Recall - from our analysis of Bing’s
house in section 3 (Lemma 6 and what follows it) - that there is a positive constant k such that
any continuous map of f : § ¡! § with d(f; idΣ) ∙ k (d the sup metric) is homotopic to idΣ.
Let C(§) be a collar of § in ¢, that is a closed neighbourhood homeomorphic to § £ I with
§£ f0g ´ §, and for each t 2 I, let Ct(§) be the collar §£ [0; t]. Fix t0 2 I. Consider closed
¸-neighbourhoods N(¢; ¸) of ¢ in K, and N∆(§; ¸) of § in ¢, with ¸ sufficiently small so that
¸ < k=3, there is a (strong deformation) retraction R : N(¢; ¸) ¡! ¢ with d(x;R(x)) < k=3
and N∆(§; ¸) ½ Ct0/2(§).

See figure 10 bellow. It represents the situation for a 2-dimensional K; the simplex ¾ is on
the top left, with vertices a; b; c; d and ¾t is represented by the (yellow) shaded quadrilateral;
½ = H(¾) is the triangle with vertices A;B;C which are the images of the vertices a; b; c,
respectively, with the fourth vertex D sent to a. The picture shows three other simplices of K
adjacent to ½. The quadrilateral ¢ = H(¾t) ½ ½ is represented by the four thick edges, forming
its boundary §; and in its interior, cl((¢ ¡ C(§)), the closure of the complement of collar
C(§), is the dark shaded quadrilateral. Also represented in lighter shade is the neighbourhood
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N(¢; ¸).
We claim there are ®0 > 0 and "0 > 0 such that for all t0 2 [t; t+ ®0] [ [t¡ ®0; t] and for all

J 2 S with d(H;J) < "0, we have J(¾t0) ¾ (¢¡Ct0), that is the images of all the discs ®0-close
to ¾t by all contractions "0-close toH in S, cover the complement in¢ of the collar Ct0 . Suppose
not: then for all n 2 N there are tn = t§ ®n, 0 < ®n < 1=n and Jn 2 S, d(H;Jn) < 1=n, such
that Jn(¾tn) 6¾ (¢¡ Ct0(§)).

N( ,γ )

∑

a
d

b

c

A
C

B

Figure 10

Now the argument is just a clone of the argument previously used in the case of Bing’s house
to show it had an opening time greater than 0.

Let, for each n 2 N, xn 2 (¢ ¡ Ct0(§)) ¡ Jn(¾tn): by passing to a subsequence and
renumbering if necessary, we can assume without loss of generality that xn ¡! x with x
in the closure cl((¢ ¡ Ct0(§)). As in the case of Bing’s house, we can consider retractions
rn : ¢¡fxng ¡! §, in such a way that their restrictions to Ct0/2(§) form an equicontinuous set
of functions (see Lemma 5): therefore, 9±0 > 0 such that for all n 2 N and for all x; y 2 Ct0/2(§),
d(x; y) < ±0 ) d(rn(x); rn(y)) < k=3. Take ¸0 ∙ ±0. Since H is uniformly continuous, 9±1 > 0
such that 8x; y 2 M;d(x; y) < ±1 ) d(H(x);H(y)) < ¸0=2. Consider, for each n 2 N, the map
gn : ¢ ¡! K defined as gn = Jn ± htn ±H−1:

¢
H−1¡! ¾t

htn¡! ¾tn
Jn¡! K

Let N0 2 N be such that n ¸ N0 ) c(1=n) < min f±1; ¸0=2g; let y 2 ¢ arbitrary and
x = H−1(y); for n ¸ N0 we have that d(x; htn(x)) < c(1=n ∙ ±1 so, by the choice of ±1,
d(H(x);H(htn(x))) < ¸0=2; therefore, since d(Jn;H) < 1=n ∙ ¸0=2, we have

d(y; gn(y)) ∙ d(y;H(htn(x)) + d(H(htn(x); Jn(htn(x))) < ¸0=2 + ¸0=2 = ¸0

So, gn(¢) ½ N(¢; ¸0) and since Jn misses the point xn, so does gn. Let fn = R ± gn : ¢ ¡! ¢;
consider an arbitrary y 2 §: if gn(y) is not in¢, and since by the definition of the neighbourhoods
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N(¢; ¸) we have

d(x;R(x)) < k=3; d(y; fn(y)) ∙ d(y; gn(y)) + d(gn(y); fn(y)) < ¸0 + k=3 < k=3 + k=3 < k;

if gn(y) is in ¢, then fn(y) = gn(y) 2 N∆(§; ¸0) ½ Ct0/2(§) and so, by the choice of ¸0 ∙ ±0,
d(y; rn(fn(y)) < k=3. In conclusion, jn = rn ± fn is a continuous map ¢ ¡! § such that for
all y 2 §, d(y; jn(y)) < k and so by the choice of k its restriction to § is homotopic to idΣ
which is a contradiction. We have thus justified our claiming the existence of ®0 and "0; for all
t0 with jt¡ t0j < ®0 and J 2 S with d(H;J) < "0 we have that J(¾t0) ¾ (¢ ¡ Ct0(§)) and so
A(H(¾t))¡A(J(¾t0)) = A(¢)¡A(J(¾t0)) ∙ A(Ct0(§)); let’s denote the area of the collar Ct0(§)
by a0: a0 = A(Ct0(§)). Note that, since t0 is arbitrary and clearly A(Ct(§)) ¡! 0 when t ¡! 0,
we can consider that a0 is as small as we like. Consider all top dimensional simplices ¾ that
contribute positively to AH(t): suppose there are n+ 1 such simplices, call them 0¾;1 ¾; :::;n ¾.
For each i = 0; 1; :::; n get positive constants ®i, "i and ai as before and let ®t = mini=0,...n f®ig,
"t = mini=0,...n f"ig and at =

Pn
i=0 ai. If jt¡ t0j < ®t and d(H;J) < "t, summing over all the

simplices i¾ we have

AJ(t
0) ¸

nX
i=0

A(J(i¾t0) ¸
nX
i=0

A(J(i¾t0) ¸
nX
i=0

(A(H(i¾t))¡ ai)

=
nX
i=0

A(H(i¾t))¡
nX
i=0

ai = AH(t)¡
nX
i=0

ai = AH(t)¡ at

where the first inequality may be strict since it possible that A(J(¾t0)) > 0 for other sim-
plices different from the i¾ - those for which A(H(¾t)) = 0 - and at can be arbitrarily small.
Let " > 0 and, for each t 2 I, at ∙ "; we’ve noted before that AH(t) is continuous, so by
the compactness of I it is uniformly continuous, therefore 9¸ > 0 such that for jt¡ t0j <
¸ ) AH(t0) 2 (AH(t)¡ ";AH(t) + "). For each t 2 I consider an interval [t¡ ¯t; t+ ¯t]
such that 0 < ¯t < min f¸; ®tg and consider a finite number of such intervals

£
t0; t0 + ¯t0

¤
,£

t1 ¡ ¯t1 ; t1 + ¯t1
¤
,
£
t2 ¡ ¯t2 ; t2 + ¯t2

¤
, ...,

£
tm ¡ ¯tm ; tm

¤
covering I, with t0 = 0 and tm = 1.

Take ± = mini=0,...,m f"tig and let d(H;J) < ±. Then for an arbitrary t 2 I we have that t
belongs to one of these intervals, say the one around ti, and since d(H;J) < ± ∙ "ti , we have

jti ¡ tj < ¯i ) AJ(t) ¸ AH(ti)¡ ati ¸ AH(ti)¡ " ¸ AH(t)¡ 2"

Integrating we get

V (J) =

Z 1

0
AJ(t)dt ¸

Z 1

0
(AH(t)¡ 2")dt = V (H)¡ 2"

finishing the proof that V is lower-semicontinuous. We state this fact as a theorem:

Theorem 19 Let K be a simplicial complex and S the space of all simplicial contractions H :
[K £ I]sub ¡! Ksub, for all simplicial subdivisions, sub. Then the volume function V : S
¡! [0;+1) is discontinuous and lower-semi-continuous.

Next we will discuss the notion of energy of a contraction.
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4.2 Energy

We start by spelling out some notation. Let S be the space of simplicial contractions of simplicial
complexK, as previously defined, andH 2 S, sayH : [K £ I]sub ¡! Ksub. We assume as before
that K is m-full, so K £ I is (m + 1)-full. For each x 2 K, the track tH(x) = H(fxg £ I) is
a polygonal path in K which has a well defined length, say lx; let LH : K ¡! [0;+1) be the
length function, LH(x) = lx, which is continuous as we will see. Let Sx = fxg £ I be the stalk
over x and N(Sx; ") a closed neighbourhood of Sx inM = [K £ I]sub. Let ¾ be a top dimensional
simplex of M intersecting Sx; ¾x = Sx \ ¾ is either a single vertex of ¾ or a (vertical) segment,
which may or may not intersect the interior of ¾ (if it doesn’t then it is contained in a proper
face of ¾, but that’s not relevant here). We want to control the lengths of all segments ¾x0 for
points x0 close to x: to do this, we will recall first some facts of affine geometry, leaving the
details for the reader.

Let M;N be two hyperplanes in euclidian (m + 1)-space Em+1, rx a vertical line, rx =
x£E; x 2 En£f0g, intersecting M and N in two distinct points, sx be the segment with those
end points and l(sx) its length. Consider a cylindrical neighbourhood N(rx; ") = D(x; ") £ E,
D(x; ") the closed "-disc in En. Clearly, for " sufficiently small, all lines parallel to rx that
make up N(rx; ") still intersect both hyperplanes in distinct points; consider one such line,
rx0 ; x

0 2 D(x; ") and the corresponding segment sx0 . Clearly, l(sx0) varies continuously with x0

and therefore the differences in length to sx, l(sx0) ¡ l(sx), attain a maximum and a minimum
values, say Dε and dε respectively; it’s also clear that Dε and dε tend to 0 when " ¡! 0. For
each x0, consider the quadrilateral Qx0 that has sx and sx0 as opposite sides; the other transverse
sides lie in the hyperplanes M and N (see figure 11).

N

M

rx
rx'

sx sx'

q
p

Px'

x x'

Qx'

Figure 11
There is a strong deformation retraction Rx0 of Qx0 into the side sx, such that the track of
each point follows the radial projection from the point Px0 where the two lines containing the
transverse sides meet (Px0 belongs to the affine subspace M \N ; if those lines are parallel, that
is ifM and N are parallel hyperplanes, then the projection is horizontal instead) and that sends
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vertical segments to vertical segments: for an arbitrary point p, if its radial projection into sx is
the point q simply define Rx0 to be the final map of the homotopy (p; t) ¡! q + (1¡ t)(p¡ q).
Since the quadrilaterals Qx0 and respective radial projection points Px0 vary continuously with
x0, the retractions Rx0 fit together to provide a global (strong deformation) retraction R of the
cylindrical chunk between the two hyperplanes - call this C(sx; ") - into sx.

Take an (m + 1)-simplex ¾ in Em+1and the intersections ¾x0 = ¾ \ rx0 - which, for each
x0 2 ¼(N(rx; ") \ ¾), ¼ : En+1 ¡! En £ f0g the vertical projection, coincide with the previous
sx0 for two hyperplanes containing two m-faces of ¾: the previous argument neatly applies to
this more general situation to provide us with a strong deformation retraction R of N(rx; ")\¾
into ¾x. And of course we also have a maximum and a minimum values, that tend to 0 when
" ¡! 0, for the differences in length l(¾x0)¡ l(¾x).

For later use, we need to single out an important property of the retraction R : C(sx; ") ¡!
sx. Let L be a linear segment embedded in C(sx; "), with end points p1; p2; as we shall see
shortly, the restriction of R to L is either constant - R(L) is then a single point in sx - or a
homeomorphism into a segment in sx; if one compares the ratio of the lengths of L and R(L),
one sees that although l(R(L))=l(L) can be arbitrarily small - even 0 when R(L) is a point - it is
bounded above; this is the property we want to single out and will refer to by saying that R has
bounded magnifying factor. Let xi = ¼(pi); i = 1; 2; ¼(L) is a segment in En £ f0g, degenerate
if L is vertical, and for each point p 2 L, p 2 sπ(p); let, for i = 0; 1; 2 the bottom and top end
points of sxi be bi and ai, respectively, where we are taking x0 = x (see figure 12 bellow)

sx

N

a2

M

rx

Px1

Px 2

pa0

b0

a1

b1

b2

x=x0

x1

x2

p1

p2

Figure 12
Figure 12 pictures a 3-dimensional situation: here, the (hyper)planes M and N are represented
by the two shaded planes, that contain the triangles with vertices b1; b2; b3 and a1; a2; a3,respectively.
Note first that the set of radial projection points Px0 for all x0 2 ¼(L) is also line segment - de-
generate if x; x1; x2 are collinear, that is if L is contained in the larger of the two quadrilaterals
Qx1 ; Qx2 (in this situation, one is contained in the other): by the definition of Px0 , the seg-
ment Px1Px2 lies in the intersection of the plane spanned by all the lines

Ã!aa0, a 2 a1a2, that
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is the plane that contains the triangle with vertices a1; a2; a3, with the plane spanned by the
lines

Ã!
bb0, b 2 b1b2, that is the plane that contains the triangle with vertices b1; b2; b3 - in the

3-dimensional situation of figure 12, these planes agree with N;M but in general they are just
2-dimensional subspaces of these hyperplanes and the intersection line

Ã¡¡¡!
Px1Px2 is just a proper

1- dimensional subspace of the (m¡ 1)-subspace M \N . It’s clear that for each p 2 L, R(p) is
the intersection with sx of the plane, call it Hp, defined by p and the line

Ã¡¡¡!
Px1Px2 : so, either L

and
Ã¡¡¡!
Px1Px2 are parallel, and then R(L) is just a point in sx, or R is injective in L and therefore

a homeomorphism to R(L).
Note that the length l(R(L)) depends only on the angle of the planes Hp1 and Hp2 , call it the

angle of L, ](L); clearly these angles are bounded above: otherwise, we could get a sequence of
segments Ln; n 2 N, such that for each n ](L) ¸ n; since for each segment L there is a vertical
segment with angle greater or equal to the angle of L, we can assume without loss of generality
that all segments are vertical, Ln = sxn = bnan; by passing to a subsequence, and by compactness
of C(sx; "), we can assume that an ¡! a: but then, since the angles increase, we would have
that a 2 rx ¡ sx, which is a contradiction. If the ratios l(R(L))=l(L) were not bounded, there
would be a sequence of segments Ln = pn1p

n
2 , n 2 N, such that l(R(Ln))=l(Ln) ¸ n; since, for all

segments L, l(R(L)) ∙ l(sx), we would have l(Ln) ¡! 0; because the angles ](Ln) are bounded
and l(R(Ln)) are bounded as well by l(sx), to get l(R(Ln))=l(Ln) ¸ n and l(Ln) ¡! 0 we would
need to have either the distances from the hinges of the angles to sx increasing to 1, or the
segments Ln ever closer to the hinges of their angles; but obviously neither of these can happen:
the set of all hinges Px1Px2 is a compact set contained in the intersection of the two hyperplanes,
M \ N , which is disjoint from N(rx; ") and so from the chunk C(sx; ") ½ N(rx; "). It should
also be clear, from the previous considerations, that the closer L is to sx the closer l(R(L)) is
to l(L), which means that the (maximum) magnifying factor tends to 1 when " ¡! 0.

As before, in the more general case of an (m+ 1)-simplex ¾ in Em+1 and the retraction R :
N(rx; ")\ ¾ ¡! ¾x, since this retraction agrees in N(rx; ")\ ¾ with restrictions of the previous
retractions C(sx; ") ¡! sx = ¾x for chunks between pairs of hyperplanes containing top faces
of ¾, it has bounded magnifying factor kεσ, with kεσ ¡! 1 when " ¡! 0.

We return now to the analyses of the length function, LH : K ¡! [0;+1), started in the
first paragraph of this section; recall the notation we introduced there. For an arbitrary x 2 K,
LH(x) is defined as the length lx = l(H(Sx)) = l(tH(x), Sx the stalk over x, tH(x) the track
of x under H; we consider a closed neighbourhood N(Sx; ") of Sx in M = [K £ I]sub with "
sufficiently small so that N(Sx; ") ½ St(Sx). There is a ± > 0 such that for all x0 2 K with
d(x; x0) < ±, Sx0 ½ N(Sx; "). If we consider all (m+1)-simplices ¾ in St(Sx), that is all those that
intersect Sx, then lx =

P
σ l(H(¾x): it is understood that when ¾x = ¾0x for distinct simplices

¾; ¾0, that is when ¾x is contained in a proper face common to both ¾ and ¾0, in the summation
we only consider the contribution from one of the simplices. As we’ve seen, for each simplex
¾, there is a maximum, Dσ

ε , and minimum, d
σ
ε , for the length differences l(¾x0) ¡ l(¾x) for all

¾x0 ½ N(Sx; ") \ ¾. Since H is linear on each simplex ¾, there is in ¾ a direction of maximal
stretch, with factor say kσ > 0. For any x0 2 K with d(x; x0) < ± we have for

lx0 ¡ lx =
X
σ

l(H(¾x0)¡
X
σ

l(H(¾x) =
X
σ

(l(H(¾x0)¡ l(H(¾x)), that

n(max
σ

kσ)(min
σ

dσε ) ∙
X
σ

kσd
σ
ε ∙ lx0 ¡ lx ∙

X
σ

kσD
σ
ε ∙ n(max

σ
kσ)(max

σ
Dσ
ε )

where n is the number of simplices ¾ in the summation. Since, for all ¾, Dσ
ε and dσε tend to zero
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when " ¡! 0, we readily conclude that LH is continuous.
The definition of energy E(H), for a contraction H : M = [K £ I]sub ¡! K follows:

E(H) =

Z
K
LH(x) =

X
σ∈Km

Z
σ
LH(x) dx

that is, we integrate the length function over each top-dimensional simplex ¾ of K, using its
transport euclidian structure, and then sum all those integrals.

Analogously to the volume function, the energy function E : S ¡! [0;+1) is not continuous
but is lower-semi-continuous.

Let H : M = [K £ I]sub ¡! Ksub be an element of S and x 2 Ksub. Take an " > 0; We claim
that for all x0 sufficiently close to x and for all J sufficiently close to H, LJ(x

0) > LH(x)¡", that
is the lengths of the tracks of all points near x, for all contractions sufficiently close to H, don’t
diminish suddenly. Consider the track tH(x) = H(Sx) and a closed neighbourhood N(tH(x); ¸)
with ¸ sufficiently small so that N(tH(x); ¸) is contained in the star of tH(x) in Ksub. Since H is
uniformly continuous, there is an " > 0 such that d((x; t); (x0; t0) < " ) d(Ht(x);Ht0(x

0)) < ¸=2,
and so, in particular, if we take a closed neighbourhood N(Sx; ") of Sx inM , thenH(N(Sx; ")) ½
N(tH(x); ¸=2). We may consider " > 0 small enough so that N(Sx; ") ½ St(Sx) There is also
a ± > 0 such that d(x; x0) < ± ) Sx0 ½ N(Sx; "). Let J 2 S be such that d(H;J) < ¸=2:
then, if d(x; x0) < ±, J(Sx0) = tJ(x

0) ½ N(tH(x); ¸). Let ¾1x; ¾
2
x; :::; ¾

n
x be the segments that

make up Sx - in the usual notation ¾ix is the intersection of Sx with the (m + 1)-simplex ¾i -
ordered from bottom to top, that is, ¾ix \ ¾i+1x is a point xi = (x; ti) with ti < ti+1; we make
x0 = (x; 0) and xn = (x; 1). Then tH(x) = H(Sx) =

S
i=1,...,nH(¾ix): some of the H(¾ix) may be

vertices - that happens when H(xi−1) = H(xi) - the others are all the segments that make up
the track. Given another stalk Sx0 with d(x; x0) < ±, consider a parallel subdivision of Sx0 into
segments s1x0 ; s

2
x0 ; :::; s

n
x0 with end points x

0
i = (x0; ti) - note that we substituted the ¾ for the s,

because these segments are no longer intersections of Sx0 with simplices of M . By the choice
of ± and because six0 is parallel to ¾ix, for each i = 1; 2; :::; n we have J(six0) ½ N(H(¾ix); ¸) and
x0i 2 N(H(xi); ¸) (note that J(six0) is a polygonal line, but not necessarily a simple segment:
this happens because in the space S the subdivisions [K £ I]sub ;Ksub vary and may not be the
same for H and J , so what is sent by H into a segment may be sent by J into a polygonal line
and vice-versa). There is a path °i : I ¡! N(H(xi); ¸) from x0i to xi with length smaller than
¸: we modify the path tJ(x

0) = J(Sx0) inside each N(H(xi); ¸) by considering a small interval
time interval, [ti ¡ a; ti + a], such that J(x0 £ [ti ¡ a; ti + a]) ½ N(H(xi); ¸) and redefine J in
that interval in the following way: in the first quarter J does, by reparametrization, what it
did in the first half, in the second quarter follows the path °i, in the third quarter follows
the inverse path (°i)−1 and in the last quarter does, again by reparametrization, what was
previously done in the second half; the new path J 0 thus obtained sends each x0i to xi and
clearly l(J 0(Sx0)) ∙ l(J(Sx0)) + n(2¸). Next we construct a map of this new polygonal line,
J 0(Sx0), into tH(x): note that we still have, for each i = 1; :::; n, J 0(six0) ½ N(H(¾ix); ¸) with the
end points of the segment H(¾ix) and the end points of the polygonal line J 0(six0) coinciding;
consider a retraction Ri : N(H(¾ix); ¸) ¡! H(¾ix) such that the restriction to each simplex of
St(H(¾ix)) is of the radial projection type we treated above, and consider the image Ri(J

0(six0)):
since the end points coincide and J 0(six0) is a path, Ri(J

0(six0)) = H(¾ix). As explained before,
the restriction of Ri to each simplex has a (maximum) magnifying factor - which tends to 1
when ¸ ¡! 0 - and having only a finite number of simplices, we have a maximum magnifying
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factor for Ri, say ki: therefore, with k = maxi=1,...,n ki we have

l(H(¾ix)) ∙ kil(J
0(six0)) ∙ kl(J 0(six0)) ∙ k(l(J(six0) + 2¸)

and summing up

LH(x) =
nX
i=1

l(H(¾ix)) ∙
nX
i=1

kl(J(six0) + 2¸) = 2n¸+
nX
i=1

kl(J(six0))

∙ 2n¸+ k
nX
i=1

l(J(six0)) = 2n¸+ kLJ(x
0)

We concluded that kLJ(x
0) ¸ LH(x) ¡ 2n¸. Since k ¡! 1 when ¸ ¡! 0 we have proved our

claim that for every " > 0, there are ± > 0 and ¸ > 0 such that d(x; x0) < ±; d(H;J) < ¸=2 )
LJ(x

0) > LH(x)¡ ".
The proof that the energy function is lower-semi-continuous follows easily from the claim,

and is analogous to the correspondent proof for the volume. By the definition of the energy
function as a finite sum of integrals over the top-dimensional simplices of K, it’s clearly enough
to concentrate in one of those integrals, say over the simplex ¾. Let " > 0; since LH is uniformly
continuous, there is a ± > 0 such that d(x; x0) < 0 ) jLH(x)¡ LH(x0)j < ". Pick for each
x 2 K two positive constants ±x; ¸x > 0, satisfying the claim for that " and with ±x ∙ ±. Choose
a finite cover of ¾ by neighbourhoods N(x1; ±x1); :::;N(xn; ±xn) and let ¸σ = min f¸xigi=1,...,n.
Then, for an arbitrary x0 2 ¾ and any J 2 S, with d(H;J) < ¸σ, if x0 2 N(xi; ±xi) we have
that LJ(x

0) > LH(xi) ¡ " and since jLH(xi)¡ LH(x0)j < " , LJ(x
0) > LH(x0) ¡ 2". If, in ¾,

d(H;J) < ¸σ ) LJ > LH ¡ 2", integrating we haveZ
σ
LJ(x) dx ¸

Z
σ
(LH(x)¡ 2") dx =

Z
σ
LH(x) dx¡ 2"A(¾)

where A(¾) denotes the "area" of ¾. Summing over all simplices, we have that if d(H;J) < ¸,
with ¸ = minσ∈Km f¸σg

E(J) =

Z
K
LJ(x) =

X
σ∈Km

Z
σ
LJ(x) dx ¸

X
σ∈Km

µZ
σ
LH(x) dx¡ 2"A(¾)

¶
=

X
σ∈Km

Z
σ
LH(x) dx¡ 2"

X
σ∈Km

A(¾) = E(H)¡ 2"A(K)

A(K) the total area of the complex K, and so we’ve finished the proof that E is lower-semi-
continuous.

It is easy to adapt the example of contractions of the unit interval we used to show that
the volume function is discontinuous - represented in figure 9 above - to show that the energy
function is discontinuous as well; instead of the vertical segment S, just start with a horizontal
one, all the rest being the same: then, for each stalk t0£I that intersects the horizontal segment
S, the length LJn(t0) has the same value as the area AJn(t0) in the original example, and so the
argument and calculations are exactly the same.

Like the volume the energy function doesn’t have minima. For the volume that fact was
easily established by reparametrizing any contraction, speeding it up; that simple procedure
doesn’t work for the energy since energy is invariant by reparametrizations. But consider the
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example of the space K represented in figure 13.

Figure 13
This space, homeomorphic to the 2-disc, is constructed from a square, by removing the interiors
of two embedded squares and gluing two pyramids (their lateral faces) to the edges of those
squares; the metric is the length metric, induced by the embedding in euclidian 3-space.

Exercise 20 Show that the energy function has not a minimum in the space S of contractions
associated with the complex K.

Hint: note that given a contraction H : [K £ I]sub ¡! Ksub of K to an arbitrary point
x0, for any point x 2 K, the length of its track, lx, is greater or equal to the length of a
geodesic from x to x0 ,which is precisely the distance d(x; x0) - recall exercise 18 - therefore,
E(H) ¸ m =

R
K d(x; x0). Show that one can get contractions of K with energy as close to m as

we like but always greater than m (m is an infimum but not a minimum): looking from x0, there
is hiding behind each pyramid a line from the summit to the boundary of the disc, consisting
of points each of which has two geodesics to x0 that go around the pyramid in opposite ways
(in case x0 is the summit of one of the pyramids, then there is just one line behind the other
pyramid)

Remark 21 The definitions of the volume and energy functions, V;E : S ¡! [0;+1), and the
proofs of their lower-semi-continuity don’t depend on the fact that we were considering simplicial
maps between simplicial complexes: in reality, we only used the fact the contractions H 2 S were
(affine) linear on each simplex. It is natural, and most useful, to relax the previous demands and
include in the space S the larger class of functions which satisfy this weaker condition: it is useful
because, as hinted in the introduction, we want to analyse the volume and energy of contractions
H : M = (K £ I)sub ¡! Ksub through local small changes, and that is achieved by considering
- at least locally - sufficiently small subdivisions of M and Ksub. The problem is that staying in
the simplicial realm would force us to look at the changes of energy and volume in simplices ofM
other than the local ones we need to consider, perhaps distant ones but whose images by H are
also the chosen local simplices of K we are now subdividing. That happens because despite the
great advantages of affine coordinates they don’t behave well under subdivisions, even baricentric
ones. Look at figure 14. We have two 2-simplices of a complex K that are sent to a 1-simplex,
the segment AB whose baricentre is C: the two linear maps are defined by sending the vertices
V1; V2 and W1;W2 to A and V3 and W3 to B. Suppose we change the image of the first simplex
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through a (first) baricentric subdivision, sending V1; V2 and the baricentre of V1V2 to A and the
other four vertices of the subdivision (including V3) to C;

p

q

C

V2

V1 V3
W3W1

W2

A B
R

Figure 14
the image is now AC: the shaded triangles are squeezed to vertex C, the segment V1V2 to vertex
A and the other five edges - and remaining four white simplices - are sent to AC. If, for
instance,V1V3 was part of the stalk of some point x 2 K, this process would reduce the length lx
of the respective track by d(A;B)=2. In the second 2-simplex consider the segment pq parallel
to W1W2. Since the medians of a triangle trisect each other, the segment W1p is one third of
W1W3 and likewise W2q is one third of W2W3, therefore, by linearity, the whole segment pq is
sent to the point R whose distance from A is one third of the length of AB - in particular the
baricentre is not sent to C. If we consider the first baricentric subdivision and adjust the map on
this 2-simplex to remain simplicial so as to conform to the new subdivision of AB, it easy to see
that the points p; q are still sent to the point R (2=3£ 1=2 = 1=3!) but now the baricentre in the
interior of the 2-simplex is sent to C and so the segment pq is sent from R to C and back from
C to R, thus increasing the length of its image: if we think of pq as part of the stalk of some
point, the corresponding track would have its length increased by d(A;B)=3. That’s the sort of
problem we want to avoid by our extending space S to include all maps that are linear on each
simplex, but not necessarily simplicial: in the present example we would not change the map on
the second 2-simplex, even if it is no longer simplicial relative to the new subdivision of AB.
In accordance with this, and indeed equivalently, we don’t need to assume that the subdivisions
Msub;Ksub, are simplicial, that is, the non-empty intersection of any two simplices is a common
face, but simply that they are linear: we can consider linear subdivisions of any simplex without
having to extend in a compatible way to neighbouring simplices.

To sum up our remarks: we assume, from now on, that the space S consists of all contrac-
tions, H : M = (K £ I)sub ¡! Ksub, where the subdivisions, ?sub, are not always simplicial
but consist of - not necessarily coherent - (simplicial) subdivisions of chosen sets of simplices
and the maps H are linear on each simplex ¾ of the subdivision, where linearity is relative not
necessarily to some simplex of Ksub, but more generally to some simplex, ½ 2 K, ancestor of
the subdivision and, furthermore, being linear doesn’t mean it is simplicial, in the sense that the
image of ¾ is not necessarily the whole of ½.
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4.3 Minimizing volume and energy

Next, we will be looking for suitable subspaces of C, the space of contractions of a given simplicial
complex K, where the restrictions of the energy and volume functions attain a minimum. The
natural thing to do is to look for compact subspaces of C but, as we’ve already hinted at in the
introduction, we want those spaces to be sufficiently rich and flexible to allow us to perform
some natural local movements - as those we will consider in section 5.

For technical reasons which related to the previous remark, we will consider decompositions
of spaces into cubes instead of simplices. The standard n-cube, In ½ En, is the the cartesian
product of I by itself n times: In = I £ :::£ I = f(x1; :::; xn) 2 En : 0 ∙ xi ∙ 1g. In In we have
2n vertices, all the points with coordinates 0 or 1, and 2n faces of dimension n¡1 which are the
intersections of In with the 2n hyperplanes with equations xi = 0 or xi = 1. For each of these
faces there is a natural isometry into the n¡ 1 cube, given by the forgetting of the i-coordinate.
Then we have faces of dimension n¡ 2, given by the intersection of two n¡ 1 faces, that is by
the conjunction of two of those equations xi = 0; 1 and xj = 0; 1, and more generally faces of
all dimensions from n ¡ 1 down to 1, the dimension of the edges, and 0 the dimension of the
vertices. We will consider more generally an n-cube in En as the convex polyhedron determined
by the combinatorial equivalent arrangement of 2n hyperplanes, with the corresponding sets of
faces of the various dimensions.

We will consider our spaces K decomposed into cubes: a squaring (or cubication to have a
word analogous to triangulation) of the space K is a decomposition into cubes - that is, into
subspaces each of which is homeomorphic to a cube of a certain dimension - such that each two
cubes either do not intersect or intersect along a common proper face. We will say that the
space K is squared or cubical. We have for cubical spaces the analogues of star, St, link, Lk,
k-skeleton, Kk, subcomplex, M ∙ K, etc..

Of course, for any cubical complex K, the product K £ I has a very natural squaring, with
cubes the products ! £ I of all the cubes of K with I. As in the simplicial case, we consider
in K and K £ I compatible euclidian embeddings of the constituent cubes, locally in each cube
the transport metric from the corresponding embedding, and then globally the length-metric.
The definition of full cubical complex is identical to the previous one.

The two types of decomposition, triangulations and squarings, are naturally intertwined. To
any squaring of the space K there is associated its standard triangulation, obtained by subdi-
viding each n-cube into n-simplices in the following standard way - in what follows it might be
useful to visualize in dimension 3. Let Ã be an n-cube; its baricentre, Ã̂ is the affine combination
of its 2n vertices,

P2n

i=1 ¸ivi,
P

¸i = 1, with all coefficients equal to 1=2n. Keep in mind that,
since the vertices of a cube are not affine independent, the affine coordinates relative to those
vertices are not unique: for that reason, and apart the convenience for certain definitions, like
the one just given of baricentre, we will not be able to use them as in the simplicial case, for
instance to define what will be the equivalent for the squarings of a simplicial map. We use the
usual notation for proper faces: if ! is a proper face of Ã, write ! < Ã. The standard trian-
gulation of an n-cube Ã consists of all the n-simplices with vertices (!̂n; !̂n−1; !̂n−2; :::; !̂1; !̂0)
where !i is a face of dimension i and !i−1 < !i; of course, !n = Ã and !̂0 = !0 is a vertex of
Ã. In other words, we obtain the simplices of the standard triangulation by all possible choices
of sequences of baricentres, where we start with a vertex of Ã, then choose the baricentre of
an edge that has that vertex as an end point, then the baricentre of a square that has that
edge, then the baricentre of a cube (a real 3-dimensional one) that has that square as a face,
and so on until we reach the baricentre of Ã: for instance, in dimension 3 we have the standard
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decomposition of a cube into 48 simplices. We leave it to the reader to work out the relation
between simplicial and cubical complexes, in the opposite direction.

The equivalent of a simplicial map is a cubical map. Given two cubes Ã1 and Ã2, not
necessarily of the same dimension, a cubical map ' : Ã1 ¡! Ã2 will be completely determined
by choosing for each vertex v of Ã1 a vertex '(v) 2 Ã2 to be its image. The definition will be
given by induction on the dimension of Ã1. Let _Ã denote the boundary of the cube Ã, that is the
union of all proper faces of Ã: clearly we can represent the cube Ã as the joint _Ã ¤ Ã̂, the union
of all line segments l̂x = xÃ̂, x 2 _Ã. If the dimension of Ã1 is 0, that is Ã1 is just a vertex, then
' is simply a choice of a vertex '(Ã1) in Ã2. If the dimension of Ã1 is n, let ! ∙ Ã2 be the face
of smallest dimension that contains the set of vertices '(Ã01); by induction we have defined ' on
each of the (n ¡ 1)-cubes that make up the boundary _Ã1 and of course '( _Ã1) ½ !: we extend
' to the interior of Ã1 by setting '(Ã̂1) = !̂ and sending each segment l̂x, x 2 _Ã1, linearly to
the segment '(x)!̂ (which may be be reduced to a point). The reader is advised to construct
and visualize some cubical maps of the 3-cube I3 to itself, for instance the one that keeps all the
vertices fixed except one which is sent to the opposite vertex. Of course, a map ' : K ¡! L
between cubical complexes is said to be a cubical map if the restriction to each cube of K is a
cubical map into a cube of L. By the definition it’s clear that a restriction of a cubical map to
a subcomplex still is a cubical map.

Since a cubical map ' : Ã1 ¡! Ã2 sends vertices to vertices - in fact, by definition, it is
determined by those images '(Ã01) ½ Ã02 - and sends the baricentres of faces of Ã1 to baricentres
of faces of Ã2, and in face of the definition of the standard triangulation of a cube given above,
it is easy to see that a cubical map is a simplicial map for the standard triangulations. Let
¾ = (!̂n; !̂n−1; !̂n−2; :::; !̂1; !̂0) be an n-simplex of the standard triangulation of the cube where,
as above, !̂n = Ã̂1, !̂0 = v0 is a vertex of Ã1, and !i is a face of dimension i with !i−1 < !i; the
simplex can be seen as a sequence of joints: ¾1 = v0 ¤ !̂1 ½ !1 ½ _!2, ¾2 = ¾1 ¤ !̂2 ½ !2 ½ _!3,
..., ¾ = ¾n = ¾n−1 ¤ Ã̂1, corresponding to a sequence of faces of increasing dimension v0 < ¾1 <
¾2 < ¢ ¢ ¢ < ¾n−1 < ¾n = ¾. Following the definition of cubical map, let for each i = 0; 1; :::; n, κi
be the face of smallest dimension of Ã2 that contains the images '(!

0
i ) of the vertices of !i; since

!i−1 < !i and therefore !0i−1 ½ !0i , κi contains κi−1, that is κi−1 is a face, but perhaps not a
proper face, of κi; we have thus a sequence of faces of Ã2, of increasing - perhaps not strictly -
dimension, all of which contain the vertex '(v0): '(v0) = κ0 ∙ κ1 ∙ ¢ ¢ ¢ ∙ κn ∙ Ã2; therefore
the baricentres κ̂0 = κ0, κ̂1, ..., κ̂n, not necessarily distinct, are vertices of a top-dimensional
simplex ½ of the standard triangulation of Ã2 that contains the vertex '(v0) = κ0. Since, by
definition of cubical map, '(!̂i) = κ̂i we have that the vertices of ¾ are sent to vertices of ½;
furthermore, the segments that make up the above sequence of joints that we considered as
forming ¾ are sent linearly to segments in the simplex ½: but a simplicial map between the two
simplices ¾ and ½ has exactly this characteristic property.

We now turn to (cubical) baricentric subdivisions of cubical complexes. Let I0 = [0; 1=2] and
I1 = [1=2; 1]; the (first) baricentric (cubical) subdivision of the n-cube Ã = In consists of the
2n embedded n-cubes Ii1£ Ii2 £ ¢ ¢ ¢ £ Iin where (i1; i2; :::; in) 2 f0; 1gn; clearly these cubes have
for vertices the original vertices of In plus the baricentres of its faces: more specifically, for each
vertex v of In there is exactly one cube of the subdivision, Ãv, that has for vertices, besides v,
the baricentres of all the cubes in St(v), Ã0v = fvg[f!̂ : ! 2 St(v)g; in particular the baricentre
Ã̂ = (1=2; :::; 1=2) 2 In is a vertex of all the cubes of the subdivision. Analogously to the two
vertices v and Ã̂ of Ãv, for any face ¼ ∙ Ãv of dimension k there are exactly two vertices, say
ub = !̂b and ut = !̂t, !b; !t 2 St(v), such that dim(!t) ¡ dim(!b) = k and such that for any
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other vertex u = !̂ we have !b < ! < !t; we call ub and ut, the bottom and top dimensional
vertices of ¼, respectively; note that baricentre of the cube ¼ is the midpoint of the segment
ubut. Given an arbitrary n-cube, Ã ½ En, its (first) baricentric (cubical) subdivision consists of
the 2n embedded n-cubes which are the images of the cubes of the baricentric subdivision of In
we’ve just defined, by any cubical homeomorphism ' : In ¡! Ã. Given a cubical complex K,
we denote its iterated n-th baricentric (cubical) subdivision by K [n].

Let ' : Ã ¡! Ã0 be a cubical map between two cubes and consider the first baricentric
subdivisions, Ã[1] and (Ã0)[1]. Let Ãv, v 2 Ã0, be a cube of Ã[1] and consider the cube Ã0ϕ(v) 2
(Ã0)[1]; for any vertex of Ãv, which is of the form !̂, ! 2 St(v), we have, by definition of cubical
map, that '(!̂) = κ̂, where κ is the face of smallest dimension that contains all the vertices
'(!0), therefore κ 2 St('(v)) and so κ̂ is a vertex of the cube Ã0ϕ(v): in conclusion, ' sends
the vertices of the cube Ãv to vertices of the cube Ã

0
ϕ(v); in fact the restriction of ' to Ãv is a

cubical map between the two subdivision cubes. Following the given definition of cubical map,
we proceed by induction on the dimension of the faces of Ãv. Let ¼ ∙ Ãv be a face of dimension
k and let ub = !̂b and ut = !̂t, !b; !t 2 St(v) be its bottom and top dimensional vertices; since
for any other vertex u = !̂ 2 ¼0 we have !b < ! < !t, the smallest dimension face of Ã0 that
contains all the vertices '(!0t ), say κt 2 St('(v)), also contains the vertices '(!0) and '(!0b).
Therefore if '(!̂b) = κ̂b, '(!̂) = κ̂, '(!̂t) = κ̂t we have κb ∙ κ ∙ κt; as a consequence if κ0 is
the face of Ã0ϕ(v) of smallest dimension that contains all the vertices '(¼

0),then κ0 ½ Ã0ϕ(v) \ κt
and are its bottom and top dimensional vertices, respectively. Now, the baricentre of ¼ is the
midpoint of the segment ubut, and likewise the midpoint of the segment κ̂bκ̂t is the baricentre
of ¼0; since ' sends ubut linearly to κ̂bκ̂t, we have that '(¼̂) = ¼̂0; it remains to be seen that for
each x 2 _¼, x¼̂ is sent linearly to '(x)¼̂0: from the construction of the standard triangulation
of Ã, we have that each cube Ãv, as well as each of its proper faces, is a union of simplices
of that triangulation - this means that the standard triangulation of Ã is also a triangulation
of Ã[1] - furthermore all the segments ubut joining bottom and top dimensional vertices are
in fact edges of the standard triangulation; this implies that the segment x¼̂ is contained in
a simplex of the standard triangulation, and since ' is also simplicial, as we saw above, we
achieve the conclusion. We have thus proved the following result, showing that - in contrast
with what happens with simplicial maps, exemplified in Remark 21 - cubical maps behave well
under baricentric subdivisions:

Lemma 22 Let K and L be cubical complexes and ' : K ¡! L a cubical map. Then, for all
n 2 N, ' : K[n] ¡! L[n] is cubical, and simplicial relative to the standard triangulations of K[n]

and L[n].

Note that the standard triangulation of a baricentric (cubical) subdivision, K [1], is a subdi-
vision of the standard triangulation of K, but is not the (simplicial) baricentric one.

The notion of simplicial approximation to a continuous map translates from the simplicial to
the cubical setting, mutatis mutandi: given cubical complexes K and L and a continuous map
f : K ¡! L, a cubical map g : K ¡! L is called a cubical approximation to f if for each vertex
c of K, f(StK(c)) ½ StL(g(c)).

The proofs of Proposition 15 and Theorems 16,17 (see [3, Chapter 2]) translate in a straight-
forward manner to give proofs of their cubical analogues, which in turn entail that for any
contractible cubical complex K, there is k 2 N and a cubical contraction H : (K £ I)[k] ¡! K.
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Let H : (K£ I)[k] ¡! K be a cubical contraction of the cubical space K, and let M = (K£
I)[k]; recall that by the previous lemma, for all n 2 N, H : M [n] ¡! K[n] is a cubical contraction.
We denote by Q (or by QH or Q(k)) the space of all cubical contractions J : M [n] ¡! K [n], with
the sup-metric: we repeat that our basic idea is to be able to modify a given contraction, say
H, by local small moves involving sufficiently fine (cubical) baricentric subdivisions; since each
such J is a simplicial map between the standard triangulations of M [n] and K[n] we can regard
Q as a subspace of S: we refer to the simplicial maps J : (K£I)sub ¡! Ksub and corresponding
simplicial subdivisions, (K£I)sub and Ksub, so obtained as being cubically framed (or as having
cubical support). We thus have the inclusions Q ½ S ½ C.

Let G = Q (or GH or G(k)) be the closure of Q in the space C, the space of all contractions
of the cubical space K. We should draw your attention to the following: as in a corollary to the
Simplicial Approximation Theorem (see the paragraph after Theorem 16) its cubical analogue,
the Cubical Approximation Theorem entails that any continuous map f : K ¡! L between
cubical complexes, can be arbitrarily "-approximated, " > 0, by a cubical map g : K[k] ¡! L[j]

for suitable k; j 2 N, in particular any contraction in C can be arbitrarily "-approximated by a
cubical one; but note that the space Q was defined just with the baricentric subdivisions M [n]

and K[n], we are not allowed to vary the upper-indices separately: in fact it will became clear,
by the results that follow and taking into account some previous examples, that G = Q is a
much restricted space of C.

G is a compact subspace of C. Since we are assuming all spaces K to be compact, the topology
of uniform convergence in C, given by the sup-metric, is the same as the compact-open topology
(the c-topology) and by the Arzela-Ascoli Theorem (see [8, Chapter XII]) the compactness of
G = Q is equivalent to the equicontinuity of Q - and then G is also equicontinuous. This is what
we will analyse next.

Let ' : Ã1 ¡! Ã2 be a cubical map between cubes; it’s clear that ' has a bounded stretching-
factor, that is, there is some positive constant cϕ > 0 such that for all line segments r ½ Ã1
the ratio of the lengths l('(r))=l(r) doesn’t exceed cϕ; recall that ' is simplicial relative to the
standard triangulations of the two cubes: now, in each n-simplex ¾, where n = dim(Ã1), of the
standard triangulation of Ã1, ' being linear in ¾ we can find a direction of maximal stretch with
stretching factor say cσ: obviously cϕ = maxσ fcσg is the required constant. Since there are
only a finite number of cubical maps between two cubes, we can obviously take the maximum
maxϕ fcϕg as a common stretching-factor bound for all of them which we denote by c(Ã1; Ã2).
But a much stronger result holds: it is possible to find a global stretching-factor bound which
is hereditary under iterated baricentric subdivisions, that is, there is a constant C(Ã1; Ã2) > 0

such that for all n 2 N and for all cubes ! 2 Ã
[n]
1 , κ 2 Ã

[n]
2 , c(!;κ) ∙ C. We can assume without

loss of generality that dim(Ã1) = dim(Ã2) = m: if one of them has smaller dimension, consider
it as a face of a cube Ã of the greater dimension; in the case Ã2 < Ã, it is clear that a global
bound for the pair (Ã1; Ã) is also a bound for the pair (Ã1; Ã2) since Ã

[n]
2 is a subcomplex of

Ã[n] and so in the set of constants c(!;κ), where ! 2 Ã
[n]
1 and κ 2 Ã[n], κ ranges in particular

over Ã[n]2 ; the other case, Ã1 < Ã, is perfectly analogous. Suppose there was not such a constant

C(Ã1; Ã2), that is, for each positive constant k > 0 we could find nk 2 N, two cubes !k 2 Ã
[nk]
1 ,

κk 2 Ã
[nk]
2 and a cubical map : !k ¡! κk such that cϕk > k. Fix two cubical homeomorphisms

h1 : Im ¡! Ã1 and h2 : Im ¡! Ã2; to each cube !k 2 Ã
[nk]
1 there corresponds exactly one cube

in (Im)[nk], the cube ¹k = h−11 (!k) and likewise for κk 2 Ã
[nk]
2 with ºk = h−12 ( κk); consider

the cubical map : ¹k ¡! ºk defined as the composition Ák = h−12 ± 'k ± h1 where we are still
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using h1 for the restriction to ¹k; since these are homeomorphisms, it is clear that the stretching
factor for Ák is greater or equal to cϕk=(ch1 £ ch2), that is cφk > k=a where a = ch1 £ ch2 is a
constant; in conclusion, we found cubes ¹k; ºk 2 (Im)[nk] with arbitrarily large stretching factors
c(¹k; ºk) ¸ cφk > k=a: but this is a contradiction since Im is highly symmetric under baricentric
subdivisions, as a consequence any cube in a subdivision , (Im)[n], is similar by a factor of 2n to
Im or one of its faces and therefore c(¹k; ºk) ∙ c(Im; Im). Note that the same argument could
not be carried on in the simplicial context - this is a main reason to have chosen to go cubical
- since this last property doesn’t hold for baricentric subdivisions of the standard simplex ¢n:
in successive subdivisions the shapes of the simplices keep changing, with the emergence of new
simplices not similar to any in previous subdivisions, as becomes apparent in next figure where
the three stages for the third baricentric subdivision of ¢2 are represented; the two shaded 2-
simplices, with vertex at the baricentre of ¢2, show that in the successive subdivisions we have
triangles that have, at that vertex, angles with ever decreasing amplitudes.

Figure 15

Let’s now see the equicontinuity of Q; recall that in the cubical complexes K and M =
(K£ I)[k] we consider the length-metric given locally, in each cube of the decomposition, by the
transport metric from a euclidian embedding of that cube. Let p be a geodesic in K£I from the
point x to the point y: then the distance between x and y equals the length of p: d(x; y) = l(p).
Consider an arbitrary element of Q, J : M [n] ¡! K [n]; obviously, p is a polygonal path made
up of a succession of line segments each one of which is contained in a cube of M [n] (a top-
dimensional one if we assume K to be a full complex): p = p1 [ p2 [ ¢ ¢ ¢ [ pj , with pi 2 !i,
!i 2 M [n] and of course we have l(p) =

Pj
i=1 l(pi). J(p) is a polygonal path joining J(x) to

J(y), J(p) = J(p1) [ J(p2) [ ¢ ¢ ¢ [ J(pj) where, for each i = 1; :::; j, J(pi) is a polygonal path in
the cube κi = J(!i). Of course that l( J(pi)) ∙ l(pi)£c(!i;κi) and if Ã and ¼ are cubes that are
ancestors, in M and K respectively, of the cubes !i and κi, we have that c(!i;κi) ∙ C(Ã; ¼).
If we take the maximum of the stretching factor bounds for all pairs of cubes of M and K,
B = max(ψ,π)∈M×K fC(Ã; ¼)g, we have
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l(J(p)) =

jX
i=1

l(J(pi)) ∙
jX

i=1

l(pi)c(!i;κi) ∙ B

jX
i=1

l(pi) = Bl(p) = Bd(x; y)

But clearly d(J(x); J(y)) ∙ l(J(p)) and so we have proved that for each J 2 Q and for any two
points x; y 2 M , we have d(J(x); J(y)) ∙ Bd(x; y) thus setting the (uniform) equicontinuity of
Q - in fact we’ve proved a sharper result: Q is equi-Lipschitz. Let’s state the relevant conclusion:

Theorem 23 Let K be a contractible cubical complex and H : M = (K £ I)[k] ¡! K a cubical
contraction. Let Q be the space of all cubical contractions J : M [n] ¡! K[n], n 2 N, and G =Q
the closure in C, the space of all contractions of K.

Then G is compact.

Consider again the energy and volume functions, E; V : S ¡! [0;+1) and let © stand for
the restriction of either of them to Q ½ S. Of course, © is lower-semicontinuous, being the
restriction of a lower-semicontinuous function and previous examples (represented in Figure 9)
that showed that V;E are not (upper-semi)continuous can be readily readjusted to triangulations
(of I£ I) with cubical support and cubical maps, showing that © is not (upper-semi)continuous.

We extend © to G =Q, denoting the extension by the same letter: given J 2 G ¡Q, define
©(J) by

©ε(J) = inf f©(H) : H 2 Q ^ d(J;H) < "g
©(J) = lim

ε−→0©ε(J)

We need to check that the limit in the definition does exist: since, obviously, " < "0 ) ©ε(J) ¸
©ε0(J) what we need to check is that f©ε(J); " > 0g is bounded above, for then limε−→0©ε(J) =
supε>0©ε(J). In fact more is true: both functions, energy and volume, are actually bounded
above in Q. Consider the constant B we constructed above in the proof of the equicontinuity of
Q. Going back to the definition of the energy function: given any J : M [n] ¡! K[n], consider
the length function LJ : K ¡! [0;+1), LH(x) = l(J(Sx), where Sx = fxg £ I is the stalk over
x; Sx has a certain length in M [n], say l(Sx); from the definition of B as a global stretching
factor bound for all J 2 Q, it is clear that LJ(x) ∙ Bl(Sx) and therefore

E(J) =

Z
K
LJ(x) ∙ B

Z
K
l(Sx)

(where the last integral could be taken as the total volume of the complex M). Likewise, in
the definition of the volume function, if we look at the area-function AJ(t) = A(J(Mt)), where
Mt = K £ ftg is the slice at level t, we will have AJ(t) ∙ BmA(Mt) where A(Mt) is the area of
the slice and m is the dimension of K; therefore

V (J) =

Z 1

0
AJ(t)dt ∙ Bm

Z 1

0
A(Mt)dt

(where the last integral could also be taken as the total volume of M). Note that, since © is
lower-semicontinuous, for all J 2 Q we also have that ©(J) = limε−→0©ε(J).

It is easy to see that the extension © : G ¡! [0;+1) is lower-semicontinuous. Suppose, on
the contrary, that © was lower-semidiscontinuous at point J ; we can distinguish the two cases,
J 2 G ¡Q and J 2 Q. Assume first that J 2 Q: if © is lower-semidiscontinuous at J then
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there is some "0 > 0 such that for all ± > 0 there exists Hδ 2 G such that d(J ;Hδ) < ± and
©(Hδ) < ©(J) ¡ "0; since © is lower-semicontinuous in Q, we have that Hδ 2 G ¡Q; by the
definition of ©(Hδ), and considering ©δ(Hδ) ∙ ©(Hδ) < ©(J) ¡ "0, there is G 2 Q such that
d(Hδ; G) < ± and ©(G) < ©(J) ¡ "0; but then d(J;G) < 2± and since ± is arbitrary © would
be lower-semidiscontinuous at J , contradiction. In the second case, for J 2 G ¡Q we would
have as in the first case, for all ± > 0 a Hδ 2 G with d(J ;Hδ) < ± and ©(Hδ) < ©(J) ¡ "0, "0
some fixed positive constant; either Hδ 2 Q or we could get, as before, G 2 Q with d(J;G) < 2±
and ©(G) < ©(J) ¡ "0; but then, by the definition of the extension of ©, we would have
©δ(J) ∙ ©2δ(J) < ©(J)¡ "0 which is a contradiction since ± is arbitrary.

Since the energy function E : G ¡! [0;+1) is lower-semicontinuous and G is compact, E
attains a minimum value, say mE. LetME=E−1(mE); thenME is a closed, therefore compact
subspace of G and so the volume function restricted toME attains a minimum value, say mE,V .
We will refer to any contraction H 2 G with E(H) = mE and V (H) = mE;V as having minimal
energy-volume (in this order).

We could, of course, reverse the roles of energy and volume to get mV , MV and mV ;E, and
so consider contractions with minimal volume-energy. To study the relations between these two
notions of minima - namely to search for functions with minimal energy and minimal volume,
that is to investigate if ME \MV 6= ; - would lead us astray of our main purposes, so we will
not pursue the subject here. For technical reasons, in the study of coalescence in section 5.3 it
turns out to be more convenient to work with mE instead of mV .

Remark 24 We could have worked, all the way long, directly with cubical complexes and their
maps, without ever considering the relations - via standard triangulations - with simplicial com-
plexes, namely the analysis that led to Lemma 22; we could do well without those relations, and
that Lemma, by adopting a weaker understanding of the space Q, analogous to our previous
considerations about the space S in Remark 21: we could consider the subdivisions M [n] to be
not necessarily cubical - in the sense that the intersection of any two cubes wouldn’t need to be
a common proper face - and the maps J : M [n] ¡! K [n] not necessarily cubical, but simply
"linear" in the sense that in each cube Ã 2 M [n] they are the restriction of a cubical map on a
cube ancestor to Ã (of course, since a cubical map between cubes is in no sense "linear" - as we
pointed out earlier, affine coordinates were not to be used - the use of this word is just an abuse
of language meant to draw the parallel with Remark 21). We would still need to prove that a
cubical map ' : Ã ¡! ! between cubes has a bounded stretching factor, cϕ: the proof we gave
invoked the relation to the standard triangulation and associated simplicial map, but other more
direct arguments could be given; from there, the argument to arrive at the global bound C(Ã; !),
used to settle the equicontinuity of Q, doesn’t involve any simplicial stuff.

Beside the need for the proofs of the Cubical Approximation Theorems (the analogues of
Proposition 15 and Theorems 16 and 17) - which, any way, would always, most naturally, beg
the "reference" to the simplicial setting, we would also need to rephrase, in cubical terms, the
definitions of the Energy and Volume functions and the proofs of their lower-semicontinuity -
which is something that could be easily done, as the reader may care to check.
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5 Shrinking complexity II: coalescence

In this section we pay attention to contractions H : K £ I ¡! K in the case where K is
a (finite cubical) manifold and our main purpose is to apply the concepts and results of the
previous section, the concepts of energy and volume and the existence of minimal energy-volume
contractions, to the study of coalescence. We start by recalling some simple facts about compact
contractible manifolds.

IfK is a contractible n-manifold then, by some well known homological arguments (see books
on algebraic topology, for instance, [3], [9] or [10]) K is orientable and has non-empty boundary,
@K - which is then an orientable, closed and connected (n ¡ 1)-manifold. If K is contractible,
that is if K is homotopy equivalent to a point, then all its homotopy groups and homology groups
vanish in dimensions greater than 0: ¼n(K) = 0 and Hn(K) = 0, 8n ¸ 1 - actually, since K is
a cellular space, by the well known theorems of Whitehead and Hurewicz, the contractibility of
a connected K is equivalent to his having trivial homotopy groups. In particular ¼1(K) = 0,
that is K is simply-connected, and therefore K is orientable; If K is orientable and closed, that
is @K = ;, the sum of all its oriented n-simplices defines a fundamental homology class that
generates Hn(K) »= Z. That the boundary of a contractible manifold K is connected is also a
consequence of what follows.

Let K be a contractible m-manifold, B = @K its boundary and H : K£I ¡! K an element
of C; consider the restriction of H to @K£I, which we denote also by H: then H : @K£I ¡! K
defines a contraction of @K in K. Note that the existence of a contraction of @K in K doesn’t
imply that @K is itself contractible - just think of Sn = @Bn - or even simply connected.
Although in dimension three the situation is quite simple - in this case it is easy to see that
@K is a 2-sphere, S2, and furthermore that the contractibility of K is equivalent to @K being
contractible in K (you can read proofs of these facts in section 2 of [6]) in dimension four there
are examples of contractible manifolds with complicated boundary - see [2] for a description of
the Mazur -manifold, a 4-dimensional contractible manifold - with an embedded dunce-hat as
a spine - whose boundary is the Poincaré homology 3-sphere (also known as the dodecahedron
space; see [14]).

It is easy to see that any contraction of @K in K, H : @K £ I ¡! K - we are not assuming
now that H is the restriction of any contraction of K, and we leave aside the problem of knowing
if such an extension always exists - doesn’t miss any point of K, that is it must be surjective:
for all x 2 K, there is some (y; t) 2 @K £ I such that H(y; t) = x. Suppose, on the contrary,
there is some x 2 K ¡H(@K £ I); since H(@K £ I) is compact and therefore closed, there is
a closed ball D(x; ") disjoint from H(@K £ I); let L be the complement in K of the interior of
D(x; "): then L is a manifold with boundary the (disjoint) union of @K and an (m¡ 1)-sphere,
@D(x; ") = Sm−1, and @K is still contractible in L. Consider the double of L, DL = L _ L= »,
the identification space obtained from the disjoint union of two copies of L by identifying the
two copies of the boundary through the identity map: there are two embedded copies of L in
DL that intersect along the common boundary, @L = @K[, and clearly @K is still contractible
in DL; consider any properly embedded arc, l, in L with one end point in @K and the other in
Sm−1: the double of this arc in DL is an embedded closed arc, sayDl, that intersects @K, as well
as Sm−1, transversely once; but this is a contradiction: it would mean that the (m¡1) homology
cycle correspondent to @K and the 1-cycle correspondent to the arc Dl would have intersection
number 1; but by well known homological arguments the intersection number depends only on
the corresponding homology classes - it is given by the cap product of one with the Poincaré
dual of the other - and if @K is contractible in DL then the cycle is nulhomologous and so has
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intersection 0 with any other cycle. Note that this argument generalizes straightforwardly to
show that, as stated above, the boundary of a contractible manifold must be connected.

5.1 The geometric condition

Let K be a cubical complex, which is a contractible m-manifold (therefore it is a full complex);
recall that in K we consider the length metric defined via the compatible transport-metrics in
the cubes, which are given through embeddings of those cubes in Em.

We will assume that the metric satisfies the following local condition, which we will refer
to, simply, as the geometric condition - after the usual behaviour of straight lines in classical
geometries: for each point x 2 K, there is a neighbourhood Ng(x) such that any two geodesics
in it either do not intersect or intersect only once. In particular there will be uniqueness of
geodesics: for any two points y; z 2 Ng(x) there is a unique geodesic in Ng(x) joining z and y.
We call Ng(x) a geometric neighbourhood.

Note that if a point x 2 K is in the interior of the manifold and is not in the (m¡2)-skeleton
- that is, x is in the interior of an m-cube or in the interior of an (m ¡ 1)-cube which is not
included in @K - then x has a neighbourhood with a euclidian structure, that is isometric to
an euclidian ball in Em, and so in particular verifies the geometric condition. But in points of
K(m−2) or on the boundary @K, the geometric condition may fail; this can be easily seen in
examples in dimensions two and three. In dimension 2, when K is a 2-disc, we may have vertices
in the interior of the hyperbolic type; those are the points x 2 K0 where the sum of the angles
at x of all the squares (2-cubes!) in St(x) is greater than 2¼; for these points the geometric
condition fails, as the reader is asked to show in the next exercise:

Exercise 25 Show that at an hyperbolic point in the interior of the 2-disc, the geometric con-
dition fails, more specifically there are distinct geodesics that meet at the hyperbolic point and
coincide, in a common segment, after that (Hint: look at a slice of St(x) with angle 2¼)

But even when all the points in the interior of a 2-disc verify the geometric condition, what
happens in particular when the disc is embedded in E2 and so is euclidian in the interior, there
may be points in the boundary that fail to satisfy the condition if the disc is not convex, as the
next figure shows.

V P

Q

A

Figure 16
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If you look at point A, for instance, it’s clear that for all points P;Q in the interior of the shaded
region the two geodesics from those points to A, represented thick, meet at vertex V and, from
there, have the common segment V A.

In dimension 3, when K is a homotopy 3-ball and then @K »= S2, as pointed out before (see
section 2 of [6]), we have the analogous failure of the geometric condition at interior vertices
x 2 K0 where the sum of the solid angles at x of all the cubes in St(x) is greater than 4¼ -
hyperbolic points - and at points in the interior of edges, e 2 K1 - hyperbolic edges - where the
sum of the angles at e of all the 3-cubes that contain e is greater than 2¼; of course we also
have the analogous failure of the geometric condition at points on the boundary, due to a lack
of convexity (with the straightforward 3-dimensional analogue of the example in Figure 16).

But, keeping our main objective in sight, it is possible to circumvent the failure of the geo-
metric condition at interior points of K, broadening the scope of our previous results: without
getting involved in details that would force us to detour from our main path into differential
and smoothing technicalities (but see [15, Chapter 3 -and the references there in] for a starter),
we will be content with sketching the general procedure; we will do that while focusing only in
dimension 3. Given a hyperbolic point, x 2 K, take a closed ball B(x; ") in the interior of St(x):
for each 3-cube ¾ 2 St(x), B(x; ") \ ¾ is the cone on a spherical triangle with vertex x (recall
that, through a specific embedding, we are considering ¾ as a cube in E3); B(x; ") is the joint
S(x; ") ¤ x consisting of all linear segments joining x to the points of the sphere S(x; ") which is
made up of all the spherical triangles S(x; ")\¾, ¾ 2 St(x). The procedure consists of pinching
all those segments at x, as suggested - in dimension 2 - in the next figure; in broadly terms,
the local metric in each sphere S(x; ±); ± 2 (0; ") is substituted by the local metric of the sphere
of radius r(±) where r is a suitable function. When the hyperbolic vertex is an end point of an
hyperbolic edge, e, this pinching is combined with the pinching that we also have to perform
along such edges: these, in turn, are done by considering a banana-shape region around the edge
(right side of figure 17) and pinching the circular sections of that region which are perpendicular
to e - that is, in each of those circles we pinch all the radius at its centre point, which lies in e.

e

S(x ,ε)

x

x

Figure 17

At the end of this process we’ve traded the euclidian structure in the complement of K1, we
had at the beginning, for another (differentiable) metric structure with varying curvature, and

38



satisfying the geometric condition, and the hyperbolic vertices and edges for vertices and edges,
respectively, of a cone type where the geometric condition may still fail, as the reader may care
to check (in a neighbourhood of a cone point geodesics are not unique). Finally we round up (or
smooth) those cone singularities. Of course, we are now referring to the geodesics for the new
metrics on the cubes.

Remark 26 We have to explain how our previous results - that were all formulated in terms of
euclidian cubes, their baricentric subdivisions and cubical maps - may adapt to the new metric
setting. Given an euclidian cube Ã 2 K, let Ãp denote the correspondent pinched cube; the
process of pinching gives us a canonical homeomorphism pψ : Ã ¡! Ãp (that is actually a
diffeomorphism in the complement of the set of hyperbolic points and edges) sending Ãi to Ãi

p;
looking at K £ I, pψ extends naturally to a canonical homeomorphism of cubes pψ×I : Ã£ I ¡!
Ãp £ I, with pψ×I = pψ £ I. Now, given any two cubes Ãp and !p (either of K or of K £ I) we

define the cubical maps Á : Ãp ¡! !p to be just all the compositions Ãp

p−1ψ¡! Ã
ϕ¡! !

pω¡! !p,

where ' : Ã ¡! ! is a cubical map, and we define the (baricentric) subdivisions Ã[k]p to be the
images by the canonical map pψ of the corresponding subdivisions of Ã.

With the broadening of the notion of cubical complex - to include length-metrics from pinched
cubes also - and of the notions of cubical map and baricentric subdivision as well, the definitions
of volume and energy of a contraction, the proof of the lower-semicontinuity of the volume and
energy functions, and the proof of the equicontinuity of Q, all adapt in a straightforward manner:
in all calculations of lengths, areas and integrals all we have to do is to go back and forth between
the cubes Ã and their counterparts Ãp, via the canonical map pψ; since in some of the proofs
we made essential use of the existence of stretching-factor bounds for cubical maps we need to
know that each canonical map pψ : Ã ¡! Ãp also has such a bound: that is indeed the case, since
the pinching process can be carried through with bounded derivative (avoiding the emergence of
cusps at the singular vertices and edges).

While we can circumvent the absence of the geometric condition at interior points of K, the
same isn’t true for points in the boundary. Although the pinching process can still be carried
over for hyperbolic points and hyperbolic edges that lie in @K, the lack of convexity can not
be resolved in that way: on the contrary, the pinching at those hyperbolic points and edges
may introduce non-convexity at the boundary, as the left side of figure 17 suggests - seen here
as representing the (solid) pinched neighbourhood of such a point. We say that the boundary
of K is convex - or perhaps more appropriately that K is convex at the boundary - if for each
x 2 @K there is a neighbourhood, N(x; "), such that for all points a; b 2 N(x; ") ¡ @K, that
is for all points a; b in N(x; ") which are in the interior of K, the geodesic ab is contained in
N(x; ")¡ @K; we leave it as an exercise for the reader to relate this definition with the general
definition of convexity of K: K is said to be convex if its interior K ¡ @K is convex, that is,
for all interior points a; b, any geodesic ab is also contained in the interior of K. In dimension
3, as we’ve already pointed out, the boundary @K must be a 2-sphere: that allows us easily,
to get a metric for the homotopy-ball K that makes it convex at the boundary, as we shall
see shortly. But we can not hope to be able to do that in general, for dim(K) ¸ 4: in this
case @K is a homology 3-sphere, a (closed) 3-manifold with the same homology as the 3-sphere,
S3 (this can be easily calculated using the exact sequences of homology and cohomology and
the Poincaré-Lefschetz duality - see, for instance, [9, Theorem 3.26] 4). Now, the convexity at

4Where it is referred to as "...[forming] the cornerstone of the subject of geometric topology."
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the boundary points to the existence of a metric in @K with non-negative curvature, which in
turn points to a spherical geometry and so to a finite fundamental group; but the only known
homology 3-sphere which has finite fundamental group is the dodecahedral space - that bounds
the Mazur-manifold, as already mentioned (in fact, it does have a spherical geometry: see [15],
[16]); on the other hand, it is a consequence of Freedman’s results that any homology 3-sphere
bounds a contractible compact 4-manifold (see [17, section 9.3]).

Let’s now see the specially simple situation of dimension 3. Let K be a homotopy 3-ball and
@K »= S2 its boundary; in a standard three dimensional procedure, we can cap off K by gluing
a 3-ball, B3, to its boundary, thus getting a homotopy sphere H3 »= K [∂K B3 (see [6, section
2] for a detailed description of this relation between homotopy 3-balls and homotopy 3-spheres).
Consider any cubical decomposition of H3 with compatible embeddings hψ : Ã ¡! E3, one for
each cube (they could all be the mapped to the standard cube I3). Choose any cube Ã in the
decomposition: by the homogeneity of manifolds there is a self homeomorphism of H3 that sends
the embedded B3 to Ã and so K is homeomorphic to H3 ¡ ºÃ: we can thus consider that the
boundary ofK has the standard cubical decomposition of S2 as the 2-skeleton of a cube, _Ã = Ã2.
Look at the euclidian cube Ã0 = hψ(Ã) ½ E3 and consider any "standard" cube Q = k(I3) + a -
obtained from I3 by a dilation followed by a translation - that contains Ã0 in its interior; consider
the closed region in between the two cubes, C = Q¡ºÃ

0
; by the PL Schonflies Theorem for E3

(see [7, Chapter XIV]) C is homeomorphic to S2£ I: the two sphere components are _Ã
0
and _Q;

we can extend the cubical decomposition of @C = _Ã
0[ _Q - that consists of sixteen quadrilaterals,

eight for each component - to a cubical decomposition of C. We now add the collar C to K by
the component _Ã

0
, by gluing through the homeomorphism h which is the restriction of h−1ψ to

_Ã
0
. Let L = K [h C: by standard regular neighbourhood theory, L and K are homeomorphic.

L has a natural cubical decomposition, consisting of all the previous cubes of H3 and respective
compatible embeddings, except Ã that has been removed, plus all the cubes of C with their
natural embeddings in E3: since the gluing was done with the restriction of h−1ψ we still have

compatibility. C embeds in L as a neighbourhood of @L ´ _Q and clearly there is convexity at
the boundary. Note that, since C is embedded in E3, the construction also implies that any
hyperbolic vertex or any hyperbolic edge in L belong to the subspace K and therefore are in
the interior of L: we can then treat these occurrences with the pinching process, as explained
above, without disturbing the convexity at the boundary.

Note that in the argument just given, we wouldn’t need to go through the capping off process
if we had an embedding, g : (@K)sud ¡! E3, of some subdivision of @K into three space, that is
an isometry for the intrinsic metric in (@K)sud that is, such that the restriction to each 2-cube
(or simplex if we work with triangulations instead) is an isometry to a quadrilateral (or triangle)
in E3. We would then proceed as before, with any "standard" cube Q containing the 2-sphere
g(@K) in its interior. We leave it as a problem the existence of such an embedding:

Problem 27 Let J be a cubical (or simplicial) complex, homeomorphic to S2, and for each cube
(simplex) Ã of the decomposition let hψ : Ã ¡! Ã0 ½ E2 be an embedding into a quadrilateral
(triangle) of 2-space, with all embeddings compatible along common edges: if e = Ã \ ! is a
common edge, then hψ(e) and hω(e) are congruent segments.

a) Is there a global embedding g : J ¡! E3 such that, for each Ã, g(Ã) is congruent to Ã0?
b) If not, is there a global embedding with the property required in a) for some cubical (sim-

plicial) subdivision Jsub ?

The subject of realizability of (combinatorial, abstract) triangulations is a vast, rich and

40



useful one, I have been introduced to only recently 5: a classical result is Steinitz’s Theorem (see
[18, Chapter 4]); a) asks for a strong version of this theorem and is therefore false - construct a
counter-example with rectangular triangles; there remains b) to be investigated.

5.2 Volume and energy variations

Due to the close relation between the contractibility of a compact manifoldK and the contraction
of its boundary it is natural to see how the definitions of volume and energy may adapt for
contractions H : @K £ I ¡! K, including the analysis of the lower-semicontinuity of the
respective functions. This is important if we seek to analyse the contractions of @K in K
independently of any ambient contractions of which they are restrictions. Let’s denote by C∂
the space of all contractions H : @K £ I ¡! K, with the sup-metric, and S∂ , Q∂ and G∂ the
subspaces with definitions analogous to those for S, Q and G, respectively.

For the energy there is no need for any substantial change: the definition of the length
function LH : @K ¡! [0;+1), the definition of the energy E(H) =

R
∂K LH(x) and the proof

that the energy function E : S∂ ¡! [0;+1) is lower-semicontinuous adapt mutatis mutandi
(just with notational changes; in fact, they would adapt exactly the same way if instead of @K
we took any other complex L)

In the case of the volume, some relevant changes are called for. First, in the definition of the
function AH(t) which measures the area of the image of the slice at time t: given a contraction
H : [@K £ I]sub ¡! Ksub, where dim(K) = m and writing as before M = [@K £ I]sub, the
slices Mt = @K £ ftg are now of dimension (m ¡ 1) instead of m and so in the definition
AH(t) =

P
σt:σ∈Mm we must take A(H(¾t)) to be the (m¡ 1) (instead of the m) volume in the

simplex H(¾) 2 K; of course this volume is non zero only if dim(H(¾)) ¸ m ¡ 1. As before,
this area function AH(t) is clearly a continuous function of t, and the definition of the volume
is exactly the same: V (H) =

R 1
0 AH(t)dt.

Second, and also because of this dropping of the dimension, we have to adjust one step of the
proof of the lower-semicontinuity of the volume function V : S∂ ¡! [0;+1), in the argument
surrounding Figure 10, namely when we claimed there were ®0 > 0 and "0 > 0 such that for
all t0 2 [t; t+ ®0] [ [t¡ ®0; t] and for all J 2 S with d(H;J) < "0, we had J(¾t0) ¾ (¢ ¡ Ct0),
that is the images of all the discs ®0-close to ¾t by all contractions "0-close to H in S, cover the
complement in ¢ of the collar Ct0 ; in fact, because we now have dim(¾) = m, we don’t have the
situation where a neighbourhood N(¢; °) of the quadrilateral ¢ = H(¾t) is simply the union
of ¢ with a neighbourhood of the sphere § = _¢, as represented in Figure 10.

We have now the situation represented in Figure 18 (to avoid drawing three dimensional
neighbourhoods, we’ve reduced the dimension of the picture by 1): the image ¢ is here rep-
resented by segment PQ and the complement in ¢ of the collar Ct0 , which we’ll call Q is
represented by the thick segment; shaded is a typical neighbourhood N(¢; °), for which there
is a retraction r : N(¢; °) ¡! ¢ such that for each point d(x; r(x)) ∙ °. Represented in darker
shade is V = r−1(Q). We can assume, by taking ° sufficiently small, that V has a product
like structure and that the retraction in V is like a projection: specifically, for each simplex
¿ 2 K which contains ¢, V \ ¿ is isometric either to the euclidian product Q£ [¡°; °] or to the
euclidian product Q£ [0; °], and the retraction is the vertical projection into the first factor Q;
the first case occurs when ¢ is properly embedded in ¿ - the situation represented in the figure
- and the second when ¢ is contained in a (m¡ 1) face of ¿ ; there are two possibilities: either

5 I thank my Department colleagues from the Discrete Geometry and Combinatorics group, António, Leonor
and Rosário, who gave me, over lunch, some tips and told me about Steinitz’s theorem and the book by Ziegler.
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that face is included in @K, in which case V reduces to Q£ [0; °], or is a common face of two
m-simplices (K is a manifold), in which case the two products match to give V = Q£ [¡°; °].

e

V
N( ,γ )

C

A

B

P Q

Figure 18

With this add, the proof goes on in a similar fashion: we now claim there are ®0 > 0 and
"0 > 0 such that for all t0 2 [t; t+ ®0] [ [t¡ ®0; t] and for all J 2 S with d(H;J) < "0, we have
J(¾t0) ½ N(¢; °) and r(J(¾t0)) ¾ (¢ ¡ Ct0) = Q (the red broken line in the figure represents
such a J(¾t0)); the proof of the claim is exactly like before, a clone of the argument used in
the case of Bing’s house to show it had an opening time greater than 0. Since r(J(¾t0)) ¾ Q
and by the definition of V , we have that for all x 2 Q, J(¾t0) intersects the stalk of x in V ,
x£ [¡°; °] or x£ [0; °]; since the vertical euclidian projection doesn’t decrease area, we conclude
that A(J(¾t0)) ¸ A(J(¾t0) \ V ) ¸ A(Q). The rest of the proof of the lower-semicontinuity of
the volume function is now identical to the previous one.

Finally, the proof of the equicontinuity of Q∂ is totally identical to the previous one; we can
therefore consider contractions H 2 G∂ with minimal energy-volume.

5.2.1 Control energy

For technical reasons it will be useful to consider a variation of the notion of energy which will
be called control-energy and that, in a certain sense, stands halfway between the two notions of
energy and volume: it is still called energy because of its formulation in terms of the lengths of
tracks, but it is closer in spirit to the notion of volume, in particular it will be, like the volume,
sensitive to reparametrizations. Given a simplicial complex K and a simplicial contraction
H 2 S, let for each x 2 K, ltx = Lt

H(x) be the length of the terminal part of the stalk at x, in
between time t and the end: Lt

H(x) = l(H(x£ [t; 1])). The arguments of section 4.2 that led to
the conclusion that LH(x) is continuous, adapt in a straightforward way to show that Lt

H(x) is
a continuous function of both variables, xand t. Define now the energy of H from time t, Et(H)
by

Et(H) =

Z
K
Lt
H(x)
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This is the analogue of the area function AH(t) in the definition of volume; it is easy to prove,
using the continuity of Lt

H(x) that Et(H) is a continuous function of t. We obtain the control-
energy of H, EC(H), like we did for the volume, by integrating over I:

EC(H) =

Z 1

0
Et(H)dt

The control-energy function EC : S ¡! [0;+1) is also lower-semicontinuous. Since the
proof is essentially a combination, with minor variations, of the previous proofs for the volume
and for the energy functions, it is enough to sketch it. Take an " > 0; recall that in the case of
the length function we claimed that for all x0 sufficiently close to x and for all J sufficiently close
to H, LJ(x

0) > LH(x) ¡ "; the argument used in the proof of that claim adapts immediately
to a proof of the stronger claim: for all x0 sufficiently close to x, for all J sufficiently close to
H and for all t0 sufficiently close to t, Lt0

J (x
0) > Lt

H(x)¡ ". Using this property, the continuity
of Lt

H(x) and the compactness of K it is easy to show, in analogy to what we set for the area
function AH(t), that given an " > 0, for all J sufficiently close to H and for all t0 sufficiently
close to t, Et0(J) > Et(H) ¡ ". Finally we use this last property, the continuity of Et(H) and
the compactness of I to conclude that EC is lower-semicontinuous, in exactly the same way as
we did for the volume function.

Note that the control-energy function EC(H) is sensitive to reparametrizations: it clear from
the definition that if we speed up the contraction H, we get contractions with control-energy
as close to 0 as we wish; on the other end if we slow down H we increase the control energy
and get contractions with control-energy as close to E(H) as we wish. Restricting to the space
QH½ SH is a way of keeping these possible variations of speed within limits. Let mC be the
minimum for the control-energy function in G; as before we can consider functions with minimal
energy-(control-energy), or more simply minimal energy-control, mE,C : these will be specially
useful in analysing coalescence.

Recall that the heuristic meaning of the notions of energy and volume is that of measuring
the waste due, respectively, to wandering and to folding. The heuristic meaning of the control-
energy is the following: a contraction with minimal energy-control mE,C is a function that
amongst the functions with minimal energy, and within the bounds in speed imposed by the
restriction to the space G, has the points travelling along their tracks as fast as possible.

Note that, as we mentioned already in the case of the energy and volume functions, it is a
subject for inquiry the possible relations between the three different minima, mE, mC and mV ,
namely if, and how, the three sets E−1(mE), E−1C (mC) and V −1(mV ) may intersect.

5.3 Coalescence

In this subsection we look at the subject of coalescence for contractible manifolds. We start by
some simple observations relating the existence of a coalescent contraction of K, H : K £ I ¡!
K, to the existence of a coalescent contraction of @K in K, G : @K £ I ¡! K. Of course the
existence of such an H implies the existence of G: just that the restriction of H to @K£I. Let’s
see the implication in the reverse direction. Suppose then that we have a coalescent contraction
G : @K £ I ¡! K; as we recalled in the beginning of the section, G doesn’t miss any point
of K: for each x 2 K, there is some point (y; t) 2 @K £ I such that G((y; t) = x; let for each
x, let tx = min

©
t 2 I : 9y 2 @K; (y; t) 2 G−1(x)

ª
, that is tx is the time at which x is reached

by the contracting boundary - we call it the reach-time. That tx exists is clear: G−1(x) is
closed (and as we just said, non-empty) therefore is compact; its projection into the I factor is a
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compact subspace of I and therefore has a minimum. We can extend G to a coalescent function
H : K £ I ¡! K in a natural way: define H(x; t) by H(x; t) = x for t ∙ tx by H(x; t) = x, and
for t ¸ tx by H(x; t) = G(y; t) where y is any point of @K such that G(y; tx) = x: since G is
coalescent, it doesn’t matter which y we take, and obviously H is also coalescent. Actually, by
definition of coalescence, a coalescent extension of G has to be defined in this way. But it may
be discontinuous as an easy example shows.

Example 28 Consider the next figure: it illustrates a contraction, G, of the boundary of a
circle, we next describe. The centre of the circle is labelled O. During the first 1=4, the arcdAB is isotoped through the sector OAB, keeping the end points fixed, until it is sent, at exactly
t = 1=4, homeomorphically into the union of the two radius OA and OB; therefore for all points
in those radius and interior to the circle, the reach-time is 1=4 (for the end points it is of course
0); next, in the interval [1=4; 1=2], the homotopy takes place inside the image of S1 at time
1=4: the radius OA and the arc dAD are kept fixed; the radius OB is shrunk inside itself to the
point O, while the arc dBD is pulled along and stretched until is it is sent, at time t = 1=2,
homeomorphically into its union with the radius OB, with dBC sent to OB and dCD to dBD.

C

O=B

B

O
A D DA

C

Figure 19
In the third quarter we do nothing, and finally in the final quarter, we homotope to the centre
radially. It should be clear that G is discontinuous at the points (x; 1=2) where x is in the interior
of radius OB: they are all sent to the point O while all the points in the interior of the shaded
region, in particular those arbitrarily close to OB, are fixed at least until time t = 3=4.

As suggested by the previous example, the reason why the coalescent extension H of G may
fail to be continuous is that the function x ¡! tx that assigns to each x its reach-time, may be
discontinuous. Assume that the reach-time function is continuous, then H is continuous. Let
(x0; t0) 2 K£I be an arbitrary point and suppose thatH is discontinuous at (x0; t0). Let (xn; tn)
be a sequence converging to (x0; t0) such that H(xn; tn) doesn’t converge to a0 = H(x0; t0).
Because K is compact, we can assume, without loss of generality, that H(xn; tn) ¡! b0 6= a0.
Let, for each n ¸ 1, txn be the reach-time of xn and yn 2 @K a reach-point for xn, that is
such that.G(yn; txn) = xn. Since we are assuming that the reach-time function is continuous
and xn ¡! x0, we have that txn ¡! tx0 where tx0 is the reach-time of x0. Because a0 6= b0,
we can assume, passing to a subsequence, if necessary, that for all n ¸ 1, tn ¸ txn and, as a
consequence, that t0 = limi tn(i) ¸ limi txn(i) = tx0 as well: if not, there would be a subsequence
tn(i) ∙ txn(i) ; i ¸ 1 and so t0 = limi tn(i) ∙ limi txn(i) = tx0 , therefore a0 = H(x0; t0) = x0; but
then, for all i ¸ 1, H(xn(i); tn(i)) = xn(i) ¡! b0 = x0 and so x0 = b0 = a0. We can further
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assume, once again passing to a subsequence, that (yn; tn) ¡! (y0; t0): because G is continuous,
and (yn; txn) ¡! (y0; tx0) we have that G(y0; tx0) = limnG(yn; txn) = limn xn = x0; therefore y0
is a reach-point for x0. Since for all n ¸ 0; tn ¸ txn , we have that H(xn; tn) = G(yn; tn); but G
is continuous and (yn; tn) ¡! (y0; t0), so we finally have

b0 = lim
n

H(xn; tn) = lim
n

G(yn; tn) = G(y0; t0) = H(x0; t0) = a0

which is a contradiction. We have proved the following theorem:

Theorem 29 . If the reach-time function x ¡! tx is continuous, then G is the restriction of a
coalescent contraction of K.

Note that the proof of the theorem gives us also the following corollary:

Corollary 30 Let K be a compact manifold with boundary @K, and let G : @K £ I ¡! K be
a contraction for which the reach-time function is discontinuous at x0 2 @K. Then there is a
sequence xn ¡! x0 such that for the corresponding sequence of reach-times we have txn ¡! t0 >
tx0 .

From now on, we will be considering the spaces of contractions of @K inK that we considered
above, namely C∂ , S∂, Q∂ and G∂ and the existence ofminima for the energy, volume and control-
energy functions, mE, mC , mV , as well as for some of their combinations, like mE,C ; of course,
we should note that the discussion of the control-energy above, applies unscathed to those spaces
exactly as was the case for the energy function (only in the case of the volume function some
adjustments were needed)

We start by considering the heuristic notion of folding, that relates especially to the notion of
volume. It may be useful, although not strictly necessary, in order to invoke some homological
notions and arguments, to recall that to give a contraction G : @K £ I ¡! K is equivalent
to give a map Ĝ : C(@K) ¡! K, from the cone C(@K) = @K £ I=@K £ f1g to K, which is
the inclusion in @K - here we are naturally identifying @K to p(@K £ f0g), p the identification
map - in fact, through transgression, G factors as Ĝ ± p; we leave the details for the reader.
This is especially relevant for the visualization in dimension 3 where @K »= S2 and therefore
C(S2) »= B3.

Let G 2 C∂, G : @K£ I ¡! K and M = @K£ I; the boundary of M is the union of two dis-
joint copies of @K: M0 = @K£f0g andM1 = @K£f1g. Assume that dim(K) = dim(M) = m.
Let M̂ denote the cone C(@K) = M=M1: as above, we identify @K ´ M0 to its natural embed-
ding in M̂ . Let C be an (m¡ 1) subcomplex in some subdivision, Msud, and let Ĉ be its image
in M̂ . Assume that Ĉ is either a cycle, that is, for the homology group Hm−1(M̂), or a relative
cycle, for the relative homology group Hm−1(M̂ ; @K); using @ for the usual boundary operator
in homology, we have that this is equivalent to C being a relative cycle for the relative homology
Hm−1(M ; @K), that is, @C is an (m¡2) cycle in @M (the union of two cycles, one in each of the
components M0;M1): Ĉ is a cycle exactly when @C ½ M1. Figure 20 illustrates the situation:
falsely, because the two components of the boundary, M0;M1, which are closed manifolds are
represented as intervals; the reader is advised to translate it into dimension 3, where M0;M1

are 2-spheres. A good way of doing it is to visualize cycles in a cylinder B2£ I ½ S2£ I, where
B2 ½ S2 is an embedded 2-disc, by spinning the previous figure around the vertical central
line: the broken thick lines generate, by revolution, complicated 2-cycles; the analogue of Q0 in
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3-dimension will be a tube-like object generated by one of the lines from top to bottom. C and
C 0 represent a cycle and, respectively, a relative cycle in M such that Ĉ and Ĉ 0 are both cycles
in M̂ ; Q and Q0 in turn are sent to relative cycles in M̂ . Represented shaded are the chains or
relative chains that these cycles bound.

M 1

M 0

Q '
Q

C

C '

Figure 20

Using the fact that M̂ is contractible, being a cone, and that @K has the homology of an
(m¡1)-sphere, some standard arguments and routine calculations with homology groups gives us
that Ĉ is nulhomologous (in homology or relative homology) and therefore it separates the space
M̂ , and its boundary cycle, @Ĉ, separates @K; analogously C separatesM . A particular special
type of cycles we will consider are the ones corresponding to embeddings of @K at different
levels, @K £ftg. Unless we say something to the contrary, we will use simply the word cycle to
mean a cycle or a relative cycle in codimension 1.

We say that the contraction G : @K £ I ¡! K has a folding, or simply that folds, if there is
some cycle C and points x and y in the interior of different (connected) components of M ¡C,
such that G(x) = G(y) =2 G(C): we say that the folding is relative to (or over) C; we also
say that x and y fold over C. Let’s see how this definition relates to the more intuitive notion
of folding for simplicial maps. We need some further facts from the simplicial category, about
general position. Let G 2 S∂ be a simplicial contraction of @K in K, dim(K) = m; in general
we say that a simplicial map g : L ¡! K between two manifolds, such that dim(L) ∙ dim(K),
is in general position if g embeds each top-dimensional simplex ¾ 2 L. Now, given any simplicial
map f : L ¡! K and " > 0, it is possible to change f into a map g : Lsub ¡! Ksub which is
in general position, through a homotopy H that satisfies: for each x 2 L, and for each t 2 I,
d(x;Ht(x)) < " - in particular we will have d(f; g) < ", for the supreme metric; we can further
assume that, for the length metric in K, the track of each point has length less than "; if f has
maximum stretching factor C - that is for all paths p, l(f(p)) ∙ Cl(p) - by choosing " sufficiently
small relative to mesh(L), we will have that g has maximum stretching factor less than C + ±
for any prescribed ± > 0. The proof of this may be modelled in the proofs of Theorems 15
and 16, using the fact that K is a manifold: we leave it as an exercise. In our case, a general
position map g : Msub = [@K £ I]sub ¡! Ksub will not be a contraction, since g(M1) will be an
(m ¡ 1) subcomplex and not a point; we consider a relative definition instead, by demanding
that all top dimensional simplices are embedded by g, except those in St(M1), which we can see
as a collar on M1: as before, we can arbitrarily approximate any given simplicial contraction
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by a general position one; since, by taking sufficiently fine subdivisions, we can consider that
g(St(M1)) ½ St(p) is contained in the interior of a neighbourhood, N(p; ±), homeomorphic to
an m-ball, Bm, the restriction to this relative version of general position approximation is not
really weakening: once inside N(p; ±) »= Bm, the mysteries of any contraction are fewer and less.
We summarize this in the following:

Lemma 31 Given any contraction G 2 S∂ and constant " > 0, there is a contraction g 2 S∂
which is in (relative) general position and such that G and g are homotopic, through a homotopy
with each track having length less than ", and so d(G; g) < " in the supreme metric. Furthermore,
we can assume that g has maximum stretching factor less than an arbitrary C+ ±, ± > 0, where
C is the maximum stretching factor for G: we can therefore take V (g), E(g) and C(g) as close
to, respectively, V (G), E(G) and C(G) as we want.

Let C be the maximum stretching factor for the maps in Q∂ . If we look at those maps
as cubically-framed simplicial maps and allowed for an enlargement of the space by including
the (relative) general position simplicial approximations given by the Lemma, we would still
have a space with maximum stretching factor say 2C, which therefore is equicontinuous and,
consequently, has compact closure. Note that we could also aim at improving the previous
lemma, by establishing that for any contraction G 2 Q∂ a general position approximation could
be found within the space Q∂ , but that wouldn’t bring any special benefits, apart from elegance,
since we don’t really need to enlarge the spaces Q∂ and G∂ . All we need to know is that given
any (limit) map H 2 G∂ we can arbitrarily approximate it, as well as its volume, energy or
control-energy, by a (relative) general-position deformation of a cubical map of Q∂; we look at
these general-position deformations of the maps in Q∂ just as auxiliary tools to unveil the folding
in a simple way; given a G 2 Q∂ that approximates H 2 G∂ within " > 0 (in either of the four
qualities, distance, volume energy or control energy) we call a general-position deformation of
G which is an "-approximation of G - and so is an 2"-approximation of H - an "-shadow of G
and denote it by Gε

g.

We now turn to the definition of folding set. Let J : [@K £ I]sub ¡! Ksub be a general-
position simplicial map, m = dim(K) - as we’ve just said, we will be thinking of J as a "-shadow,
Gε
g, of some G 2 Q∂ , but the definition is valid more generally, for arbitrary general-position

maps between manifolds of the same dimension. The folding set is the (m ¡ 1)-dimensional
subcomplex of the domain, FolJ (or FJ for short) consisting of those (m¡ 1)-simplices, ¾, such
that each point in the interior of ¾ has a neighbourhood which is embedded by J ; equivalently:
each (m ¡ 1)-simplex, ¾, is a face of exactly two m-simplices which, by the general position
assumption, are sent by J into two m-simplices of Ksub with common face J(¾); ¾ is a folding
simplex exactly when those two m-simplices of Ksub are the same.

The folding set FolJ is a cycle: we just have to see we can collect the simplices of FolJ in pairs
f¾; ¿g such that each pair intersect along a common (m¡2) face and that the process exhausts all
the (m¡ 2) faces of the simplices in FolJ ; questions of orientability, that is, whether the chosen
pairing gives us Z-cycles or Z2-cycles don’t need to concern us here, although an orientation can
always be given, due to the trivial homology of C(@K) = M=M1. We can easily visualize the
argument in dimension 3, but it is valid in general: let ® be an edge of some 2-simplex ¾ 2 FolJ
and consider the set N (see figure 21 bellow) which is the union of all the 3-simplices that have
® as edge: those 3-simplices wrap around ® in cyclic order when ® is not on the boundary; Let
s be the circle in the interior of N consisting of the segments that join the baricentre of each
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2-simplex that contains ® to the baricentre of the next 2-simplex in the cyclic order. When ® is
on the boundary - note that ® must be in M0 - instead of a circle we have an arc that joins the
baricentres of the two 2-simplices of N \M0 that contain ®.

N

s

α

Figure 21
Since J is in general position, N and s are sent, respectively, to a corresponding set N 0 of 3-
simplices that surround the edge J(®) and a corresponding circle s0 ½ N 0; we thus have a map
between the two circles s and s0: if we consider the circles oriented, to each folding along a 2-
simplex of N\FolJ corresponds a change in the orientation of this map; obviously the number of
these changes of orientation must be even and we can therefore group the simplices in N \FolJ
in pairs as we wanted. The case when ® is on the boundary is perfectly analogous: since J is
the identity on M0 we have a map between two oriented arcs which fixes the end points and,
just as well, the number of orientation changes must be even. Note that the argument shows
that if an edge ® is not in FolJ , then there are no changes of orientation for the map between
the two circles s and s0 and therefore it must be of the form z ¡! zn, z 2 S1 ½ C, that is,
it is an n-covering: this means that on N , J is a branched cover of N 0 = J(N), of degree n,
branched over the edge J(®). It is not difficult to construct examples of contractions in the
3-cube, K = I3, with edges having this kind of behaviour, with n > 1- a good starting point is
to do the analogue in dimension 2, where instead of an edge we consider vertices - but, as will
shall see bellow, the existence of this kind of edges implies that FolJ 6= ;.

Let’s now see the relation between the definition of a folding contraction and the definition
of folding-set for general-position maps. Let H : @K £ I ¡! K be a contraction that has a
folding relative to the cycle C and let x and y be points in the interior of different (connected)
components of M ¡ C, such that H(x) = H(y) =2 H(C). Consider the distance, a > 0, between
H(x) = H(y) andH(C); let " < a=8: we claim that for any "-shadow, J = Gε

g, we have FolJ 6= ;.
Suppose, on the contrary that FolJ = ;; we argue again in dimension 3 and, for simplicity, we
work with the induced maps Ĵ ; Ĥ : C(@K) ¡! K (in dimension three C(@K) is a 3-ball) and
the corresponding cycle Ĉ: then, since J is in general position, we can consider that Ĵ is in
general position and that FolĴ = ; as well. Then, Ĵ sends the set of edges of C(@K) to the
set of edges of K and so, by the definition of general position, its restriction to the complement
of that 1-skeleton is a covering map between C(@K) ¡ C(@K)1 and K ¡ K1; but since the
restriction to @K ´ M0 is the identity, the number of sheets of that covering must be one and so
it is a homeomorphism: but, as we’ve seen above, when there are no foldings, we have that for
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each edge ®, J restricted to the set N of all 3-simplices of which ® is an edge is a branched cover
of N 0 branched over the edge J(®); the degree n of that cover must therefore be also one and
so is a homeomorphism. So we conclude that Ĵ must indeed be a homeomorphism. But then,
Ĵ(x) and Ĵ(y) must be in different connected components of Ĵ(Ĉ) and therefore their distance
(which is measured by the length of the shortest path joining them, and which must intersect
Ĵ(Ĉ)) is greater than the distance of each one of them to Ĵ(Ĉ); since J is an "-shadow, we have
that d(Ĵ(x); Ĵ(y)) ∙ d(Ĵ(x); Ĥ(x))+d(Ĵ(y); Ĥ(y)) < 4" < a=2; on the other hand, we have that
d(Ĵ(Ĉ); Ĥ(Ĉ)) ∙ 2" and therefore d(Ĵ(x); Ĵ(Ĉ)) ¸ d(Ĥ(x); Ĥ(Ĉ))¡4" = a¡4" > a¡a=2 = a=2,
which is a contradiction. We state the conclusion as a theorem:

Theorem 32 Let H 2 C∂ be a contraction that folds over the cycle C. Then, there is some
" > 0 such that for each ± ∙ ", each ±-shadow, J = Gδ

g, has non-empty folding set, FolJ 6= ;.

We need a different proof of this theorem, not as simple as the previous proof but one from
which we will be able to draw a fundamental corollary.

We start by noting that if H folds over C, we can assume, without loss of generality, that
C is a cycle relative to the boundary M0. Let x and y be two points in the interior of different
connect components of M ¡C such that H(x) = H(y) =2 H(C). Take one of those components,
say the one containing x, Ox: it is easy to see that the closure of Ox has for boundary a cycle,
so we can substitute C by that cycle. If this new C is a relative cycle we’re done; if not, join a
point in the interior of a simplex of C to a point inM0 by an arc ® inM ¡Ox that avoids y and
such that H(®) doesn’t contain H(x) = H(y); then drill two discs around the end points of ®,
one in C and the other in M0, and add a pipe around ® sufficiently thin (built in a sufficiently
fine subdivision of M) so that its image by H still misses H(x) = H(y). We thus get the
desired relative cycle C that separates M in two components, one of which contains x and the
other contains y - actually, we can further assume that C is a properly embedded manifold, by
trading it for any of the boundary components of a sufficiently shallow regular neighbourhood,
N(C), but that is not particularly useful. Denote the connected components of M ¡ C by Ox

and Oy, and their closures by Bx and By, respectively. The homology boundary of C, C \M0,
separates M0 and C [ (M0 \Bx), C [ (M0 \By) are (non-relative) cycles that bound Bx and
By, respectively. There is in general no reason why the image by H of a separating cycle should
still separate: it may be squeezed; but since C is a relative cycle and H is the identity on M0,
H(C) is still a separating cycle - maybe now in several components and not just two.

Let us draw the reader’s attention to a detail that, although not necessary for the proof we
want to give, helps in developing the feeling for the folding phenomena. Let A be the connected
component of M ¡H(C) that contains H(x) = H(y) =2 H(C); we claim that either A ½ H(Bx)
or A ½ H(By). Suppose that both H(Bx) and H(By) miss points in A: let p 2 A ¡ H(Bx)
and q 2 A¡H(By). Up to an homotopy of H - which doesn’t change the homological status of
the various cycles - we can assume that p = q, that is H(Bx) and H(By) miss the same point
of A: consider a closed ball B contained in A, with p and q in its interior, and an isotopy h
of M taking q to p and fixed on M ¡ B; consider now the homotopy of the map H which is
fixed in Bx and is ht ±H; t 2 [0; 1] in By: then, at the end of this homotopy, both H(Bx) and
H(By) miss the point p, and since the isotopy was fixed in M ¡ B and so in particular in @K,
we would get a contraction of @K missing a point, which we already know can not happen.
Let Ix = fx0 2 Ox : 9y0 2 Oy;H(x0) = H(y0)g and Iy similarly defined; note that, since H is
the identity on M0, Ix and Iy are strict subsets of Ox and Oy, respectively; of course they are
also non-empty for x 2 Ix and y 2 Iy. By the previous discussion, if x0 2 Ix, y0 2 Iy and
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H(x0) = H(y0), then either x0 is in the interior of Ix or y0 is in the interior of Iy: if A is the
connected component containing p = H(x0) = H(y0), and B(p; ") is an open ball contained in A,
B(p; ") is contained in at least one of the sets H(Bx) or H(By), say B(p; ") ½ H(Bx): then, by
continuity of H, there is an open neighbourhood of y0 in Oy, B(y0; ±), such that H(B(y0; ±)) ½
B(p; ") ½ H(Bx); but then, by definition of Oy, B(y0; ±) ½ Iy and so y0 is an interior point.

Note that given two points x; y that fold over C, there are many other cycles over which
they may fold: let z = H(x) = H(y) and a = d(z;C); by compactness and continuity, there
is an " > 0 such that H(N(C; ")) ½ N(H(C); a=2); then each cycle C 0 ½ N(C; ±) where
± = min f"; d(x;C); d(y; C)g will be a cycle over which x and y fold. The idea is to maximize the
distance a = d(z; C) over those cycles: we will have to take limits of cycles and so consider, more
generally, cycles in singular homology. We consider the consecutive baricentric subdivisions,
M [n], of M and sequences of cycles which are subcomplexes of these - we can either work with
cubical decompositions and their (m¡1)-faces (if dim(K) = m) or work with triangulations and
restrict to those which are cubically-framed. Let Cn be a sequence of (relative) cycles; recall
that a subset L is the limit of Cn if for each " > 0, there is N(") 2 N such that n ¸ N(") )
Cn ½ N(C; "). Let’s recall the fact that any given sequence of cycles, (Cn)n∈N has a convergent
subsequence. Let for each n ¸ 1, Dn =

S
i≥nCn and Fn = Dn; clearly, Dn+1 ½ Dn, Fn+1 ½ Fn

and therefore, by Cantor’s characterization of compactness, F =
T
Fn 6= ;, and this is obviously

compact. We also have F =
T
ε>0N(F; "), so for any " > 0, 9N(") 2 N : n ¸ N(") ) Dn ½

Fn ½ N(F; "), that is Cn converges to F . But if we want a connected limit then we may have to
pass to subsequences: consider any connected component L of F ; then, for any " > 0 , N(L; ")
must contain an infinite number of Cn - otherwise it wouldn’t contain Dn for n greater than
a certain order and so would not contain the intersection of the Fn’s, contradiction - and so is
the limit of a subsequence. Of course L ( or F ) still separate any pair of points x; y that are
separated by all the Cn: if not we could run a path from x to y in the complement of L; by
compactness that path would also miss a neighbourhood N(L; ") and so all but a finite number
of the Cn’s, which is a contradiction.Let S be the set of cycles - subcomplexes of some M [n] -
over which x and y fold and for each C 2 S let aC = d(z;H(C)) where z = H(x) = H(y); we call
the number Fd(x,y) = sup faC : C 2 Sg the folding distance of the pair fx; yg. This number is
attained when we consider the extension of S to the space F given by all the limits of sequences
in S. Let aCn be an increasing sequence converging to Fd(x,y); by passing to a subsequence if
necessary assume that L = limnCn: it is an easy exercise, using the definition of limnCn and
the uniform continuity of H, to see that d(z;H(L)) = Fd(x,y). Let w 2 L be any point that
minimises the distance, that is, such that d(z;H(w)) = d(z;H(L)) = Fd(x,y). We claim that
the point w behaves like a folding point, in the following heuristic sense: if we consider a small
neighbourhood of w, and the two sides in which it is separated by L, they must be send to
the same side of H(L) which contains z; otherwise we could distort slightly the cycle L near
w so that H(L) would become further apart from z: on the other hand, if the two parts are
sent to the same side and we distort L, then H(L) becomes closer to z. Let’s make this idea
more precise. Consider in H−1H(w) the union, P , of the connected components that intersect
L - refer to Figure 22-a where it is represented, very schematic, as the shaded disc. We claim
that some point p in the boundary of P [ L must be a limiting point for the folding sets of the
"-shadows, that is, for every neighbourhood N(p; ±), ± > 0, there is some " > 0 such that for
every "-shadow, J = Gε

g, FolJ \N(p; ±) 6= ;. Suppose not: consider a point p in the boundary
of P and a open neighbourhood N(p; ±) = Np (represented as a box in the previous figure) such
that there a sequence of "-shadows, Jn = Gεn

g , "n ¡! 0, none of which has its folding set, FolJn ,
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intersecting Np.

s

L'

M0

L

Np

w
y

x

p

Figure 22-a
By the argument at the end of the previous proof, we know that, for each n, Jn(N(p)) must be
an open set containing H(p) = H(w): in fact as we saw in that proof, if q is a point which is
not in FolJ and if q not a vertex, then either it is in the complement of the 1-skeleton in which
case it has a neighbourhood which is mapped homeomorphically by J , or it is in the interior of
an edge in which case it has a neighbourhood N which is sent to to a neighbourhood N 0 of J(q)
through a ramified cover, ramified over a segment. In the case where q is a vertex not in FolJ ,
it is easy to see, using the previous condition for the edges that contain q, that J(St(q)) also
has J(q) has an interior point. Of course that Jn(Np) is separated by H(L): we will work with
the part that doesn’t contain z. Cover P [ L by a finite number of these neighbourhoods, Np

and consider some ¾-small regular neighbourhood M of P contained in the union of the Np’s,
and the intersection of its manifold boundary, L0, with the Np’s - represented by s in the figure
which is assumed not to intersect H−1H(w), that is in connected components other than P :
we leave it as an exercise to work out the details, why we can consider such an s; note that in
each Np there must not be any other points from different components of H−1H(w): recall that
Jn(Np) ramifies over a segment, say l0, image of a segment l: look at the transverse sections
to this segment: they are sent to transverse sections of l0, preserving the linear order of their
intersections with the segments; if one of those sections contains some point of H−1H(w), since
H = limn Jn all sections bellow that one will have to contain points of H−1H(w), forming a
path to p; we could also argue in a more indirect way: when we have a general position map, say
one of the Jn’s, and a connected open set, A, extending to the boundary M0 and disjoint from
the folding set, FolJn , since it is the identity in M0, its restriction to A must be an embedding,
that is, there is no real ramification in A. We don’t necessarily have the same Jn’s for all the
Np’s, but starting with the ones next to the boundary we have that the Jn are embeddings in
those, that is, H is approximated by homeomorphisms there; by a continuation argument we
can extend to all the other Np’s to conclude that all the Jn must have ramifying number one as
well, and therefore are embeddings. Since Jn(s) is contained in the part of H(L) that doesn’t
contain z and H = limJn, the same happens with H(s); furthermore, d(w;H(s)) > 0, otherwise
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s \ P 6= ;, contradicting our construction. We can now change L, by substituting L \ M by
L[ s, thus getting a new cycle L0that still separates x and y, such that d(H(L0);H(w)) > 0 and
such that around H(w), H(L0) is further apart from z than H(w) - see Figure 22-b.

H(s)

S

K

H(L)

H(L')
z H(w)

Figure 22-b
If we repeat the process for the other points w0 2 L that might minimize the distance, that is
such that d(H(w0); z) = Fd(x,y) - and by compactness it is enough to do it a finite number of
times - we would get a new cycle L0 such that d(H(L0); z) > Fd(x,y) which is a contradiction.

In conclusion, for some point w 2 L for which, d(z;H(w)) = Fd(x,y), there is some point p
in the boundary of L [ P , where P is the set of the connected components of H−1H(w) that
intersect L, which is a limiting point of the folding sets. We define the folding set of H, FollH ,
as the set of all these points, that is, the limit of the folding sets of all the "-shadows: denoting
by Sε

H the set of all "-shadows of H,

x 2 FollH , 8± > 0;9" > 0; [J 2 Sε
H ) FolJ \B(x; ±) 6= ;]

The previous discussion of an alternative proof for the last theorem was aimed at establishing
that FollH is non-empty - it is possible that more simple proofs exist of that fact. It is clear
that FollH is closed and therefore compact; furthermore, the previous argument can be easily
adapted to show that there must be an infinite number of limiting points of the folding sets (not
necessarily on L[P ) : if not, we would also have only a finite number of those limiting points on
L [ P and could still construct the cycle L0, going around some small neighbourhoods of those
points. In fact more is true: a continuation argument, like the one above, shows that no point
in FollH can be isolated : suppose that p is a point which has a closed ball- neighbourhood,
Np = D(p; ±), such that D(p; ±) \ FollH = fpg; given an arbitrary " > 0, consider another
small ball B(p; ¾) ½ D(p; ±) such that H(D(p; ¾)) has diameter smaller than "=2; since p is the
only point of FollH in D(p; ±), we can cover the region D(p; ±)¡B(p; ¾) by a finite number of
neighbourhoods Nqi , of points q1; :::qn, for each one of which there there is an "=2-shadow Ji
with no folding set in it; looking at the successive level spheres S(p; ½), for ± ¸ ½ ¸ ±, we have
by a continuation argument that H(S(p; ½)) is "-approximated by an n ramified cover and so
we can "=2 approximate H on D(p; ±)¡B(p; ¾) by an n ramified cover J . We can then extend
J to a ramified cover defined on the whole of D(p; ±), and since ±(H(D(p; ¾)) < "=2, J is an
"-approximation of H with no folding set in Np. A similar argument shows, more generally, that

52



no connected component of FollH is 0-dimensional: supposing the contrary, consider D(p; ±)
and B(p; ¾) as above and such that D(p; ±) \ FollH and B(p; ¾) \ FollH are a clopen sets in
FollH .

Corollary 33 Let H 2 C∂ be a contraction that folds over C. Then, the folding set of H,
FollH = lim fFolJ ; J 2 Sε

Hg, is a non-empty compact subset of M , with no 0-dimensional con-
nected components.

We should note that although the folding sets of "-shadows of H are cycles, which are two
dimensional complexes and separate M , the folding set of H may not separate M , indeed it can
even be one dimensional, as the next example shows.

Example 34 Refer to Figure 23-a, bellow:this is to help us describe a map in 2-dimensions,
from the square to itself, that has easy to visualize analogues in three dimensions. This map, H,
will be the limit of a sequence of maps in general position, and will have for folding set, FollH ,
the segment s, pictured on the left side; its image, H(s), will be the segment s0 on the right side.

s'
s

Pn

Qn

Q'nC

xn

x'n

Figure 23-a
The points xn; x

0
n, on the vertical (dashed) segment that divides the square in two halves, are

equidistant from the endpoint C of s, and represent a sequence of pairs of points converging to
C; as they approach C, the rectangular region Qn approaches s: so Qn represents a sequence of
chained rectangles whose intersection is precisely the segment s. The region labelled Pn, includes
Qn and represents a sequence of hexagons where all the vertices but xn and x0n remain fixed: in
the limit intersection it gives a pentagon, say P , with the four fixed vertices and C as the fifth
vertex. For each n, let Jn be a general position map defined in the following way: Jn is the
identity on the right side of the square; it sends the quadrilateral Qn to Q0n, its mirror reflection
on the line xnx

0
n, thus folding over the segment xnx0n; the region between Pn and Qn, more

precisely the closure Pn ¡Qn which is homeomorphic to a disc is also sent homeomorphically
to Q0n, and so the black part of its boundary - the arc consisting of the five sides of the hexagon
Pn exterior to Qn - is sent homeomorphically to the segment xnx0n; finally the region on the
left side of the square which is exterior to Pn is sent homeomorphically to the whole of the left
side, keeping the five sides not in Pn fixed - and sending the others to xnx0n, of course, matching
what was already defined for Pn. Clearly, FolJn is the boundary of Qn - the three red sides plus
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the segment xnx0n; if H = limn Jn, H is the identity on the right side, squeezes the boundary
of the pentagon P = limn Pn into the point C, and sends its its interior to the segment s0,
homeomorphically in s; clearly FollH reduces to the segment s.

There are direct analogues of this in dimension 3 (and above), with parallelepipeds Qn con-
verging to a segment s, as well as obvious variations: for instance, parallelepipeds Qn converging
to a square S, thus getting a 2-dimensional FollH ; or more complicated situations with paral-
lelepipeds Qn converging to a set with mixed local dimensions (for instance, a combination of
some 3-cubes, squares and segments)

It should be noted that the local dimensions of the image of the folding set, H(FollH), may
vary and decrease in relation to the corresponding local dimensions of FollH , by the effect of
collapsing parts. We refer to Figure 23-b to describe an example that illustrates this:

Example 35 The figure is similar to the previous one, but this time the points x; x0 and the
regions Q and P remain unaltered. Let J0 be constructed as in the previous example, by sending
Q and P ¡Q homeomorphically to Q0, the mirror reflection of Q in the segment x; x0; for each
n, let Jn be defined as follows: Jn agrees with J0 outside the region P , and in P is obtained from
J0 by composing with an embedding of Q0 in itself, obtained by lowering the middle thirds of the
top and bottom sides - as suggested by the segments ba and anbn in the picture - and keeping the
vertical sides fixed. In the limit, those middle thirds converge to the middle third of the central
segment (the bisector of the lateral sides) and for H = limn Jn, H(P ) = H(Q) is the union of
that segment with the two triangles, shown in thick blue lines. As before, FolJn consists of the
four sides of Q and since this is fixed with n, FollH is that same set.

P

Q

Q'
an bn

x

x'

ab

Figure 23-b
As before, this example may be varied in dimension 3 and above.

5.3.1 Under minimal energy-control

We consider now the problem of coalescence for a contraction H 2 G∂ under the assumption
that it has minimal energy-control, mE,C .

Since energy and control both relate to the lengths of the tracks (for the control function is
in fact a mixed relation with length and time) we start by describing a move that, under certain
circumstances, allows us to decrease the energy; although, as we shall see, this is a forbidden

54



move in our settings, we think its description will contribute to a better understanding of the
spaces of contractions, G∂, and of other permitted moves we shall be using. We assume the
manifold K verifies the geometric condition: recall this implies, in particular, that each point
has a neighbourhood - which is said to be geometric - where geodesics are unique. Let (x; t) 2
M = @K£I, p = H(x; t) andNg(p) a geometric neighbourhood; letN = B(x; r+±)£[t¡ "; t+ "]
be a neighbourhood of (x; t) in M , such that H(N) ½ Ng(p). For each y 2 B(x; 2") let
Y0 = H(y; t ¡ ") and Y1 = H(y; t + "); so the track of y during time t 2 [t¡ "; t+ "] is a path
in Ng(p), ®y : [t¡ "; t+ "] ¡! Ng(p), from point Y0 to point Y1: it may not be the (unique)
geodesic in Ng(p) joining the two points; denote that geodesic, parametrized by [t¡ "; t+ "], by
°y. The idea for the "forbidden" move is to homotope the path ®y into °y, relatively to the end
points Y0 and Y1, and do it along geodesic arcs: for each t 2 [t¡ "; t+ "] let gt(s), s 2 [0; 1],
be the unique geodesic from ®y(t) to °y(t), and define the homotopy by Gy(t; s) = gt(s); from
uniqueness of geodesics we get the continuity of Gy: denoting by °a,b(s), s 2 [0; 1], the unique
geodesic in Ng(p) joining point a to point b, and given sequences an ¡! a, bn ¡! b and sn ¡! s,
we have that °an,bn(sn) ¡! °a,b(s). We can now change H, just in the interior of N , so as to
change all the paths ®y into the geodesic arcs °y, for all y 2 B(x; r); we use the sphere-band
S(x; r + u), 0 ∙ u ∙ ±, to execute the transition continuously: for each y 2 B(x; r + ±) let
k(y) = min f0; d(x; y)¡ rg; then k(y) is constant 0 in B(x; r) and increases from 0 to ± in
B(x; 2r) ¡ B(x; r); define the new H in N by H(y; t) = Gy(t; 1 ¡ k=±); H remains the same
outside N . This type of move can be used to decrease the energy: suppose that for x, ®x is
different, and therefore longer than °x: let c = l(®x) ¡ l(°x) > 0 be the difference in length
between the two paths; by uniform continuity and the uniqueness of geodesics, we can assume
that for a sufficiently small r > 0, l(®y)¡ l(°y) > c=2 for all y 2 B(x; 2r). Suppose we modify H
as before in N = B(x; r+ ±)£ [t¡ "; t+ "] for some ± < r: for each point y 2 B(x; r) the length
of its track decrease at least c=2; for the points y in B(x; r + ±)¡B(x; r) we don’t know if the
lengths of the tracks decreased, since in the previous homotopies Gy(t; s) we haven’t asserted
that the lengths of the successive paths, ½s(t) = Gy(t; s), decrease as s increases; nevertheless it’s
not difficult to prove that they must have an upper bound, say m - this we leave as an exercise
for the reader; finally the points y outside B(x; r + ±) have their tracks unchanged. Therefore
the energy E(H) has a decrease of at least c=2£ V ol(B(x; r)) due to the change in B(x; r) and
doesn’t increase more then m£V ol(B(x; r+±)¡B(x; r)) by the change in B(x; r+±)¡B(x; r);
since V ol(B(x; r + ±)¡B(x; r)) converges to 0 as ± ¡! 0, we can effectively decrease E(H).

Note that we worked directly with H and the lengths of its tracks, something which, in strict
sense, we shouldn’t do because the energy, E(H), for H 2 C∂ ;G∂ is defined, via the simplicial
(cubical) approximations, through a limiting process; but it would be easy to adapt the previous
argument to the true formal setting, working with suitable simplicial approximations of H and
with paths sufficiently close to the geodesics °y(t) (there is no reason why such a geodesic should
be a simplicial path, so we can only approximate it)

Exercise 36 Prove the previous assertion about the existence of an upper-bound for the lengths
of the s-parameter family of paths ½s(t) = Gy(t; s).

The reason why the move we’ve just described is a bootleg move in our settings is that the
deformation of the paths ®y(t) into the geodesics °y(t) may be done at the expense of stretching
in some directions beyond our permitted limit, given by the existence of a maximal stretching
factor in the space Q∂ that implied equicontinuity and the compactness of G∂. This kind of
bootleg stretching may be easily seen while revisiting Exercise 20. We revert to the space S
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in that exercise, but for simplicity of drawing we substitute the square by a circle and the
two pyramids by two cones - see Figure 24. Exercise 20 consisted in showing that there is no
contraction of S with minimal energy; analogously, there is no contraction of the boundary circle
J = @S »= S1 in S with minimal energy: the geometric argument is exactly the same.

SCJ

O O

Abn an
Abn an

Figure 24
We identify a contraction of J in S with an extension of the inclusion map J ,! S to a map
on the cone CJ »= D2 - represented on the left of the picture. The space S is represented on
the right, viewed from the top: the two cones are the shaded circles. Consider only contractions
of J in S, H : CJ ¡! S, that end at the central point O 2 S - that is H(O) = O - leaving
aside the problem of how the choice of the end point H(O) may vary the lower bounds - and
therefore the infimum - for the energy function (we are not solving Exercise 20!). The obvious
idea to get a contraction with minimal energy is to construe it in a way that, for each point
x 2 J , the radius xO in CJ is sent to a geodesic in S joining x to O; the problem is that, in S;
we don’t have uniqueness of such geodesics: it is clear, by symmetry, that there are two points
of J , the point A and its symmetric relative to O, say A0 (which is not represented) for which
there are two geodesics joining them to O; those two geodesics from A to O will be symmetric
in relation to the dashed line AO. All the other points x 2 J have a unique geodesic, say gx
to O: for most of them that geodesic is just like the radius xO; for the points in the shadows
of the two cones, when lit from point O - these shadows are two arcs symmetric relatively to
the points A and A0 - the geodesic bends around the cone, as illustrate by the three red lines;
if we mark two points, an; bn, symmetric relatively to A and moving along the shadow-arc in
the direction of A, their geodesics will change continuously and symmetric relatively to the line
AO, from the two radius tangent to the base of the cone into the unions of two segments in
the base disc with an arc in the cone, until a maximum height is reached for the two geodesics
for A. We can consider contractions with ever smaller energy corresponding to sequences of
points an; bn ¡! A and a0n; b0n ¡! A0: for each n, define Hn in the following way: for the points
x outside the arcs \anAbn and \a0nA0b0n the radius xO is sent to the unique geodesic gx using
parametrizations by length; for the points x in those arcs we send the two discs made up of the
unions of the radii xO - one of them is represented as the shaded circular sector on the left of
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the picture - homeomorphically and symmetrically relative to the lines AO, A0O into the discs
in S bounded by the arc and the geodesics gan ; gbn - represented on the right by the shaded
region around one of the cones - in particular, for all n, the radius AO is sent into the line AO
that goes all the way up through the summit of the cone. It is clear that E(Hn) tends to the
infimum mE =

R
J l(gx)dx, where l(gx) is the length of the geodesic.

Note that for each n the circular sector is stretched so as to fit the disc bound by the
geodesics gan ; gbn and cover the top of the cone: therefore, ever smaller regions like the dark
shaded one are stretched without bound in the direction transverse to AO; so we don’t have a
maximum stretching factor for this set of contractions, Hn. What happens with the tracks of the
contractions Hn near the top of the cones, explains why the previous move is forbidden: assume
we smooth the cones at the vertices to have the geometric condition and look at a neighbourhood
NV of the top point, V : in Figure 25 bellow, the cone is represented by the larger shaded disc
and NV by the smaller, darker one.

NV

X1 X0
x

A
O

V

Figure 25
We can assume, by symmetry, that the track of point A, along the line AO is a geodesic in NV ;
but for other points x near A, the part of the track in NV , between points X0 and X1, runs
higher than the geodesic joining those two points, which is represented by the blue arc: the
bootleg move corresponds to the stretching in the direction transverse to AO.

There are special situations where the previous bootleg move becomes legal because it in-
volves only the stretching of things that were previously shrunk: this is a basic heuristic that will
be used several times in the sequel. We may see how that works, in a consequence of assuming
minimal energy-control that we examine next. Let H 2 G∂ have minimal energy-control, mE,C .
We claim there are no stoppages all along the contraction, that is, no point ever stops-and-goes
while tracing its track: for every x 2 @K, if there is an interval [a; b] ½ [0; 1], a < b, such that
Ht(x) = Ha(x) for all t 2 [a; b] then b = 1. Note we are not claiming that a point doesn’t
stop before time t = 1: but if it does stop it is for good, at the end point of the contrac-
tion. Assume the contrary: for some point x0 2 @K, there is an interval [a; b] ½ [0; 1) such that
Ht(x0) = Ha(x0) = y0, 8t 2 [a; b], and such that H(x0£(b; 1]) 6= fy0g, that is, there is t > b with
Ht(x0) 6= y0. Without loss of generality we can assume that b = sup ft : H(x0 £ [a; t]) = y0g: so,
given an arbitrary " > 0 we can pick t("), b < t(") < b+ ", such that Ht(ε)(x0) 6= y0. Consider
a closed neighbourhood N = D(x0; ±) £ [a¡ ±; t(") + ±] of the stalk segment x0 £ [a; t(") + ±],
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where D(x0; ±) is an (m¡ 1)-ball and therefore N is homeomorphic to an m-ball, m = dim(K);
construct a self-homeomorphism h of M = @K £ I which is the identity on the complement of
N and in N is defined as follows: it is stalk preserving; for each x 2 D(x0; ±=2) the point (x; b)
is sent to the point (x; t(")) and accordingly the stalk-segments x £ [a; b] and x £ [b; t(") + ±]
are sent linearly to x£ [a; t(")] and x£ [t("); t(") + ±], respectively, the first one being stretched
in the process, and the second one shrunk (in the segments x £ [a¡ ±; a] nothing is done);
in the points x 2 D(x0; ±) ¡ D(x0; ±=2) we do a similar stretch and shrunk of x £ [a; b] and
x £ [b; t(") + ±], respectively, but varying the point image of (x; b) between (x; t(")) and (x; b)
linearly as a function of d(x; x0)¡ ±=2. See Figure 26:

M0

M1

N

D(x0,δ )

a-δ

t(ε)+δ

t(ε)

t=0

t=1
x0

a

b

Figure 26
in N , every vertical segment x £ [a; t(") + ±] is sent homeomorphically into itself, stretching
the segment inside the darker shaded region D(x0; ±) £ [a; b], into the longer segment inside
the lighter shaded region; actually the homeomorphism h so construed is the identity outside
D(x0; ±) £ [a; t(") + ±]. Let J = H ± h and let z0 = H(x0; t(")); by the choice of t(") we
have d(y0; z0) > 0; by uniform continuity of H, we can take ± such that for all x 2 D(x0; ±)
we have d(H(x; b);H(x0; b)) = d(H(x; b); y0) < d(y0; z0)=4 and d(H(x; t("));H(x0; t("))) =
d(H(x; t(")); z0), and so d(H(x; b);H(x; t(")) ¸ C = d(y0; z0)=2. Because we are dealing with
a length metric, this means that for all x 2 D(x0; ±) the length of its track in the time inter-
val [b; t(")] is at least C. Recall, from subsection 5.2.1, that for each x 2 @K, ltx = Lt

H(x)
represents the length of the terminal part of the stalk at x, in between time t and the end,
Lt
H(x) = l(H(x £ [t; 1])), and that the energy of H from time t, Et(H) is Et(H) =

R
K Lt

H(x);
clearly, since the homeomorphism h sends each stalk homeomorphically into it self through
an increasing function of t (which is actually the identity for all x =2 D(x0; ±)), we have that
Lt
J(x) ∙ Lt

H(x) for all t; more specifically, we have that for all x 2 D(x0; ±=2), Lb
J(x) < Lb

H(x)¡C
and therefore for the energies from time b we have that Eb(J) < Eb(H)¡C £ V ol(D(x0; ±=2));
since Et(J) ∙ Et(H);8t, the two functions are continuous and for t = b Eb(J) is strictly less
than Eb(H), integrating over [0; 1] we get EC(J) < EC(H) = mE,C (of course, the energy didn’t
change because the tracks remained the same for H and J : E(H) = E(J)). To see that this
contradicts the minimallity ofmE,C , proving our claim, we have to see that J 2 G∂, which means
it can still be approximated by functions in Q∂ ; this is where the contrast with the bootleg move
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lies: heuristically, since the segment x£[a; b] is shrunk by H to the point y0, and h only stretches
x £ [a; b] and the segments parallel to it and within ±-distance, by a maximum of t(") ¡ b, by
choosing t(") sufficiently close to b and ± sufficiently small we have that the new stretching, due
to composing with h doesn’t surpass the stretching factor bound that exists in Q∂ ;G∂. We can
state the following

Theorem 37 Let H 2 G∂ have minimal energy-control, mE,C . Then for every x 2 @K and
every interval [a; b] ½ [0; 1], a < b, such that Ht(x) = Ha(x), 8t 2 [a; b] we must have b = 1.

Folding under mE,C

The essential step to which we now proceed is the analysis of the folding properties of H,
under the assumption of minimal energy, mE,C . To simplify the discussion and spare us some
technical details, we may assume, without loss of generality, the following condition on the spaces
of contractions we’ve been dealing with:

Condition 38 (Easy Boundary/End) From now on we will assume that all contractions
H : @K£I ¡! K are the identity on some fixed collar @H£[0; ®] and are such that H−1(H(@H£
[0; ®])) = (@H £ [0; ®]). This means that the mess in the contraction starts away from the
boundary; this is easily achieved by adding collars to both @K £ I and K and reparametrizing
all the old contractions.

Analogously, when @K »= Sm−1, m = dim(K), we may also assume that H has an easy
end made up of embeddings, that is, for some ¯ < 1, H is an embedding of @K £ [¯; 1) into
D(C; 1¡¯)¡fCg where C is the end point of the contraction; equivalently, if we consider H as
a map on the cone C(@K), that there are closed balls D(V ), V the vertex of the cone, and D(C)
such that H sends D(V ) homeomorphically to D(C) (we are not claiming that H−1(H(D(C))) =
D(C)).

Clearly these subspaces of C∂, Q∂ and G∂ are closed and so we have the minima mV , mE,
mC and their possible combinations just as before.

With this condition we have that the folding sets, either of "-shadows or of the limit contrac-
tion H, all lie in @K £ [®; ¯]. Given an "-shadow of H, J = Gε

g 2 Sε
H , we know that its folding

set, FolJ ½ @K£ [®; ¯], separates M = @K£ I; let IFJ be the internal part of FolJ , the union
of the closures of all the components of M ¡FolJ that do not contain M0 nor M1 (these may or
may not be separated by FolJ). Since IFJ ½ @K£ [®; ¯], if the stalk of a point x, Sx = fxg£ I,
enters IFJ , then it must leave it again; it is important to understand the basic behaviour of
the track of such a point, in relation to the folding of the map J and the image of the internal
part, J(IFJ). Let Sx\ IFJ 6= ; and t0 = min ft : (x; t) 2 IFJg, t1 = max ft : (x; t) 2 IFJg; then
® ∙ t0 ∙ t1 ∙ ¯, where ® and ¯ are the constants in the easy boundary/end condition (note
that it may happen that t0 = t1: that’s the case when Sx \ IFJ is a single point). Because J is
a branched cover in the complement of FolJ and the segments x£ [0; t0) and x £ (t1; 1] are in
M¡IFJ , the external part of FolJ where J is a local homeomorphism (because J is the identity
in M0 and has an easy end) they are embedded by J . This means that while tracing its track,
point x enters J(IFJ) along an embedded path J(x£ [0; t0)) until it reaches J(x; t0) 2 J(FolJ)
where it sort of bounces back - although this image of bouncing doesn’t apply well to all situ-
ations as we’ll see soon - and after that there is such a bouncing at each time Sx crosses FolJ ,
until the last one at J(x; t1) after which x follows the embedded arc J(x£ [t1; 1)) to leave J(IFJ)
for good. Figure 27 illustrates the situation:
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The map J and its folding set - represented as the rectangle with thick red sides in the left frame
- are defined as in Examples 34 and 35 above (Figures 23 - a) and b)).

Recall that for H 2 G∂ its folding set is FollH = lim fFolJ : J 2 Sε
Hg, the limit of the folding

sets of all the "-shadows. In face of Examples 34 and 35 we can not define an internal part of
FollH in terms of the connected components of M ¡ FollH , as we did for the "-shadows, since
FollH may not separate M ; nevertheless its natural to take the limit of the internal parts of the
"-shadows, IF lH = lim fIFJ : J 2 Sε

Hg: this exists since, by definition, for each J 2 Sε
H we have

FolJ ½ IFJ and so FollH ½ IF lH , but the inclusion may or may not be strict. We examine
next the image of H(IF lH); the analysis is by connected component so, to avoid introducing
notation and without loss of generality, we may assume IF lH is connected. We distinguish
cases according to the dimension of H(IF lH): in 3-dimension we have three cases, due to the
following

Exercise 39 Show that dimH(IF lH) > 0 - since we are assuming IF lH connected this means
simply that H(IF lH) is not a point (Hint: look back at Corollary 33 and the argument that
FoolH has no 0-dimensional components)

Suppose first that dimH(IF lH) = 3. For simplicity, we will argue heuristically as if H
was one of its "-shadows: of course, proper argument would have to be done through those
"-approximations in the appropriate "¡ ± rigour. Consider the set D of points in the boundary
of H(IF lH) which have 3-dimensional neighbourhoods in H(IF lH): these must be images of
points in the folding set FollH . Let R = FollH \H−1(D) and p = (x; t) 2 R; let B(H(p)) be
a ball in K that satisfies the geometric condition, and let N(H(p)) = B(H(p)) \H(IF lH) be a
three dimensional neighbourhood as required in the definition of set D; Suppose that the stalk
Sx that contains point p is transverse to FollH at p: this means that sufficiently close stalks
also intersect FollH transversely near p. Let M(p) ½ H−1(N(H(p))) be an open ball around p.
Since H folds this M(p) along M(p) \ FollH into a neighbourhood of H(p) in N(H(p)), all the
tracks of points sufficiently close to x will bounce back in D \ N(H(p)), inside the geometric
ball B(H(p)) - see Figures 28-a and 28-b; we don’t need to describe them in detail: what is
intended to be the folding set and its image is similar to Examples 34 and 35. By the geometric
condition, these tracks do not follow the shortest paths, and it’s clear we can decrease length,
by pushing D slightly into N(H(p)); since this pushing can obviously be achieved through some
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cubical subdivisions, that is realized inside Q∂, we would get a contraction H 0 2 G∂ with energy
E(H 0) < mE.

B(H(p))

K

D
Dp

y x

S

Figure 28-a
It may happen that there are no points in R of the type we’ve just considered, where the stalks
are transverse to FollH . This situation is suggested in Figure 28 by the yellow coloured regions;
it may happen that D is made up of tracks of the contraction: that is the case when the folding
of H in points p for which there is a 3-dimensional neighbourhood N(H(p)), only happens in
vertical parts of FollH , parts made out of stalk segments - as Sy in the picture. In this case
the other points in FollH where the stalks are transverse are all sent to parts of H(IF lH) of
smaller dimension, one or two: this is suggested in Figure 28 by the crunching of the middle
gray section, on the left, which is sent by H into the middle segment on the right; of course,
in this situation the tracks which traverse D much enter and leave it (recall what was said
above and illustrated in Figure 27) through a subcomplex S, of dimension 0 or 1; its pre-image
K = H−1(S) is a subcomplex of dimension greater or equal to 2 (recall we are arguing in three
dimensions). Consider the track segments traversing S near a point q, and a geometric ball B(q)
- recall that H is supposed to have minimal energy-control mE,C and so, by Theorem 37, we can
assume that all these segments are embedded - since they all come from a 1 or 2 dimensional
subcomplex in B(q), to fill in a 3-dimensional region, then by the geometric condition, not all
them can be geodesic arcs; pick a point p0 = (x0; t0) such that the correspondent segment track
near q, say H(x0 £ [t0 ¡ ±; t0 + ±]), is not a geodesic and let H(p0) = q0; since H−1(q0) is a
subcomplex of K of dimension at least 1, we can consider an arc ° embedded in K, between
points p1 and p2 and going through p0 and such that for all p0 = (x; t) 2 ° we have H(p0) = q0
and H(x£ [t¡ ±; t+ ±]) is not a geodesic (note that by Theorem 37 and since H(°) = fq0g all
the segment stalks x£ [t¡ ±; t+ ±] are transverse to °). We can now apply the bootleg move to
decrease length in a suitable small neighbourhood N of the arc ° and note that, as in the case
of the proof of Theorem 37, the move can be made legal since it is done near the arc ° that was
shrunk by H into point q0. Again we would reduce the energy bellow the minimum mE, and
therefore we can conclude that H(IF lH) can not have dimension 3.

Suppose now that dimH(IF lH) < 3. The two cases are dealt with simultaneously. The
argument starts with the following note, which applies independently of dimH(IF lH): consider
P = H−1H(IF lH); then it is the case that P ¡ IF lH must have non-empty interior: this says
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simply that the external part of FollH , EFlH = M ¡ IF lH , must contribute with some nontriv-
ial region surrounding IF lH for the folding to actually take place - referring back to Example
34, look at the region P = limn Pn surrounding the folding set FollH = s.

B(H(p))

B(H(p))
D

D

Figure 28-b

We give a general sketch of the argument. Let Jn; n ¸ 1 be any sequence of "-shadows
approximating H, such that d(H;Jn) < 1=n. We look at the internal parts, IFJn , and their full
inverse images, Pn = J−1n Jn(IFJn). By the definition of folding for simplicial (cubical) maps,
we have that Pn ¡ IFJn 6= ;: as in Example 34, Pn consists of IFJn and an external part
made of phantom regions; of course the situation in general is much more complicated than that
example, with several phantom regions that may overlap; we may also have regions that come
from a simpler type of folding that doesn’t involve cusp lines or points in FolJn - as the cusp
points xn and x0n in Figure 23-a - as shown in the example the next figure describes:

C
S

C'

S

Figure 29
The folding is easy to describe: it is the identity outside the outer square S, and sends the inner
(yellow) square C to the larger square C 0 that surrounds S; the yellowish-gray band between
C 0 and S suggests the double layer of the folding. In any case, each phantom region of Jn has
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an outer boundary (its boundary in EFJn), which is identified to a part of FolJn - through the
relation ∼H induced by the map H ( x ∼H y , H(x) = H(y)) and an inner boundary in FolJn ,
this one is identified by ∼H either to another part of FolJn (we may have overlapping regions) or
to another outer boundary of another phantom region: we thus have a sequence of three regions
that consecutively fold into the phantom region.

We want to show that the limit of Pn, which is of course contained in P , has non-empty
interior. Given a phantom region of Pn, say Fn, let its depth be D(Fn) = max d(x; y) where d is
the length metric considered inside Fn and x and y are points in its outer and inner boundaries,
respectively: this measures how deep Fn extends, independently of its distance from IFJn . Take
a limit of such Fn, say F = limFn; without loss of generality we can assume that all Fn have
minimum depth, say D: if the depths of the phantom regions decreased arbitrarily with n, then
for every ± > 0 we we could find an order N(±) such that for all n ¸ N(±) the phantoms of
Jn would all have depth less than ±; but then it is easy to see, using the uniform continuity of the
approximations (the equicontinuity), that we could remove all the folding corresponding to those
phantoms by moving points by less than 2±, thus obtaining arbitrarily close approximations to
H without any folding near FollH , which contradicts the definition. If F has non-empty interior
then P ¾ F has non-empty interior - we’ll see further down the case of P ¡IFLH . Suppose now
that P , and therefore F , have empty interiors; besides having a minimum for the depths of the
Fn’s, we can also assume, without loss of generality, that under Jn the lengths of the paths that
run in Fn between its outer and inner boundaries, don’t decrease arbitrarily with n: otherwise,
as in the above case of not having minimal depth, we could as well remove all the foldings near
FollH . Therefore the images Jn(Fn) sustain projected depth Dp(Fn) = max

©
l(Jn(°x,y)

ª
- where

x and y are a pair of points in the outer and inner boundaries of Fn, respectively, and °x,y is
an Fn-geodesic joining such a pair - for which there is a minimum Dp; as a consequence we
have that, considering the images by Jn of the outer and inner boundaries, Jn(@out(Fn)) and
Jn(@in(Fn)), at least one of them must have projected depth greater or equal to Dp=2: let’s
denote it indistinctly by Jn(@_(Fn)). Recall that either of these images is also the image of a
part of FolJn , in the triple folding process already mentioned; suppose that zn 2 FolJn is a point
such that Jn(zn) 2 Jn(@_(Fn)) and such that, with some other point, maximizes DJn(Fn) ¸ Dp.
By equicontinuity, 9± > 0 such that d(x; zn) < ± ) d(Jn(x); Jn(zn) < Dp=2, for all n; but then,
because of the projected depth and the definition of folding of Jn we have that Jn(x) 2 H(Fn),
and so B(zn; ±) ½ Pn. Letting zn ¡! z 2 P - by passing to a subsequence if necessary - we have
that B(z; ±=2) ½ limPn ½ P and so P has non-empty interior.

To see that P ¡ IF lH has non-empty interior: since we already know that ºP 6= ;, either
P ¡IF lH has non-empty interior or IF lH has non-empty interior. Suppose that Int(IF lH) 6= ;;
in the previous approximation by Jn we can assume that for n sufficiently large IFJn has non-
empty interior and so lim IFJn ½ IF lH has non-empty interior and therefore its boundary must
be 2-dimensional. Then there must be some limit F = limFn of phantom parts with non-empty
interior, otherwise some phantom parts would have to have arbitrarily small depth, something
we’ve already seen can not happen. We can state:

Lemma 40 Let H 2 G∂. Let IF lH be the internal part of its folding and EFlH = M ¡ IF lH
the external part. Then EFlH \H−1H(IF lH) has non-empty interior.

We can now resume the argument for the case dimH(IF lH) < 3. Let p = (x0; t0) be a point
in the interior of P = H−1H(IF lH) and N(p) = N(x0; ") £ [t0 ¡ ±; t0 + ±] a neighbourhood
contained in P . By Theorem 37, and the easy-end condition we are now assuming, we can
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suppose that all segment tracks x£[t0 ¡ ±; t0 + ±] are embedded byH; but then, sinceH(N(p)) ½
H(IF lH) and this is one or two dimensional, in each level N(x0; ") £ t, t 2 [t0 ¡ ±; t0 + ±], we
must have a 1-dimensional stratum where H is constant (at least 1-dimensional: of course H
may even crunch the whole level). Look at any path, for instance x(s)£ ft0g, x(s) 2 N(x0; "),
s 2 I, where H is constant (there is a one parameter family of such paths at each level): this
means that the points x(s) are all coalesced at time t0; by the easy-end condition they must
de-coalesce at some future time: say t1 = sup ft : Ht(x(s) = H(x(s0);8s; s0 2 Ig is the last time
when all of them are coalesced. We can then apply the bootleg move to decrease length in some
geometric ball around H(x(s); t1), using some sufficiently small neighbourhood of the path l =
f(x(s); t1) : s 2 Ig: again the bootleg move becomes legal since we will be only expanding what
was previously shrunk. Note that in alternative, and due to the easy-boundary condition, we
could as well go back in time and reason in the same way. This finishes the analysis of folding
under the assumption of minimal energy-control: we came to the following conclusion that in
fact it doesn’t take place:

Theorem 41 Let H 2 G∂ have minimal energy-control, mE,C . Then FollH = ;.

Coalescence under mE,C

The final analysis of coalescence is now much faster. We start by drawing some consequences
of last theorem. Let H have minimal control-energy and so, by the last theorem, empty folding
set; it is clear that FollH = ; implies that for all x 2 M , H−1H(x) must be connected: if C1; C2
were two disjoint connected components of H−1H(x), we could take a regular neighbourhood
N(C1) of C1 disjoint from C2; then the boundary of N(C1) would be a cycle - actually an
embedded oriented manifold (a surface in dimension 3) - over which H folded. We state this as
a lemma:

Lemma 42 Let H 2 G∂ have minimal energy-control, mE,C . Then for all x 2 M , H−1H(x) is
connected.

Remark 43 The study of the folding set, in particular the definition of FollH , and last Lemma
suggests a relation between empty-foldness and the subject of manifold decompositions and ap-
proximation by homeomorphisms - see [19]. A natural conjecture is that for empty FollH the
sets Kx = H−1H(x) are cellular, that is, have arbitrarily close neighbourhoods, Nε ½ N(Kx; "),
which are 3-balls, Nε

»= B3.

Suppose now that under H, which we are assuming has minimal energy-control, the points
x and y coalesce at time t0. Looking in a geometric ball B around H(x; t0) = H(y; t0), consider
± > 0 such that Ax = H(x £ [t¡ ±; t+ ±]) and Ay = H(y £ [t¡ ±; t+ ±]) are contained in B -
recall that by Theorem 37 we can assume these segments of the tracks are embedded arcs; if they
are geodesic, then by the geometric condition they intersect transversely: this means, looking
at the images of the level-spheres S2 £ ftg, that the sphere crosses itself transversely at time
t0. But this transverse crossing of the levels can only happen with some folding, as suggested
in the next figure. We can construct a folding cycle C over which the points (x; t0) and (y; t0)
fold by substituting two small hemispheres, one extending into the past and the other into the
future, for neighbourhoods in S2 £ ft0g of those two points. This means that at a coalescence
point the sphere levels can only touch tangent, without crossing.
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Therefore at least one of the arcs Ax or Ay is not a geodesic, so we can decrease length using the
bootleg move: since, by the previous Lemma, P = H−1H((x; t0)) = H−1H((y; t0)) is connected
we can consider an arc l in P joining the two points (x; t0) and (y; t0); as before, the bootleg
move becomes legal if we perform it in a sufficiently small neighbourhood of l; we can thus state:

Theorem 44 Let H 2 G∂ have minimal energy-control, mE,C . Then H is coalescent.

In relation to the heuristic arguments we’ve advanced this is an understatement, because
those arguments apply in greater generality: more than coalescence, we have the effect of tracks
passing through the same points at different times. Therefore, we just leave it as a research
exercise the problem of relating (in some direct way) the minimal energy-control of H, and
consequent coalescence, with the possible continuity of the reach-time function (recall Theorem
29)

Problem 45 Let H 2 G∂ be a coalescent contraction with minimal energy-control, mE,C . Try
to prove that the reach-time function, x ¡! tx (cf. Theorem 29) is continuous. Or find a
counter-example...

5.4 Concluding remarks

We want to conclude with some notes intended to provide some guide lines for future research
on the topic of coalescence.

Volume versus Energy: Note that we ended up not using the volume function in the
analysis of coalescence, although we have used the control-energy function EC , which is an
hybrid of energy and volume. But the idea of volume was the original one and, in any case, the
proof of the lower-semicontinuity of EC is analogous to the one for the volume function - both
functions are parameter sensitive - and therefore some equivalent amount of space would have
to be provided for that proof, if we didn’t have already the previous one to rely on. Besides, the
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volume function, and other variations may be useful in analysing contractions in more general
settings, where we don’t have any local geometric condition.

Simplicial versus Differential: It is clear that while many of the basic heuristics have
their original motivation in a combinatorial and finite setting, thus the simplicial/cubical ap-
proximation approach, the need to take limits in the space of functions, as well as the geometric
condition, suggest that the differential setting - perhaps including some dynamical systems, with
the folding related to singularities - would be better suited to deal with the ("¡ ±) institutional
monster.

Aftermath: Besides the throwing in of formal pageants around some of the heuristics -
which is cried for by the aforementioned creature - and the working out of some of the problems
left over (e.g. Exercise 14, Problems 27 and 45 ), we single out the following main themes: the
relation of folding with approximation by homeomorphisms as already mentioned in Remark 43;
the relation of coalescence with collapsible complexes, with an eye on Zeeman’s conjecture (see
[2]): as a start, generalize the results of sections 2 and 3 to arbitrary complexes, in particular
try to identify some essential features an intrinsic contraction of a non-collapsible contractible
complex must exhibit and that may be removed when crossing with I.

Non-compactness: The fantastic Whitehead example, [20], of an open subset W of R3
which is contractible but is not homeomorphic to an open 3-ball, is also an example of a manifold
for which no coalescence contraction exists: in fact the usual proof thatW is not homeomorphic
to R3 consists of ascertaining that a certain curve is not contained in any closed 3-ball - is
not engulfed (see for instance [21, Theorem 14.2] or, for a more general treatment, [22]): but
surely coalescence implies engulfing; this is another problem for investigation (For more on this
fascinating land of exotic contractible 3-manifolds see also [23], [24] and [25])

About ’Shrinking Complexity’: The title of the paper has a double meaning, either as a
verbal noun (gerund) or a compound noun; the reader is advised to choose the one that better
suits what he/she feels has be achieved in the paper.

This brings us to an end.
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pointed out in the introduction, Sections 2 and 3 are just very simple variations on the subject
of map-degree. But the chosen quotation 6 reflects to perfection the spirit and circumstances
surrounding the making of this paper. In fact, most of the ideas for the paper - both heuristic
and technical - came during our strides along the seafront in Afife with our faithful labradors,
Tao, Eta and Bright; and they came as relaxing diversions from our musing over the foundations
of mathematics and the philosophy of mind 7. The writing of this paper was no exception to the
usual frustration: the price we always pay for trying to give our most promising and fantastic
ideas their right share of objectivity and reality is to end up with the clearest notion of how
feeble and poor they reveal themselves in the process. I want to thank my friends for their
patience with the many times I’ve used the writing of this paper as an excuse for excepting

6While we can understand Brower’s comments about logic from an historical perspective, with today’s knowl-
edge we can only condone them under a relativistic interpretation: Brower didn’t live to see the dawn of Geometric-
Logic/Topos Theory where the deep intuitionists’s intuition about Bivalence, Intensionality and Choice are fully
vindicated. With the second part of the quotation we fully agree.
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myself from other tasks. Having to be done, for practical reasons, far from the sea breezes, the
writing of this paper was an unhealthy business: I take it to that the many mistakes and pieces
of nonsense the paper surely contains.

What we "are tempted to say"... is, of course, not philosophy; but it is its raw
material. Thus for example, what a mathematician is inclined to say about the objectivity
and reality of mathematical facts, is not a philosophy of mathematics, but something for
philosophical treatment.

The philosopher treats a question; like an illness. (Wittgenstein, [26])

The philosopher is the man who has to cure himself of many sicknesses of the un-
derstanding before he can arrive at the notions of the healthy human understanding.

If in life we are surrounded by death, so in healthy understanding we are surrounded
by madness. (Wittgenstein, [27]) 8
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