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ABSTRACT

We introduce the subsemigroup complex of a finite semigroup S as a (boolean repre-
sentable) simplicial complex defined through chains in the lattice of subsemigroups
of S. We present a research program for such complexes, illustrated through the
particular case of combinatorial Brandt semigroups. The results include alterna-
tive characterizations of faces and facets, asymptotical estimates on the number of
facets, or establishing when the complex is pure or a matroid.

1 Introduction

In a recent paper [2], Cameron, Gadouleau, Mitchell and Peresse discuss the maximal length of
chains of subsemigroups for various classes of semigroups. This problem can be viewed as the
dimension problem for a boolean representable simplicial complex naturally associated with the
lattice of subsemigroups of a semigroup. It follows that there exist a number of natural questions
associated with this complex, which may shed a new light on the nature of S. The present paper lays
the foundations for the subsemigroup complex of a semigroup S and then illustrates this program
by considering the lattice and complex of subsemigroups of an aperiodic Brandt semigroup. As it
turns out, this particular case suffices to expose quite a number of astonishing connections. For the
non aperiodic case, the reader is referred to another paper by the same authors [17]. The reader is
assumed to be familiar with the foundations of semigroup theory (see [21]).

In a series of three papers [8, 9, 10], Izhakian and Rhodes introduced the concept of boolean
representation for various algebraic and combinatorial structures. These ideas were inspired by
previous work by Izhakian and Rowen on supertropical matrices (see e.g. [7, 11, 12, 13]), and were
subsequently developed by Rhodes and Silva in a recent monograph, devoted to boolean representable
simplicial complexes [20]. Note that simplicial complexes may be viewed under two perspectives,
geometric and combinatorial. It is well known that each structure determines the other (see e.g. [20,
Section A.5]).

The original approach to boolean representable simplicial complexes is to consider matrix rep-
resentations over the superboolean semiring SB, using appropriate notions of vector independence
and rank. Writing N = {0, 1, 2, . . .}, we can define SB as the quotient of (N,+, ·) (usual operations)
by the congruence which identifies all integers ≥ 2. In this context, boolean representation refers to
matrices using only 0 and 1 as entries.
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Equivalently, boolean representable simplicial complexes can be characterized by means of chains
in lattices, namely in the lattice of flats. The lattice of flats plays a fundamental role in matroid
theory but is not usually considered for arbitrary simplicial complexes, probably due to the fact that,
unlike in the matroid case, the structure of a simplicial complex cannot be in general recovered from
its lattice of flats. However, this is precisely what happens with boolean representable simplicial
complexes. If H = (A,H) is a simplicial complex and FlH denotes its lattice of flats, then H is
boolean representable if and only if H equals the set of transversals of the successive differences for
chains in FlH [20]. This implies in particular that all (finite) matroids are boolean representable. And
this generalizes Birkhoff’s Theorem [18] that gives a 1-1 correspondence between geometric lattices
and simple matroids, to arbitrary lattices and simple boolean representable simplicial complexes.

2 Boolean representable simplicial complexes

All lattices, simplicial complexes and semigroups in this paper are assumed to be finite. Given a set
A and n ≥ 0, we denote by Pn(A) (respectively P≤n(A)) the set of all subsets of A with precisely
(respectively at most) n elements.

A (finite) simplicial complex is a structure of the form H = (A,H), where A is a finite nonempty
set and H ⊆ 2A contains P1(A) and is closed under taking subsets. The elements of A and H are
called respectively vertices and faces.

A face of H which is maximal with respect to inclusion is called a facet. We denote by fctH the
set of facets of H.

The dimension of a face I ∈ H is |I| − 1. An i-face (respectively i-facet) is a face (respectively
facet) of dimension i. We may refer to 0-faces and 1-faces as vertices and edges.

We say that H is:

• simple if P2(A) ⊆ H;

• pure if all the facets of H have the same dimension.

The dimension of H, denoted by dimH, is the maximum dimension of a face (or facet) of H.
Two simplicial complexes (A,H) and (A′, H ′) are isomorphic if there exists a bijection ϕ : A→ A′

such that
X ∈ H if and only if Xϕ ∈ H ′

holds for every X ⊆ A.
If H = (A,H) is a simplicial complex and W ⊆ A is nonempty, we call

H|W = (W,H ∩ 2W )

the restriction of H to W . It is obvious that H|W is still a simplicial complex.
A simplicial complex H = (A,H) is called a matroid if it satisfies the exchange property:

(EP) For all I, J ∈ H with |I| = |J |+ 1, there exists some p ∈ I \ J such that J ∪ {p} ∈ H.

A simplicial complex H = (A,H) is shellable if we can order its facets as B1, . . . , Bt so that, for
k = 2, . . . , t and if I(Bk) = (∪k−1i=1 2Bi) ∩ 2Bk , then

(Bk, I(Bk)) is pure of dimension |Bk| − 2
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whenever |Bk| ≥ 2. Such an ordering is called a shelling. Shellability is an important property since
it implies that the complex has the homotopy type of a wedge of spheres [1].

Given an R × A matrix M and Y ⊆ R, X ⊆ A, we denote by M [Y,X] the submatrix of M
obtained by deleting all rows (respectively columns) of M which are not in Y (respectively X).

A boolean matrix M is lower unitriangular if it is of the form
1 0 0 . . . 0
? 1 0 . . . 0
? ? 1 . . . 0
...

...
...

. . .
...

? ? ? . . . 1


Two matrices are congruent if we can transform one into the other by independently permuting

rows/columns. A boolean matrix is nonsingular if it is congruent to a lower unitriangular matrix.
Given an R×A boolean matrix M , we say that the subset of columns X ⊆ A is M -independent

if there exists some Y ⊆ R such that M [Y,X] is nonsingular.
A simplicial complex H = (A,H) is boolean representable if there exists some boolean matrix M

such that H is the set of all M -independent subsets of A. We denote by mindeg(H) the minimum
number of rows of such a matrix (if it exists).

We shall use the acronym BRSC to denote a (finite) boolean representable simplicial complex,
and we denote by BR the class of all BRSCs. All matroids are boolean representable, but the
converse is not true.

We say that X ⊆ A is a flat of H if

∀I ∈ H ∩ 2X ∀p ∈ A \X I ∪ {p} ∈ H.

The set of all flats of H is denoted by FlH. Note that A, ∅ ∈ FlH in all cases.
Clearly, the intersection of any set of flats (including A = ∩∅) is still a flat. If we order FlH

by inclusion, it is then a ∧-semilattice. Since FlH is finite and contains a maximal element, it is a
lattice for the determined join, that is, the join of two flats is the intersection of all flats containing
their union. We call FlH the lattice of flats of H. The lattice FlH induces a closure operator on 2A

defined by
X = ∩{F ∈ FlH | X ⊆ F}

for every X ⊆ A.
The lattice of flats is an important example of a lattice which is ∨-generated by A. A lattice L

is ∨-generated by A if there exists a mapping ι : A→ L such that

L = {∨(Bι) | B ⊆ A}.

We assume that ∨∅ is the bottom element of L by convention. In the case of FlH, the mapping
ι : A→ FlH is predictably defined by aι = a (a ∈ A).

We shall represent structures of the above type as ordered pairs (L, ι). The class of all (L, ι) will
be denoted by Lat∨(A).

Let (L, ι) ∈ Lat∨(A). We say that X ⊆ A is a transversal of the successive differences for a chain

`0 < `1 < . . . < `k
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if X admits an enumeration x1, . . . , xk such that `i−1 < (`i−1∨xiι) ≤ `i for i = 1, . . . , k. We say that
(L, ι) is a lattice representation of a simplicial complex H = (A,H) if the elements of H are precisely
the transversals of the successive differences for chains in L. Conversely, the set of all transversals of
the successive differences for chains in (L, ι) ∈ Lat∨(A) constitutes a boolean representable simplicial
complex H(L, ι) = (A,H(L, ι)).

We denote by LR(H) the class of all lattice representations of H. A simplicial complex is boolean
representable if and only if it admits a lattice representation [20, Section 5.4]. Up to isomorphism,
every such lattice representation may be viewed as a sublattice of FlH, which plays then the canonical
role of being the largest lattice representation. Moreover, by [20, Corollary 5.2.7], H = (A,H) is
boolean representable if and only if

every X ∈ H admits an enumeration x1, . . . , xk satisfying x1 ⊂ x1x2 ⊂ . . . ⊂ x1 . . . xk. (1)

Now we may define an ordering on Lat∨(A) by (L, ι) ≥ (L′, ι′) if there exists a ∨-map (i.e.
preserving arbitrary joins) ϕ : L→ L′ such that the diagram

A
ι

��

ι′

  
L ϕ

// L′

commutes. This is an appropriate comma category and we quotient by the equivalence relation that
identifies two lattice representations if they are related to one another by ≤. We thus obtain a
partially ordered set, or equivalently a skeletal category with at most one morphism between two
objects. Then LR(H) constitutes an up set of Lat∨(A) and we may identify all the elements of
Lat∨(A)\LR(H) into a single bottom element B to obtain LR0(H) = LR(H)∪{B}. If ρ = (≤ ∩ ≥),
the quotient LR0(H)/ρ constitutes a lattice, the lattice of lattice representations of H. Note that the
bottom element is not a true lattice representation (it agglomerates instead the non representations),
but the atoms of this lattice (the minimal representations of H) are the most economical ways of
representing H through a lattice. The strictly join irreducible (sji) elements of the lattice of lattice
representations (called join irreducible in many lattice books) are also important, see [20, Chapter
5] for details. An element a of a lattice L is sji if, for every X ⊆ L, a = ∨X implies a ∈ X. This
is equivalent to saying that a covers exactly one element of L. We denote by sji(L) the set of all sji
elements of L.

3 Simplification

Let H = (A,H) ∈ BR. Recall that H is simple if every pair of distinct elements is a face of H. In
this section we show that the simplification of an H = (A,H) ∈ BR is also boolean representable.
This generalizes a well known result in matroid theory.

We define an equivalence relation η on A by

aηb if a = b.

It is easy to see that if H = H(L, ι) for some (L, ι) ∈ Lat∨(A), then aηb if and only if aι = bι. Indeed,
both conditions are clearly equivalent to {a, b} /∈ H.

4



Now we define a simplicial complex Hη = (A/η,H/η), where

H/η = {{a1η, . . . , akη} | {a1, . . . , ak} ∈ H}.

Note that, in view of (1),

if the ai are all distinct, so must be the aiη. (2)

if aiηbi for i = 1, . . . , k, then {a1, . . . , ak} ∈ H if and only if {b1, . . . , bk} ∈ H. (3)

It follows that Hη is isomorphic to the restriction H|W for any cross-section W of η. We call Hη the
simplification of H.

We collect in the next result some of the properties of the simplification. All claims were proved
in [16, Proposition 4.2] except for (viii) and (ix), which we prove below.

Proposition 3.1 Let H = (A,H) ∈ BR and let ϕ : A→ A/η be the canonical projection. Then:

(i) dimH/η = dimH;

(ii) FlH = {Fϕ−1 | F ∈ Fl(H/η)};

(iii) FlH ∼= Fl(H/η);

(iv) H/η is boolean representable;

(v) H/η is simple;

(vi) H is pure if and only if H/η is pure;

(vii) H is a matroid if and only if H/η is a matroid;

(viii) mindeg(H) = mindeg(H/η);

(ix) the lattices of lattice representations of H and H/η are isomorphic;

(x) if H/η is shellable, so is H.

Proof. (viii) Assume that M is an R × A boolean matrix representing H. Since P1(A) ⊆ H, M
has no zero columns. On the other hand, if a = b, then {a, b} /∈ H by (1) and so the ath and bth
columns of M are equal.

It follows easily from (2) and (3) that every matrix representation of H induces a matrix rep-
resentation of H/η by removing repeated columns inside each η-class. Conversely, every matrix
representation of Hη induces a matrix representation of H by adding repeated columns for the
redundant elements inside each η-class. Therefore the minimum possible degree must be the same.

(ix) The lattice representations of H correspond to all quotients of (FlH, ι) which retain the
capacity of recognizing all the elements of H as transversals of the successive differences for chains.

Given X ⊆ A, let Clη(Xη) denote the closure of Xη in Hη.
By part (ii), the lattices FlH and Fl(H/η) are isomorphic, and the isomorphism is compatible

with the image of the generating sets, a 7→ a and aϕ 7→ Clη(a/η) (a ∈ A). On the other hand, in
view of (2) and (3), we must test essentially the same chains. We omit the technical details, but we
are indeed led to a canonical isomorphism between the lattices of lattice representations of H and
H/η. �
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4 The subsemigroup complex of a semigroup

Let S denote a finite nonempty semigroup and let Sub(S) denote the lattice of subsemigroups of S,
ordered under inclusion. To have a lattice, we view the empty set as a semigroup. Let ιS : S →
Sub(S) be defined by sιS = s+, the subsemigroup generated by {s}. Then (Sub(S), ιS) ∈ Lat∨(S).
Write H(S) = H(Sub(S), ιS). The subsemigroup complex of S is the boolean representable simplicial
complex H(S) = (S,H(S)). That is, a subset X ⊆ S is a face if and only if it admits an enumeration
x1, . . . , xn such that, for some chain

S0 ⊂ S1 ⊂ . . . ⊂ Sn

of subsemigroups of S, we have xi ∈ Si \ Si−1 for i = 1, . . . , n. If such a chain exists, it can be taken
as

∅ ⊂ x+1 ⊂ {x1, x2}
+ ⊂ . . . ⊂ {x1, . . . , xn}+. (4)

In general, H(S) is not simple since different elements can generate the same subsemigroup.

Lemma 4.1 Let S be a finite nonempty semigroup and consider H(S) ∈ BR. For all s, t ∈ S,

s = t if and only if s+ = t+.

Proof. By (1), we have s = t if and only if {s, t} /∈ H(S). This is equivalent to avoiding chains of
the form (4), i.e. s+ = t+. �

We define also H0(S) = (S/η,H0(S)) = H(S)/η. We may identify S/η with the set of cyclic
subsemigroups of S. A set Y of cyclic subsemigroups is a face if and only if it admits an enumeration
C1, . . . , Cn such that

C1 ⊂ (C1 ∪ C2)
+ ⊂ . . . ⊂ (C1 ∪ . . . ∪ Cn)+.

In view of Proposition 3.1, the complexes H(S) and H0(S) are equivalent with respect to most
properties, we can work with either at our convenience.

Now we note a property about finite semigroups all of whose nontrivial subgroups have prime
order. This includes the case of finite aperiodic semigroups (all subgroups are trivial, or equivalently,
satisfying an identity xn+1 = xn for some n ∈ N).

A finite lattice L has a minimum ∨-generating set, namely sji(L). Let µL : sji(L) → L denote
the inclusion map. Then (L, µL) ∈ Lat∨(sji(L)) and so H(L, µL) ∈ BR.

Proposition 4.2 Let S be a finite semigroup whose nontrivial subgroups have prime order. Then
H0(S) ∼= H(Sub(S), µSub(S)). Moreover, if S is aperiodic, then H(S) = H0(S).

Proof. For the first claim, it suffices to show that the cyclic subsemigroups of S are precisely
the sji elements of Sub(S). Since any subsemigroup of S is a join of cyclic subsemigroups, every sji
subsemigroup must be necessarily cyclic. Conversely, let s ∈ S and suppose that s+ = (s+1 ∨. . .∨s

+
k ) =

{s1, . . . , sk}+. Suppose first that s+ is not a subgroup. Then ss+ = s+ \ {s} is a subsemigroup of S.
If s /∈ {s1, . . . , sk}, then {s1, . . . , sk}+ ⊆ ss+ ∈ Sub(S), a contradiction. Hence s ∈ {s1, . . . , sk} and
so s+ is an sji as required.

Suppose now that s+ is a subgroup. If the order of s (i.e. |s+|) is 1, then s1 = . . . sk = s and we
are done. Hence we may assume that |s+| is a prime. Then s+ = {s1, . . . , sk}+ implies that si is not
the identity for some i, thus s+i = s+ and so s+ is an sji as required.

If S is aperiodic, then s is the unique generator of s+, whence η is the identity and so H0(S) =
H(S). �
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As a consequence, if S is a finite semigroup whose nontrivial subgroups have prime order, we can
say that the properties of H(S) are fully determined by the lattice Sub(S). Note that Proposition 4.2
does not hold for arbitrary finite semigroups: the cyclic group C6 provides an easy counterexample.

We can now enumerate a list of very natural problems which can be stated in connection with
the boolean representable simplicial complexes H(S) and H0(S):

(P1) To compute dimension.

(P2) To characterize the faces.

(P3) To characterize the flats.

(P4) To compute the lattice of flats.

(P5) To determine whether the complex is pure.

(P6) To determine whether the complex is a matroid.

(P7) To determine whether the complex is shellable.

(P8) To compute the minimum degree of a matrix representation.

(P9) To compute the minimal lattice representations.

5 Subsemigroups of aperiodic Brandt semigroups

5.1 Basic properties of B(n) and its subsemigroups

In this section we study subsemigroups of the aperiodic Brandt semigroup B(n). The semigroup
B(n) can be defined as the set ({1, ..., n} × {1, ..., n})∪ {0} where 0 is the zero element and product
(i, j)(k, l) = δ(j, k)(i, l), where δ(., .) is the Kronecker delta. B(n) arises in a number of different ways
in mathematics that we look at in detail. The interaction between the various ways of thinking about
B(n) and its subsets gives us the opportunity to deepen our understanding of these objects. If X is
an arbitrary set, we will use the notation B(X) for the corresponding aperiodic Brandt semigroup
on the set (X ×X) ∪ {0}.

First of all, B(n) is a 0-simple inverse semigroup. The inverse of (i, j) is (j, i). As a Rees matrix
semigroup, [4], B(n) is isomorphic to the Rees matrix semigroup M0({1, ..., n}, 1, {1, ..., n}, In), where
In is the n×n identity matrix. B(n) and its inverse subsemigroups (detailed below) play an important
role in inverse semigroup theory.

Secondly, if we restrict the multiplication of B(n) to all products that are non-zero, then B(n) is
a groupoid (in the sense of category theory, a category all of whose morphisms are isomorphisms.)
It is the unique connected trivial groupoid with n objects. This means that there is exactly one
morphism between any two objects. We’ll see below that we can identify the subsemigroupoids
(similar to categories, but may not have an identity at each object) of B(n) where n runs over the
natural numbers, with the collection of all finite trivial semigroupoids.

Thirdly, if we identify the pair (i, j) of B(n) with the elementary n×n matrix which has entry 1
in position (i, j) and 0 in all other positions and 0 with the 0 matrix, then we can identify B(n) with
the semigroup of elementary n×n matrices over any non-trivial semiring. Since we are interested in
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subsets of B(n) it is natural to look at the monoid Mn(B) of all n×n matrices over the two element
Boolean semiring.

Finally, if we think of the element (i, j) of B(n) as an ordered pair, we see that non-zero elements
of B(n) can be thought of as binary relations with one element, or equivalently, as directed graphs
with one edge. Subsets of B(n) and in particular subsemigroups of B(n) can then be uniquely
identified with arbitrary binary relations on {1, ..., n} or equivalently as directed graphs with vertex
set {1, ..., n}. This allows us to use tools from graph theory to study subsemigroups of B(n).

Notice that the semigroup P (B(n)) of all subsets of B(n) is a monoid with identity element
1 = {(i, i)|i = 1, . . . , n}.The next theorem is a straightforward calculation whose proof is left to the
reader.

Theorem 5.1 Let P (B(n)) be the monoid of all subsets of B(n) and Rn the monoid of all binary
relations on {1, . . . , n}. The function f:P (B(n)) → Rn defined by f(X) = X \ {0} is a surjective
morphism.

The morphism f in Theorem 5.1 is exactly 2 to 1, only identifying X with X ∪ {0}. The subset
P0(B(n)) of P (B(n)) consisting of all subsets containing 0 is a subsemigroup of P (B(n)) and a monoid
with identity 1 = {(i, i)|i = 1 . . . n} ∪ {0}. Thus the restriction of the morphism f in Theorem 5.1 is
an isomorphism from P0(B(n)) to Rn. Furthermore, it is well known that Rn is isomorphic to the
monoid Mn(B) of all n× n Boolean matrices.

We now turn to subsemigroups of B(n). Clearly the only subsemigroups of B(n) that do not
contain 0, are the empty semigroup, and all one element semigroups {(i, i)} for i ∈ {1, . . . , n}. In the
following discussion, when we speak of subsemigroups of B(n), we mean those that contain 0. We
wish to exploit the isomorphism in Theorem 5.1 to get an interpretation of subsemigroups within
the context of binary relations and directed graphs.

Since subsemigroups of a semigroup S are precisely the subsets T of S such that T 2 ⊆ T , it
follows that under the isomorphism from P0(B(n)) to Rn, the subsemigroups of B(n) containing 0
can be identified with the transitive relations on {1, . . . , n}, which are by definition the relations R
such that R2 ⊆ R.

Inverse subsemigroups of B(n) are the subsemigroups that are closed under the operation that
sends (i, j) to (j, i). Under the identification as binary relations above, inverse subsemigroups are
exactly the transitive and symmetric relations. These in turn are precisely the partial equivalence
relations on {1, . . . , n}, that is, an equivalence relation on a subset of {1, . . . , n}. Thus an inverse
subsemigroup I of B(n) can be identified with a partition of the set {i|(i, i) ∈ I}.

A subsemigroup T of a semigroup S is called a full subsemigroup if E(T ) = E(S), where E(S) is
the set of idempotents of S. As relations it is then clear that full subsemigroups of B(n) correspond
to reflexive and transitive relations, that is, they are precisely the preorders on {1, . . . , n}. It is well
known that this is the same as the set of topologies on an n element set. The preorder associated to
a topology T is the relation xRy if and only if x belongs to every neighborhood of y. If we think of
B(n) as the trivial connected groupoid on n objects, then the preorders are exactly its subcategories,
which are precisely the trivial categories on n objects.

Finally, full inverse subsemigroups of B(n) correspond to equivalence relations, a fact first noted
by Jones [14]. We record the above observations in the following theorem. We let
(FSub0(B(n)), ISub0(B(n)), F ISub0(B(n))) Sub0(B(n)) denote the lattice of (full, inverse, full in-
verse) subsemigroups of B(n) containing 0.

Theorem 5.2 (i) Sub0(B(n)) is isomorphic to the lattice of transitive relations on an n element
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set.

(ii) FSub0(B(n)) is isomorphic to the lattice of preorders on an n element set. Equivalently, it is
isomorphic to the lattice of topologies on an n element set.

(iii) ISub0(B(n)) is isomorphic to the lattice of partial partitions on an n element set.

(iv) FISub0(B(n)) is isomorphic to the lattice of partitions on an n element set.

It is well known that the lattice of partial partitions on an n element set is isomorphic to the
lattice of partitions on a set of size n+1. More formally, let Π be a partition on {1, . . . n+1}, and let
B be the block of Π that contains n+ 1. Then Π\{B} is a partial partition on {1, . . . n}. Conversely,
if Φ is a partition on a subset Y of {1, . . . n}, we can define the partition on {1, . . . n + 1} whose
blocks are those Φ and the one extra block ({1, . . . n}\Y )∪{n+ 1}. These operations are easily seen
to be lattice isomorphisms inverse to one another. Therefore, ISub0(B(n)) and FISub0(B(n)) are
geometric lattices as this is true of partition lattices. On the other hand, it is easily seen that the
lattice of transitive relations on a set of size at least 2 is not a semimodular lattice and thus is not a
geometric lattice.

Theorem 5.2 allows us to count the various types of semigroups mentioned there by using results
on the corresponding type of relation. For example, the number of subsemigroups of B(n) is equal
to T (n) + n + 1, where T (n) is the number of transitive relations on an n element set. The extra
n+ 1 accounts for those subsemigroups not containing 0 (including the empty subsemigroup). There
has been a good deal of literature on problems related to counting these objects. See [15, 19] for
example.

We now look at the structure of the various subsemigroups of B(n) via the correspondences given
in Theorem 5.2. If S is a subsemigroup of B(n), we let Γ(S) denote the directed graph corresponding
to the (transitive) relation corresponding to S given by Theorem 5.2.

We first look at inverse subsemigroups. Recall that if {Si|i ∈ I} is a collection of semigroups,
possibly with 0, then their 0-disjoint union is the disjoint union S = {Si\{0}|i ∈ I} ∪ {0} with the
product given by that of Si within each component (and when the product is 0 in Si, it becomes
0 in S) and the product of elements in different components equal to 0. The following theorem is
straightforward to prove and we leave its proof to the reader.

Theorem 5.3 Let Π = {Xi|i ∈ I} be a partial partition of {1, . . . , n}. If |I| > 1, then the inverse
subsemigroup of B(n) corresponding to Π is the 0-disjoint union of {B(Xi)|i ∈ I}.

We now look at the case of nilpotent subsemigroups. Recall that a nilpotent semigroup is either
the empty semigroup or a semigroup N with 0, such that Sk = 0 for some positive integer k. That
is, the product of any k elements of N is 0. The least such integer k is called the index of nilpotency
of N . We assume below that we are talking about nonempty nilpotent semigroups. Finite nonempty
nilpotent semigroups are easily seen to be the finite semigroups that have a unique idempotent that
is the 0 element.

Theorem 5.4 Let N be a subsemigroup of B(n) containing 0. Then the following are equivalent.

(i) N is a nilpotent semigroup.

(ii) As a binary relation, N is an irreflexive transitive relation. That is, N is a strict partial order.

(iii) The graph Γ(N) is an acyclic directed graph.
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Proof. Let N be a nilpotent subsemigroup of B(n) containing 0. Then (i, i) /∈ N for all 1 ≤ i ≤ n
since 0 is the unique idempotent of N . N is transitive since it is a subsemigroup. Therefore (i)
implies (ii)

If Γ(N) contains a cycle, from i to i, then the idempotent (i, i) ∈ N and N is not an irreflexive
relation and (ii) implies (iii). Finally, if Γ(N) is a directed acyclic graph, then there is a largest
integer k such that Γ(N) has a path of length k. It follows that the product of any k + 1 elements
of N is 0 and N is a nilpotent semigroup of nilpotency index k + 1. �

We note that the intersection of nilpotent subsemigroups of B(n) is a nilpotent subsemigroup,
but the join in the lattice of all subsemigroups of B(n) need not be nilpotent. For example the join
of the two nilpotent subsemigroups {(1, 2), 0} and {(2, 1), 0} of B(2) is all of B(2). It is clear that
maximal nilpotent subsemigroups of B(n) correspond by Theorem 5.4 to strict linear orders. Thus
there are precisely n! maximal nilpotent subsemigroups of B(n), one for each way of listing all the
elements of {1, . . . , n}. This is a special case of a result of Graham [5], who classified the maximal
nilpotent subsemigroups of an arbitrary finite 0-simple semigroup by graph theoretic methods. The
problem of counting the number of maximal nilpotent subsemigroups containing a given nilpotent
subsemigroup is thus the same as counting the number of linear extensions of a given partial order,
a well studied and computationally difficult problem.

We can now describe the structure of arbitrary subsemigroups of B(n). In the following theorem
we consider the empty semigroup to be both a nilpotent semigroup and an inverse semigroup.

Theorem 5.5 Let S be a subsemigroup of B(n) containing 0. Then there is a unique inverse sub-
semigroup I ⊆ B(n) and a unique nilpotent subsemigroup N ⊂ B(n) such that I is a subsemigroup
of S, N is an ideal of S and S = I ∪N .

Proof. Define a relation ≡S on {i|(i, i) ∈ S} by i ≡S j if and only if both (i, j), (j, i) ∈ S. Since S is
a transitive relation by Theorem 5.2, it follows that ≡S is a partial equivalence relation on {1, . . . , n}.
By Theorem 5.2, the partition corresponding to ≡S defines a unique inverse subsemigroup I of S
containing 0.

We claim that N = (S\I) ∪ 0 is a nilpotent ideal of S. As a relation, N is irreflexive, since all
the non-zero idempotents of S belong to I. Let (i, j) ∈ N, (k, i) ∈ S. If (k, j) = (k, i)(i, j) /∈ N ,
then (k, j) ∈ I. Therefore, (j, k) ∈ I since I is an inverse subsemigroup of B(n). Thus, (j, i) =
(j, k)(k, i) ∈ S and i ≡S j. It follows that (i, j) ∈ I a contradiction. Therefore N is a left ideal of S.
Dually, it is a right ideal.

Uniqueness follows easily from the fact that all the idempotents of S must belong to I. �

Equivalently, Theorem 5.5 can be given in the language of relations as a description of all transitive
relations on an n element set. In this form, it is related to Lemma 1 of [15]. See also [19]. We record
this as a corollary.

Corollary 5.6 Let R be a transitive relation on an n element set. Then there is a unique partial
equivalence relation Π and a unique strict partial order P such that R is the disjoint union of Π and
P and such that RP ∪ PR ⊆ P .
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5.2 The BRSC of subsemigroup lattices associated to B(n)

5.2.1 The inverse subsemigroup and nilpotent subsemigroup case

Theorem 5.5 motivates looking at the BRSC associated to the subsemigroup lattice of a nilpotent
semigroup and the inverse subsemigroup lattice of B(n).

We begin with nilpotent semigroups.

Theorem 5.7 Let N be a nilpotent semigroup. Then the subsemigroup complex H(N) is the uniform
matroid, Un,n, where n = |N |. That is, every subset of N is independent.

Proof. Clearly if S is a semigroup of cardinality n, then H(S) is the uniform matroid, Un,n, if and
only if there exists an ordering of the elements of S, s1, . . . , sn such that the subsemigroup generated
by s1, . . . , si is just the set {s1, . . . , si} for i = 1, . . . , n.

We prove by induction on |N | = n that if N is a nilpotent semigroup then there exists such an
ordering of the elements of N . If n ≤ 1, then the assertion is clear. Let n > 1. Let s ∈ N be
an element such that {s} is a 0-minimal J -class. Then Ns = sN = 0 and it follows that for any
nonempty subset, X ⊆ N , 〈X, s〉 = 〈X〉 ∪ {s} and that the ideal generated by {s} is equal to {s, 0}.

Let N ′ be the Rees quotient of N by the ideal {s, 0}. By induction, there is an ordering
{0, s1, . . . , sn−1} of the elements of N ′ that proves that N ′ is an independent set. It follows from the
above that {0, s, s1, . . . , sn−1} is an ordering of N that proves that every subset is independent. �

We now turn to inverse subsemigroups of B(n). More generally, let S be an inverse semigroup.
We have defined ISub(S) (FISub(S)) to be the lattice of all inverse (full inverse) subsemigroups of
S. Notice that FI(S) is the interval [E(S), S] of I(S).

These lead us to define two simplicial complexes, IH(S) and FIH(S). Formally, we let IS :
S → ISub(S) by letting IS(s) be the inverse subsemigroup generated by s. This is the same as the
subsemigroup of S generated by {s, s−1}. We have a similar definition in the case of the full inverse
subsemigroup lattice by letting ΦS : S → FISub(S) be defined by letting ΦS(s) be the full inverse
subsemigroup generated by s, which is the subsemigroup generated by {s, s−1} ∪ E(S).

We thus get two boolean representable simplicial complexes IH(S) and FIH(S) corresponding
to these lattices. As in Section 3 we can use simplification to identify the atoms of IH(S) (FIH(S))
with the set of monogenic (full monogenic) inverse subsemigroups of S and we do so.

In the case of S = B(n), I(s) = {s} if s is an idempotent and for i 6= j we get

I((i, j)) = {(i, j), (i, i), (j, i), (j, j), 0} ≈ B(2).

We prefer to work with the sublattices ISub0(B(n)) and FISub0(B(n)) (which are the intervals from
{0} to the top of the lattices ISub(S) and FISub(S)) and their corresponding boolean representable
simplicial complexes. By Theorem 5.2 and the remark afterward, these are isomorphic to the partition
lattices on n + 1 and n elements respectively. We have the corresponding simplicial complexes
IH0(B(n)) and FIH0(B(n)). It is well known that the unique simple matroid corresponding to the
partial partition lattice on n elements is the graphic matroid on the complete graph Kn (see [18,
Section I.7]). This is the matroid with vertices the edges of Kn and independent sets the forests of
Kn.

By a minimal generating set X of a semigroup S, we mean a generating set such that no proper
subset of X generates S. When we speak of minimal generating sets of an inverse semigroup, we
mean in the variety of inverse semigroups. An oriented spanning tree of a connected graph is a
spanning tree along with an orientation on its edges.
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Theorem 5.8 X is a minimal generating set of B(n) as an inverse semigroup if and only if the
graph Γ(X) is an oriented spanning tree of the complete graph Kn.

Proof. Let T be an oriented spanning tree of Kn. If e is an oriented edge of T , then we write e−1

for the opposite edge. This agrees with the inverse of e thought of as an element of B(n). For all
i, j ∈ {1, . . . , n} there is a path from i to j. Multiplying the elements on this path (respecting the
inverse notation just introduced) in B(n) shows that the oriented edges of T generate B(n) as an
inverse semigroup. If we remove an edge {i, j} from T , then the resulting graph is not connected
and (i, j) is not in the inverse semigroup generated by the remaining edges. Therefore T defines a
minimal generating set of B(n) as an inverse semigroup.

Conversely, if X is a minimal generating set of B(n), then the graph Γ(X) corresponding to X
must be connected. Furthermore it must be a spanning graph, for if i is not a vertex of Γ(X) then no
element of the inverse semigroup generated by the elements of X can begin or end in i. If Γ(X) is not
a tree, then there is a cycle from some i to itself in Γ(X). Removing an edge from this cycle leaves
a connected graph and the remaining edges still generate B(n). This contradicts the minimality of
X. �

The arguments in the above proof yield also the following characterization.

Corollary 5.9 X is a minimal generating set for a (full) inverse subsemigroup of B(n) if and only
if Γ(X) is an oriented (spanning) forest of Kn.

We now prove that the BRSC IH0(B(n)) is the graphical matroid of Kn.

Theorem 5.10 Let X be a subset of B(n). Then X is a face of IH0(B(n)) if and only if the
underlying unoriented graph Γ(X) is a forest.

Proof. Assume that Γ(X) is a forest. Then for any subset Y of X, Γ(Y ) is a forest. Therefore,
from Theorem 5.8, any orientation of Γ(Y ) is a minimal generating set for the inverse semigroup
generated by Y . It follows that any ordering of the edges of Y gives an ascending chain in the lattice
ISub0(B(n)) and thus X is a face of IH0(B(n)).

Assume now that Γ(X) is not a forest. Let e1, e2, . . . , ek be any ordering of the edges of X.
Let i be the maximal index such that the edges e1, . . . , ei is a forest, so that i < k. By Theorem
5.8, {e1, . . . , ei} is a minimal generating set for the inverse semigroup that it generates. Adding
edge ei+1 creates a cycle by the definition of i. It follows that the inverse subsemigroup generated
by {e1, . . . , ei, ei+1} is equal to that of {e1, . . . , ei}. Therefore, X is not an independent subset of
IH0(B(n)). �

Corollary 5.11 The BRSC corresponding to IH0(B(n)) is the graphical matroid of the complete
graph Kn.

5.2.2 The General Case

We return to the general case of the subsemigroup complex Sub(B(n)). We first note that the
dimension problem was solved in [2, Theorem 7.1]. In fact, the authors computed the dimension of
the subsemigroup lattice of many semigroups including all finite inverse semigroups. We just recall
the case of importance for this paper:

dimH(B(n)) =

(
n

2

)
+ 2n− 1. (5)
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We will now characterize the faces of H(B(n)) in graph theoretic terms. The following lemma
allows us to omit idempotents from many arguments regarding B(n).

Lemma 5.12 Let X ⊆ B(n) and let E = E(B(n)). Then X ∈ H(B(n)) if and only if X \ E ∈
H(B(n)).

Proof. Since subsets of faces are faces, the direct implication holds trivially. Assume now that
X \ E ∈ H(B(n)). Then there exists an enumeration x1, . . . , xn of X \ E such that

x+1 ⊂ {x1, x2}
+ ⊂ . . . ⊂ {x1, . . . , xn}+

holds. Let e1, . . . , em be an enumeration of X ∩ E such that e1 = 0 if 0 ∈ X. It is immediate that

e+1 ⊂ {e1, e2}
+ ⊂ . . . ⊂ {e1, . . . , em}+.

Write Si = {e1, . . . , em, x1, . . . , xi}+ for i = 0, . . . , n. Since se, es ∈ {s, 0} for all s ∈ B(n) and e ∈ E,
it follows that Si = {e1, . . . , em}+ ∪ {x1, . . . , xi}+ for each i and so

{e1, . . . , em}+ = S0 ⊂ S1 ⊂ . . . ⊂ Sn.

Hence X ∈ H(B(n)) as required. �

Given a directed graph, an edge a−→b connecting two distinct vertices is known as a chord if
there exists some path from a to b avoiding the edge. Otherwise, it is known as a separating edge (or
basic edge).

We denote by Kn (respectively ~Kn) the complete undirected graph (respectively the complete
directed graph) with vertex set Vn = {1, . . . , n}. Note that we are excluding loops and multiple
edges.

Given X ⊆ B(n)\E(B(n)), we define a subgraph Γ(X) of ~Kn with vertex set Vn and edges i−→j
whenever (i, j) ∈ X.

It is clear that an edge e in a directed graph G = (V,E) is a separating edge if and only if e is
not in the transitive closure of the graph G \ e = (V,E \ {e}) considered as a binary relation. By
Theorem 5.2, this is equivalent to saying that e is not in the subsemigroup generated by E \ {e},
where we consider the edges to be elements of B(n). This suggests that there is a close connection
between separating edges and faces in H(B(n)). We make this precise in the next lemma.

Lemma 5.13 The following conditions are equivalent for a given X ⊆ B(n) \ E(B(n)):

(i) X ∈ H(B(n));

(ii) there exists an enumeration e1, . . . , em of the edges of Γ(X) such that, for i = 1, . . . ,m, ei is a
separating edge of the subgraph of Γ(X) obtained by removing ei+1, . . . , em;

(iii) every non edgeless subgraph of Γ(X) has a separating edge.

Proof. (i) ⇒ (iii). Let x1, . . . , xn be an enumeration of X such that

x+1 ⊂ {x1, x2}
+ ⊂ . . . ⊂ {x1, . . . , xn}+. (6)

Let Γ′ = (V ′, E′) be a subgraph of Γ(X) with E′ 6= ∅. Let xi1 , . . . , xim be the subsequence
of x1, . . . , xn corresponding to the edges of X ′, and write xim = (a, b). We claim that a−→b is a
separating edge of Γ′.
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Indeed, suppose a−→b is a chord of Γ′. Then there exists an alternative path

a = c0−→c1−→ . . .−→ck = b

in Γ′ avoiding the edge a−→b. It follows that

(c0, c1), . . . , (ck−1, ck) ∈ {xi1 , . . . , xim−1}+

and so
xim = (a, b) = (c0, c1) . . . (ck−1, ck) ∈ {xi1 , . . . , xim−1}+,

contradicting (6). Therefore a−→b is a separating edge of Γ′.
(iii) ⇒ (ii). By successive application of condition (iii).
(ii) ⇒ (i). Let e1, . . . , em be an enumeration of the edges of Γ(X) such that, for i = 1, . . . ,m, ei

is a separating edge of the subgraph of Γ(X) obtained by removing ei+1, . . . , em. Let ei be the edge
ai−→bi and write xi = (ai, bi). Then x1, . . . , xm is an enumeration of the elements of X. Clearly,
xi ∈ {x1, . . . , xi−1}+ implies that there exists a path from ai to bi using only the edges e1, . . . , ei−1,
a contradiction. Therefore (6) holds and so X ∈ H(B(n)). �

The concept of separating edge allows us to develop a recursive procedure to construct the faces
of H(B(n)). We first give a graph theoretic formulation and then reformulate it in terms of the
connections to subsemigroups of B(n) from Theorem 5.2.

Lemma 5.14 Let Vn = W1 ∪W2 be a nontrivial partition. Let Xi ⊆ B(n) \ E(B(n)) be a face of
H(B(n))|Wi and let ai ∈Wi for i = 1, 2. Let

X = X1 ∪X2 ∪ {(a1, a2)} ∪ Y (7)

with Y ⊆W2 ×W1. Then:

(i) X is a face of H(B(n));

(ii) every nonempty face of H(B(n)) containing no idempotents can be obtained this way.

Proof. (i) Note that X ⊆ B(n) \ E(B(n)) and a1−→a2 is a separating edge of Γ(X). Let X ′ =
X \ {(a1, a2)}. By Lemma 5.13, it suffices to show that every non edgeless subgraph of Γ(X ′) has a
separating edge. Let Γ′ be such a subgraph.

Assume first that Γ′ has edges with both endpoints in W1. Let Γ′1 be the subgraph of Γ′ induced
by all such edges. Since Γ′1 is also a non edgeless subgraph of Γ(X1) and X1 is a face, it follows from
Lemma 5.13 that Γ′1 has a separating edge, which must also be a separating edge of Γ′.

Similarly, we deal with the case where Γ′ has edges with both endpoints in W2. Thus we may
assume that all edges of Γ′ are contained in W2 ×W1, but then every edge is trivially a separating
edge.

(ii) Let X ⊆ B(n) \ E(B(n)) be a nonempty face. By Lemma 5.13, Γ(X) has a separating edge
a1−→a2. Let X ′ = X \ {(a1, a2)} and let W1 denote the set of all vertices b ∈ Vn such that there
exists a path a1−→b in Γ(X ′) (including the trivial path so a1 ∈ W1). Finally, let W2 = Vn \W1.
Since ai ∈Wi for i = 1, 2, W1 ∪W2 is a nontrivial partition of Vn. For i = 1, 2, let

Xi = {(p, q) ∈ X | p, q ∈Wi}.
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Then Xi ⊆ B(n) \E(B(n)) is a face of H(B(n))|Wi . We show that (7) holds for Y = X \ {X1 ∪X2 ∪
{(a1, a2)}}.

Indeed, suppose that (b1, b2) ∈ X and bi ∈Wi. Then there exists a path a1−→b1 and therefore a
path a1−→b2 in Γ(X). Since b2 /∈W1, then there is no path a1−→b2 in Γ(X ′) and so we must have
(b1, b2) = (a1, a2). This completes the proof of the claim and therefore of the lemma. �

We can now settle problem (P5). Simultaneously, we provide an alternative proof for the aperiodic
case in (5).

Proposition 5.15 The complex H(B(n)) is pure of dimension
(
n
2

)
+ 2n− 1 for every n ≥ 1.

Proof. We proceed by induction on n. The case n = 1 being trivial, assume that n > 1 and the claim
holds for smaller values. Let F be a facet of H(B(n)). By Lemma 5.12, we must have E(B(n)) ⊆ F .
Let X = F \ E(B(n)). By Lemma 5.14, there exists a nontrivial partition Vn = W1 ∪W2 and a
(disjoint) decomposition (7) such that Xi ⊆Wi for i = 1, 2 and Y ⊆W2 ×W1.

Now

• Xi must be maximal among the faces contained in (Wi ×Wi) \ E(B(n)),

• Y = W2 ×W1,

otherwise Lemma 5.14 would grant us a face of B(n) strictly containing F .
Write mi = |Wi|. By Lemma 5.12 and the induction hypothesis, Xi ∪ {(a, a) | a ∈Wi} ∪ {0} is a

face of dimension
(
mi
2

)
+ 2mi − 1, and so |Xi| =

(
mi
2

)
+mi − 1. Now (7) yields

|F | = |X|+ n+ 1 =

(
m1

2

)
+m1 − 1 +

(
m2

2

)
+m2 − 1 + 1 +m2m1 + n+ 1.

Since m2 = n−m1, a straightforward computation yields |F | =
(
n
2

)
+ 2n and we are done. �

We can now derive some information on the facets of B(n). The next lemma is the graph theoretic
interpretation of the construction of maximal subsemigroups for arbitrary finite 0-simple semigroups
[5, 6] in the special case of aperiodic Brandt semigroups. We introduce some more graph-theoretical
tools.

Let Γ = (V,E) be an undirected graph. An orientation of Γ is a binary relation O ⊆ V × V such
that

O→E
(p, q) 7→ {p, q}

is a bijection. Intuitively, we are choosing, for each undirected edge p −− q, one of the directed
edges p−→q, q−→p. An orientation is acyclic if it contains no directed cycle. An acyclic orientation
determines a partial order ≤O on V by declaring v ≤O w if there is a path (including the empty
path) from v to w in the directed graph O. Conversely, the directed graph of a partial order ≤ is an
acyclic orientation, which is just the transitive closure of the Hasse Diagram of ≤.

Consider the complete undirected graph Kn. A spanning tree of Kn is a subtree T containing all
n vertices (and having therefore n− 1 edges). We denote by Kn \T the graph obtained by removing
from Kn all the edges of T .

Proposition 5.16 Every facet of H(B(n)) is of the form

E(B(n)) ∪ {(p, q) | {p, q} ∈ T} ∪ {(p, q) | (p, q) ∈ O}, (8)

where T is a spanning tree of Kn and O is an acyclic orientation of Kn \ T .
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Proof. Given p, q ∈ Vn distinct and X ⊆ B(n) \ E(B(n)), we say that p −− q is a link of Γ(X) if
both p−→q and q−→p are edges of Γ(X).

We use induction on n. The case n = 1 being trivial, assume that n > 1, F is a facet of H(B(n))
and the claim holds for m < n. By the proof of Proposition 5.15, there exists a nontrivial partition
Vn = W1 ∪W2, ai ∈Wi and a facet Fi of H(B(n))|Wi for i = 1, 2 such that

F = E(B(n)) ∪ F1 ∪ F2 ∪ {(a1, a2)} ∪ (W2 ×W1).

By the induction hypothesis, we may write

Fi = E(B(Wi)) ∪ {(p, q) | {p, q} ∈ Ti} ∪ {(p, q) | (p, q) ∈ Oi},

where Ti is a spanning tree of KWi and Oi is an acyclic orientation of KWi \ Ti for i = 1, 2.
Since (a2, a1) ∈ F as well, we define

T = T1 ∪ T2 ∪ {{a1, a2}},

which is obviously a spanning tree for Kn. It is easy to check that

O = O1 ∪O2 ∪ (W2 ×W1)

is an acyclic orientation of Kn \ T . Therefore F equals (8) and we are done. �

The converse of Proposition 5.16 does not hold. The smallest counterexample is given by the
following graph on {1, 2, 3, 4}. One easily checks that this graph does not represent a face and thus
not a facet of HB(4)). To make pictures easier to interpret, we shall represent an oriented edge
p−→q in black, and a link p −− q in red.

1 // 4

��
3

OO

2

(9)

We present next a straightforward construction of a facet: we take links

1 −− 2 −− . . . −− n

plus all edges of the form i−→j with i > j + 1. The conditions of Lemma 5.14 are satisfied by the
partition Vn = Vn−1 ∪ {n}, so it follows easily by induction that this graph defines a face Xn of
H(B(n)). Hence Xn ∪ E(B(n)) is a face. Since |Xn ∪ E(B(n))| =

(
n
2

)
+ 2n, it follows from (5) that

Xn ∪ E(B(n)) is indeed a facet of H(B(n)).
We settle next problem (P6).

Proposition 5.17 The complex H(B(n)) is a matroid if and only if n ≤ 3.

Proof. The case n ≤ 2 is trivial since by (5) we have dimH(B(n)) =
(
n
2

)
+ 2n− 1 = n2 = |B(n)| − 1

and so every subset of B(n) must be a face.
Assume now that n = 3. Then the facets of B(3) correspond to graphs of the form

•

• // •
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Let
Z = {(i, j) | i, j ∈ V3, i 6= j}.

It follows from Proposition 5.15 that

H(B(3)) = {X ⊆ B(3) | Z 6⊆ X}. (10)

Assume that I, J ∈ H(B(3)) are such that |I| = |J | + 1. We may assume that J ∩ E(B(n)) ⊇
I ∩ E(B(n)), otherwise we may add some idempotent in I \ J to J and still get a face.

If |J ∩ Z| = 5, then J ∩ E(B(n)) ⊇ I ∩ E(B(n)) implies Z ⊆ I, contradicting (10). Hence
|J ∩ Z| < 5 and so J ∪ {p} ∈ H(B(3)) for every p ∈ I \ J in view of (10). Therefore H(B(3)) is a
matroid.

Assume now that n ≥ 4. Let I, J ⊆ B(n) \ E(B(n)) be defined by the graphs

1

�� ��

1

2 2

��
3 4oo 3

GG

4

respectively.
Considering the partitions Vn = {3} ∪ (Vn \ {3}) and Vn = {4} ∪ (Vn \ {4}), respectively, we

deduce from Lemma 5.14 that I, J ∈ H(B(n)). Clearly, |I| = |J |+ 1. Now |I \ J | = 3 and J ∪ {i},
for i ∈ I \ J , produces the three graphs

1 1 1

2

��

2 2

��
3 4 3

GG

4 3

GG

4oo

In view of Proposition 5.16, the links of a face must constitute a forest. Thus J ∪{i} is not a face in
the two first cases. On the other hand, the third graph is (9), and we have already established that
it does not correspond to a face. Therefore H(B(n)) is not a matroid if n ≥ 4. �

We now present an alternative approach for constructing faces and facets in H(B(n)). This is
based on Theorem 5.2 and based on a global understanding of the inductive approach inspired by
[6] and that appeared in the graph theoretic approach above in Theorem 5.14. This approach gives
a proof that a set of elements in B(n) is a face, by listing an order in which the elements of the set
are a transversal of successive differences. At the end of this discussion, we will give the connection
between the algebraic and the graph theoretic approaches.

Let L be a strict linear order of the set {1, . . . , n} and let T be a spanning tree of Kn. Then
there is a unique orientation O of the edges of T that is opposite to the order given by L. We
define a facet Φ(L, T,O) as follows. By the remarks after Theorem 5.4, L corresponds to a unique
maximal nilpotent subsemigroup N(L) of B(n). Clearly, |N(L)| =

(
n
2

)
+ 1. By Theorem 5.7 N(L)
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is a face of H(B(n)). We can now add the n non-zero idempotents (i, i), i = 1, . . . , n one at a time
to get a face of size

(
n
2

)
+ n + 1, that defines a chain in Sub(B(n)) whose top is the subsemigroup

N(L)∪E(B(n)). Finally, the oriented spanning tree (T,O) defines a unique minimal generating set
X(T,O) of B(n) as an inverse semigroup by Theorem 5.8 and X(T,O) has size n− 1. We define the
set Φ(L, T,O) = N(L)∪E(B(n))∪X(T,O) of size

(
n
2

)
+ 2n. It follows from [2], or from Proposition

5.15 that this is the size of a maximal possible face.
Note that O is fully determined by L and T , so Φ(L, T,O) ia actually a function of L and T , but

we opt for our notation for emphasis.
We give an example of this construction.

Example 5.18 Let n = 4. Let L be the linear order 2 < 4 < 3 < 1 and let T be the spanning tree of
K4 with edges {{3, 2}, {2, 1}, {1, 4}}. Then O = {(3, 2), (1, 2), (1, 4)}. The set Φ(L, T,O) is equal to
{0, (2, 1), (2, 3), (4, 1), (2, 4), (4, 3), (3, 1), (1, 1), (2, 2), (3, 3), (4, 4), (3, 2), (1, 4), (1, 2)}. The reader can
verify that adding elements one at a time from left to right gives a chain of subsemigroups that proves
that this set is a facet.

However, not every set formed this way is a face as the following example shows.

Example 5.19 Let n = 4. Let T be the spanning tree of K4 with edges {(1, 2), (2, 3), (3, 4)} and L
the linear order 3 < 1 < 4 < 2. Then O = {(2, 1), (2, 3), (4, 3)}. One computes that Φ(L, T,O) \
E(B(n)) = {(3, 2), (3, 4), (1, 2), (3, 1), (1, 4), (4, 2), (2, 1), (2, 3), (4, 3)} and these are precisely the edges
of the graph (9). Thus Φ(L, T,O) is not a face of H(B(n)).

Despite this we now prove that every facet of the subsemigroup complex of B(n) is of the form
Φ(L, T,O). Then we explore the connection between this construction and the graph theoretic
construction described previously. The proof below is part of Proposition 3.1 of [2].

Lemma 5.20 Let U, V be subsemigroups of a finite semigroup S such that U is covered by V in the
subsemigroup lattice of S. Let I be an ideal of S. Then either U ∩ I = V ∩ I and U\I is covered
by V \I in the subsemigroup lattice of the Rees quotient S\I or U\I = V \I and U ∩ I is covered by
V ∩ I in the subsemigroup lattice of I.

Proof. In any semigroup, the union of a subsemigroup and an ideal is a subsemigroup. Thus, if
U ≤ V in the semigroup lattice of S and I is an ideal of S, then (V ∩ I) is an ideal of V and we have
the inequalities, U ≤ U ∪ (V ∩ I) ≤ V in the subsemigroup lattice of S. Since V covers U , we have
either that U = U ∪ (V ∩ I) or that U ∪ (V ∩ I) = V . In the first case we have U ∩ I = V ∩ I and
U\I is covered by V \I in the subsemigroup lattice of the Rees quotient S\I. In the second case we
have that U\I = V \I and U ∩ I is covered by V ∩ I in the subsemigroup lattice of I. �

This allows us to build facets of the subsemigroup complex of a semigroup S from facets of an
ideal I and those of the Rees quotient S\I.

Theorem 5.21 Let I be an ideal of a finite semigroup S. Let F1 be a facet of the subsemigroup
complex of I and F2 be a facet of the subsemigroup complex of S\I. Then F1 ∪ F2 is a facet of the
subsemigroup complex of S. Conversely, if F is a facet of the subsemigroup complex of S, then F ∩ I
is a facet of the subsemigroup complex of I and F\I is a facet of the subsemigroup complex of S\I.

Proof. Clearly if F1 is a facet of the subsemigroup complex of I and F2 is a facet of the subsemigroup
complex of S\I, then F1 ∪ F2 is a facet of the subsemigroup complex of S.

Conversely, let F be a facet of the subsemigroup complex of S. Then there is an ordering s1, . . . , sk
of the elements of F such that S0 = ∅ < S1 < . . . < Si < Si+1 < . . . < Sk = S is a maximal chain
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in the subsemigroup lattice of S, where Si is the subsemigroup generated by {s1, . . . si}. Therefore,
Si+1 covers Si for i = 0, . . . , k − 1. By Theorem 5.20, for each 0 ≤ i ≤ k − 1, either Si+1\Si ⊆ I or
Si+1\Si ⊆ S\I. In the first case, si+1 ∈ I and Si+1 ∩ I covers Si ∩ I in the semigroup lattice of I. In
the second case, si+1 ∈ S\I and Si+1\I covers Si\I in the semigroup lattice of S\I. It follows that
F ∩ I is a facet in the subsemigroup complex of I and F\I is a facet in the subsemigroup complex
of S\I. �

Theorem 5.22 Let F be a subset of B(n). If F is a facet of the subsemigroup complex of B(n)
then there exists a linear order L, a spanning tree T of Kn and an orientation O of T such that
F = Φ(L, T,O)

Proof. Let F be a facet of the subsemigroup complex of B(n). Then there is an ordering s1, . . . , sk
of the elements of F such that S0 = ∅ < S1 < . . . < Si < Si+1 < . . . < Sk = B(n) is a maximal
chain in the subsemigroup lattice of B(n), where Si is the subsemigroup generated by {s1, . . . si}.
Therefore, Si+1 covers Si for i = 0, . . . , k − 1.

It follows that Sk−1 is a maximal subsemigroup of B(n) and that F ′ = F\{sk} is a facet of Sk−1.
By [6], there is a non-trivial partition X,Y of {1, . . . n} such that Sk−1 = B(X) ∪ B(Y ) ∪ (Y ×X)
and sk ∈ X × Y . Clearly, I = (Y ×X) ∪ {0} is a nilpotent (in fact a 0-semigroup) ideal of Sk−1. It
follows from Theorem 5.21 that F ∩ I is a facet of I and that F\I is a facet of S\I.

By Theorem 5.7, (F ∩ I) = I. The graph Γ(I) corresponding to I is the complete bipartite
tournament T (Y,X), that is, the directed graph whose edges are all the edges from every vertex in
Y to every vertex in X.

The Rees quotient S\I is the 0-disjoint union of B(X) and B(Y ). Since B(Y ) is an ideal in S\I,
we can appeal again to Theorem 5.21 to write F\I = (FX ∪ FY ), where FX (FY ) is a facet of B(X)
(B(Y )). By induction, FX = Φ(LX , TX ,OX) (FY = Φ(LY , TY ,OY )) for appropriate linear orders,
spanning trees and orientations for X and Y appropriately. Then, L = LX ∪LY ∪ (Y ×X) is a linear
order of {1, . . . , n}. If sk = (a, b), then T = TX ∪ TY ∪ {{a, b}} is a spanning tree of {1, . . . , n} with
orientation opposite to L, O = OX ∪ OY ∪ {(a, b)} and F = Φ(L, T,O). �

We now give the connection between the semigroup construction of facets of H(B(n)) and the
graph theoretic approach. Suppose that a facet F is defined as in Theorem 5.22 as F = Φ(L, T,O).
For each edge (i, j) ∈ O, the edge (j, i) ∈ L by construction. Thus, L \ {(j, i)|(i, j) ∈ O} is a poset
on {1, . . . n} and corresponds to a unique acyclic orientation of Kn \ T . Clearly, the edges in the
graph whose links are T and this oriented acyclic graph is F \ E(B(n)). Conversely, let a facet F
be such that F \ E(B(n)) is given by a spanning tree T of Kn and an oriented acyclic graph with
edges Kn \ T . Let L be any extension of the poset corresponding to this orientation of Kn \ T to
a linear order. We define O to be the orientation of T that is opposite to L. Then F is defined by
F = Φ(L, T,O). We record this in the following Theorem.

Theorem 5.23 Let F be a facet and let F \ E(B(n)) be given by a tree of links T and an acyclic
orientation on Kn \T . Then the number of representations of F in the form F = Φ(L, T,O) is equal
to the number of extensions of the poset on {1, . . . n} given by the acyclic orientation on Kn \ T to
a linear order on {1, . . . n}.

The number of linear extensions of a poset on {1, . . . n} is a well studied and difficult to understand
combinatorial number. In Subsection 5.3 we give an estimate on the number of facets in H(B(n).
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5.3 Counting facets: asymptotics

It seems out of reach to count the exact number of facets of H(B(n)) for arbitrary n. We recall that
the lattice of subsemigroups of B(n) containing 0 is isomorphic to the lattice of transitive relations
on an n-element set. There is no closed formula for the number of such relations and thus we don’t
even have a formula for the size of the subsemigroup lattice of B(n).

It is nevertheless possible to get some results of asymptotic type. Let fn denote the number of
facets of H(B(n)).

Theorem 5.24 (i) fn < n!nn−2 for every n ≥ 2;

(ii) fn > 2n−2nn−2 for every n ≥ 4.

Proof. (i) By Theorem 5.22, we have fn ≤ tn`n, where tn is the number of spanning trees of Kn

and `n is the number of linear orderings of {1, . . . , n}. Now tn = nn−2 by Cayley’s Theorem (see [3,
Theorem 5.2.3]) and `n = n!. Hence tn ≤ n!nn−2.

Suppose that n ≥ 2 and T is the (unique) spanning tree of Kn where n has degree n− 1. Then
the position of n in the linear ordering is irrelevant and it is easy to check (out of symmetry) that
the facets with spanning tree T correspond precisely to the linear orderings of {1, . . . , n− 1}, hence
there are precisely (n− 1)! of them. This implies in particular that fn < n!nn−2 for n ≥ 2.

(ii) We show that, for a given spanning tree T of Kn, there exist at least 2n−2 facets of H(B(n))
containing the spanning tree T (see Proposition 5.16).

An exfoliation of T is an enumeration X = (i1, . . . , in) of the elements of {1, . . . , n} such that ij
is a leaf of the subtree of T induced by {i1, . . . , ij} for j = n, . . . , 2, 1. Note that by erasing a leaf
from a tree we always get a tree. Since every tree with more than one vertex has at least two leaves,
it follows that T admits at least 2n−1 exfoliations (exactly 2n−1 if T is a linear graph).

Given an exfoliation X = (i1, . . . , in) of T , we define

F (X) = E(B(n)) ∪ {(p, q) | {p, q} ∈ T} ∪ {(ij , ik) | 1 ≤ j < k ≤ n}.

We claim that F (X) is a facet of H(B(n)). Note that it is obvious that the latter set defines an
acyclic orientation of Kn \ T , but we have already remarked that this is not enough to produce a
face.

Since |F (X)| =
(
n
2

)
+ 2n − 1 = dimH(B(n)) by Proposition 5.15, it is enough to show that

F (X) ∈ H(B(n)). By Lemma 5.12, we only need to show that

{(p, q) | {p, q} ∈ T} ∪ {(ij , ik) | 1 ≤ j < k ≤ n} ∈ H(B(n)). (11)

For r = 1, . . . , n, let Xr = {i1, . . . , ir} and

Yr = {(ij , ik) | 1 ≤ j < k ≤ r} ∪ {(ik, ij) | 1 ≤ j < k ≤ r and {ij , ik} ∈ T}.

We show that Yr ∈ H(B(n)) by induction on r. Since Y1 = ∅, the claim holds trivially for r = 1.
Assume now that 1 < r ≤ n and Yr−1 ∈ H(B(n)). Consider the partition Xr = {ir} ∪ Xr−1.

Trivially, ∅ is a face of H(B(n))|{ir}. On the other hand, it follows from the induction hypothesis
that Yr−1 is a face of H(B(n))|Xr−1 . Since ir is a leaf of the subtree of T induced by {i1, . . . , ir},
there exists a unique j ∈ {1, . . . , r − 1} such that ij −− ir is an edge of T . Thus we may write

Yr = ∅ ∪ Yr−1 ∪ {(ir, ij)} ∪ {(ik, ir) | 1 ≤ k < r},
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and it follows from Lemma 5.14 that Yr ∈ H(B(n)).
In particular, F (X) \ E(B(n)) = Yn ∈ H(B(n)) and so (11) holds. Therefore F (X) is a facet of

H(B(n)).
Let X = (i1, . . . , in) and X ′ = (i′1, . . . , i

′
n) be exfoliations of T such that is 6= i′s for some s ≥ 3.

Without loss of generality, we may assume that s is maximum. We claim that F (X) 6= F (X ′).
Indeed, (i′s, is) ∈ F (X) since i′s must necessarily occur before is in X. Suppose that (i′s, is) ∈

F (X ′). Since is occurs before is′ in X ′, it follows that is −− i′s is an edge of T . Since is and i′s are
supposed to be both leaves of the subtree of T induced by {i1, . . . , is} = {i′1, . . . , i′s}, it follows that
s = 2, a contradiction. Thus (i′s, is) /∈ F (X ′) and so F (X) 6= F (X ′).

We had already remarked that T admits at least 2n−1 exfoliations, and only two exfoliations
may share the last n− 2 components. Thus we have at least 2n−2 facets in H(B(n)) containing the
spanning tree T , and so fn ≥ 2n−2nn−2 in view of Cayley’s Theorem.

Since n ≥ 4, we have 2n−2 < (n − 1)!. Since we showed in the proof of part (i) that there
exist (n − 1)! facets in H(B(n)) containing a spanning tree with a vertex of degree n − 1, we get
fn > 2n−2nn−2. �

Corollary 5.25 (i) log fn
n logn < 2 for every n ≥ 2;

(ii) log fn
n logn > 1 for every n ≥ 8.

Proof. (i) Since n! < nn for every n ≥ 2, it follows from Theorem 5.24(i) that fn < n2n−2 < n2n.
Hence log fn < log(n2n) = 2n log n and so log fn

n logn < 2.

(ii) By Theorem 5.24(ii), we have fn > 2n−2nn−2 for n ≥ 4. Since 26 = 82, we have 2n−2 ≥ n2

for every n ≥ 8, yelding fn > nn. Thus log fn > log(nn) = n log n and so log fn
n logn > 1 for every n ≥ 8.

�

6 Suggested future problems

The work in this paper can of course be carried out for the subsemigroup complex of an arbitrary
finite semigroup. Another important project would be a similar analysis of the BRSC corresponding
to the congruence lattice of a finite semigroup. The work can be further generalized by a study of the
BRSC corresponding to subalgebra and congruence lattices of an arbitrary finite Universal Algebra.

More specifically, it would be very useful to look at the problems studied in this paper for
B(1, n) for an arbitrary finite Brandt semigroup B(G,n) over a finite group G. In our paper [17]
we show that the BRSC defined by the Rhodes lattice, which is the semilattice of aperiodic inverse
subsemigroups of B(G,n) with a new top element adjoined, is the lift matroid of G of size n in the
sense of Zaslavsky [22]. The full subsemigroup lattice of B(G,n) and its BRSC are thus natural
extensions of this important class of matroids and will be of interest to study by the methods of the
current paper.

There are natural series of monoids parameterized by an integer n and either a group G or a field
F . These include the full and partial transformation monoids, Tn and PTn respectively, the monoid
Mn(F ) of all n × n matrices over a field F and the aforementioned Brandt semigroups B(n,G).
We ask if there are other natural series of semigroups and suggest to study their subsemigroup and
congruence complexes.
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