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ABSTRACT

We discuss in the context of finite extensions two classical theorems of Takahasi
and Howson on subgroups of free groups. We provide bounds for the rank of the
intersection of subgroups within classes of groups such as virtually free groups,
virtually nilpotent groups or fundamental groups of finite graphs of groups with
virtually polycyclic vertex groups and finite edge groups. As an application of our
generalization of Takahasi’s Theorem, we provide an uniform bound for the rank of
the periodic subgroup of any endomorphism of the fundamental group of a given
finite graph of groups with finitely generated virtually nilpotent vertex groups and
finite edge groups.
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1 Introduction

Some famous theorems on subgroups of free groups involve finiteness conditions. Part of them admit
generalizations to further classes of groups, and constructions such as free products, finite extensions
or graphs of groups have been involved in most of them.

For instance, Howson’s Theorem states that the intersection of two finitely generated subgroups
H,K of a free group is also finitely generated. In his seminal paper [11], Howson also provided an
upper bound on the rank of H ∩ K with respect to the ranks of H and K, namely (for H and K
nontrivial):

rk(H ∩K) ≤ 2rk(H)rk(K)− rk(H)− rk(K) + 1.

Later on, Hanna Neumann improved this upper bound to

rk(H ∩K) ≤ 2(rk(H)− 1)(rk(K)− 1) + 1

and conjectured that the factor 2 could be removed, the famous Hanna Neumann Conjecture. The
Conjecture was finally proved in 2011 by Friedman and Mineyev (independently):
Theorem 1.1 [7, 20] Let F be a free group and let K1,K2 ≤ F be finitely generated and nontrivial.
Then

rk(K1 ∩K2) ≤ (rk(K1)− 1)(rk(K2)− 1) + 1.

Howson’s Theorem led to the concept of Howson group: a group G is a Howson group if the
intersection of finitely generated subgroups of G is still finitely generated. Kapovich has shown
that many hyperbolic groups fail this property [13], but it is easy to show that Howson groups are
closed under finite extension and so in particular virtually free groups are Howson groups. More
generally, the class of Howson groups is closed under graphs of groups, where the edge groups are
finite (see [30, Theorem 2.13 (1)] for a proof). But can we get some rank formula as in the case of free
groups? A recent paper of Zakharov [33] provides an upper bound for the rank of the intersection
of two free finitely generated subgroups of a virtually free group. In the case of free products, upper
bounds for the Kurosh rank of the intersection of subgroups have been obtained by various authors.
See for instance [1], and the references therein, where Theorem 1.1 is extended to free products of
right-orderable groups.

We introduce in Section 3 the concept of strongly Howson group, when an uniform bound for
the rank of H ∩ K can be obtained from bounds on the ranks of H and K. We show that the
class of strongly Howson groups is closed under finite extensions and compute bounds using an
improved version of Schreier’s Lemma, which can be obtained with the help of Stallings automata.
These bounds are then applied to several particular cases such as virtually free, virtually polycyclic,
virtually nilpotent, and more generally fundamental groups of finite graphs of groups with virtually
polycyclic vertex groups and finite edge groups.

Another famous result, known as Takahasi’s Theorem, states the following:
Theorem 1.2 [31] Let F be a free group and let K1 ≤ K2 ≤ . . . be an ascending chain of finitely
generated subgroups of F . If the rank of the subgroups in the chain is bounded, then the chain is
stationary.

Bogopolski and Bux proved recently an analogue of Takahasi’s Theorem for fundamental groups
of closed compact surfaces [5, Proposition 2.2]. We say that a group G is a Takahasi group if every
ascending chain H1 ≤ H2 ≤ · · · of subgroups each of rank ≤ M in G, is stationary. We prove, in

2



Section 4, that the class of Takahasi groups is closed under finite extensions and finite graphs of
groups with virtually polycyclic vertex groups and finite edge groups.

We provide an application of the generalized Takahasi’s Theorem in Section 5. Finally, using
previous work of the third author [29], we show that the periodic subgroup is finitely generated for
every endomorphism of the fundamental group of a finite graph of groups with finitely generated
virtually nilpotent vertex groups and finite edge groups. As a consequence, we can bound the periods
for each particular endomorphism of such a group.

2 Preliminaries

We collect in this section some standard group-theoretic concepts and results. The reader is referred
to [9, 14, 18] for details.

Given a group G and X ⊆ G, we denote by 〈X〉 the subgroup of G generated by X. If G is
finitely generated, the rank of G is defined as

rk(G) = min{|X| : G = 〈X〉}.

We denote by FA the free group on an alphabet A. A free group of rank n is generically denoted
by Fn. The standard way of describing finitely generated subgroups of a free group is by means of
Stallings automata, a construction designed by Stallings under a different formalism [28].

To simplify things, we define an automaton to be a structure of the form A = (A,Q, q0, T, E)
where:

• A is a finite alphabet;

• Q is a set (vertices);

• q0 ∈ Q (initial vertex);

• T ⊆ Q (terminal vertices);

• E ⊆ Q×A×Q (edges).

The automaton is finite if Q is finite.
A finite nontrivial path in A is a sequence

p0
a1−→p1

a2−→ . . .
an−→pn

with (pi−1, ai, pi) ∈ E for i = 1, . . . , n. Its label is the word a1 . . . an ∈ A∗. It is said to be a successful
path if p0 = q0 and pn ∈ T . We consider also the trivial path p

1−→p for p ∈ Q. It is successful if
p = q0 ∈ T .

The language L(A) recognized by A is the set of all labels of successful paths in A. For details on
automata, the reader is referred to [4, 24].

Let H ≤ FA be finitely generated. Taking a finite set of generators h1, . . . , hn of H in reduced
form, we start with the so-called flower automaton F(H) (on the alphabet A ∪ A−1), where petals
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(of variable length) labelled by the words hi are glued to a basepoint q0 (both initial and terminal):

•
h1

00

h2

��

hm

PP

We include also an edge of the form q
a−1

−→p for every edge of the form p
a−→q. Then we proceed by

successively folding pairs of edges of the form q
a←−p a−→r (a ∈ A∪A−1). The final automaton S(H)

does not depend on the folding sequence nor even on the original finite generating set, and is known
as the Stallings automaton of H. For details and applications of Stallings automata, see [2, 14, 19].

One of the classical applications of Stallings automata provides a solution for the generalized
word problem of FA (see [2, Proposition 2.5]): given u ∈ FA in reduced form, we have

u ∈ H ⇔ u ∈ L(S(H)). (1)

Another famous application (see [2, Proposition 2.6]) is the rank formula

rk(H) = e− v + 1,

where v denotes the number of vertices of S(H) and e denotes the number of positive edges of S(H)
(i.e. edges labelled by letters of A). In the particular case where H is of finite index in FA, we get
v = [FA : H] and e = [FA : H]|A|, hence (see [2, Proposition 2.8])

rk(H) = [FA : H](|A| − 1) + 1. (2)

Given a class C of groups, we say that a group G is:

• virtually C if G has a finite index subgroup in C;

• C-by-finite if G has a finite index normal subgroup in C.

If the class C is closed under isomorphism and taking subgroups, then the two concepts coincide.
That is the case for free, nilpotent, polycyclic and strongly polycyclic groups.

If F is a finite index subgroup of G, we also say that G is a finite extension of F . If [G : F ] = m,
we may decompose G as a disjoint union of right cosets

G = Fb1 ∪ . . . ∪ Fbm (3)

with b1 = 1. We shall refer to (3) as a standard decomposition of G with respect to F .
The next simple result is essential to handle subgroups of finite extensions:

Proposition 2.1 Let G be a finite extension of a group F with standard decomposition (3). Let
H ≤ G and write K = H ∩ F . Then there exist I ⊆ {2, . . . ,m} and xi ∈ F (i ∈ I) such that

H = K ∪ (
⋃
i∈I

Kxibi). (4)
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Proof. Let
I = {i ∈ {2, . . . ,m} | H ∩ Fbi 6= ∅}.

Since b1 = 1, we may write
H = K ∪ (

⋃
i∈I

Kibi)

for some nonempty Ki ⊆ F (i ∈ I). For each i ∈ I, fix xi ∈ Ki. It remains to be proved that
Ki = Kxi.

Clearly, Kxibi ⊆ HKibi ⊆ H2 = H, hence Kxi ⊆ Ki. Conversely, let y ∈ Ki. Then yx−1
i =

(ybi)(xib)−1 ∈ HH−1 = H. Since also yx−1
i ∈ KiK

−1
i ⊆ FF−1 = F , we get yx−1

i ∈ K and so
y ∈ Kxi. Thus Ki = Kxi as required. �

Now we recall the definitions of several other classes of groups which play a part in this paper.
A group G is residually finite if the intersection of all normal subgroups of finite index is equal

to 1. Since any subgroup of finite index in a group G contains a normal subgroup of finite index in
G, it follows that a finite extension of a residually finite group is residually finite.

Let G be a group. Given H,K ≤ G, write

[H,K] = 〈hkh−1k−1 : h ∈ H k ∈ K〉 ≤ G.

The lower central series of G is the sequence

G = G0 DG1 DG2 D . . . ,

where Gn = [G,Gn−1] for every n ≥ 1. The group G is nilpotent if Gn = {1} for some n ≥ 1. The
minimum such n is the nilpotency class of G. Clearly, an abelian group is nilpotent of nilpotency
class ≤ 1. A subgroup of a nilpotent group of class n is nilpotent of class ≤ n.

A group G is called polycyclic if it admits a subnormal series

G = G0 BG1 B . . .BGn = {1} (5)

such that Gi−1/Gi is cyclic for i = 1, . . . , n. The minimum such n is the polycyclic rank of G and
is denoted by prk(G). The Hirsch number h(G) of G is defined as the number of infinite factors
Gi−1/Gi, which is independent from the subnormal series. In particular, h(G) ≤ prk(G). If Gi−1/Gi
is infinite cyclic for every i, we say that G is strongly polycyclic. Every polycyclic group has a normal
strongly polycyclic group of finite index. By [10], polycyclic groups are residually finite.

The class of (strongly) polycyclic groups is closed under taking subgroups. Moreover, a simple
induction on prk(G) shows that if G is polycyclic then

rk(H) ≤ prk(G) for every H ≤ G. (6)

A nilpotent group is polycyclic if and only if it is finitely generated. For details on polycyclic
groups, see [32].

Finally, we recall the concept of graph of groups, central in Bass-Serre theory [27].
Following Serre, a graph is a structure of the form Γ = (V,E, α, )̄, where:

• V is a nonempty set (vertices);

• E is a set (edges);
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• α : E → V is a mapping;

• ¯: E → E is an involution without fixed points.

Concepts such as cycle, connectedness, tree or subgraph are defined the obvious way. If Γ is connected
and T ⊆ E defines a subtree of Γ connecting all the vertices, we say that T is a spanning tree of Γ.

A (finite) graph of groups over a (finite) connected graph Γ is a structure of the form

G = ((Gv)v∈V , (Ge)e∈E , (αe)e∈E), (7)

where:

• the Gv are groups for all v ∈ V (vertex groups);

• the Ge are groups for all e ∈ E (edge groups) satisfying Gē = Ge;

• the αe : Ge → Geα are monomorphisms for all e ∈ E (boundary monomorphisms).

The fundamental group π1(G, T ) of the graph of groups (7) with respect to a spanning tree T of
Γ is the quotient of the free product

(∗v∈VGv) ∗ FE
by the normal subgroup generated by the following elements:

• eē (e ∈ E);

• t ∈ T ;

• e−1(gαe)e(gαē)−1 (e ∈ E, g ∈ Ge).

The vertex groups are naturally embedded into π1(G, T ), which is independent of the chosen spanning
tree T , up to isomorphism.

If the edge groups Ge are all trivial, then we get a free product

π1(G, T ) = (∗v∈VGv) ∗ FA, (8)

where E \ T = A ∪ Ā and A ∩A−1 = ∅. HNN extensions and amalgamated free products constitute
important particular cases of this construction, by taking graphs with two edges, respectively of the
form

•e 99 ē
yy •

e
** •

ē

jj

Moreover, whenever Γ is finite, the fundamental group π1(G, T ) can be built from the vertex groups
using a finite number of HNN extensions and amalgamated free products, where the associated/amal-
gamated subgroups are of the form Geαe.

The nature of π1(G, T ) is conditioned by the nature of the vertex and edge groups. This is
illustrated by the following well-known theorem of Karrass, Pietrowski and Solitar [16] (see also [26,
Theorem 7.3]): a finitely generated group is virtually free if and only if it is the fundamental group
of a finite graph of finite groups.
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3 Howson’s Theorem

We say that a group G is strongly Howson if

sup{rk(H1 ∩H2) | H1, H2 ≤ G, rk(H1) ≤ n1, rk(H2) ≤ n2} <∞ (9)

for all n1, n2 ∈ N. In this case, we can define a function ξG : N×N→ N by letting (9) be (n1, n2)ξG.
Since every subgroup of a cyclic group is cyclic, we only care about the nontrivial cases n1, n2 ≥ 2.

Clearly, if G is strongly Howson and H ≤ G, then H is strongly Howson and (n1, n2)ξH ≤
(n1, n2)ξG for all n1, n2 ∈ N.

Trivially, every strongly Howson group is a Howson group. We ignore if the converse is true.
Schreier’s Lemma [25] (see also [9]) states that the inequality

rk(H) ≤ [G : H]rk(G)

holds whenever H is a finite index subgroup of a finitely generated group G. The following improved
version is well-known, but we give a proof for completeness, using Stallings automata:
Proposition 3.1 Let H be a finite index subgroup of a finitely generated group G. Then rk(H) ≤
[G : H](rk(G)− 1) + 1.

Proof. Let m = [G : H] and n = rk(G). Then there exists an epimorphism ϕ : Fn → G. It is
straightforward that [Fn : Hϕ−1] = [G : H] = m, hence it follows from (2) that

rk(Hϕ−1) = [Fn : Hϕ−1](n− 1) + 1 = m(n− 1) + 1.

Since H = (Hϕ−1)ϕ yields rk(H) ≤ rk(Hϕ−1), we are done. �

Note that this bound is tight in view of (2).
Now we can prove the following result:

Theorem 3.2 Let G be a finite extension of a strongly Howson group F and let m = [G : F ]. Then
G is strongly Howson and

(n1, n2)ξG ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξF +m− 1

for all n1, n2 ≥ 1.

Proof. Let H1, H2 ≤ G with rk(Hj) ≤ nj for j = 1, 2. We must show that

rk(H1 ∩H2) ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξF +m− 1. (10)

By Proposition 2.1, for j = 1, 2 we may write

Hj = Kj ∪ (
⋃
i∈Ij

Kjx
(j)
i bi)

with Kj = Hj ∩ F , Ij ⊆ {2, . . . ,m} and x
(j)
i ∈ F (i ∈ Ij).

For all h, h′ ∈ Hj ,

Fh = Fh′ ⇒ h′h−1 ∈ F ⇒ h′h−1 ∈ Hj ∩ F = Kj ⇒ Kjh = Kjh
′,
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hence
[Hj : Kj ] ≤ [G : F ] = m

and Proposition 3.1 yields

rk(Kj) ≤ m(rk(Hj)− 1) + 1 ≤ m(nj − 1) + 1. (11)

On the other hand, writing K = K1 ∩K2 = H1 ∩H2 ∩ F , it follows from Proposition 2.1 that

H1 ∩H2 = K ∪ (
⋃
i∈I

Kyibi)

for some I ⊆ {2, . . . ,m} and yi ∈ F (i ∈ I). Since

H1 ∩H2 = 〈K ∪ {yibi | i ∈ I}〉,

we get
rk(H1 ∩H2) ≤ rk(K) + |I| ≤ rk(K) +m− 1. (12)

In view of (11), we get
rk(K) ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξF

and so (12) yields

rk(H1 ∩H2) ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξF +m− 1.

Therefore (10) holds as required. �

We apply Theorem 3.2 to some classes of groups, starting with the straightforward virtually free
case:
Corollary 3.3 Let G be a virtually free group with a free subgroup F of index m. Then G is strongly
Howson and

(n1, n2)ξG ≤ m2(n1 − 1)(n2 − 1) +m

for all n1, n2 ≥ 1.

Proof. By Theorem 1.1, we have

(k1, k2)ξF ≤ (k1 − 1)(k2 − 1) + 1

for all k1, k2 ≥ 1. By Theorem 3.2, we get

(n1, n2)ξG ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξF +m− 1 ≤ (m(n1 − 1))(m(n2 − 1)) +m
=m2(n1 − 1)(n2 − 1) +m

In particular, G is strongly Howson. �
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In a recent paper, Zakharov proved the following theorem:
Theorem 3.4 [33, Theorem 2] Let G be a virtually free group and let H1, H2 ≤ G be finitely gener-
ated, free and nontrivial. Then

rk(H1 ∩H2) ≤ 6n(rk(H1)− 1)(rk(H2)− 1) + 1,

where n is the maximum of orders |P ∩ (H1H2)| over all finite subgroups P of G. As a consequence,

rk(H1 ∩H2) ≤ 6m(rk(H1)− 1)(rk(H2)− 1) + 1

if G has a free subgroup of index m.
How does the upper bound arising from Corolllary 3.3 compare with the upper bounds in Theorem

3.4? In general, for arbitrary free subgroups, the bounds in Theorem 3.4 are smaller since they are
linear on m and ours are quadratic. However, we claim that our bound is actually smaller than the
second bound in Theorem 3.4 if m ≤ 5 and H1, H2 are noncyclic (if H1 or H2 is cyclic, so is H1 ∩H2

and we have a trivial case anyway). Indeed, the product p = (rk(H1)−1)(rk(H2)−1) is then positive
and so

m2(rk(H1)− 1)(rk(H2)− 1) +m < 6m(rk(H1)− 1)(rk(H2)− 1) + 1
⇔m2p+m ≤ 6mp⇔ mp+ 1 ≤ 6p⇔ mp < 6p⇔ m < 6.

The following example shows that our bound may also beat the first bound provided by Theorem
3.4:
Example 3.5 Let A = {a, b, c} and let C2 be a cyclic group of order 2. Let G = FA × C2 and

H1 = 〈(a, 1), (bc, 1)〉, H2 = 〈(ab, 1), (c, 0)〉.

Then:

(i) H1 and H2 are free subgroups of rank 2 of the virtually free group G;

(ii) Theorem 3.4 provides the upper bound rk(H1 ∩H2) ≤ 13;

(iii) Theorem 3.2 provides the upper bound rk(H1 ∩H2) ≤ 6;

(iii) actually, rk(H1 ∩H2) = 1.

Indeed, FA × {0} is a free subgroup of index 2 of G, hence G is virtually free.
It is easy to see that projecting H1 into its first component we get a free group with basis {a, bc},

and we can deduce from that fact that H1 is itself free of rank 2. Similarly, H2 is free of rank 2.
Let P = {1} × C2 ≤ G. It is easy to check that |P ∩H1H2| = 2, e.g.

(1, 1) = (a, 1)(bc, 1)(c, 0)−1(ab, 1)−1 ∈ H1H2

and so we get the upper bound rk(H1 ∩ H2) ≤ 13 from Theorem 3.4. On the other hand, it is
immediate that Corollary 3.3 yields the upper bound rk(H1 ∩H2) ≤ 6.

Finally, with the help of the standard algorithm to compute a basis for the intersection in free
groups [14, Proposition 9.4], it is easy to check that

〈a, bc〉 ∩ 〈ab, c〉 = 〈abc〉.
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It follows easily that
H1 ∩H2 = 〈((abc)2, 0)〉

and so rk(H1 ∩H2) = 1.

We present further applications of Theorem 3.2:
Corollary 3.6 Let G be a virtually polycyclic group. Then G is strongly Howson and ξG is a bounded
function.

Proof. Let P be a polycyclic subgroup of G of index m. Let n = prk(G). By (6), we have

(n1, n2)ξP ≤ n

for all n1, n2 ∈ N. By Theorem 3.2, we get (n1, n2)ξG ≤ n + m − 1 for all n1, n2 ≥ 1. Thus ξG is
bounded and G is strongly Howson. �

The general virtually nilpotent case is a bit harder. Note that a non finitely generated nilpotent
group is not polycyclic.
Theorem 3.7 Let G be a virtually nilpotent group. Then G is strongly Howson and

(n1, n2)ξG ≤
(m(p− 1) + 1)n+1 −m(p− 1)− 1

m(p− 1)
+m− 1

for all n1, n2 ≥ 2 and p = min{n1, n2}.

Proof. Suppose that N is a nilpotent group of class n and rank k ≥ 2. We claim that

rk(H) ≤ kn+1 − k
k − 1

(13)

for every H ≤ N .
Let

N = N0 BN1 B . . .BNn = {1} (14)

be the lower central series of N . By [9, Corollary 10.3], we have

rk(Ni−1/Ni) ≤ ki (15)

for i = 1, . . . , n. Since [Ni−1, Ni−1] ⊆ [N,Ni−1] = Ni, the quotient Ni−1/Ni is abelian. By (15),
there exist x1, . . . , xki ∈ Ni−1 such that

Ni−1/Ni = 〈x1Ni, . . . xkiNi〉.

Let πi : Ni−1 → Ni−1/Ni be the canonical projection. For j = 0, . . . , ki, let

Ni,j = 〈x1Ni, . . . xjNi〉π−1
i .

Since 〈x1Ni, . . . xj−1Ni〉E 〈x1Ni, . . . xjNi〉 due to Ni−1/Ni being abelian, we get Ni,j−1ENi,j and so
we have a chain

Ni−1 = Ni,ki D . . .DNi,1 DNi,0 = Ni. (16)
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Moreover,

Ni,j/Ni,j−1 = 〈x1Ni, . . . xjNi〉π−1
i / 〈x1Ni, . . . xj−1Ni〉π−1

i
∼= 〈x1Ni, . . . xjNi〉/〈x1Ni, . . . xj−1Ni〉

and is therefore cyclic since Ni−1/Ni is abelian.
Inserting the chains (16) into (14), we obtain a subnormal series for N with length

k + k2 + . . .+ kn =
kn+1 − k
k − 1

and cyclic quotients. In particular, N is polycyclic. Now (13) follows from (6).
Assume now that N is a nilpotent subgroup of G of class n and index m. Let n1, n2 ≥ 2 and

suppose that H1, H2 ≤ N are such that rk(Hj) ≤ nj for j = 1, 2. Since each Hj is also nilpotent of
class ≤ n and H1 ∩H2 ≤ Hj , (13) yields

rk(H1 ∩H2) ≤
nn+1
j − nj
nj − 1

and so, writing p = min{n1, n2}, we get

(n1, n2)ξN ≤ p+ p2 + . . .+ pn =
pn+1 − p
p− 1

.

In particular, N is strongly Howson and we may apply Theorem 3.2 to get

(n1, n2)ξG ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξN +m− 1.

Since min{m(n1 − 1) + 1,m(n2 − 1) + 1} = m(p− 1) + 1, we get

(n1, n2)ξG ≤
(m(p− 1) + 1)n+1 −m(p− 1)− 1

m(p− 1)
+m− 1.

�

Our last application involves graphs of groups, but first we deal with the following particular
case:
Theorem 3.8 Let G = S1 ∗ . . . ∗ St be a free product of strongly polycyclic groups and let M =
max{h(S1), . . . , h(St)}. Then G is strongly Howson and

(n1, n2)ξG ≤M(n1 − 1)(n2 − 1) +M

for all n1, n2 ≥ 1.

Proof. In view of (6), we have rk(L) ≤M for all i ∈ {1, . . . , t} and L ≤ Si.
By the Kurosh subgroup theorem, every subgroup H ≤ G is isomorphic to a free product of the

form
(∗j∈JLj) ∗ FA,

where each Lj is the intersection of H with some conjugate of some Si. The Kurosh rank of H is
defined by

Krk(H) = |J |+ |A|.
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It follows from Grushko Theorem on the additivity of ranks in free products [8] that

Krk(H) ≤ rk(H). (17)

In general finite Kurosh rank does not imply finite rank. But in the present case, since rk(Lj) ≤M
for every j ∈ J , we have

rk(H) ≤
∑
j∈J

rk(Lj) + |A| ≤M |J |+ |A| ≤MKrk(H). (18)

Let Hj ≤ G satisfy rk(Hj) ≤ nj for j = 1, 2. We may assume that H1 ∩H2 is nontrivial. Now
(17) yields Krk(Hj) ≤ rk(Hj) ≤ nj . Since strongly polycyclic groups are right-orderable [22], it
follows from [1, Theorem A] that

Krk(H1 ∩H2) ≤ (Krk(H1)− 1)(Krk(H2)− 1) + 1.

Hence (17) and (18) yield

rk(H1 ∩H2)≤MKrk(H1 ∩H2) ≤M(Krk(H1)− 1)(Krk(H2)− 1) +M
≤M(rk(H1)− 1)(rk(H2)− 1) +M ≤M(n1 − 1)(n2 − 1) +M.

�

Now we prove the following lemma:
Lemma 3.9 Let G be the fundamental group of a finite graph of groups G with finite edge groups.

(i) If G has virtually polycyclic vertex groups, then G has a finite index normal subgroup which is
a finitary free product of strongly polycyclic groups.

(ii) If G has finitely generated virtually nilpotent vertex groups, then G has a finite index normal
subgroup which is a finitary free product of finitely generated nilpotent groups.

Proof. (i) Let
G = ((Gv)v∈V , (Ge)e∈E , (αe)e∈E)

be such a graph of groups, built over the finite connected graph

Γ = (V,E, α, )̄.

Fix a spanning tree T of Γ and let G = π1(G, T ). Since polycyclic groups are residually finite, it
follows that each vertex group Gv is residually finite. Now the class of residually finite groups is closed
under amalgamated free products with finite amalgamated subgroups and under HNN extensions
with finite associated subgroups [3, 6]. Since Γ is a finite graph, we may use the decomposition of G
in terms of HNN extensions and amalgamated products over the finite edge groups to deduce that
G is itself residually finite.

Let
X = (

⋃
e∈E

Geαe) \ {1} ⊆ G \ {1}
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consist of the image of the edge groups in G through the boundary monomorphisms, with the
identity removed. Since both the graph and the edge groups are finite, so is X. Let x ∈ X. Since G
is residually finite, there exists some Nx CG of finite index such that x /∈ Nx. Let

N =
⋂
x∈X

Nx.

Since X is finite, N is still a normal subgroup of G of finite index.
By [15, Corollary 2], since G is the fundamental group of a finite graph of groups with finite

edge groups, every finite index H ≤ G is itself the fundamental group of a finite graph of groups GH
where:

• the vertex groups are conjugates of subgroups of the form H ∩ yGvy−1 (v ∈ V, y ∈ G);

• the edge groups are conjugates of subgroups of the form H ∩ y(Geαe)y−1 (e ∈ E, y ∈ G).

We consider now the case H = N . Since N ∩X = ∅ by construction, we have N ∩ Geαe = {1}
for every e ∈ E. Since N is normal, we get

N ∩ y(Geαe)y−1 = y(y−1Ny ∩Geαe)y−1 = y(N ∩Geαe)y−1 = 1.

Thus GN has trivial edge groups.
On the other hand, if G′ has a polycyclic subgroup F ′ of index m and H ′ ≤ G′, it follows from

Proposition 2.1 that [H ′ : H ′ ∩ F ′] ≤ m. Since H ′ ∩ F ′ must be itself polycyclic, H ′ is virtually
polycyclic as well.

Thus each group H ∩ yGvy−1 is virtually polycyclic and so GN has virtually polycyclic vertex
groups.

But then N , being the fundamental group of GN , is a free product of finitely many virtually
polycyclic groups and a free group of finite rank. Since a free group of finite rank is the free product
of finitely many cyclic groups (hence polycyclic), it follows that N is indeed a free product of finitely
many virtually polycyclic groups, say N = K1 ∗ . . . ∗Kt, with the Ki nontrivial.

Since Ki is indeed virtually strongly polycyclic for each i, it contains a strongly polycyclic sub-
group Pi of finite index for i = 1, . . . , t. Since a subgroup of Pi must be still strongly polycyclic, we
may assume that Pi EKi. Let

ϕ : N → K1/P1 × . . .×Kt/Pt

be the canonical epimorphism. Then Ker (ϕ) is a finite index subgroup of N . Since [G : N ] <∞, we
have [G : Ker (ϕ)] <∞ as well. Let

Q =
⋂
g∈G

g(Ker (ϕ))g−1.

Since [G : Ker (ϕ)] <∞, Q is a finite index normal subgroup of G.
Since Q ⊆ N = K1 ∗ . . . ∗ Kt, it follows from the Kurosh subgroup theorem [17] that Q is

isomorphic to a free product of the form

(∗j∈JLj) ∗ FA,
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where each Lj is the intersection of Q with some conjugate of some Ki. Now Lj = Q ∩ yjKiy
−1
j

implies

Lj = yj(y−1
j Qyj ∩Ki)y−1

j = yj(Q ∩Ki)y−1
j ⊆ yj(Ker (ϕ) ∩Ki)y−1

j ⊆ yjPiy
−1
j

and so Lj , being a subgroup of a strongly polycyclic group, is also strongly polycyclic. Since FA is
a free product of cyclic groups, it follows that Q is a finite index normal subgroup of G which is a
free product of strongly polycyclic groups.

(ii) Each vertex group is a finite extension of a finitely generated nilpotent group, therefore the
vertex groups are virtually polycyclic. Thus we only need to perform minimal adaptations to the
proof of (i) which we proceed to enhance:

• Since the class of nilpotent groups is closed under taking subgroups, the same happens with the
class of finitely generated nilpotent groups (since they are polycyclic and in view of (6)) and
therefore with the class of finitely generated virtually nilpotent groups (in view of Proposition
2.1). Thus GN has finitely generated virtually nilpotent vertex groups.

• N is the free product of finitely many finitely generated virtually nilpotent groups and a free
group of finite rank. Since Z is nilpotent, then N is the free product of finitely many finitely
generated virtually nilpotent groups.

• We choose the Pi to be finitely generated nilpotent. The free factors of Q are then finitely
generated nilpotent groups.

�

We can finally prove the following:
Theorem 3.10 Let G be the fundamental group of a finite graph of groups with virtually polycyclic
vertex groups and finite edge groups. Then G is strongly Howson and there exists some constant
M > 0 such that:

(n1, n2)ξG ≤M(n1 − 1)(n1 − 1) +M

for all n1, n2 ≥ 1.

Proof. By Lemma 3.9(i), G has a finite index normal subgroup F which is a finitary free product
of strongly polycyclic groups. By Theorem 3.8, there exists a constant M ′ > 0 such that

(n1, n2)ξF ≤M ′(n1 − 1)(n2 − 1) +M ′

for all n1, n2 ≥ 1. Let m = [G : F ] and M = M ′m2. By Theorem 3.2, we get

(n1, n2)ξG ≤ (m(n1 − 1) + 1,m(n2 − 1) + 1)ξF +m− 1
≤M ′(m(n1 − 1))(m(n2 − 1)) +M ′ +m− 1
=M ′m2(n1 − 1)(n1 − 1) +M ′ +m− 1
≤M(n1 − 1)(n1 − 1) +M

and we are done. �
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4 Takahasi’s Theorem

We recall, from the introduction, that a group G is a Takahasi group if every ascending chain

H1 ≤ H2 ≤ H3 ≤ . . .

of finitely generated subgroups of G with bounded rank is stationary.
Clearly, every subgroup of a Takahasi group is itself a Takahasi group. We can prove the following

partial converse:
Theorem 4.1 Every finite extension of a Takahasi group is a Takahasi group.

Proof. Let G have a Takahasi subgroup F of index m and let H1 ≤ H2 ≤ . . . be an ascending chain
of subgroups of G with rk(Hj) ≤ r for every j ≥ 1.

We may assume that G has a standard decomposition (3). Write Kj = Hj ∩ F . By Proposition
2.1, there exist Ij ⊆ {2, . . . ,m} and x

(j)
i ∈ F (i ∈ Ij) such that

Hj = Kj ∪ (
⋃
i∈Ij

Kjx
(j)
i bi). (19)

Hence we have an ascending chain K1 ≤ K2 ≤ . . . of subgroups of F . By (19), we have [Hj : Kj ] ≤ m
for every j ≥ 1. Since rk(Hj) ≤ r, it follows from Proposition 3.1 that

rk(Kj) ≤ m(r − 1) + 1.

Since F is a Takahasi group, there exists some p ∈ N such that Kp = Kp+1 = . . ..
On the other hand, we have necessarily

I1 ⊆ I2 ⊆ . . . ⊆ {2, . . . ,m},

hence there exists some q ≥ p and some I ⊆ {2, . . . ,m} such that

Hj = Kp ∪ (
⋃
i∈I

Kpx
(j)
i bi)

for every j ≥ q. Moreover, for every i ∈ I, we have

Kpx
(q)
i ⊆ Kpx

(q+1)
i ⊆ . . .

Since two right cosets Kpx,Kpy must be disjoint or equal, we get Kpx
(q)
i = Kpx

(q+1)
i = . . . and so

Hq = Hq+1 = . . . �

In view of Theorem 1.2, we immediately get:
Corollary 4.2 Every virtually free group is a Takahasi group.

We note that, if we fix H1, the length of a chain H1 ≤ H2 ≤ . . . with subgroups of equal rank
cannot be bounded, even in the free group case:
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Example 4.3 Let A = {a, b, c, d, e} and let F be the free group on A. Let

H1 = 〈acb−1, ac−1b−1, adb−1, ad−1b−1〉.

Fix n ≥ 2 and define
Hi = 〈H1, ab

−1, ae2n−i
b−1〉

for i = 2, . . . , n. Then
H1 < H2 < . . . < Hn

and all subgroups Hi have rank 4.
Indeed, the Stallings automata of the Hi are of the form

◦OO
c d

��
•

b
//

a

55kkkkkkkkkkkkkkkkkk ◦ •
b

a // ◦
e2

n−i

pp

c

��

d

PP

S(H1) S(Hi) (i > 2)

It follows easily from (1) that H1 < H2 < . . . < Hn. On the other hand, (2) yields rk(H1) = 6−3+1
and

rk(Hi) = (4 + 2n−i)− (1 + 2n−i) + 1 = 4

for i = 2, . . . , n.

In the free group case, bounds can be obtained in relation with concepts such as fringe, overgroup
or algebraic extension (see [19]), but it is not clear how they could be efficiently generalized to more
general classes of groups.

We present now another application of Theorem 4.1 which generalizes Corollary 4.2:
Corollary 4.4 The fundamental group of a finite graph of groups with virtually polycyclic vertex
groups and finite edge groups is a Takahasi group.

Proof. Let G be such a group. By Lemma 3.9(i), there exists a finite index N EG which is a free
product of strongly polycyclic groups. Since G is finitely generated, it follows from Proposition 3.1
that N is also finitely generated. By Grushko Theorem, we may write N = S1 ∗ . . . ∗ St for some
strongly polycyclic groups S1, . . . , St.

Since every subgroup of a polycyclic group is finitely generated by (6), it follows from [30, Corol-
lary 6.3] that every ascending chain of subgroups of bounded Kurosh rank of a free product of
polycyclic groups is stationary.

Now every ascending chain of subgroups of bounded rank of N = S1 ∗ . . . ∗ St has also bounded
Kurosh rank by (17) and is therefore stationary. Thus N is a Takahasi group. By Theorem 4.1, G
is also a Takahasi group. �
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5 Periodic subgroups

In this section we combine Theorem 4.1 with theorems on fixed subgroups to get results on the
periodic subgroups.

Given a group G, we denote by End(G) the endomorphism monoid of G. Given ϕ ∈ End(G), the
fixed subgroup of ϕ is defined by

Fix(ϕ) = {x ∈ G | xϕ = x}

and the periodic subgroup of ϕ is defined by

Per(ϕ) =
⋃
n≥1

Fix(ϕn).

Given x ∈ Per(ϕ), the period of x is the least n ≥ 1 such that xϕn = x.
Theorem 5.1 Let G be the fundamental group of a finite graph of groups with finitely generated
virtually nilpotent vertex groups and finite edge groups. Then there exists a constant M > 0 such
that

rk(Per(ϕ)) ≤M

for every ϕ ∈ End(G).

Proof. By Lemma 3.9(ii), G has a finite index normal subgroup N which is a finitary free product
of finitely generated nilpotent groups, say N = K1 ∗ . . . ∗Kt. Let n = [G : N ]. By [12, Lemma 2.2],
the intersection F of all subgroups of G of index ≤ n is a fully invariant subgroup of G, in the sense
that Fϕ ⊆ F for every ϕ ∈ End(G). Moreover, since G is finitely generated, we have [G : F ] < ∞.
Since F ≤ N , it follows from the Kurosh subgroup theorem that F is isomorphic to a free product
of the form

(∗j∈JHj) ∗ FA,

where each Hj is the intersection of F with some conjugate of some Ki. Since G is finitely generated,
it follows from Proposition 3.1 that F is finitely generated and so has finite Kurosh rank by (17).
Similarly to the proof of Lemma 3.9(ii), it follows easily that F is a finitary free product of finitely
generated nilpotent groups, say F = L1 ∗ . . . ∗ Ls. By [29, Theorem 7], we have

Krk(Fix(ψ)) ≤ s

for every ψ ∈ End(F ). Since each Li is polycyclic, it follows from (6) that there exists some constant
M ′ > 0 such that

rk(P ) ≤M ′

for all i ∈ {1, . . . , s} and P ≤ Li. Hence we may apply (18) to get

rk(Fix(ψ)) ≤M ′Krk(Fix(ψ)) ≤M ′s

for every ψ ∈ End(F ).
Write M = M ′s + [G : F ] − 1. Let ϕ ∈ End(G) and let ψ = ϕ|F . Since F is a fully invariant

subgroup of G, we have ψ ∈ End(F ). Moreover, Fix(ϕ) ∩ F = Fix(ψ). By Proposition 2.1, we get

[Fix(ϕ) : Fix(ψ)] = [Fix(ϕ) : Fix(ϕ) ∩ F ] ≤ [G : F ],
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hence
rk(Fix(ϕ)) ≤ rk(Fix(ψ)) + [G : F ]− 1 ≤M ′s+ [G : F ]− 1 = M. (20)

We note that
m|m′ ⇒ Fix(ϕm) ≤ Fix(ϕm

′
) (21)

for all m,m′ ≥ 1: Indeed, if m′ = mk and u ∈ Fix(ϕm), then

uϕm
′

= uϕmk = uϕmϕm(k−1) = uϕm(k−1) = . . . = uϕm = u

and so u ∈ Fix(ϕm
′
).

Hence we have an ascending chain of subgroups of G of the form

Fix(ϕ) ≤ Fix(ϕ2!) ≤ Fix(ϕ3!) ≤ . . .

By (20), we have rk(Fix(ϕm!)) ≤M for every m ≥ 1. Since every finitely generated nilpotent group
is polycyclic, G is a Takahasi group by Corollary 4.4 and so there exists some k ≥ 1 such that
Fix(ϕm!) = Fix(ϕk!) for every m ≥ k. In view of (21), we get

Per(ϕ) =
⋃
m≥1

Fix(ϕm) =
⋃
m≥1

Fix(ϕm!) = Fix(ϕk!).

Therefore rk(Per(ϕ)) = rk(Fix(ϕk!)) ≤M by (20). �

Corollary 5.2 Let G be the fundamental group of a finite graph of groups with finitely generated
virtually nilpotent vertex groups and finite edge groups. Let ϕ ∈ End(G). Then there exists a constant
Rϕ > 0 such that every x ∈ Per(ϕ) has period ≤ Rϕ.

Proof. By Theorem 5.1, we have rk(Per(ϕ)) < ∞. Assume that Per(ϕ) = 〈x1, . . . , xr〉. Let Rϕ
denote the least common multiple of the periods of the elements x1, . . . , xr. Let x ∈ Per(ϕ). Then
there exist i1, . . . , in ∈ {1, . . . , r} and ε1, . . . , εn ∈ {−1, 1} such that x = xε1i1 . . . x

εn
in

. It follows that

xϕRϕ = (xε1i1 . . . x
εn
in

)ϕRϕ = (xi1ϕ
Rϕ)ε1 . . . (xinϕRϕ)εn

= xε1i1 . . . x
εn
in

= x,

hence x has period ≤ Rϕ. �

Note that, in particular, the preceding results hold for finitely generated virtually free groups.
We remark also that we cannot get any analogue of Theorem 5.1 involving direct products. In

fact, by [23, Theorem 4.1], there exist automorphisms ϕ of F2 × Z such that neither Fix(ϕ) nor
Per(ϕ) is finitely generated.
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