
SINGULAR-HYPERBOLIC ATTRACTORS ARE CHAOTIC

V. ARAUJO, M. J. PACIFICO, E. R. PUJALS, M. VIANA

ABSTRACT. We prove that a singular-hyperbolic (or Lorenz-like) attractor of a 3-dimensional
flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain
close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there
exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin
covers a full Lebesgue (volume) measure subset of the topological basin of attraction. Moreover
this measure has absolutely continuous conditional measures along the center-unstable direction,
is a u-Gibbs state and an equilibrium state for the logarithm of the Jacobian of the time one map
of the flow along the strong-unstable direction. In particular these results show that both the flow
defined by the Lorenz equations and the geometric Lorenz flows are expansive and have physical
measures which are u-Gibbs states.

1. INTRODUCTION

The uniform hyperbolic theory of Dynamical Systems was introduced in the 60’s by Smale [36]
and became the cornerstone of the development of the Qualitative Theory of Differential Equa-
tions since. However this theory leaves out large families of systems which do not conform with
the basic assumptions of uniform hyperbolicity. The most representative example of such sys-
tems are arguably the Hénon map [14], for the discrete time case, and the Lorenz flow [22], for
the continuous time case.

The properties displayed by the flow of the Lorenz equations prompted the search for a exten-
sion of the notion of uniform hyperbolicity encompassing time continuous systems presenting
equilibria accumulated in a robust way by regular orbits. This lead to the concept of singular-
hyperbolic sets [30, 26].

The notion of singular-hyperbolic attractor is motivated by the classical construction of so-
called geometric Lorenz models in [12, 1, 13, 41]. It was shown in [30, 26] that any attractor of
a 3-dimensional flow containing in a robust fashion equilibria together with regular orbits must
be singular-hyperbolic, that is, it must admit an invariant splitting E s⊕Ecu of the tangent bundle
into a 1-dimensional uniformly contracting sub-bundle and a 2-dimensional volume-expanding
sub-bundle.

Once this was settled, it is natural to ask how much of the properties shared by hyperbolic
systems can be pushed for this new class of sets. Some of the topological features of hyperbolic
systems were already extended for this new class [27, 9, 25, 29, 30, 28, 5].
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Here we complement the previous conclusions by showing that singular-hyperbolicity implies
the main geometric and ergodic features of the classical models. Namely, we are able to construct
convenient cross-sections and invariant contracting foliations for a corresponding Poincaré map,
that allow us to reduce the flow dynamics to a 1-dimensional transformation. This transformation
is uniformly expanding, due to volume-expansiveness of the flow along E cu, and so its geometric
and ergodic properties can be well understood.

As a consequence, we prove that the flow is expansive on the attractor, in a sense introduced
by Komuro [20], that we recall in the sequel. Another main result, extending [10], is that typical
orbits in the basin of the attractor have a well-defined statistical behavior: for Lebesgue almost
every point the forward Birkhoff time average converges, and is given by a physical probability
measure. Moreover we show that this measure admits absolutely continuous conditional mea-
sures along the center-unstable directions on the attractor. As a consequence this measure is a
u-Gibbs state and an equilibrium state for the logarithm of the unstable Jacobian on the attractor.

The flow of the Lorenz equation [22] and the geometric Lorenz flows [12, 1, 13, 41] are
known to display singular-hyperbolic attractors [37, 27, 38]. Hence in particular we show that
the attractors for the geometric Lorenz flow and for the Lorenz equations are expansive and have
a physical measure whose ergodic basin is a full Lebesgue measure subset of the topological
basin of attraction. Let us give the precise statements of these results.

1.1. Singular-hyperbolicity. Throughout, M is a compact boundaryless 3-dimensional mani-
fold and X 1(M) is the set of C1 vector fields on M, endowed with the C1 topology. From now
on we fix some smooth Riemannian structure on M and an induced normalized volume form
m that we call Lebesgue measure. We write also dist for the induced distance on M. Given
X ∈ X 1(M), we denote by Xt , t ∈ R the flow induced by X , and if x ∈ M and [a,b] ⊂ R then
X[a,b](x) = {Xt(x),a ≤ t ≤ b}.

Let Λ be a compact invariant set Λ of X ∈ X 1(M). We say that Λ is isolated if there exists an
open set U ⊃ Λ such that

Λ =
\

t∈R

Xt(U)

If U above can be chosen such that Xt(U) ⊂U for t > 0, we say that Λ is an attracting set. The
topological basin of an attracting set Λ is the set

W s(Λ) = {x ∈ M : lim
t→+∞

dist
(

Xt(x),Λ
)

= 0}.

We say that an attracting set Λ is transitive if it coincides with the ω-limit set of a regular X -orbit.
An attractor is a transitive attracting set, and a repeller is an attractor for the reversed vector field
−X . An attractor, or repeller, is proper if it is not the whole manifold. An invariant set of X is
non-trivial if it is neither a periodic orbit nor a singularity.

Definition 1.1. Let Λ be a compact invariant set of X ∈ X r(M) , c > 0, and 0 < λ < 1. We
say that Λ has a (c,λ)-dominated splitting if the bundle over Λ can be written as a continuous
DXt-invariant sum of sub-bundles

TΛM = E1 ⊕E2,
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such that for every t > 0 and every x ∈ Λ, we have
(1) ‖DXt | E1

x ‖ · ‖DX−t | E2
Xt(x)‖ < cλt .

The domination condition (1) implies that the direction of the flow is contained in one of the
sub-bundles.

We stress that we only deal with flows in dimension 3. In all that follows, the first sub-bundle
E1 will be one-dimensional, and the flow direction will be contained in the second sub-bundle
E2, that we call central direction and denote by Ecu.

We say that a X -invariant subset Λ of M is partially hyperbolic if it has a (c,λ)-dominated
splitting, for some c > 0 and λ ∈ (0,1), such that the sub-bundle E1 = Es is uniformly contract-
ing: for every t > 0 and every x ∈ Λ we have

‖DXt | Es
x‖ < cλt .

For x ∈ Λ and t ∈ R we let Jc
t (x) be the absolute value of the determinant of the linear map

DXt | Ecu
x : Ecu

x → Ecu
Xt(x).

We say that the sub-bundle Ecu
Λ of the partially hyperbolic invariant set Λ is volume expanding if

Jc
t (x) ≥ ce−λt for every x ∈ Λ and t ≥ 0. In this case we say that Ecu

Λ is (c,λ)-volume expanding
to indicate the dependence on c,λ.

Definition 1.2. Let Λ be a compact invariant set of X ∈ X r(M) with singularities. We say that
Λ is a singular-hyperbolic set for X if all the singularities of Λ are hyperbolic, and Λ is partially
hyperbolic with volume expanding central direction.

1.2. Expansiveness. The flow is sensitive to initial data if there is δ > 0 such that, for any x ∈ M
and any neighborhood N of x, there is y ∈ N and t ≥ 0 such that dist(Xt(x),Xt(y)) > δ.

We shall work with a much stronger property, called expansiveness. Denote by S(R) the set
of surjective increasing continuous functions h : R → R. We say that the flow is expansive if for
every ε > 0 there is δ > 0 such that, for any h ∈ S(R), if

dist(Xt(x),Xh(t)(y)) ≤ δ for all t ∈ R,

then Xh(t0)(y) ∈ X[t0−ε,t0+ε](x), for some t0 ∈ R. We say that an invariant compact set Λ is expan-
sive if the restriction of Xt to Λ is an expansive flow.

This notion was proposed by Komuro in [20], and he called it K∗-expansiveness. He proved
that a geometric Lorenz attractor is expansive in this sense. Our first main result generalizes this
to any singular-hyperbolic attractor.

Theorem A. Let Λ be a singular-hyperbolic attractor of X ∈ X 1(M). Then Λ is expansive.

An immediate consequence of this theorem is the following

Corollary 1. A singular-hyperbolic attractor of a 3-flow is sensitive to initial data.

A stronger notion of expansiveness has been proposed by Bowen-Walters [8]. In it one con-
siders continuous maps h : R → R with h(0) = 0, instead. This turns out to be unsuitable when
dealing with singular sets, because it implies that all singularities are isolated [8, Lemma 1]. An



4 V. ARAUJO, M. J. PACIFICO, E. R. PUJALS, M. VIANA

intermediate definition was also proposed by Keynes-Sears [18]: the set of maps is the same as
in [20], but they require t0 = 0. Komuro [20] shows that a geometric Lorenz attractor does not
satisfy this condition.

1.3. Physical or SRB measures. An invariant probability µ is a physical measure for the flow
Xt , t ∈ R if the set B(µ) of points z ∈ M satisfying

lim
T→+∞

1
T

Z T

0
ϕ
(

Xt(z)
)

dt =

Z

ϕdµ for all continuous ϕ : M → R

has positive Lebesgue measure: m
(

B(µ)
)

> 0. In that case, B(µ) is called the basin of µ.
Physical measures for singular-hyperbolic attractors were recently constructed by Colmenárez.

Here we need to assume that (Xt)t∈R is a flow of class C2 since for the construction of physical
measures a bounded distortion property for one-dimensional maps is needed. These maps are
naturally obtained as quotient maps over the set of stable leaves, which form a C1+α foliation of
a finite number of cross-sections associated to the flow if the flow is C2, see Section 4.

Theorem B. Let Λ be a singular-hyperbolic attractor. Then Λ supports a unique physical prob-
ability measure µ which is ergodic, hyperbolic and its ergodic basin covers a full Lebesgue
measure subset of the topological basin of attraction, i.e. B(µ) = W s(Λ), m mod 0.

This statement extends the main result in Colmenárez [10], where hyperbolicity of the physical
measure was not proved and the author assumed that periodic orbits in Λ exist and are dense.
However in another recent work, Arroyo and Pujals [4] show that every singular-hyperbolic
attractor has a dense set of periodic orbits, so the denseness assumption is no restriction. Here
we give an independent proof of the existence of SRB measures which does not use denseness
of periodic orbits and that enables us to obtain the hyperbolicity of the SRB measure.

Here hyperbolicity means non-uniform hyperbolicity: the tangent bundle over Λ splits into a
sum TzM = Es

z ⊕EX
z ⊕Fz of three one-dimensional invariant subspaces defined for µ-a.e. z ∈ Λ

and depending measurably on the base point z, where µ is the physical measure in the statement
of Theorem B, EX

z is the flow direction (with zero Lyapunov exponent) and Fz is the direction
with positive Lyapunov exponent, that is, for every non-zero vector v ∈ Fz we have

lim
t→+∞

1
t log‖DXt(z) · v‖> 0.

We note that the invariance of the splitting implies that Ecu
z = EX

z ⊕Fz whenever Fz is defined.
For a proof of non-uniform hyperbolicity without using the existence of invariant measures, but
assuming density of periodic orbits, see [10].

Theorem B is another statement of sensitiveness, this time applying to the whole open set
B(Λ). Indeed, since non-zero Lyapunov exponents express that the orbits of infinitesimally close-
by points tend to move apart from each other, this theorem means that most orbits in the basin
of attraction separate under forward iteration. See Kifer [19], and Metzger [24], and references
therein, for previous results about invariant measures and stochastic stability of the geometric
Lorenz models.
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1.4. The physical measure is a u-Gibbs state. In the uniformly hyperbolic setting it is well
known that physical measures for hyperbolic attractors admit a disintegration into conditional
measures along the unstable manifolds of almost every point which are absolutely continuous
with respect to the induced Lebesgue measure on these sub-manifolds, see [6, 7, 34, 39].

Here the existence of unstable manifolds is guaranteed by the hyperbolicity of the physical
measure: the strong-unstable manifolds W uu(z) are the “integral manifolds” in the direction of
the one-dimensional sub-bundle F , tangent to Fz at almost every z ∈ Λ. The sets W uu(z) are
embedded sub-manifolds in a neighborhood of z which, in general, depend only measurably
(including its size) on the base point z ∈ Λ. The strong-unstable manifold is defined by

W uu(z) = {y ∈ M : lim
t→−∞

dist(Xt(y),Xt(z)) = 0}

and exists for almost every z ∈ Λ with respect to the physical and hyperbolic measure obtained
in Theorem B. We remark that since Λ is an attracting set, then W uu(z) ⊂ Λ whenever defined.

The tools developed to prove Theorem B enable us to prove that the physical measure obtained
there has absolutely continuous disintegration along the center-unstable direction. To state this
result precisely we need the following notations.

The uniform contraction along the Es direction ensures the existence of strong-stable one-
dimensional manifolds W ss(x) through every point x ∈ Λ, tangent to E s(x) at x. Using the action
of the flow we define the stable manifold of x ∈ Λ by

W s(x) =
[

t∈R

Xt
(

W ss(x)
)

.

Analogously for µ-a.e. z we can define the unstable-manifold of z by

W u(z) =
[

t∈R

Xt
(

W uu(z)
)

.

We note that Ecu
z is tangent to W u(z) at z for µ-a.e. z. Given x ∈ Λ let S be a smooth surface in M

which is everywhere transverse to the vector field X and x ∈ S, which we call a cross-section of
the flow at x. Let ξ0 be the connected component of W s(x)∩S containing x. Then ξ0 is a smooth
curve in S and we take a parametrization ψ : [−ε,ε]× [−ε,ε]→ S of a compact neighborhood S0
of x in S, for some ε > 0, such that

• ψ(0,0) = x and ψ
(

(−ε,ε)×{0}
)

⊂ ξ0;
• ξ1 = ψ

(

{0}× (−ε,ε)
)

is transverse to ξ0 at x: ξ0 t ξ1 = {x}.
We consider the family Π(S0) of connected components ζ of W u(z)∩ S0 containing z ∈ S0

which cross S0. We say that a curve ζ crosses S0 if it can be written as the graph of a map
ξ1 → ξ0.

Given δ > 0 we let Πδ(x) = {X(δ,δ)(ζ) : ζ ∈ Π(S0)} be a family of surfaces inside unstable
leaves in a neighborhood of x crossing S0. The volume form m induces a volume form mγ on each
γ ∈ Πδ(x) naturally. Moreover, since γ ∈ Πδ(x) is a continuous family of curves (S0 is compact
and each curve is tangent to a continuous sub-bundle Ecu), it forms a measurable partition of
Π̂δ(x) = ∪{γ : γ ∈ Πδ(x)}. We say that Πδ(x) is a δ-adapted foliated neighborhood of x.
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Hence µ | Π̂δ(x) can be disintegrated along the partition Πδ(x) into a family of measures
{µγ}γ∈Πδ(x) such that

µ | Π̂δ(x) =

Z

µγ dµ̂(γ),

where µ̂ is a measure on Πδ(x) defined by

µ̂(A) = µ
(

∪γ∈Aγ
)

for all Borel sets A ⊂ Πδ(x).

We say that µ has an absolutely continuous disintegration along the center-unstable direction if
for every given x ∈ Λ, each δ-adapted foliated neighborhood Πδ(x) of x induces a disintegration
{µγ}γ∈Πδ(x) of µ | Π̂δ(x), for all small enough δ > 0, such that µγ � mγ for µ̂-a.e. γ ∈ Πδ(x) .

Theorem C. Let Λ be a singular-hyperbolic attractor for a C2 three-dimensional flow. Then the
physical measure µ supported in Λ has a disintegration into absolutely continuous conditional
measures µγ along center-unstable surfaces γ ∈ Πδ(x) such that dµγ

dmγ
is uniformly bounded from

above, for all δ-adapted foliated neighborhoods Πδ(x) and every δ > 0. Moreover supp(µ) = Λ .

Remark 1.3. It follows from our arguments that the densities of the conditional measures µγ are
bounded from below away from zero on Λ\B, where B is any neighborhood of the singularities
Sing(X | Λ). In particular the densities tend to zero as we get closer to the singularities of Λ.

The absolute continuity property along the center-unstable sub-bundle given by Theorem C
ensures that

hµ(X1) =

Z

log
∣

∣det(DX1 | Ecu)
∣

∣dµ,

by the characterization of probability measures satisfying the Entropy Formula [21]. The above
integral is the sum of the positive Lyapunov exponents along the sub-bundle E cu by Oseledets
Theorem [23, 40]. Since in the direction Ecu there is only one positive Lyapunov exponent along
the one-dimensional direction Fz, µ-a.e. z, the ergodicity of µ then shows that the following is
true.

Corollary 2. If Λ is a singular-hyperbolic attractor for a C2 three-dimensional flow Xt , then the
physical measure µ supported in Λ satisfies the Entropy Formula

hµ(X1) =

Z

log‖DX1 | Fz‖dµ(z).

Again by the characterization of measures satisfying the Entropy Formula we get that µ has
absolutely continuous disintegration along the strong-unstable direction, along which the Lya-
punov exponent is positive, thus µ is a u-Gibbs state [34]. This also shows that µ is an equilibrium
state for the potential − log‖DX1 | Fz‖ with respect to the diffeomorphism X1. We note that the
entropy hµ(X1) of X1 is the entropy of the flow Xt with respect to the measure µ [40].

Hence we are able to extend most of the basic results on the ergodic theory of hyperbolic
attractors to the setting of singular-hyperbolic attractors.
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1.5. Application to the Lorenz and geometric Lorenz flows. It is well known that geometric
Lorenz flows are transitive and it was proved in [27] that they are singular-hyperbolic attractors.
Then as a consequence of our results we get the following corollary.

Corollary 3. A geometric Lorenz flow is expansive and has a unique physical invariant prob-
ability measure whose basin covers Lebesgue almost every point of the topological basin of
attraction. Moreover this measure is a u-Gibbs state satisfying the Entropy Formula.

Recently Tucker [38] proved that the flow defined by the Lorenz equations [22] exhibits a
singular-hyperbolic attractor. In particular our results then show the following.

Corollary 4. The flow defined by the Lorenz equations is expansive and has a unique physical
invariant probability measure whose basin covers Lebesgue almost every point of the topological
basin of attraction. Moreover this measure is a u-Gibbs state satisfying the Entropy Formula.

This paper is organized as follows. In Section 2 we obtain adapted cross-sections for the flow
near Λ and deduce some hyperbolic properties for the Poincaré return maps between these sec-
tions. Theorem A is proved in Section 3. In Section 4 we reduce the dynamics of the global
Poincaré return map between cross-sections to a one-dimensional piecewise expanding map.
In Section 5 we explain how to construct invariant measures for the Poincaré return map from
invariant measures for the induced one-dimensional map, and also how to obtain invariant mea-
sures for the flow through invariant measures for the Poincaré return map. These abstract results
are applied to obtain a physical measure for a singular-hyperbolic attractor in Section 6, proving
Theorem B. In Section 7 we again use the one-dimensional dynamics and the notion of hyper-
bolic times for the Poincaré return map to prove that the physical measure is a u-Gibbs state and
that supp(µ) = Λ, concluding the proof of Theorem C and of Corollary 2.

2. CROSS-SECTIONS AND POINCARÉ MAPS

The proof of Theorem A is based on analyzing Poincaré return maps of the flow to a convenient
cross-section. In this section we give a few properties of Poincaré maps, that is, continuous maps
R : Σ → Σ′ of the form R(x) = Xt(x)(x) between cross-sections Σ and Σ′. We always assume that
the Poincaré time t(·) is large (Section 2.2). Recall that we assume singular-hyperbolicity.

Firstly, we observe (Section 2.1) that cross-sections have co-dimension 1 foliations which are
dynamically defined: the leaves W s(x,Σ) = W s

loc(x)∩Σ correspond to the intersections with the
stable manifolds of the flow. These leaves are uniformly contracted (Section 2.2) and, assuming
the cross-section is adapted (Section 2.3) the foliation is invariant:

R(W s(x,Σ)) ⊂W s(R(x),Σ′) for all x ∈ Λ∩Σ.

Moreover, R is uniformly expanding in the transverse direction (Section 2.2). In Section 2.4 we
analyze the flow close to singularities, again by means of cross-sections.

2.1. Stable foliations on cross-sections. We begin by recalling a few classical facts about par-
tially hyperbolic systems, especially existence of strong-stable and center-unstable foliations.
The standard reference is [15].
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Hereafter, Λ is a singular-hyperbolic attractor of X ∈ X 1(M) with invariant splitting TΛM =
Es ⊕Ecu with dimEcu = 2. Let Ẽs ⊕ Ẽcu be a continuous extension of this splitting to a small
neighborhood U0 of Λ. For convenience, we take U0 to be forward invariant. Then Ẽs may chosen
invariant under the derivative: just consider at each point the direction formed by those vectors
which are strongly contracted by DXt for positive t. In general, Ẽcu is not invariant. However,
we can always consider a cone field around it on U0

Ccu
a (x) = {v = vs + vcu : vs ∈ Ẽs

x and vu ∈ Ẽcu
x with ‖vs‖ ≤ a · ‖vcu‖}

which is forward invariant for a > 0:

(2) DXt(Ccu
a (x)) ⊂Ccu

a (Xt(x)) for all large t > 0.

Moreover, we may take a > 0 arbitrarily small, reducing U0 if necessary. For notational simplic-
ity, we write Es and Ecu for Ẽs and Ẽcu in all that follows.

The next result asserts that there exist locally strong-stable and center-unstable manifolds,
defined at every regular point x ∈ U0 , which are embedded disks tangent to E s(x) and Ecu(x),
respectively. The strong-stable manifolds are locally invariant. Given any x ∈U0 , define

W ss(x) = {y ∈ M : dist(Xt(x),Xt(y)) → 0 as t → +∞}

W s(x) =
[

t∈R

W s(Xt(x)) =
[

t∈R

Xt(W s(x)).

Given ε > 0, denote Iε = (−ε,ε) and let E1(I1,M) be the set of C1 embedding maps f : I1 → M
endowed with the C1 topology.

Proposition 2.1. (stable and center-unstable manifolds) There are continuous maps φss : U0 →
E1(I1,M) and φcu : U0 → E1(I1× I1,M) such that given any 0 < ε < 1 and x ∈U0, if we denote
W ss

ε (x) = φss(x)(Iε) and W cu
ε (x) = φcu(x)(Iε× Iε),

(a) TxW ss
ε (x) = Es(x);

(b) TxW cu
ε (x) = Ecu(x);

(c) W ss
ε (x) is a neighborhood of x inside W ss(x);

(d) y ∈W ss(x) ⇔ there is T ≥ 0 such that XT (y) ∈W ss
ε (XT (x)) (local invariance);

(e) d(Xt(x),Xt(y)) ≤ c ·λt ·d(x,y) for all t > 0 and all y ∈W ss
ε (x).

The constants c > 0 and λ ∈ (0,1) are taken as in Definition 1.1 and the distance d(x,y) is the
intrinsic distance between two points on the manifold W ss

ε (x), given by the length of the shortest
smooth curve contained in W ss

ε (x) connecting x to y.
Denoting Ecs

x = Es
x ⊕EX

x , where EX
x is the direction of the flow at x, it follows that

TxW ss(x) = Es
x and TxW s(x) = Ecs

x .

We fix ε once and for all. Then we call W ss
ε (x) the local strong-stable manifold and W cu

ε (x) the
local center-unstable manifold of x.

Now let Σ be a cross-section to the flow, that is, a C2 embedded compact disk transverse to X
at every point. For every x ∈ Σ we define W s(x,Σ) to be the connected component of W s(x)∩Σ
that contains x. This defines a foliation Fs

Σ of Σ into co-dimension 1 sub-manifolds of class C1.
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Remark 2.2. Given any cross-section Σ and a point x in its interior, we may always find a smaller
cross-section also with x in its interior and which is the image of the square [0,1]× [0,1] by a C1

diffeomorphism that sends horizontal lines inside leaves of Fs
Σ. So, in what follows we always

assume cross-sections are of the latter kind, see Figure 1. We denote by int(Σ) the image of
(0,1)× (0,1) under the above-mentioned diffeomorphism, which we call the interior of Σ.

We also assume that each cross-section Σ is contained in U0, so that every x ∈ Σ is such that
ω(x) ⊂ Λ.
Remark 2.3. In general, we can not choose the cross-section such that W s(x,Σ) ⊂ W ss

ε (x). The
reason is that we want cross-sections to be C1, whereas x 7→W ss

ε (x) is usually not differentiable.
On the other hand, assuming that the cross-section is small with respect to ε, and choosing any
curve γ ⊂ Σ crossing transversely every leaf of Fs

Σ , we may consider a Poincaré map

RΣ : Σ → Σ(γ) =
[

z∈γ
W ss

ε (z)

with Poincaré time close to zero, see Figure 1. This is a homeomorphism onto its image, close
to the identity, such that RΣ(W s(x,Σ)) ⊂ W ss

ε (RΣ(x)). So, identifying the points of Σ with their
images under this homeomorphism, we may pretend that indeed W s(x,Σ) ⊂ W ss

ε (x). We shall
often do this in the sequel, to avoid cumbersome technicalities.

ΣR

ΣR

ΣR

ΣR

W (x,    )Σ
s

W (x)s

0

1

1

γ

W  (x)ss

Σ

Σ(γ)

x
γ

FIGURE 1. The sections Σ, Σ(γ), the manifolds W s(x),W ss(x), W s(x,Σ) and the
projection RΣ, on the right. On the left, the square [0,1]× [0,1] identified with
Σ, where Fs

Σ becomes the horizontal foliation and the curve γ is transversal to the
horizontal direction. Solid lines with arrows indicate the flow direction.

2.2. Hyperbolicity of Poincaré maps. Let Σ be a small cross-section to X and let R : Σ → Σ′ be
a Poincaré map R(y) = Xt(y)(y) to another cross-section Σ′ (possibly Σ = Σ′). Note that R needs
not correspond to the first time the orbits of Σ encounter Σ′ .

The splitting Es ⊕Ecu over U0 induces a continuous splitting Es
Σ ⊕Ecu

Σ of the tangent bundle
T Σ to Σ (and analogously for Σ′), defined by
(3) Es

Σ(y) = Ecs
y ∩TyΣ and Ecu

Σ (y) = Ecu
y ∩TyΣ.
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We are going to prove that if the Poincaré time t(x) is sufficiently large then (3) defines a hyper-
bolic splitting for the transformation R on the cross-sections, at least restricted to Λ:

Proposition 2.4. Let R : Σ → Σ′ be a Poincaré map as before with Poincaré time t(·). Then
DRx(Es

Σ(x)) = Es
Σ(R(x)) at every x ∈ Σ and DRx(Ecu

Σ (x)) = Ecu
Σ (R(x)) at every x ∈ Λ∩Σ.

Moreover there exists t1 = t1(Σ,Σ′) > 0 such that if t(·) > t1 at every point, then
‖DR | Es

Σ(x)‖ < 1/3 and ‖DR | Ecu
Σ (x)‖ > 3 at every x ∈ Σ.

Remark 2.5. In what follows we use K as a generic notation for large constants depending only
on a lower bound for the angles between the cross-sections and the flow direction, and on upper
and lower bounds for the norm of the vector field on the cross-sections. The conditions on t1
in the proof of the proposition depend only on these bounds as well. In all our applications, all
these angles and norms will be uniformly bounded from zero and infinity, and so both K and t1
may be chosen uniformly.

Proof. The differential of the Poincaré map at any point x ∈ Σ is given by
DR(x) = PR(x) ◦DXt(x) | TxΣ,

where PR(x) is the projection onto TR(x)Σ′ along the direction of X(R(x)) . Note that E s
Σ(x) is

tangent to Σ∩W s(x)⊃W s(x,Σ). Since the stable manifold W s(x) is invariant, we have invariance
of the stable bundle: DR(x)

(

Es
Σ(x)

)

= Es
Σ′

(

R(x)
)

. Moreover for all x ∈ Λ we have

DXt(x)
(

Ecu
Σ (x)

)

⊂ DXt(x)
(

Ecu
x
)

= Ecu
R(x) .

Since PR(x) is the projection along the vector field, it sends Ecu
R(x) to Ecu

Σ′ (R(x)). This proves that
the center-unstable bundle is invariant restricted to Λ, i.e. DR(x)

(

Ecu
Σ (x)

)

= Ecu
Σ′ (R(x)).

Next we prove the expansion and contraction statements. We start by noting that ‖PR(x)‖ ≤ K.
Then we consider the basis {

X(x)
‖X(x)‖ , eu

x} of Ecu
x , where eu

x is a unit vector in the direction of
Ecu

Σ (x). Since the flow direction is invariant, the matrix of DXt | Ecu
x relative to this basis is upper

triangular:

DXt(x) | Ecu
x =

[

‖X(R(x))‖
‖X(x)‖ ?

0 ∆

]

.

Moreover
1
K ·det

(

DXt(x) | Ecu
x
)

≤
‖X(R(x))‖
‖X(x)‖ ∆ ≤ K ·det

(

DXt(x) | Ecu
x
)

.

Then
‖DR(x)eu

x‖ = ‖PR(x)
(

DXt(x)(x) · eu
x
)

‖ = ‖∆ · eu
R(x)‖ = |∆|

≥ K−3 |det(DXt(x) | Ecu
x )| ≥ K−3λ−t(x) ≥ K−3 λ−t1.

Taking t1 large enough we ensure that the latter expression is larger than 3.
To prove ‖DR | Es

Σ(x)‖ < 1/3, let us consider unit vectors es
x ∈ Es

x and ês
x ∈ Es

Σ(x), and write

es
x = ax · ês

x +bx ·
X(x)

‖X(x)‖ .
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Since ^(Es
x,X(x))≥ ^(Es

x,Ecu
x ) and the latter is uniformly bounded from zero, we have |ax| ≥ κ

for some κ > 0 which depends only on the flow. Then

(4)

‖DR(x)es
x‖ = ‖PR(x) ◦

(

DXt(x)(x) · es
x
)

‖

=
1
|ax|

∥

∥

∥

∥

PR(x) ◦
(

DXt(x)(x)
(

es
x −bx

X(x)
‖X(x)‖

)

)

∥

∥

∥

∥

=
1
|ax|

∥

∥PR(x) ◦
(

DXt(x)(x) · ês
x
)
∥

∥≤
K
κ

λt(x) ≤
K
κ

λt1.

Once more it suffices to take t1 large to ensure that the right hand side is less than 1/3. �

Given a cross-section Σ, a positive number ρ, and a point x ∈ Σ, we define the unstable cone
of width ρ at x by
(5) Cu

ρ(x) = {v = vs + vu : vs ∈ Es
Σ(x), vu ∈ Ecu

Σ (x) and ‖vs‖ ≤ ρ‖vu‖}

(we omit the dependence on the cross-section in our notations).
Let ρ > 0 be any small constant. In the following consequence of Proposition 2.4 we assume

the neighborhood U0 has been chose sufficiently small, depending on ρ and on a bound on the
angles between the flow and the cross-sections.

Corollary 2.6. For any R : Σ → Σ′ as in Proposition 2.4, with t(·) > t1 , and any x ∈ Σ, we have

DR(x)(Cu
ρ(x)) ⊂Cu

ρ/2(R(x)) and ‖DRx(v)‖ ≥
5
2
· ‖v‖ for all v ∈Cu

ρ(x).

Proof. Proposition 2.4 immediately implies that DRx(Cu
ρ(x)) is contained in the cone of width

ρ/4 around DR(x)
(

Ecu
Σ (x)

)

relative to the splitting

TR(x)Σ′ = Es
Σ′(R(x))⊕DR(x)

(

Ecu
Σ (x)

)

.

(We recall that Es
Σ is always mapped to Es

Σ′ .) The same is true for Ecu
Σ and Ecu

Σ′ , restricted to Λ.
So the previous observation already gives the conclusion of the first part of the corollary in the
special case of points in the attractor. Moreover to prove the general case we only have to show
that DR(x)

(

Ecu
Σ (x)

)

belongs to a cone of width less than ρ/4 around Ecu
Σ′ (R(x)). This is easily

done with the aid of the flow invariant cone field Ccu
a in (2), as follows. On the one hand,

DXt(x)
(

Ecu
Σ (x)

)

⊂ DXt(x)
(

Ecu
x
)

⊂ DXt(x)
(

Ccu
a (x)

)

⊂Ccu
a (R(x)) .

We note that DR(x)
(

Ecu
Σ (x)

)

= PR(x) ◦DXt(x)
(

Ecu
Σ (x)

)

. Since PR(x) maps Ecu
R(x) to Ecu

Σ′ (R(x)) and
the norms of both PR(x) and its inverse are bounded by some constant K (see Remark 2.5), we
conclude that DR(x)

(

Ecu
Σ (x)

)

is contained in a cone of width b around Ecu
Σ′ (R(x)), where b =

b(a,K) can be made arbitrarily small by reducing a. We keep K bounded, by assuming the
angles between the cross-sections and the flow are bounded from zero and then, reducing U0 if
necessary, we can make a small so that b < ρ/4. This concludes the proof since the expansion
estimate is a trivial consequence of Proposition 2.4. �

By a curve we always mean the image of a compact interval [a,b] by a C1 map. We use `(γ)
to denote its length. By a cu-curve in Σ we mean a curve contained in the cross-section Σ and
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whose tangent direction Tzγ ⊂Cu
ρ(z) for all z ∈ γ. The next lemma says that cu-curves linking the

stable leaves of nearby points must be short.

Lemma 2.7. Let us we assume that ρ has been fixed, sufficiently small. Then there exists a
constant κ such that, for any pair of points x,y ∈ Σ, and any cu-curve joining x to some point of
W s(y,Σ), we have `(γ)≤ κ ·d(x,y).

Here d is the intrinsic distance in the C1 surface Σ.

Proof. We consider coordinates on Σ for which x corresponds to the origin, E cu
Σ (x) corresponds

to the vertical axis, and Es
Σ(x) corresponds to the horizontal axis; through these coordinates we

identify Σ with a subset of its tangent space at x, endowed with the Euclidean metric. In general
this identification is not an isometry, but the distortion is uniformly bounded, and that is taken
care of by the constants C1 and C2 in what follows. The hypothesis that γ is a cu-curve implies

yγ
W  (y,    )

W  (x,    )

s

s
Σ

Σ

x

FIGURE 2. The stable manifolds on the cross-section and the cu-curve γ con-
necting them.

that it is contained in the cone of width C1 ·ρ centered at x. On the other hand, stable leaves are
close to being horizontal. It follows (see Figure 2) that the length of γ is bounded by C2 ·d(x,y).
This proves the lemma with κ = C2 . �

2.3. Adapted cross-sections. The next step is to exhibit stable manifolds for Poincaré trans-
formations R : Σ → Σ′. The natural candidates are the intersections W s(x,Σ) = W s

ε (x)∩ Σ we
introduced previously. These intersections are tangent to the corresponding sub-bundle E s

Σ and
so, by Proposition 2.4, they are contracted by the transformation. For our purposes it is also
important that the stable foliation be invariant:
(6) R(W s(x,Σ)) ⊂W s(R(x),Σ′) for every x ∈ Λ∩Σ.

In order to have this we restrict somewhat our class of cross-sections whose center-unstable
boundary is disjoint from Λ. Recall (Remark 2.2) that we are considering cross-sections Σ that
are diffeomorphic to the square [0,1]× [0,1], with the horizontal lines [0,1]×{η} being mapped
to stable sets W s(y,Σ). The stable boundary ∂sΣ is the image of [0,1]×{0,1}. The center-
unstable boundary ∂cuΣ is the image of {0,1}× [0,1]. The cross-section is δ-adapted if

d(Λ∩Σ,∂cuΣ) > δ,
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where d is the intrinsic distance in Σ. We call horizontal strip of Σ the image h([0,1]× I) for any
compact subinterval I. Notice that every horizontal strip is a δ-adapted cross-section.

In order to prove that adapted cross-sections do exist, we need the following result.

Lemma 2.8. If Λ is a singular-hyperbolic attractor, then every point x ∈ Λ is in the closure of
W ss(x)\Λ.

Proof. The proof is by contradiction. Let us suppose that there exists x ∈ Λ such that x is in the
interior of W ss(x)∩Λ. Let α(x) ⊂ Λ be its α-limit set. Then
(7) W ss(z) ⊂ Λ for every z ∈ α(x),
since any compact part of the strong-stable manifold of z is accumulated by backward iterates of
any small neighborhood of x inside W ss(x). It follows that α(x) does not contain any singularity:
indeed, [30, Theorem B] proves that the strong-stable manifold of each singularity meets Λ only
at the singularity. Therefore by [30, Proposition 1.8] the invariant set α(x) ⊂ Λ is hyperbolic. It
also follows from (7) that the union

S =
[

y∈α(x)∩Λ
W ss(y)

of the strong-stable manifolds through the points of α(x) is contained in Λ. By continuity of the
strong-stable manifolds and the fact that α(x) is a closed set, we get that S is also closed. Using
[30] once more, we see that S does not contain singularities and, thus, is also a hyperbolic set.

We claim that W u(S), the union of the unstable manifolds of the points of S, is an open set. To
prove this, we note that S contains the whole stable manifold W s(z) of every z ∈ S: this is because
S is invariant and contains the strong-stable manifold of z. Now, the union of the strong-unstable
manifolds through the points of W s(z) contains a neighborhood of z. This proves that W u(S) is
a neighborhood of S. Thus the backward orbit of any point in W u(S) must enter the interior of
W u(S). Since the interior is, clearly, an invariant set, this proves that W u(S) is open, as claimed.

Finally, consider any backward dense orbit in Λ (we recall that for us an attractor is transitive
by definition). On the one hand, its α-limit set is the whole Λ. On the other hand, this orbit must
intersect the open set W u(S), and so the α-limit set must be contained in S. This implies that
Λ ⊂ S, which is a contradiction, because Λ contains singularities. �

Corollary 2.9. For any x ∈ Λ there exist points x+ /∈ Λ and x− /∈ Λ in distinct connected compo-
nents of W ss(x)\{x}.

Proof. Otherwise there would exist a whole segment of the strong-stable manifold entirely con-
tained in Λ. Considering any point in the interior of this segment, we would get a contradiction
to Lemma 2.8. �

Lemma 2.10. Let x ∈ Λ be a regular point, that is, such that X(x) 6= 0. Then there exists δ > 0
for which there exists a δ-adapted cross-section Σ at x.

Proof. Fix ε > 0 as in the stable manifold theorem. Any cross-section Σ0 at x sufficiently small
with respect to ε > 0 is foliated by the intersections W s

ε (x)∩ Σ0 . By Corollary 2.9, we may
find points x+ /∈ Λ and x− /∈ Λ in each of the connected components of W s

ε (x)∩Σ0 . Since Λ
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is closed, there are neighborhoods V± of x± disjoint from Λ. Let γ ⊂ Σ0 be some small curve
through x, transverse to W s

ε (x)∩Σ0 . Then we may find a continuous family of segments inside
W s

ε (y)∩Σ0 , y ∈ γ with endpoints contained in V±. The union Σ of these segments is a δ-adapted
cross-section, for some δ > 0, see Figure 3. �

−V
V+

x

Σ0Σ

W s(x, Σ )

δ δ

−x
x+

γ

FIGURE 3. The construction of a δ-adapted cross-section for a regular x ∈ Λ.

We are going to show that if the cross-sections are adapted, then we have the invariance prop-
erty (6). Given Σ,Σ′ ∈ Ξ we set Σ(Σ′) = {x ∈ Σ : R(x) ∈ Σ′} the domain of the return map from
Σ to Σ′.

Lemma 2.11. Given δ > 0 and δ-adapted cross-sections Σ and Σ′, there exists t2 = t2(Σ,Σ′) > 0
such that if R : Σ(Σ′) → Σ′ defined by R(z) = Rt(z)(z) is a Poincaré map with time t(·) > t2, then

(1) R
(

W s(x,Σ)
)

⊂W s(R(x),Σ′) for every x ∈ Σ(Σ′), and also
(2) d(R(y),R(z))≤ 1

2 d(y,z) for every y, z ∈W s(x,Σ) and x ∈ Σ(Σ′).

Proof. This is a simple consequence of the relation (4) from the proof of Proposition 2.4: the
tangent direction to each W s(x,Σ) is contracted at an exponential rate λ

‖DR(x)es
x‖ ≤

K
κ

λt(x).

Choosing t2 sufficiently large we ensure that
1
κ

λt2 · sup{`(W s(x,Σ)) : x ∈ Σ} < δ.

In view of the definition of δ-adapted cross-section this gives part (1) of the lemma. Part (2) is
entirely analogous: it suffices that (K/κ) ·λt2 < 1/2. �

Lemma 2.12. Let Σ be a δ-adapted cross-section. Then, given any r > 0 there exists ρ such that
d(y,z) < ρ ⇒ dist(Xs(y),Xs(z)) < r

for all s > 0, every y, z ∈W s(x,Σ), and every x ∈ Λ∩Σ.

Remark 2.13. Clearly we may choose t2 > t1 . Remark 2.5 applies to t2 as well.
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Proof. Let y and z be as in the statement. As in Remark 2.3, we may find z′ = Xτ(z) in the
intersection of the orbit of z with the strong-stable manifold of y satisfying

1
K ≤

dist(y,z′)
d(y,z) ≤ K and |τ| ≤ K ·d(y,z).

Then, given any s > 0,
dist(Xs(y),Xs(z)) ≤ dist(Xs(y),Xs(z′))+dist(Xs(z′),Xs(z))

≤C · eγs ·dist(y,z′)+dist(Xs+τ(z),Xs(z))
≤ KC · eγs ·d(y,z)+K|τ| ≤

(

KC +K2) ·d(y,z).

Taking ρ < r/(KC +K2) we get the statement of the lemma. �

2.4. Flow boxes of singularities. In this section we collect some known facts about the dynam-
ics near the singularities of the flow. It is known [27, Theorem A] that each singularity of a
singular-hyperbolic attracting set, accumulated by regular orbits of a 3-dimensional flow, must
be Lorenz-like. In particular every singularity σk of a singular-hyperbolic attractor, as in the
setting of Theorem A, is Lorenz-like, that is, the eigenvalues λ1 ,λ2 ,λ3 of the derivative DX(σk)
are all real and satisfy

λ1 > 0 > λ2 > λ3 and λ1 +λ2 > 0.

In particular, the unstable manifold W u(σk) is one-dimensional, and there is a one-dimensional
strong-stable manifold W ss(σk) contained in the two-dimensional stable manifold W s(σk). Most
important for what follows, the attractor intersects the strong-stable manifold at the singularity
only [27, Theorem A].

Then for some δ > 0 we may choose δ-adapted cross-sections contained in U0
• Σo,± at points y± in different components of W u

loc(σk)\{σk}
• Σi,± at points x± in different components of W s

loc(σk)\W ss
loc(σk)

and Poincaré maps R± : Σi,± \ `± → Σo,− ∪ Σo,+, where `± = Σi,± ∩W s
loc(σk), satisfying (see

Figure 4)
(1) every orbit in the attractor passing through a small neighborhood of the singularity σk

intersects some of the incoming cross-sections Σi,±;
(2) R± maps each connected component of Σi,± \ `± diffeomorphically inside a different

outgoing cross-section Σo,±, preserving the corresponding stable foliations and unstable
cones.

These cross-sections may be chosen to be planar relative to some linearizing system of coor-
dinates near σk , e.g. for a small ζ > 0

Σi,± = {(x1,x2,±1) : |x1| ≤ ζ, |x2| ≤ ζ} and Σo,± = {(±1,x2,x3) : |x2| ≤ ζ, |x3| ≤ ζ},
where the x1-axis corresponds to the unstable manifold near σk, the x2-axis to the strong-stable
manifold and the x3-axis to the weak-stable manifold of the singularity which, in turn, is at the
origin, see Figure 4.

Reducing the cross-sections if necessary, i.e. taking δ > 0 small enough, we ensure that the
Poincaré times are larger than t2 , so that the same conclusions as in the previous sections apply
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Σi,+

Σi,−
Σo,+Σo,−
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R(z) R(z)
x1

x2
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FIGURE 4. Ingoing and outgoing adapted cross-sections near a singularity.

here. Indeed using linearizing coordinates it is easy to see that for points z = (x1,x2,±1) ∈ Σi,±

the time τ± it takes the flow starting at z to reach one of Σo,± depends on x1 only and is given by

τ±(x1) = −
logx1

λ1
.

We then fix these cross-sections once and for all and define for small ε > 0 the flow-box

Uσk =
[

x∈Σi,±\`±
X(−ε,τ±(x)+ε)(x)∪ (−δ,δ)× (−δ,δ)× (−1,1)

which is an open neighborhood of σk with σk the unique zero of X | Uσk . We note that the
function τ± : Σi,± → R is integrable with respect to the Lebesgue (area) measure over Σi,±: we
say that the exit time function in a flow box near each singularity is Lebesgue integrable.

In particular we can determine the expression of the Poincaré maps between ingoing and
outgoing cross-sections easily thought linearized coordinates

(8) Σi,+∩{x1 > 0}→ Σ0,+, (x1,x2,1) 7→
(

1,x2 · x−λ3/λ1
1 ,x−λ2/λ1

1
)

.

This shows that the map obtained identifying points with the same x2 coordinate, i.e. points in
the same stable leaf, is simply x1 7→ xβ

1 where β = −λ2/λ1 ∈ (0,1). For the other possible com-
binations of ingoing and outgoing cross-sections the Poincaré maps have a similar expression.
This will be useful to construct physical measures for the flow.

3. PROOF OF EXPANSIVENESS

Here we prove Theorem A. The proof is by contradiction: let us suppose that there exist ε > 0,
a sequence δn → 0, a sequence of functions hn ∈ S(R), and sequences of points xn, yn ∈ Λ such
that

(9) d
(

Xt(xn),Xhn(t)(yn)
)

≤ δn for all t ∈ R,

but

(10) Xhn(t)(yn) /∈ X[t−ε,t+ε](xn) for all t ∈ R.
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3.1. Proof of Theorem A. The main step in the proof is a reduction to a forward expansiveness
statement about Poincaré maps which we state in Theorem 3.1 below.

We are going to use the following observation: there exists some regular (i.e. non-equilibrium)
point z∈Λ which is accumulated by the sequence of ω-limit sets ω(xn). To see that this is so, start
by observing that accumulation points do exist, since the ambient space is compact. Moreover,
if the ω-limit sets accumulate on a singularity then they also accumulate on at least one of the
corresponding unstable branches which, of course, consists of regular points. We fix such a z
once and for all. Replacing our sequences by subsequences, if necessary, we may suppose that
for every n there exists zn ∈ ω(xn) such that zn → z.

Let Σ be a δ-adapted cross-section at z, for some small δ. Reducing δ (but keeping the same
cross-section) we may ensure that z is in the interior of the subset

Σδ = {y ∈ Σ : d(y,∂Σ) > δ}.
By definition, xn returns infinitely often to the neighborhood of zn which, on its turn, is close
to z. Thus dropping a finite number of terms in our sequences if necessary, we have that the
orbit of xn intersects Σδ infinitely many times. Let tn be the time corresponding to the first
intersection. Replacing xn, yn, t, and hn by x′n = Xtn(xn), y′n = Xhn(tn)(yn), t ′ = t − tn, and h′n(t ′) =

hn(t ′+ tn)−hn(tn), we may suppose that xn ∈ Σδ , while preserving all the relations (9) and (10).
Moreover there exists a sequence τn, j , j ≥ 0 with τn,0 = 0 such that
(11) xn, j = Xτn, j(xn) ∈ Σδ and τn, j − τn, j−1 > max{t1, t2}
for all j ≥ 1, where t1 is given by Proposition 2.4 and t2 is given by Lemma 2.11.

Theorem 3.1. Given ε0 > 0 there exists δ0 > 0 such that if x ∈ Σδ and y ∈ Λ satisfy
(a) there exist τ j such that

x j = Xτ j(x) ∈ Σδ and τ j − τ j−1 > max{t1, t2} for all j ≥ 1;

(b) dist
(

Xt(x),Xh(t)(y)
)

< δ0, for all t > 0 and some h ∈ S(R);
then there exists s ∈ R such that Xh(s)(y) ∈W ss

ε0 (X[s−ε0,s+ε0](x)).

We postpone the proof of Theorem 3.1 until the next section and explain first why it implies
Theorem A. We are going to use the following observation.

Lemma 3.2. There exist c > 0 and ρ > 0, depending only on the flow, such that if z1,z2,z3 are
points in Λ satisfying z3 ∈ X[−ρ,ρ](z2) and z2 ∈W ss

ρ (z1), then
dist(z1,z3) ≥ c ·max{dist(z1,z2),dist(z2,z3)}.

Proof. This is a direct consequence of the fact that the angle between E ss and the flow direction
is bounded from zero which, on its turn, follows from the fact that the latter is contained in the
center-unstable sub-bundle Ecu. �

We fix ε0 = ε as in (10) and then consider δ0 as given by Theorem 3.1. Next, we fix n such
that δn < δ0 and δn < cρ, and apply Theorem 3.1 to x = xn and y = yn and h = hn . Hypothesis
(a) in the theorem corresponds to (11) and, with these choices, hypothesis (b) follows from
(9). Therefore we obtain that Xh(s)(y) ∈ W ss

ε (X[s−ε,s+ε](x)). In other words, there exists |τ| ≤ ε
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such that Xh(s)(y) ∈W ss
ε (Xs+τ(x)). Hypothesis (10) implies that Xh(s)(y) 6= Xs+τ(x). Hence since

strong-stable manifolds are expanded under backward iteration, there exists θ > 0 maximum
such that

Xh(s)−t(y) ∈W ss
ρ (Xs+τ−t(x)) and Xh(s+τ−t)(y) ∈ X[−ρ,ρ](Xh(s)−t(y))

for all 0 ≤ t ≤ θ, see Figure 5.

s+τ

−ts+τ

(x)ss
εW

Xh(s) − t (y)s+τ−th( )

−ts+τ

[ ρ ρ]− , Xh(s) − t (y)(X )

h(s)

(x)

(y)

X

X

X (x)

(ρ
ss X (x)W

(y)X

)

FIGURE 5. Sketch of the relative positions of the strong-stable manifolds and
orbits in the argument reducing Theorem A to Theorem 3.1.

Using Lemma 3.2, we conclude that

dist(Xs+τ−t(x),Xh(s+τ−t)(y)) ≥ cρ > δn

which contradicts (9). This contradiction reduces the proof of Theorem A to that of Theorem 3.1.

3.2. Infinitely many coupled returns. We start by outlining the proof of Theorem 3.1. There
are three steps. The first one, which we carry out in the present section, is to show that to each
return x j of the orbit of x to Σ there corresponds a nearby return y j of the orbit of y to Σ. The
precise statement is in Lemma 3.3 below. The second, and most crucial step, is to show that there
exists a smooth Poincaré map, with large return time, defined on the whole strip of Σ in between
the stable manifolds of x j and y j . This is done in Section 3.3. The last step, Section 3.3.4,
is to show that these Poincaré maps are uniformly hyperbolic, in particular, they expand cu-
curves uniformly (recall the definition of cu-curve in Subsection 2.2). The theorem is then easily
deduced: to prove that Xh(s)(y) is in the orbit of W ss

ε (x) it suffices to show that y j ∈W s(x j,Σ), by
Remark 2.3. The latter must be true, for otherwise, by hyperbolicity of the Poincaré maps, the
stable manifolds of x j and y j would move apart as j → ∞, and this would contradict condition
(b) of Theorem 3.1. See Subsection 3.3.4 for more details.

Lemma 3.3. There exists K > 0 such that, in the setting of Theorem 3.1, there exists a sequence
(υ j) j≥0 such that

(1) y j = Xυ j(y) is in Σ for all j ≥ 0.
(2) |υ j −h(τ j)| < K ·δ0 and d(x j,y j) < K ·δ0.
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Proof. By assumption d(x j,Xh(τ j)(y)) < K ·δ0 for all j ≥ 0. In particular y′j = Xh(τ j)(y) is close to
Σ. Using a flow box in a neighborhood of Σ we obtain Xε j(y′j) ∈ Σ for some ε j ∈ (−K ·δ0,K ·δ0).
The constant K depends only on the vector field X and the cross-section Σ (more precisely, on
the angle between Σ and the flow direction). Taking υ j = h(τ j)+ ε j we get the first two claims
in the lemma. The third one follows from the triangle inequality; it may be necessary to replace
K by a larger constant, still depending on X and Σ only. �

3.3. Semi-global Poincaré map. Since we took the cross-section Σ to be adapted, we may use
Lemma 2.11 to conclude that there exist Poincaré maps R j with R j(x j) = x j+1 and R j(y j) = y j+1
and sending W ss

ε (x j ,Σ) and W ss
ε (y j ,Σ) inside W ss

ε (x j+1 ,Σ) and W ss
ε (y j+1 ,Σ), respectively. The

goal of this section is to prove that R j extends to a smooth Poincaré map on the whole strip Σ j of
Σ bounded by the stable manifolds of x j and y j .

We first outline the proof. For each j we choose a curve η j transverse to the stable foliation of
Σ, connecting x j to y j and such that η j is disjoint from the orbit segments [x j ,x j+1] and [y j ,y j+1].
Using Lemma 2.11 in the same way as in the last paragraph, we see that it suffices to prove that
R j extends smoothly to η j . For this purpose we consider a tube-like domain T j consisting of
local stable manifolds through a surface S j whose boundary is formed by η j and η j+1 and the
orbit segments [x j ,x j+1] and [y j ,y j+1] , see Figure 6. We will prove that the orbit of any point in
η j must leave the tube through η j+1 in finite time.
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FIGURE 6. A tube-like domain.

We begin by showing that the tube contains no singularities. This uses hypothesis (b) together
with the local dynamics near Lorenz-like singularities. Next, using hypothesis (b) together with a
Poincaré-Bendixson argument on the surface S j , we conclude that the forward orbit of any point
in T j must leave the tube. Another argument, using hyperbolicity properties of the Poincaré
map, shows that orbits through η j must leave T j through η j+1 . In the sequel we detail these
arguments.

3.3.1. A tube-like domain without singularities. Since we took η j and η j+1 disjoint from the
orbit segments [x j ,x j+1] and [y j ,y j+1], the union of these four curves is an embedded circle. We
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recall that the two orbit segments are close to each other, by hypothesis (b)

d(Xt(x),Xh(t)(y)) < δ0 for all t ∈ [t j, t j+1].

Assuming that δ0 is smaller than the radius of injectiveness of the ambient manifold, there exists
a unique geodesic linking each Xt(x) to Xh(t)(y), and it varies continuously (even smoothly) with
t. Using these geodesics we easily see that the union of [y j ,y j+1] with η j and η j+1 is homotopic
to a curve inside the orbit of x, with endpoints x j and x j+1, and so it is also homotopic to the
segment [x j,x j+1]. This means that the previously mentioned embedded circle is homotopic to
zero. It follows that there is a smooth immersion φ : [0,1]× [0,1]→ M such that

• φ({0}× [0,1]) = η j and φ({1}× [0,1]) = η j+1

• φ([0,1]}×{0}) = [y j ,y j+1] and φ([0,1]}×{1}) = [x j ,x j+1].
Moreover S j = φ([0,1]× [0,1]) may be chosen such that, see Figure 7

• all the points of S j are at distance less than δ1 from the orbit segment [x j ,x j+1], for some
uniform constant δ1 > δ0 which can be taken arbitrarily close to zero, reducing δ0 if
necessary;

• the intersection of S j with an incoming cross-section of any singularity (Section 2.4) is
transverse to the corresponding stable foliation.

Then we define T j to be the union of the local stable manifolds through the points of that disk.
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FIGURE 7. Entering the flow box of a singularity.

Proposition 3.4. The domain T j contains no singularities of the flow.

Proof. By construction, every point of T j is at distance ≤ ε from S j and, consequently, at distance
≤ ε + δ1 from [x j ,x j+1]. So, taking ε and δ0 much smaller than the sizes of the cross-sections
associated to the singularities (Section 2.4), we immediately get the conclusion of the proposition
in the case when [x j ,x j+1] is disjoint from the incoming cross-sections of all singularities. In the
general case we must analyze the intersections of the tube with the flow boxes at the singularities.
The key observation is in the following statement whose proof we postpone.
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Lemma 3.5. Suppose [x j ,x j+1] intersects an incoming cross-section Σi
k of some singularity σk at

some point x̂ with d(x̂,∂Σi
k) > δ. Then [y j ,y j+1] intersects Σi

k at some point ŷ with d(x̂, ŷ) < K ·δ0
and, moreover x̂ and ŷ are in the same connected component of Σi

k \W s
loc(σk).

Let us recall that by construction the intersection of S j with the incoming cross-section Σi
k is

transverse to the corresponding stable foliation, see Figure 7. By the previous lemma this in-
tersection is entirely contained in one of the connected components of Σi

k \W s
loc(σk). Since T j

consists of local stable manifolds through the points of S j its intersection with Σi
k is contained

in the region bounded by the stable manifolds W s(x̂,Σi
k) and W s(ŷ,Σi

k), and so it is entirely con-
tained in a connected component of Σi

k \W s
loc(σk). In other words, the crossing of the tube T j

through the flow box is disjoint from W s
loc(σk), in particular, it does not contain the singular-

ity. Repeating this argument for every intersection of the tube with a neighborhood of some
singularity, we get the conclusion of the proposition. �

Proof of Lemma 3.5. The first part is proved in exactly the same way as Lemma 3.3. We have
x̂ = Xr0(x) and ŷ = Xs0(y)

with |s0 −h(r0)| < Kδ0 . The proof of the second part is by contradiction and relies, fundamen-
tally, on the local description of the dynamics near the singularity. Associated to x̂ and ŷ we have
the points x̃ = Xr1(x) and ỹ = Xs1(y), where the two orbits leave the flow box associated to the
singularity. If x̂ and ŷ are in opposite sides of the local stable manifold of σk, then x̃ and ỹ belong
to different outgoing cross-sections of σk . Our goal is to find some t ∈ R such that

dist
(

Xt(x),Xh(t)(y)
)

> δ0 ,

thus contradicting hypothesis (b).
We assume by contradiction that x̂, ŷ are in different connected components of Σi,±

k \`±. There
are two cases to consider. We suppose first that h(r1) > s1 and note that s1 � s0 ≈ h(r0), so that
s1 > h(r0). It follows that there exists t ∈ (r0,r1) such that h(t) = s1 since h is non-decreasing
and continuous. Then Xt(x) is on one side of the flow box of σk , whereas Xh(t)(y) belongs to the
outgoing cross-section at the other side of the flow box. Thus dist

(

Xt(x),Xh(t)(y)
)

has the order
of magnitude of the diameter of the flow box, which we may assume to be much larger than δ0 .

Now we suppose that s1 ≥ h(r1) and observe that h(r1) > h(r0), since h is increasing. We
recall also that Xh(r0)(y) is close to ŷ, near the incoming cross-section, so that the whole orbit
segment from Xh(r0)(y) to Xs1(y) is contained in (a small neighborhood of) the flow box, to one
side of the local stable manifold of σ j . The previous observation means that this orbit segment
contains Xh(r1)(y). However Xr1(x) belongs to the outgoing cross-section at the opposite side of
the flow box, and so dist

(

Xr1(x),Xh(r1)(y)
)

has the order of magnitude of the diameter of the flow
box, which is much larger than δ0 . �

3.3.2. Every orbit leaves the tube. Our goal in this section is to show that the forward orbit of
every point z ∈ T j leaves the tube in finite time: The proof is based on a Poincaré-Bendixson
argument applied to the flow induced by X t on the disk S j .

We begin by defining this induced flow. For the time being, we make the following simplifying
assumption:
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(H) S j = φ([0,1]× [0,1]) is an embedded disk and the stable manifolds W s
ε (ξ) through the

points ξ ∈ S j are pairwise disjoint.
This condition provides a well-defined continuous projection π : T j → S j by assigning to each
point z ∈ T j the unique ξ ∈ S j whose local stable manifold contains z. The (not necessarily
complete) flow ψt induced by Xt on S j is given by ψt(ξ) = π(Xt(ξ)) for the largest interval of
values of t for which this is defined. It is clear, just by continuity, that given any subset E of S j
at a positive distance from ∂S j , there exists ε > 0 such that ψt(ξ) is defined for all ξ ∈ E and
t ∈ [0,ε]. In fact this remains true even if E approaches the curve η j (since Σ is a cross-section
for Xt , the flow at η j points inward S j) or the Xt-orbit segments [x j ,x j+1] and [y j ,y j+1] on the
boundary of S j (because they are also ψt-orbit segments). Thus we only have to worry with the
distance to the remaining boundary segment:

(U) given any subset E of S j at positive distance from η j+1 , there exists ε > 0 such that ψt(ξ)
is defined for all ξ ∈ E and t ∈ [0,ε].

We observe also that for points ξ close to η j+1 the flow ψt(ξ) must intersect η j+1 , after which it
is no longer defined.

Now we explain how to remove condition (H). In this case, the induced flow is naturally
defined on [0,1]× [0,1] rather than S j , as we now explain. We recall that φ : [0,1]× [0,1]→ M
is an immersion. So given any w ∈ [0,1]× [0,1] there exist neighborhoods U of w and V of φ(w)
such that φ : U → V is a diffeomorphism. Moreover, just by continuity of the stable foliation,
choosing V sufficiently small we may ensure that each stable manifold W s

ε (ξ), ξ ∈V , intersects
V only at the point ξ. This means that we have a well-defined projection π from ∪ξ∈VW s

ε (ξ) to V
associating to each point z in the domain the unique element of V whose stable manifold contains
z. Then we may define ψt(w) for small t, by

ψt(w) = φ−1(π(Xt(φ(w))).

As before, we extend ψt to a maximal domain. This defines a (partial) flow on the square [0,1]×
[0,1], such that both [0,1]×{i}, i ∈ {0,1} are trajectories. Notice also that forward trajectories
of points in {0}× [0,1] enter the square. Hence, the only way trajectories may exit is through
{1}× [0,1]. So, we have the following reformulation of property (U):

(U) given any subset E of [0,1]× [0,1] at positive distance from {1}× [0,1], there exists ε > 0
such that ψt(w) is defined for all w ∈ E and t ∈ [0,ε].

Moreover for points w close to {1}× [0,1] the flow ψt(ξ) must intersect {1}× [0,1], after which
it is no longer defined.

Proposition 3.6. Given any point z ∈ T j there exists t > 0 such that Xt(z) /∈ T j .

Proof. The proof is by contradiction. First, we assume condition (H). Suppose there exists z ∈ T j
whose forward orbit remains in the tube for all times. Let ξ = π(z). Then ψt(ξ) is defined for all
t > 0, and so it makes sense to speak of the ω-limit set ω(ξ). The orbit ψt(ξ) can not accumulate
on η j+1 for otherwise it would leave S j . Therefore ω(ξ) is a compact subset of S j at positive
distance from η j+1. Using property (U) we can find a uniform constant ε > 0 such that ψt(η) is
defined for every t ∈ [0,ε] and every η ∈ ω(ξ). Since ω(ξ) is an invariant set, we can extend ψt
to a complete flow on it.
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In particular we may fix η ∈ ω(ξ), ζ ∈ ω(η) and apply the arguments in the proof of the
Poincaré-Bendixson Theorem. On the one hand, if we consider a cross-section S to the flow at ζ,
the forward orbits of ξ and η must intersect it on monotone sequences; on the other hand, every
intersection of the orbit of η with S is accumulated by points in the orbit of ξ. This implies that
ζ is in the orbit of η and, in fact, that the later is periodic.

We consider the disk D ⊂ S j bounded by the orbit of η. The flow ψt is complete restricted
to D and so we may apply Poincaré-Bendixson’s Theorem (see [31]) once more, and conclude
that ψt has some singularity ξ0 inside D. This implies that Xt has a singularity in the local stable
manifold of ξ0 , which contradicts Proposition 3.4. This contradiction completes the proof of the
proposition, under assumption (H). The general case is treated in the same way, just dealing with
the flow induced on [0,1]× [0,1] instead of on S j . �

3.3.3. The Poincaré map is well-defined on Σ j. We have shown that for the induced flow ψt
on S j (or, more generally, on [0,1]× [0,1]) every orbit must eventually cross η j+1 (respectively,
{1}× [0,1]). Hence there exists a continuous Poincaré map

r : η j → η j+1, r(ξ) = ψθ(ξ)(ξ).

By compactness the Poincaré time θ(·) is bounded. We are going to deduce that every forward
Xt-orbit eventually leaves the tube T j through Σ j+1, which proves that R j is defined on the whole
strip of Σ j between the manifolds W s(x j,Σ j) and W s(y j,Σ j), as claimed in Subsection 3.2.

To this end, for each ξ ∈ η j, let t(ξ) be the smallest positive time for which Xt(ξ) is on the
boundary of T j. The crucial observation is that, in view of the construction of ψt , each Xt(ξ)(ξ)
belongs to the (global) stable manifold of ψt(ξ)(ξ). We observe also that for ξ = x j we have
ψt(ξ) = Xt(ξ) and so t(ξ) = θ(ξ).

Now we take ξ close to x j. Just by continuity, the Xt-trajectory of ξ remains close to the
segment [x j,x j+1]. Moreover this orbit cannot leave the tube through the union of the local strong
stable manifolds passing through [x j,x j+1], for otherwise it would contradict the definition of ψt .
Hence the trajectory must leave the tube through Σ j+1. In other words Xt(ξ)(ξ) is a point of Σ j+1,
close to x j+1.

Let η̂⊂ η j be the largest connected subset containing x j such that Xt(ξ)(ξ)∈ Σ j+1 for all ξ ∈ η̂.
We want to prove that η̂ = η j since this implies that R j extends to the whole η j and so, using
Lemma 2.11, to the whole Σ j .

The proof is by contradiction. We assume η̂ is not the whole η j , and let x̂ be the endpoint
different from x j . Then by definition of Fs

Σ and of φt from Subsection 3.3.2 x̃ = Xt(x̂)(x̂) is on
the center-unstable boundary ∂cuΣ j+1 of the cross-section Σ j+1, between the stable manifolds
W s(x j+1,Σ j+1) and W s(y j+1,Σ j+1), see Figure 8.

By Corollary 2.6,
η̃ = {Xt(ξ)(ξ) : ξ ∈ η̂}

is a cu-curve. On the one hand, by Lemma 2.7, the distance between x̃ and x j+1 dominates the
distance between their stable manifolds and `(η̃)

`(η̃) ≤ κ ·d(x j+1, x̃) ≤ κ ·d
(

W s(x j+1,Σ j+1),W s(x̃,Σ j+1)
)

.
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FIGURE 8. Exiting the tube at Σ j+1.

We note that `(η̃) is larger than δ, since x j+1 is in Λ and the section Σ j+1 is adapted. On the
other hand, the distance between the two stable manifolds is smaller than the distance between
the stable manifold of x j+1 and the stable manifold of y j+1 , and this is smaller than K ·δ0 . Since
δ0 is much smaller than δ, this is a contradiction. This proves the claim that Xt(ξ)(ξ) ∈ Σ for all
ξ ∈ η̂.

3.3.4. Conclusion of the proof of Theorem 3.1. We have shown that there exists a well defined
Poincaré return map R j on the whole strip between the stable manifolds of x j and y j inside Σ.
By Proposition 2.4 and Corollary 2.6 we know that the map R j is hyperbolic where defined
and, moreover, that the length of each cu-curve is expanded by a factor of 3/2 by R j. Hence
the distance between the stable manifolds R j

(

W s(x j,Σ)
)

and R j
(

W s(y j,Σ)
)

is increased by a
factor strictly larger than one. This contradicts item (2) of Lemma 3.3 since this distance will
eventually become larger than K ·δ0. Thus y j must be in the stable manifold W s(x j,Σ). Since the
strong-stable manifold is locally flow-invariant and Xh(τ j)(y) is in the orbit of y j = Xυ j(y), then
Xh(τ j)(y) ∈W s(x j) = W s(Xτ j(x)

)

, see Lemma 3.3.
According to Lemma 3.3 we have |υ j −h(τ j)|< K ·δ0 and, by Remark 2.3, there exits a small

ε1 > 0 such that

RΣ(y j) = Xt(y j) ∈W ss
ε (x j) with | t|< ε1.

Therefore the piece of orbit Oy = X[υ j−K·δ0−ε1,υ j+K·δ0+ε1](y) contains Xh(τ j)(y). We note that this
holds for all sufficiently small values of δ0 > 0 fixed from the beginning.

Now let ε0 > 0 be given and let us consider the piece of orbit Ox = X[τ j−ε0,τ j+ε0](x) and the
piece of orbit of x whose strong-stable manifolds intersect Oy, i.e.

Oxy = {Xs(x) : ∃τ ∈ [υ j −K ·δ0 − t,υ j +K ·δ0 + t] such that Xτ(y) ∈W ss
ε
(

Xs(x)
)

}.

Since y j ∈W s(x j) we conclude that Oxy is a neighborhood of x j = Xτ j(x) which can be made as
small as we want taking δ0 and ε1 small enough. In particular we can ensure that Oxy ⊂ Ox and
so Xh(τ j)(y) ∈W ss

ε
(

X[τ j−ε0,τ j+ε0](x)
)

. This finishes the proof of Theorem 3.1.
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4. GLOBAL POINCARÉ MAPS AND REDUCTION TO ONE-DIMENSIONAL MAP

Here we construct a global Poincaré map for the flow near the singular-hyperbolic attractor Λ.
We then use the hyperbolicity properties of this map to reduce the dynamics to a one-dimensional
piecewise expanding map through a quotient map over the stable leaves.

4.1. Cross-sections and invariant foliations. We observe first that by Lemma 2.10 we can
take a δ-adapted cross-section at each non-singular point x ∈ Λ. We know also that near each
singularity σk there is a flow-box Uσk as in Subsection 2.4, see Figure 4.

Using a tubular neighborhood construction near any given adapted cross-section Σ, we lin-
earize the flow in an open set UΣ = X(−ε,ε)(int(Σ)) for a small ε > 0, containing the interior
of the cross-section. This provides an open cover of the compact set Λ by flow-boxes near the
singularities and tubular neighborhoods around regular points.

We let {UΣi,Uσk : i = 1, . . . , l; k = 1, . . . ,s} be a finite cover of Λ, where s ≥ 1 is the number of
singularities in Λ, and we set t3 > 0 to be an upper bound for the time it takes any point z ∈ UΣi
to leave this tubular neighborhood under the flow, for any i = 1, . . . , l. We assume without loss
that t2 > t3.

To define the Poincaré map R, for any point z in one of the cross-sections in

Ξ = {Σ j,Σi,±
σk ,Σo,±

σk : j = 1, . . . , l;k = 1, . . . ,s},
we consider ẑ = Xt2(z) and wait for the next time t(z) the orbit of ẑ hits again one of the cross-
sections. Then we define R(z) = Xt2+t(z)(z) and say that τ(z) = t2 + t(z) is the Poincaré time of z.
If the point z never returns to one of the cross-sections, then the map R is not defined at z (e.g. at
the lines `± in the flow-boxes near a singularity). Moreover by Lemma 2.11, if R is defined for
x ∈ Σ on some Σ ∈ Ξ, then R is defined for every point in W s(x,Σ). Hence the domain of R | Σ
consists of strips of Σ. The smoothness of (t,x) 7→ Xt(x) ensures that the strips
(12) Σ(Σ′) = {x ∈ Σ : R(x) ∈ Σ′}

have non-empty interior in Σ for every Σ,Σ′ ∈ Ξ.When R maps to an outgoing strip near a singu-
larity σk, there might be a boundary of the strip corresponding to the line `±k of points which fall
in the stable manifold of σk.

4.1.1. Finite number of strips. We show that fixing a cross-section Σ ∈ Ξ the family of all possi-
ble strips as in (12) covers Σ except for finitely many stable leaves W s(xi,Σ), i = 1, . . . ,m = m(Σ).
Moreover we also show that each strip given by (12) has finitely many connected components.
Thus the number of strips in each cross-section is finite.

We first recall that each Σ ∈ Ξ is contained in U0, so x ∈ Σ is such that ω(x) ⊂ Λ. Note that R
is locally smooth for all points x ∈ int(Σ) such that R(x) ∈ int(Ξ) by the flow box theorem and
the smoothness of the flow, where int(Ξ) is the union of the interiors of each cross-section of Ξ.
Let ∂sΞ denote the union of all the leaves forming the stable boundary of every cross-section in
Ξ.

Lemma 4.1. The set of discontinuities of R in Ξ\∂sΞ is contained in the set of points x ∈ Ξ\∂sΞ
such that:

(1) either R(x) is defined and belongs to ∂sΞ;
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(2) or there is some time 0 < t ≤ t2 such that Xt(x) ∈W s
loc(σ) for some singularity σ of Λ.

Moreover this set is contained in a finite number of stable leaves of the cross-sections Σ ∈ Ξ.

Proof. We divide the proof into several steps.
Step 1: Cases (1) and (2) in the statement of the lemma correspond to all possible discon-

tinuities of R in Ξ\∂sΞ.
Let x be a point in Σ \ ∂sΣ for some Σ ∈ Ξ, not satisfying any of the conditions in items (1)

and (2). Then R(x) is defined and R(x) belongs to the interior of some cross-section Σ′. By the
smoothness of the flow and by the flow box theorem we have that R is smooth in a neighborhood
of x in Σ. Hence any discontinuity point for R must be in one the situations (1) or (2).

Step 2: Points satisfying item (2) are contained in finitely many stable leaves in each Σ∈ Ξ.
Indeed if we set W = X[−t2,0]

(

∪σW s
loc(σ)

)

, where the union above is taken over all singularities
σ of Λ, then W is a compact sub-manifold of M with boundary, tangent to the center-stable sub-
bundle Es ⊕EX . This means that W is transversal to any cross-section of Ξ.

Hence the intersection of W with any Σ ∈ Ξ is a one-dimensional sub-manifold of Σ. Thus the
number of connected components of the intersection is finite in each Σ. This means that there are
finitely many points x1, . . . ,xk ∈ Σ such that

W ∩Σ ⊂W s(x1,Σ)∪·· ·∪W s(xk,Σ).

Step 3: Points satisfying item (1) are contained in a finite number of stable leaves of each
Σ ∈ Ξ.

We argue by contradiction. Assume that the set of points D of Σ sent by R into stable boundary
points of some cross-section of Ξ is such that

L = {W s(x,Σ) : x ∈ D}

has infinitely many lines. Note that D in fact equals L by Lemma 2.11. Then there exists an
accumulation line W s(x0,Σ). Since the number of cross-sections in Ξ is finite we may assume
that W s(x0,Σ) is accumulated by distinct W s(xi,Σ) with xi ∈D satisfying R(xi)∈W s(z,Σ′)⊂ ∂sΣ′

for a fixed Σ′ ∈ Ξ, i ≥ 1. We may assume that xi tends to x0 when i → ∞, that x0 is in the interior
of W s(x0,Σ) and that the xi are all distinct — in particular the points xi do not belong to any
periodic orbit of the flow.

As a preliminary result we show that R(xi) = Xsi(xi) is such that si is a bounded sequence in
the real line. For otherwise si → ∞ and this means, by definition of R, that the orbit of Xt2(xi) is
very close to the local stable manifold of some singularity σ of Λ and that R(xi) belongs to the
outgoing cross-section near this singularity: R(xi) ∈ Σo,±

σ . Hence we must have that Xsi(xi) tends
to the stable manifold of σ when i → ∞ and that R(xi) tends to the stable boundary of Σo,±

σ . Since
no point in any cross-section in Ξ is sent by R into this boundary line, we get a contradiction.

Now the smoothness of the flow and the fact that W s(z,Σ′) is closed imply that R(x0) ∈
W s(z,Σ′) also since we have the following

R(x0) = lim
i→∞

R(xi) = lim
i→∞

Xsi(xi) = Xs0(x0) and lim
i→∞

si = s0.
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Moreover R(W s(x0,Σ)) ⊂ W s(z,Σ′) and R(x0) is in the interior of R(W s(x0,Σ)), then R(xi) ∈
R(W s(x0,Σ)) for all i big enough. This means that there exists a sequence yi ∈ W s(x0,Σ) and
a sequence of real numbers τi such that R(yi) = R(xi) for all sufficiently big integers i. By
construction we have that xi 6= yi and both belong to the same orbit. Since xi,yi are in the same
cross-section we get that xi = Xαi(yi) with |αi| ≥ t3 for all big i.

However we also have that τi → s0 because R(yi) = R(xi) → R(x0), yi ∈ W s(x0,Σ) and R |
W s(x0,Σ) is smooth. Thus |si− τi| → 0. But |si− τi| = |αi| ≥ t3 > 0. This is a contradiction.

This proves that D is contained in finitely many stable leaves.
Combining the three steps above we conclude the proof of the lemma. �

Let Γ be the finite set of stable leaves of Ξ provided by Lemma 4.1 together with ∂sΞ. Then
the complement Ξ\Γ of this set is formed by finitely many open strips where R is smooth. Each
of these strips is then a connected component of the sets Σ(Σ′) for Σ,Σ′ ∈ Ξ.

4.1.2. Integrability of the global Poincaré return time. We claim that the Poincaré time τ is
integrable with respect to the Lebesgue area measure on Ξ. Indeed given z ∈ Ξ, the point ẑ =
Xt2(z) either is inside a flow-box Uσk of a singularity σk, or not. In the former case, the time
ẑ takes to reach an outgoing cross-section Σo,±

σk is bounded by the exit time function τ±σk of the
corresponding flow-box, which is integrable, see Subsection 2.4. In the latter case, ẑ takes a time
of at most 2 · t3 to reach another cross-section, by definition of t3. Thus the Poincaré time on Ξ
is bounded by t2 + 2 · t3 plus a sum of finitely many integrable functions, one for each flow-box
near a singularity, by finiteness of the number of singularities, of the number of cross-sections in
Ξ and of the number of strips at each cross-section. This proves the claim.

Remark 4.2. By Lemma 2.11 the Poincaré time τ is constant on stable leaves W s(x,Σ) for all
x ∈ Σ ∈ Ξ. Thus there exists a return time function τI on I such that τ = τI ◦ p, where p : Ξ → γΞ
is the joining of all pΣ, Σ ∈ Ξ and γΞ = {γΣ : Σ ∈ Ξ}. The integrability of τ with respect to λ2

(see Subsection 4.1) implies the λ-integrability of τI naturally since (pΣ)∗λ2 � λ and τI ◦ p = τ.

Remark 4.3. Given z ∈ Σ ∈ Ξ we write τk(z) = τ(Rk−1(z))+ · · ·+ τ(z) for k ≥ 1 and so τ = τ1.
Since

Rk(W s(z,Σ)
)

⊂ Xτk(z)
(

W s(z,Σ)
)

⊂ Xτk(z)(U),

the length `
(

Rk(W s(z,Σ)
)

)

is uniformly contracted and τk(z) → +∞ when k → +∞, we get that
Rk(W s(z,Σ)

)

⊂ Σ ′ for some Σ ′ ∈ Ξ and

d
(

Rk(W s(z,Σ)
)

,∂cuΣ ′
)

> δ/2

for all big enough k, by the definition of U and of δ-adapted cross-section. (The distance d(A,B)
between two sets A,B means inf{d(a,b) : a ∈ A,b ∈ B}.) We may assume that this property holds
for all stable leaves W s(z,Σ), all z ∈ Σ and every Σ ∈ Ξ for all k ≥ k0, for some fixed big k0 ∈ N,
by the uniform contraction property of R in the stable direction.
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4.2. The first return map. We can also consider the Poincaré map given by the first return map
R0 : Ξ → Ξ defined simply as R0(z) = XT (z)(z), where

T (z) = inf{t > 0 : Xt(z) ∈ Ξ}
is the time the X -orbit of z ∈ Ξ takes to arrive again at Ξ. This map R0 is not defined on those
points z which do not return and, moreover, R0 might not satisfy the lemmas of Subsection 2.2,
since we do not know whether the flow from z to R0(z) has enough time to gain expansion.
However the stable manifolds are still well defined. By the definitions of R0 and of R we see that
R is induced by R0, i.e. if R is defined for z ∈ Ξ, then there exists an integer r(x) such that

R(z) = Rr(z)
0 (z).

We note that since the number of cross-sections in Ξ is finite and the Poincaré times τ for the
points in the domain of R are also finite, then the function r : Ξ → N is bounded: there exists
r0 ∈ N such that r(x) ≤ r0 for all x ∈ Ξ. Moreover T ≤ τ thus T is Lebesgue integrable also.

Remark 4.4. The map R0 : Σ∩R−1
0 (Σ′) → Σ′, when defined (that is if R−1

0 (Σ′)∩Σ 6= /0), can
always be smoothly extended to the boundary of its domain on Σ, if the image cross-section is
not an outgoing cross-section near a singularity. In fact, if Σ′ = Σo,±

σ , then Σ = Σi,±
σ and in this

case there is no continuous extension of R0 | Σi,±
σ to the line `±σ , for any singularity σ of X .

Otherwise we can always extend the first hitting map R0 between Σ and Σ′ until we reach the
boundaries of Σ or of Σ′. Now we just have to recall that the cross-sections are C2 embedded
compact disks transversal to the C1 flow X at every point.

In particular, the fact that R(x) is a composition of R0 with itself a finite number of times,
dependent on the point x, together with Corollary 2.6 shows that whenever R(x) is defined, we
have ‖DR0(x)v‖ > c · ‖v‖ for some c = c(x) > 0 for every 0 6= v ∈Cu

ρ(x).
By Remark 4.4 we see that for the first hitting map R0 : Σ ∩R−1

0 (Σ′) → Σ′ between cross-
sections of Ξ where Σ′ is not an outgoing cross-section near any singularity, there is a positive
lower bound c(Σ,Σ′) > 0 for c restricted to Σ∩R−1

0 (Σ′). In addition, for R0 = R | Σi,±
σ : Σi,±

σ →

Σ0,±
σ we have that c tends to infinity near the singularity by the expression (8) of the map in

linearizing coordinates, thus there also exists a positive lower bound for c on Σi,±
σ . Since the

number of singularities of X in Λ and the number of cross-sections in Ξ are finite, we conclude
that there exists c0 such that

(13) ‖DR0(x)v‖
‖v‖ ≥ c0 for all v ∈Cu

Σ(x)\{0}

and for every x ∈ Ξ for which R0 is defined.
Remark 4.5. After Remark 4.3 we have that Rk(W s(x,Σ)

)

is well inside any cross section for k ≥
k0. Hence the orbits X[0,τ(x)](x),X[0,τ(x)](y) of any two distinct points x,y ∈ Rk(W s(x,Σ)

)

between
consecutive images of R0 must cut the same cross sections of Ξ. For otherwise some of the orbits
must cut a cross-section at a distance smaller than δ/2 from the center-stable boundary, because
the distance between the orbits is bounded a constant factor of d(x,y)≤ `

(

Rk(W s(x,Σ)
)

)

due to
the uniform contractive character of the stable foliation.
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This means that r | Rk(W s(x,Σ)
)

is constant for all k ≥ k0. In other words R | Rk(W s(x,Σ)
)

≡
Rr

0 for some constant r.

4.3. Reduction to the quotient leaf space. From now on we assume that the flow (Xt)t∈R is
C2. Under this condition it is well known [32] that the stable leaf W s(x,Σ) for every x ∈ Σ ∈ Ξ is
a C2 embedded disk and these leaves define a C1+α foliation F

s
Σ, α ∈ (0,1), of each Σ ∈ Ξ.

We choose once and for all a C2 curve γΣ transversal to F
s
Σ in each Σ ∈ Ξ. Then the projection

pΣ along leaves of F s
Σ onto γΣ is a C1+α map. We set

I =
[

Σ,Σ′∈Ξ
int
(

Σ(Σ′)
)

∩ γΣ

and observe that by the properties of Σ(Σ′) obtained in Subsection 4.1 the set J is diffeomorphic to
a finite union of non-degenerate open intervals I1, . . . , Im by a C2 diffeomorphism and pΣ | p−1

Σ (I)
becomes a C1+α submersion. In particular, denoting the Lebesgue area measure over Ξ by λ2

and the Lebesgue length measure on I by λ, we have (pΣ)∗λ2 � λ.
According to Lemma 2.11, Proposition 2.4 and Corollary 2.6 the Poincaré map R : Ξ → Ξ

takes stable leaves of F s
Σ inside stable leaves of the same foliation and is hyperbolic. Hence the

map

f : I → I given by I 3 z 7→ pΣ′

(

R
(

W s(z,Σ)∩Σ(Σ′)
)

)

for Σ,Σ′ ∈Ξ is a C1+α map and | f ′| ≥ 3/2 when restricted to Ii, i = 1, . . . ,m. Thus f is expanding.
Moreover | f ′|−1 | I j is a α-Hölder function since for all x,y ∈ I j we have

1
| f ′(x)| −

1
| f ′(y)| ≤

| f ′(x)− f ′(y)|
| f ′(x) f ′(y)| ≤

C
(3/2)2 · |x− y|α, for some 0 < α < 1.

Thus f : I → I is a C1+α piecewise expanding map.
It is well known [39, 42, 16] that C1 piecewise expanding maps f of the interval such that

1/| f ′| is of bounded variation, have finitely many absolutely continuous invariant probability
measures whose basins cover Lebesgue almost all points of I.

Using a generalization of the notion of bounded variation (defined below) it was shown in [17]
that the results of existence and finiteness of absolutely continuous ergodic invariant measures
can be extended to C1 piecewise expanding maps f such that 1/| f ′| is α-Hölder for some 0 <
α < 1. Moreover the densities ϕ of the absolutely continuous invariant measures are functions of
universally bounded 1/α-variation, that is

sup
a=a0<a1<···<an=b

(

n
∑
j=1

∣

∣ϕ(ai)−ϕ(ai−1)
∣

∣

1/α
)α

< ∞,

where the supremum is taken over all finite partition of the interval I = [a,b]. In particular, the
densities ϕ have at most countably many discontinuity points, which implies that the support of
ϕ contains nonempty open intervals and ϕ is bounded from above.

In what follows we show how to use this to build physical measures for the flow.
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5. SUSPENDING INVARIANT MEASURES

Here we show how to construct an invariant measure for a transformation from an invariant
measure for the quotient map obtained from a partition of the space. We show also that if the
measure is ergodic on the quotient, then we also obtain ergodicity on the starting space.

Later we extend the transformation to a semi-flow through a suspension construction and show
that each invariant and ergodic measure for the transformation corresponds to a unique measure
for the semi-flow with the same properties.

5.1. Reduction to the quotient map. Let Ξ be a compact metric space, Γ⊂ Ξ and F : (Ξ\Γ)→
Ξ be a measurable map. We assume that there exists a partition F of Ξ into measurable subsets,
having Γ as an element, which is

• invariant: the image of any ξ ∈ F distinct from Γ is contained in some element η of F;
• contracting: the diameter of Fn(ξ) goes to zero when n→∞, uniformly over all the ξ∈F

for which Fn(ξ) is defined.
We denote p : Ξ → F the canonical projection, i.e. p assigns to each point x ∈ Ξ the atom ξ ∈ F

that contains it. By definition, A ⊂ F is measurable if and only if p−1(A) is a measurable subset
of Ξ and likewise A is open if, and only if, p−1

Σ (A) is open in Ξ. The invariance condition means
that there is a uniquely defined map

f : (F \{Γ}) → F such that f ◦ p = p◦F.

Clearly, f is measurable with respect to the measurable structure we introduced in F. We as-
sume from now on that the leaves are sufficiently regular so that Ξ/F is a metric space with the
topology induced by p.

Let µ f be any probability measure on F invariant under the transformation f . For any bounded
function ψ : Ξ → R, let ψ− : F → R and ψ+ : F → R be defined by

ψ−(ξ) = inf
x∈ξ

ψ(x) and ψ+(ξ) = sup
x∈ξ

ψ(x).

Lemma 5.1. Given any continuous function ψ : Ξ → R, both limits

(14) lim
n

Z

(ψ◦Fn)− dµ f and lim
n

Z

(ψ◦Fn)+ dµ f

exist, and they coincide.

Proof. Let ψ be fixed as in the statement. Given ε > 0, let δ > 0 be such that |ψ(x1)−ψ(x2)| ≤ ε
for all x1,x2 with d(x1,x2) ≤ δ. Since the partition F is assumed to be contractive, there exists
n0 ≥ 0 such that diam(Fn(ξ)) ≤ δ for every ξ ∈ F and any n ≥ n0. Let n + k ≥ n ≥ n0. By
definition,

(ψ◦Fn+p)−(ξ)− (ψ◦Fn)−( f p(ξ)) = inf(ψ | Fn+p(ξ))− inf(ψ | Fn( f p(ξ))).

Observe that Fn+p(ξ) ⊂ Fn( f p(ξ)). So the difference on the right hand side is bounded by

sup
(

ψ | Fn( f k(ξ))
)

− inf
(

ψ | Fn( f k(ξ))
)

≤ ε.
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Therefore
∣

∣

∣

∣

Z

(ψ◦Fn+k)− dµ f −
Z

(ψ◦Fn)− ◦ f k dµ f

∣

∣

∣

∣

≤ ε.

Moreover, one may replace the second integral by
R

(ψ◦Fn)− dµ f , because µ f is f -invariant.
At this point we have shown that {

R

(ψ ◦Fn)− dµF}n≥1 is a Cauchy sequence in R. In par-
ticular, it converges. The same argument proves that

{
R

(ψ ◦Fn)+ dµF
}

n≥1 is also convergent.
Moreover, keeping the previous notations,

0 ≤ (ψ◦Fn)+(ξ)− (ψ◦Fn)−(ξ) = sup
(

ψ | Fn(ξ)
)

− inf
(

ψ | Fn(ξ)
)

≤ ε

for every n ≥ n0. So the two sequences in (14) must have the same limit. The lemma is proved.
�

Corollary 5.2. There exists a unique probability measure µF on Ξ such that
Z

ψdµF = lim
Z

(ψ◦Fn)− dµ f = lim
Z

(ψ◦Fn)+ dµ f .

for every continuous function ψ : Ξ → R. Besides, µF is invariant under F. Moreover the
correspondence µ f 7→ µF is injective.

Proof. Let µ̂(ψ) denote the value of the two limits. Using the expression for µ̂(ψ) in terms of
(ψ◦Fn)− we immediately get that

µ̂(ψ1 +ψ2) ≥ µ̂(ψ1)+ µ̂(ψ2).

Analogously, the expression of µ̂(ψ) in terms of (ψ◦Fn)+ gives the opposite inequality. So, the
function µ̂(·) is additive. Moreover, µ̂(cψ) = cµ̂(ψ) for every c∈R and every continuous function
ψ. Therefore, µ̂(·) is a linear real operator in the space of continuous functions ψ : Ξ → R.

Clearly, µ̂(1) = 1 and the operator µ̂ is non-negative: µ̂(ψ)≥ 0 if ψ ≥ 0. By the Riesz-Markov
theorem, there exists a unique measure µF on Ξ such that µ̂(ψ) =

R

ψdµF for every continuous
ψ. To conclude that µF is invariant under F it suffices to note that

µ̂(ψ◦F) = lim
n

Z

(ψ◦Fn+1)− dµ f = µ̂(ψ)

for every ψ.
To prove that the map µ f 7→ µF is injective, we note that if µF = µ′F are obtained from µ f and

µ′f respectively, then for any continuous function ϕ : F → R we have that ψ = ϕ ◦ p : Ξ → R is
continuous. But

µ f
(

(ψ◦ f n)±
)

= µ f
(

(ϕ◦ p◦Fn)±
)

= µ f
(

(ϕ◦ f n ◦ p)±
)

= µ f (ϕ◦ f n) = µ f (ϕ)

for all n ≥ 1 by the f -invariance of µ f . Hence by definition

µ f (ϕ) = µF(ψ) = µ′F(ψ) = µ′f (ϕ)

and so µ f = µ′f . This finishes the proof of the corollary. �
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Remark 5.3. We note that
R

ψdµF = limn
R

(ψ ◦Fn)# dµF for every continuous ψ : Ξ → R and
any choice of a sequence (ψ◦Fn)# : F → R with

inf(ψ | Fn(ξ)) ≤ (ψ◦Fn)#(ξ) ≤ sup(ψ | Fn(ξ)).

Moreover we can define
R

ψdµF for any measurable ψ : Ξ → R such that
lim

n→+∞

(

sup(ψ | Fn(ξ))− inf(ψ | Fn(ξ))
)

= 0

uniformly in n ∈ N and in ξ ∈ F. This will be useful in Subsection 6.2.

Lemma 5.4. Let ψ : Ξ → R be a continuous function and ξ ∈ F be such that

lim
n

1
n

n−1
∑
j=0

(ψ◦Fk)−( f j(ξ)) =

Z

(ψ◦Fk)− dµ f

for every k ≥ 1. Then lim
n

1
n

n−1
∑
j=0

ψ(F j(x)) =
Z

ψdµF for every x ∈ ξ.

Proof. Let us fix ψ and ξ as in the statement. Then by definition of (ψ◦F k)± and by the proper-
ties of F we have

(ψ◦Fk)−
(

f j(ξ)
)

≤ (ψ◦Fk)
(

F j(x)
)

≤ (ψ◦Fk)+
(

f j(ξ)
)

for all x ∈ ξ and j,k ≥ 1. Given ε > 0, by Corollary 5.2 there exists k0 ∈N such that for all k ≥ k0

µF(ψ)−
ε
2 ≤ µ f

(

(ψ◦Fk)−
)

≤ µ f
(

(ψ◦Fk)+
)

≤ µF(ψ)+
ε
2

and there is n0 ∈ N such that for all n ≥ n0 = n0(k)
∣

∣

∣

∣

∣

1
n

n−1
∑
j=0

(ψ◦Fk)−
(

f j(ξ)
)

−µ f
(

(ψ◦Fk)−
)

∣

∣

∣

∣

∣

<
ε
2 .

Hence we have that for all n ≥ n0(k)

µF(ψ)− ε ≤
1
n

n−1
∑
j=0

(ψ◦Fk)(F j(x))

=
n+ k

n ·
1

n+ k

n+k−1
∑
j=0

(ψ◦F j)(x)− 1
n

k−1
∑
i=0

(ψ◦F j)(x) ≤ µF(ψ)+ ε.

Since n can be made arbitrarily big and ε > 0 can be taken as small as we want, we have con-
cluded the proof of the lemma. �

Corollary 5.5. If µ f is f -ergodic, then µF is ergodic for F.

Proof. Since Ξ/F is a metric space with the topology induced by p we have that C0(F,R) is
dense in L1(F,R) for the L1-topology and p : Ξ → F is continuous. Hence there exists a subset
E of F with µ f (E) = 1 such that the conclusion of Lemma 5.4 holds for a subset E = p−1(E) of
Ξ. To prove the corollary it is enough to show that µF(E) = 1.
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Let ϕ = χE = χE◦ p and take ψn : F→R a sequence of continuous functions such that ψn → χE

when n→+∞ in the L1 topology with respect to µ f . Then ϕn = ψn◦ p is a sequence of continuous
functions on Ξ such that ψn → ψ when n → +∞ in the L1 norm with respect to µF .

Then it is straightforward to check that

µF(ψn) = lim
k→+∞

µ f
(

(ψn ◦Fk)−
)

= lim
k→+∞

µ f (ϕn ◦ f k) = µ f (ϕn)

which converges to µ f (E) = 1. Since µF(ψn) tends to µF(E) when n → +∞, we conclude that
µF(E) = 1, as we wanted. �

5.2. Suspension flow from the Poincaré map. Let Ξ be a measurable space, Γ be some measur-
able subset of Ξ, and F : (Ξ\Γ)→ Ξ be a measurable map. Let τ : Ξ → (0,+∞] be a measurable
function such that infτ > 0 and τ ≡ +∞ on Γ.

Let ∼ be the equivalence relation on Ξ× [0,+∞) generated by (x,τ(x)) ∼ (F(x),0), that is,
(x,s) ∼ (x̃, s̃) if and only if there exist

(x,s) = (x0,s0), (x1,s1), . . . , (xN,sN) = (x̃, s̃)

in Ξ× (0,+∞) such that, for every 1 ≤ i ≤ N
either xi = F(xi−1) and si = si−1 − τ(xi−1);

or xi−1 = F(xi) and si−1 = si − τ(xi).

We denote by V = Ξ× [0,+∞)/∼ the corresponding quotient space and by π : Ξ →V the canon-
ical projection which induces on V a topology and a Borel σ-algebra of measurable subsets of
V .

Definition 5.6. The suspension of F with return-time τ is the semi-flow (X t)t≥0 defined on V by

X t(π(x,s)) = π(x,s+ t) for every (x,s) ∈ Ξ× [0,+∞) and t > 0.

It is easy to see that this is indeed well defined.

Remark 5.7. If F is injective then we can also define

X−t(π(x,s)
)

= π
(

F−n(x),s+ τ(F−n(x))+ · · ·+ τ(F−1(x))− t
)

for every x ∈ Fn(Ξ) and 0 < t ≤ s + τ(F−n(x))+ · · ·+ τ(F−1(x)). The expression on the right
does not depend on the choice of n ≥ 1. In particular, the restriction of the semi-flow (Xt)t≥0 to
the maximal invariant set

Λ =

{

(x, t) : x ∈
\

n≥0
Fn(Ξ) and t ≥ 0

}

extends, in this way, to a flow (X t)t∈R on Λ.

Let µF be any probability measure on Ξ that is invariant under F . Then the product µF × dt
of µF by Lebesgue measure on [0,+∞) is an infinite measure, invariant under the trivial flow
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(x,s) 7→ (x,s + t) in Ξ× [0,+∞). In what follows we assume that the return time is integrable
with respect to µF , i.e.

(15) µF(τ) =
Z

τdµF < ∞.

In particular µF(Γ) = 0. Then we introduce the probability measure µX on V defined by
Z

ϕdµX =
1

µF(τ)

Z Z τ(x)

0
ϕ(π(x, t))dt dµF(x)

for each bounded measurable ϕ : V → R.
We observe that the correspondence µF 7→ µX defined above is injective. Indeed for any

bounded measurable ψ : Ξ → R, defining ϕ on {x}× [0,τ(x)) to equal ψ(x) gives a bounded
measurable map ϕ : V → R such that µX(ϕ) = µF(ψ). Hence if µX = µ′X then µF = µ′F .

Lemma 5.8. The measure µX is invariant under the semi-flow (X t)t≥0.

Proof. It is enough to show that µX
(

(X t)−1(B)
)

= µX(B) for every measurable set B ⊂V and any
0 < t < infτ. Moreover, we may suppose that B is of the form B = π(A×J) for some A ⊂ Ξ and
J a bounded interval in [0, inf(τ | A)). This is because these sets form a basis for the σ-algebra of
measurable subsets of V .

Let B be of this form and (x,s) be any point in Ξ with 0 ≤ s < τ(x). Then X t(x,s) ∈ B if and
only if π(x,s+ t) = π(x̃, s̃) for some (x̃, s̃) ∈ A×J. In other words, (x,s) ∈ (X t)−1(B) if and only
if there exists some n ≥ 0 such that

x̃ = Fn(x) and s̃ = s+ t − τ(x)−·· ·− τ(Fn−1(x)).
Since s < τ(x), t < infτ, and s̃ ≥ 0, it is impossible to have n ≥ 2. So,

• either x̃ = x and s̃ = s+ t (corresponding to n = 0),
• or x̃ = F(x) and s̃ = s+ t − τ(x) (corresponding to n = 1)

The two possibilities are mutually exclusive: for the first one (x,s) must be such that s+ t < τ(x),
whereas in the second case s + t ≥ τ(x). This shows that we can write (X t)−(B) as a disjoint
union (X t)−(B) = B1 ∪B2, with

B1 = π
{

(x,s) : x ∈ A and s ∈ (J − t)∩ [0,τ(x))
}

B2 = π
{

(x,s) : F(x) ∈ A and s ∈ (J + τ(x)− t)∩ [0,τ(x))
}

.

Since t > 0 and sup J < τ(x), we have (J− t)∩ [0,τ(x)) = (J − t)∩ [0,+∞) for every x ∈ A. So,
by definition, µX(B1) equals

Z

A
`
(

(J− t)∩ [0,τ(x))
)

dµF(x) = µF(A) · `
(

(J− t)∩ [0,+∞)
)

.

Similarly infJ ≥ 0 and t < τ(x) imply that
(J + τ(x)− t)∩ [0,τ(x)) = τ(x)+(J− t)∩ (−∞,0).

Hence µX(B2) is given by
Z

F−1(A)
`
(

(J − t)∩ (−∞,0)
)

dµF(x) = µF(F−1(A)) · `
(

(J − t)∩ (−∞,0)
)

.
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Since µF is invariant under F , we may replace µF(F−1(A)) by µF(A) in the last expression. It
follows that

µX
(

(X t)−1(B)
)

= µX(B1)+µX(B2) = µF(A) · `
(

(J− t)
)

.

Clearly, the last term may be written as µF(A) · `(J) which, by definition, is the same as µX(B).
This proves that µX is invariant under the semi-flow and ends the proof. �

Given a bounded measurable function ϕ : V → R, let ϕ̂ : Ξ → R be defined by

(16) ϕ̂(x) =

Z τ(x)

0
ϕ(π(x, t))dt .

Observe that ϕ̂ is integrable with respect to µF and by the definition of µX
Z

ϕ̂dµF = µF(τ) ·
Z

ϕdµX .

Lemma 5.9. Let ϕ : V → R be a bounded function, and ϕ̂ be as above. We assume that x ∈ Ξ is
such that τ(F j(x)) and ϕ̂(F j(x)) are finite for every j ≥ 0, and also

(a) lim
n

1
n

n−1
∑
j=0

τ(F j(x)) =

Z

τdµF , and

(b) lim
n

1
n

n−1
∑
j=0

ϕ̂(F j(x)) =
Z

ϕ̂dµF .

Then lim
T→+∞

1
T

Z T

0
ϕ(π(x,s+ t))dt =

Z

ϕdµX for every π(x,s) ∈V .

Proof. Let x be fixed, satisfying (a) and (b). Given any T > 0 we define n = n(T ) by

Tn−1 ≤ T < Tn where Tj = τ(x)+ · · ·τ(F j(x)) for j ≥ 0

Then using (y,τ(y)) ∼ (F(y),0) we get

(17)

1
T

Z T

0
ϕ(π(x,s+ t))dt =

1
T

[

n−1
∑
j=0

Z τ(F j(x))

0
ϕ(π(F j(x), t))dt

+
Z T−Tn−1

0
ϕ(π(Fn(x), t))dt−

Z s

0
ϕ(π(x, t))dt

]

.

Using the definition of ϕ̂, we may rewrite the first term on the right hand side as

(18) n
T ·

1
n

n−1
∑
j=0

ϕ̂(F j(x)).

Now we fix ε > 0. Assumption (a) and the definition of n imply that,

n ·
(

Z

τdµF − ε
)

≤ Tn−1 ≤ T ≤ Tn ≤ (n+1) ·
(

Z

τdµF + ε
)

,
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for every large enough n. Observe also that n goes to infinity as T → +∞, since τ(F j(x)) < ∞
for every j. So, for every large T ,

µF(τ)− ε ≤
T
n ≤

n+1
n µF(τ)+ ε ≤ µF(τ)+2ε.

This proves that T/n converges to µF(τ) when T → +∞. Consequently, assumption (b) implies
that (18) converges to

1
µF(τ)

Z

ϕ̂dµF =

Z

ϕdµX .

Now we prove that the remaining terms in (17) converge to zero when T goes to infinity. Since
ϕ is bounded

(19)
∣

∣

∣

∣

1
T

Z T−Tn−1

0
ϕ(π(Fn(x), t))dt

∣

∣

∣

∣

≤
T −Tn−1

T sup |ϕ|.

Using the definition of n once more,

T −Tn−1 ≤ Tn −Tn−1 ≤ (n+1)
(

Z

τdµF + ε
)

−n
(

Z

τdµF − ε
)

whenever n is large enough. Then
T −Tn−1

T ≤

R

τdµF +(2n+1)ε
n
(

R

τdµF − ε
) ≤

4ε
R

τdµF − ε

for all large enough T . This proves that (T −Tn−1)/T converges to zero, and then so does (19).
Finally, it is clear that

1
T

Z s

0
ϕ(π(x, t))dt → 0 when T → +∞.

This completes the proof of the lemma. �

Corollary 5.10. If µF is ergodic then µX is ergodic.

Proof. Let ϕ :V →R be any bounded measurable function, and ϕ̂ be as in (16). As already noted,
ϕ̂ is µF -integrable. It follows that ϕ̂(F j(x)) < ∞ for every j ≥ 0, at µF -almost every point x ∈ Ξ.
Moreover, by the Ergodic Theorem, condition (b) in Lemma 5.9 holds µF -almost everywhere.
For the same reasons, τ(F j(x)) is finite for all j ≥ 0, and condition (a) in the lemma is satisfied,
for µF -almost all x ∈ Ξ.

This shows that Lemma 5.9 applies to every point x in a subset A ⊂ Ξ with µF(A) = 1. It
follows that

lim
T→+∞

1
T

Z T

0
ϕ(X t(z))dt =

Z

ϕdµX

for every point z in B = π(A× [0,+∞)). Since the latter has µX(B) = 1, we have shown that the
Birkhoff average of ϕ is constant µX -almost everywhere. Then the same is true for any integrable
function, as bounded functions are dense in L1(µX). Thus µX is ergodic and the corollary is
proved. �
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6. CONSTRUCTION OF PHYSICAL MEASURES

Here we complete the proof of Theorem B. We unwind the reductions made in Sections 4
and 5 one step at a time and obtain physical measures for the original flow at the end.

According to Section 4, by choosing a global Poincaré section Ξ, we can reduce to the quotient
over the stable leaves, with the exception of finitely many leaves Γ, corresponding to the points
whose orbit falls into the local stable manifold of some singularity or are sent into the stable
boundary ∂sΣ of some Σ ∈ Ξ by R, where the return time function τ is discontinuous.

As explained in Subsection 4.3, the global Poincaré map R : Ξ → Ξ induces a map f : F \Γ →
F on the leaf space, diffeomorphic to a finite union of open intervals I, which is piecewise
expanding and admits finitely many υ1, . . . ,υl ergodic absolutely continuous (with respect to λ)
invariant probability measures (acim) whose basins cover Lebesgue almost all points of I.

Moreover the Radon-Nikodym derivatives (densities) dυk
dλ are functions of universally bounded

1/α-variation [17] where α is the Hölder exponent of f ′. Hence these densities are bounded from
above and the support of each υk contains nonempty open intervals, so the basin B(υk) contains
nonempty open intervals Lebesgue modulo zero, k = 1, . . . , l.

6.1. Physical measure for the global Poincaré map. We are now in the setting of the results
of Subsection 5.1. Hence the finitely many acim υ1, . . . ,υl for f uniquely induce R-invariant
ergodic probability measures η̃1, . . . , η̃l on Ξ.

We claim that the basins of each η̃1, . . . , η̃l have positive Lebesgue area λ2 on Ξ and cover λ2

almost every point of p−1(I). Indeed the uniform contraction of the leaves Fs
Σ \Γ provided by

Lemma 2.11, implies that the forward time averages of any pair x,y of points in ξ ∈ F \ p(Γ) on
continuous functions ϕ : Ξ → R are equal

lim
n→+∞

[

1
n

n−1
∑
j=0

ϕ
(

R j(x)
)

−
1
n

n−1
∑
j=0

ϕ
(

R j(y)
)

]

= 0.

Hence B(η̃i) ⊂ p−1(B(υi)
)

, i = 1, . . . , l. This shows that B(η̃i) contains an entire strip except for
a subset of λ2-null measure, because B(υi) contains some open interval λ modulo zero. Since
p∗(λ2) � λ we get in particular

λ2(B(η̃i)
)

> 0 and λ2
(

p−1(I)\
l

[

i=1
B(η̃i)

)

= p∗(λ2)
(

I \
l

[

i=1
B(υi)

)

= 0,

which shows that η̃1, . . . , η̃l are physical measures whose basins cover p−1(I) Lebesgue almost
everywhere. We observe that p−1(I) ⊂ Ξ is forward invariant under R, thus it contains Λ∩Ξ.

6.2. Physical measures for the global first return map. Now we pass from R-invariant mea-
sures to R0-invariant measures. Recalling that R is induced by R0 and the boundedness of the
inducing time r(x) on Ξ we set

(20) ηi =
r0

∑
j=1

j−1

∑
k=0

(Rk
0)∗
(

η̃i | r−1({ j})
)

, i = 1, . . . , l.
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It is easy to see that the mass of each ηi is given by

ηi(Ξ) =
r0

∑
j=1

j · η̃i
(

r−1({ j})
)

=

Z

r dη̃i = η̃i(r), i = 1, . . . , l.

From now on we fix η = ηi and η̃ = η̃i. We first show that η is R0-invariant and R0-ergodic.
Then we prove that η is a physical measure for R0.

For the invariance under R0 we write

(R0)∗η =
r0

∑
j=1

j−1

∑
k=1

(Rk
0)∗
(

η̃ | r−1({ j})
)

+
r0

∑
j=1

R∗

(

η̃ | r−1({ j})
)

= η,

since ∑r0
j=1 R∗

(

η̃ | r−1({ j})
)

= η̃ = ∑r0
j=1 η̃ | r−1({ j}) because η̃ is R-invariant.

For the ergodicity we normalize η and let A ⊂ Ξ be such that R−1
0 (A) = A. We note that

R−1(A) =
r0
[

j=1

(

R− j
0 (A)∩ r−1({ j})

)

=
r0
[

j=1

(

A∩ r−1({ j})
)

= A

thus by ergodicity of η with respect to R, either η̃(A) or η̃(Ξ\A) is zero. Since for k = 0, . . . , j−1
and j = 1, . . . ,r0 we have

(Rk
0)∗
(

η̃ | r−1({ j})
)

(A) = η̃
(

R−k
0 (A)∩ r−1({ j})

)

= η̃
(

A∩ r−1({ j})
)

≤ η̃(A),

we see that η(A) ·η(Ξ\A) = 0 if η̃(A) · η̃(Ξ\A) = 0. Thus η is R0-ergodic.
To prove that η is physical for R0, we recall that for any x ∈ W s(z,Σ) we have r

(

Rk(x)
)

=

r
(

Rk(z)
)

for all k ≥ k0, by Remarks 4.3 and 4.5. This together with the uniform contraction
along the stable leaves implies that there exists a uniform constant C > 0 such that

d
(

R j
0
(

Rk(x)
)

,R j
0
(

Rk(z)
)

)

≤C ·d
(

Rk(x),Rk(z)
)

, j = 1, . . . ,r0.

Hence, given a continuous function ϕ : Ξ → R, if we define

(21) ϕ̃(w) =
r(w)−1

∑
j=0

ϕ
(

R j
0(w)

)

, then lim
k→∞

∣

∣

∣
ϕ̃
(

Rk(x)
)

− ϕ̃
(

Rk(z)
)

∣

∣

∣
= 0.

Now we assume in addition that z ∈ B(η̃) and write rk(x) = r
(

Rk−1(x)
)

+ · · ·+ r(x) for all k ≥ 1.
We have for big n

n−1
∑
j=0

ϕ
(

R j
0(x)

)

=
rk−1(x)

∑
j=0

ϕ
(

R j
0(x)

)

+
n−1
∑

j=rk−1(x)
ϕ
(

R j
0(x)

)

= A+B,

for the unique k ≥ 2 such that rk−1(x) ≤ n < rk(x). Since rk(x)− rk−1(x) ≤ r0 we get |B|/n → 0
when n → +∞. By analogous arguments to the ones proving Lemma 5.9 we deduce that

(22) lim
n→+∞

1
n ·A = lim

n→+∞

k
n ·

1
k ·A =

1
η̃(r) · η̃(ϕ̃) = η(ϕ).
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This shows that B(η)⊃B(η̃) and so the basin has positive area in Ξ. Now we detail the arguments
proving the convergence in (22).

First, r ◦Rk is constant on stable leaves for all k ≥ k0 by Remark 4.5, thus r ◦Rk = rI ◦ p for a
map rI : F →{1, . . . ,r0}. Hence η̃(r) = η̃(r ◦Rk) = η̃(rI ◦ p) = υ(rI) < ∞ is well defined, where
υ is the f -invariant ergodic measure which induces η̃ (recall Subsection 6.1). The construction
of B(η̃) given in Subsection 6.1 shows that p(z) ∈ B(υ) and so the time averages of r on the
entire stable leaf W s(z,Σ) are the same. In particular since x ∈ W s(z,Σ) and by the expression
above for rk we get 1

k · r
k(x) → η̃(r). Moreover for any given ε > 0 we have

(k−1)
(

η̃(r)− ε
)

≤ rk−1(x) ≤ n < rk(x) ≤ k
(

η̃(r)+ ε
)

for all big enough n, which shows that k/n → 1/η̃(r).
Secondly, we note that A/k = k−1 ∑k−1

j=0 ϕ̃(R j(x)). Moreover since the limit in (21) holds for
every point x in W s(z,Σ), we are in the setting of Remark 5.3 and thus limk→+∞

R

(ϕ̃ ◦Rk)+ dυ
exists. We are left to show that this limit equals η̃(ϕ̃).

The continuity of ϕ̃◦Rk along every stable leaf shows that, given ε > 0, we may find a compact
K ⊂ I with υ(I \ K) < ε such that ϕk = ϕ̃ ◦ Rk | p−1(K) is continuous. Let ψε : Ξ → R be
a continuous extension of ϕk to Ξ with the same norm: supw∈Ξ |ψε(w)| = supw∈Ξ |ϕk(w)| ≤
r0 · sup |ϕ|. Then for all j ≥ 1 we have
∣

∣

∣

∣

Z

(

(ϕ̃◦Rk)◦R j)
+

dυ−

Z

(

ψε ◦R j)
+

dυ
∣

∣

∣

∣

=

∣

∣

∣

∣

Z

f−k(I\K)

[

(

(ϕ̃◦Rk)◦R j)
+
−
(

ψε ◦R j)
+

]

dυ
∣

∣

∣

∣

≤ 2r0 · sup |ϕ| ·υ(I \K) ≤ 2r0 · sup |ϕ| · ε.
Letting j → +∞ and then ε → 0 we get

|η̃(ϕ̃)− η̃(ψε)| = |η̃(ϕ̃◦Rk)− η̃(ψε)| → 0, which shows that lim
k→+∞

Z

(ϕ̃◦Rk)+ dυ = η̃(ϕ̃).

This finishes the proof of (22).

6.3. Physical measure for the suspension. Using the results from Subsection 5.2 it is straight-
forward to obtain ergodic probability measures ν1, . . . ,νl invariant under the suspension (X t)t≥0
of R0 with return time T , corresponding to η1, . . . ,ηl respectively.

Now we use Lemma 5.9 to show that each νi is a physical measure for (X t)t≥0, i = 1, . . . , l.
Let x ∈ Σ∩B(νi) for a fixed Σ ∈ Ξ and i ∈ {1, . . . , l}. According to Remark 4.2 the return time τI
on I is Lebesgue integrable, thus υi-integrable also since dυi

dλ is bounded. Hence τ is η̃i-integrable
by the construction of η̃i from υi (see Subsection 5.1). Moreover we have

τ(x) = T
(

Rr(x)−1
0 (x)

)

+ · · ·+T (x),
so ηi(T ) = η̃i(τ) (see Subsection 6.2). Thus T is ηi-integrable.

Lemma 5.9 together with the fact that ηi is physical for R0, ensure that B(νi) contains the
positive X t orbit of almost every point (x,0),x ∈ B(νi), with respect to λ2 on B(ηi). If we denote
by λ3 = π∗(λ2×dt) a natural volume measure on V , then we get λ3(B(νi)

)

> 0.
The basins B(ν1), . . . ,B(νl) cover λ3-almost every point in V0 = π

(

p−1(I)× [0,+∞)
)

and this
subset is a neighborhood of the suspension π

(

(Λ∩Ξ\Γ)× [0,+∞)
)

of Λ∩Ξ\Γ.
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6.4. Physical measure for the flow. Finally to extend the previous conclusions to the original
flow, we relate the suspension (X t)t≥0 of R0 with return time τ to (Xt)t≥0 in U as follows. We
define

Φ : Ξ× [0,+∞) →U by (x, t) 7→ Xt(x)
and since Φ

(

x,τ(x)
)

=
(

R0(x),0
)

∈ Ξ, this map naturally defines a quotient map

(23) φ : V →U such that φ◦X t = Xt ◦φ, for all t ≥ 0,

through the identification ∼ from Subsection 5.2. The map φ is a homeomorphism into its image
V0 = φ(V ) ⊂U (since Φ is obviously a quotient map onto its image because we have defined the
relation ∼ using the first return time τ) and a diffeomorphism when restricted to V \π(Γ), which
is a full Lebesgue (λ3) measure subset of V .

Therefore the measures νi define physical measures µi = φ∗(νi), i = 1, . . . , l, whose basins
cover a full Lebesgue (m) measure subset of V0, which is a neighborhood of Λ. Since V0 ⊂U we
have

W s(Λ) =
[

t<0
Xt(V0).

Moreover Xt is a diffeomorphism for all t ∈ R, thus preserves subsets of zero m measure. Hence
∪t<0Xt

(

B(µ1)∪·· ·∪B(µl)
)

has full Lebesgue measure in W s(Λ). In other words, Lebesgue (m)
almost every point x in the basin W s(Λ) of Λ is such that Xt(x) ∈ B(µi) for some t > 0 and
i = 1, . . . , l.

6.4.1. Uniqueness of the physical measure. Let us assume that there exists z0 ∈ Λ such that
{Xt(z0) : t > 0} is dense regular orbit in Λ and that the number l of distinct physical measures is
bigger than one. Then we can take distinct physical measures η1,η2 for R0 on Ξ associated to
distinct physical measures µ1,µ2 for X | Λ. Then there are open sets U1,U2 ⊂ Ξ such that

U1 ∩U2 = /0 and λ2(B(ηi)\Ui
)

= 0, i = 1,2.

For a very small ζ > 0 we consider the open subsets Vi = X(−ζ,ζ)(Ui), i = 1,2 of U such that
V1 ∩V2 = /0. According to the construction of µi we have µi(B(µi)\Vi) = 0, i = 1,2.

The transitivity assumption ensures that there are positive times T1 < T2 (exchanging V1 and V2
if needed) such that XTi(z0)∈Vi, i = 1,2. Since V1,V2 are open sets and g = XT2−T1 is a diffeomor-
phism, there exists a small open set W1 ⊂ V1 such that g |W1 : W1 →V2 is a C1 diffeomorphism
into its image W2 = g(W1) ⊂V2.

Now the C1 smoothness of g |W1 ensures that a full Lebesgue (m) measure subset of W1 is sent
into a full Lebesgue measure subset of W2. By the definition of g and the choice of V1,V2, there
exists a point in B(µ1)∩W1 whose positive orbit contains a point in B(µ2)∩W2, thus µ1 = µ2.
Hence singular-hyperbolic attractors have a unique physical probability measure µ.

6.4.2. Hyperbolicity of the physical measure. For the hyperbolicity of the measure µ we note
that

• the sub-bundle Es is one-dimensional and uniformly contracting, thus on the E s-direction
the Lyapunov exponent is negative for every point in U ;
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• the sub-bundle Ecu is two-dimensional, dominates Es, contains the flow direction and
is volume expanding, thus by Oseledets Theorem [23, 40] the sum of the Lyapunov ex-
ponents on the direction of Ecu is given by µ i(log |detDX1 | Ecu|) > 0. Hence there is a
positive Lyapunov exponent for µ i-almost every point on the direction of Ecu, i = 1, . . . , l.

We will show that the expanding direction in Ecu does not coincide with the flow direction
EX

z = {s ·X(z) : s ∈ R}, z ∈ Λ. Indeed, the invariant direction given by EX
z cannot have positive

Lyapunov exponent, since for all t > 0 and z ∈U

(24) 1
t log

∥

∥DXt(z) ·X(z)
∥

∥=
1
t log

∥

∥

∥
X
(

Xt(z)
)

∥

∥

∥
≤

1
t log‖X‖0,

where ‖X‖0 = sup{‖X(z)‖ : z∈U} is a constant. Analogously this direction cannot have positive
exponent for negative values of time, thus the Lyapunov exponent along the flow direction must
be zero at regular points.

This shows that at µ-almost every point z the Oseledets splitting of the tangent bundle has the
form

TzM = Es
z ⊕EX

z ⊕Fz,

where Fz is the one-dimensional measurable sub-bundle of vectors with positive Lyapunov expo-
nent. The proof of Theorem B is complete.

7. ABSOLUTELY CONTINUOUS DISINTEGRATION OF THE PHYSICAL MEASURE

Here we prove Theorem C. We let µ be a physical ergodic probability measure for a singular-
hyperbolic attractor Λ of a C2-flow in an open subset U ⊂ M3, obtained through the sequence
of reductions of the dynamics of the flow Xt to the suspension flow X t of the Poincaré map R0
and return time function T , with corresponding X t-invariant measure ν obtained from the R0-
invariant measure η. In addition η is obtained through the ergodic invariant measure υ of the
one-dimensional map f : I → I. This is explained in Section 6 and Subsection 6.2. We know that
µ is hyperbolic as explained in Subsection 6.4.

Let us fix δ0 > 0 small. Then by Pesin’s non-uniformly hyperbolic theory [33, 11, 35] we
know that there exists a compact subset K ⊂ Λ such that µ(Λ \K) < δ0 and there exists δ1 > 0
for which every z ∈ K admits a strong-unstable manifold W uu

δ1
(z) with inner radius δ1. We refer

to this kind of sets as Pesin’s sets. The inner radius of W uu
δ1

(z) is defined as the length of the
shortest smooth curve in this manifold from z to its boundary. Moreover K 3 z 7→ W uu

δ1
(z) is a

continuous map K → E 1(I1,M) (recall the notations in subsection 2.1).
The suspension flow X t defined on V in Subsection 5.2 is conjugated to the Xt-flow on an open

subset of U through a homeomorphism φ, defined in Subsection 6.4, which takes orbits to orbits
and preserves time as in (23). Hence there exists a corresponding set K ′ = φ−1(K) satisfying
the same properties of K with respect to X t , where the constants δ0,δ1 are changed by at most
a constant factor due to φ−1 by the compactness of K. In what follows we use the measure
ν = (φ−1)∗µ instead of µ and write K for K ′.

We fix a density point x0 ∈ K of ν | K. We may assume that x0 ∈ Σ for some Σ ∈ Ξ. Otherwise
if x0 6∈ Ξ, since x0 = (x, t) for some x ∈ Σ, Σ ∈ Ξ and 0 < t < T (x), then we use (x,0) instead of
x0 in the following arguments, but we still write x0. Clearly the length of the unstable manifold
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through (x,0) is unchanged due to the form of the suspension flow, at least for small values of
δ1. Since ν is given as a product measure on the quotient space V (see Subsection 6.3), we may
assume without loss that x0 is a density point of η on Σ∩K.

We set W u(x,Σ) to be the connected component of W u(x)∩Σ that contains x, for x ∈ K ∩Σ,
where W u(x) is defined in Subsection 1.4. Then W u(x,Σ) has inner radius bigger than some
positive value δ2 > 0 for x ∈ K ∩Σ, which depends only on δ1 and the angle between W uu

δ1
(x)

and TxΣ. Since this angle is uniformly bounded (because Ξ and K are compact) we have that
dist
(

R−n
0 (y),R−n

0 (x)
)

→ 0 for all y ∈ W u(Σ,x) when n → ∞ (we recall that R0 is injective, see
Section 4, and that by definition of W u(x) its points must have well defined pre-images under
R0). Thus W u(Σ,x) ⊂W u(R0,x), the unstable manifold of R0 through x ∈ Σ.

Let F
s(x0,δ2) = {W s(x,Σ) : x ∈W u(x0,Σ)} and Fs(x0,δ2) = ∪γ∈Fs(x0,δ2)γ be a horizontal strip

in Σ. Points z ∈ Fs(x0,δ2) can be specified using coordinates (x,y) ∈W u(x0,Σ)×R, where x is
given by W u(x0,Σ)∩W s(z,Σ) and y is the length of the shortest smooth curve connecting x to z
in W s(z,Σ). Let us consider

F
u(x0,δ2) = {W u(z,Σ) : z ∈ Σ and W u(z,Σ) crosses F s(x0,δ2)},

where we say that a curve γ crosses F s(x0,δ2) if the trace of γ can be written as the graph of a
map W u(x0,Σ) → W s(x0,Σ) using the coordinates outlined above. We stress that Fu(x0,δ2) is
not restricted to leaves through points of K.

We may assume that Fu(x0,δ2) =∪Fu(x0,δ2) satisfies η(Fu(x0,δ2))> 0 up to taking a smaller
δ2 > 0, since x0 is a density point of η | K ∩Σ. Let η̂ be the measure on Fu(x0,δ2) given by

η̂(A) = η
(

[

γ∈A
γ
)

for every measurable set A ⊂ F
u(x0,δ2).

Proposition 7.1. The measure η | Fu(x0,δ2) admits a disintegration into conditional measures
ηγ along η̂-a.e. γ ∈ Fu(x0,δ2) such that ηγ � λγ, where λγ is the measure (length) induced on γ
by the natural Riemannian measure λ2 (area) on Σ. Moreover there exists D0 > 0 such that

1
D0

≤
dηγ

dλγ
≤ D0, ηγ-almost everywhere for η̂-almost every γ.

This is enough to conclude the proof of Theorem C since both δ0 and δ2 can be taken arbitrarily
close to zero, so that all unstable leaves W u(x,Σ) through almost every point with respect to η
will support a conditional measure of η.

Indeed, to obtain the disintegration of ν along the center-unstable leaves that cross any small
ball around a density point x0 of K, we project that neighborhood of x0 along the flow in negative
time on a cross section Σ. Then we obtain the family {ηγ}, the disintegration of η along the
unstable leaves γ ∈ Fu on a strip F s of Σ, and consider the family {ηγ × dt} of measures on
Fu × [0,T ] to obtain a disintegration of ν, where T > 0 is a fixed time slightly smaller than the
return time of the points in the strip F s.

In fact, ηγ × dt � λγ × dt and λγ × dt is the induced (area) measure on the center-unstable
leaves by the volume measure λ3 on V , and it can be given by restricting the volume form λ3 to
the surface γ× [0,T ] which we write λ3

γ , for γ ∈Fu. Thus by Proposition 7.1 and by the definition
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of ν, we have

νγ = ηγ ×dt =
dηγ

dλγ
·λ3

γ , γ ∈ F
u

and the densities of the conditional measures ηγ × dt with respect to λ3
γ are also uniformly

bounded from above and from below away from zero – we have left out the constant factor
1/µ(τ) to simplify the notation.

Since µ = φ∗ν and φ is a diffeomorphism when restricted to V \ π(Γ), then µ also has an
absolutely continuous disintegration along the center-unstable leaves. The densities are related
by the expression

µγ = φ∗(νγ) = φ∗
(dηγ

λγ
·λ3

γ

)

=

(

1
detD(φ | γ× [0,T ])

·
dηγ

λγ

)

◦φ−1 ·mγ, γ ∈ F
u

which implies that the densities along the center-unstable leaves are uniformly bounded from
above. (Here mγ denotes the area measure on the center-unstable leaves induced by the volume
form m.) Indeed, the tangent bundle of γ× [0,T ] is sent by Dφ into the bundle E cu by construction
and recalling that φ(x, t) = Xt(x) then, if e1 is a unit tangent vector at x ∈ γ, ê1 is the unit tangent
vector at φ(x,0) ∈W u(x,Σ) and e2 is the flow direction at (x, t) we get

Dφ(x, t)(e1) = DXt
(

Xt(x)
)

(ê1) and Dφ(x, t)(e2) = DXt
(

Xt(x)
)(

X(x,0)
)

= X
(

Xt(x)
)

.

Hence D
(

φ | γ× [0,T ]
)

(x, t) = DXt | Ecu
φ(x,t) for (x, t) ∈ γ× [0,T ] and so

|detD
(

φ | γ× [0,T ]
)

(x, t)|= Jc
t (x).

Now the volume expanding property of Xt along the center-unstable sub-bundle, together with
the fact that the return time function τ is not bounded from above near the singularities, show
that the densities of µγ are uniformly bounded from above throughout Λ but not from below. In
fact, this shows that these densities will tend to zero close to the singularities of X in Λ.

This finishes the proof of Theorem C except for the proof of Proposition 7.1 and of supp(µ) =
Λ, which we present in Subsection 7.1.

7.1. Constructing the disintegration. Here we prove Proposition 7.1. We split the proof into
several lemmas keeping the notations of the previous sections. Let R0 : p−1(I)→Ξ, λ2, Fu(x0,δ2),
Fu(x0,δ2) and η be as before, where x0 ∈ K ∩ Σ is a density point of η | K and K is a com-
pact Pesin set. We write {ηγ} and {λ2

γ} for the disintegrations of η | Fu(x0,δ2) and λ2 along
γ ∈ Fu(x0,δ2).

Lemma 7.2. Either ηγ � λ2
γ for η̂-a.e. γ ∈ Fu(x0,δ2), or ηγ ⊥ λ2

γ for η̂-a.e. γ ∈ Fu(x0,δ2).

Proof. We start by assuming that the first item in the statement does not hold and proceed to show
that this implies the second item. We write η for η(Fu(x0,δ2))

−1 ·η | Fu(x0,δ2) to simplify the
notation in this proof.

Let us suppose that there exists A ⊂ Fu(x0,δ2) such that η(A) > 0 and λ2
γ(A) = 0 for η̂-a.e.

γ ∈ Fu(x0,δ2). Let B = ∪k≥0Rk
0(A). We claim that η(B) = 1.
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Indeed, we have R0(B) ⊂ B, then B ⊂ R−1
0 (B) and

(

R−k
0 (B)

)

k≥0 is a nested increasing family
of sets. Since η is R0-ergodic we have for any measurable set C ⊂ Ξ

(25) lim
n→+∞

1
n

n−1
∑
j=0

η
(

C∩R− j
0 (B)

)

= η(C) ·η(B).

But η
(

∪k≥0 R−k
0 (B)

)

= 1 because this union is R0-invariant and η(B) = η
(

R−k
0 (B)

)

> 0 by
assumption, for any k ≥ 0. Because the sequence is increasing and nested we have η

(

R−k
0 (B)

)

↗
1. Hence from (25) we get that η(C) = η(C) ·η(B) for all sets C ⊂ X . Thus η(B) = 1 as claimed.

Therefore 1 = η(B) =
R

ηγ(B)dη̂(γ) and so ηγ(B) = 1 for η̂-a.e. γ ∈ Fu(x0,δ2) since every
measure involved is a probability measure.

We now claim that λγ(B) = 0 for µ̂-a.e. γ ∈ Fu(x0,δ2). For if R0(A)∩ γ 6= /0 for some γ ∈

Fu(x0,δ2), then A∩R−1
0 (γ)∩Fu(x0,δ2) 6= /0 and so it is enough to consider only A∩Fu

1 , where
Fu

1 = R−1
0 (Fu(x0,δ2))∩Fu(x0,δ2). But λγ(A∩Fu

1 ) ≤ λγ(A) = 0 thus

0 = λγ
(

R0(A∩Fu
1 )
)

≥ λγ
(

R0(A)∩Fu(x0,δ2)
)

= λγ(R0(A))

for η̂-a.e. γ since R0 is piecewise smooth, hence a regular map. Therefore we get λγ(Rk
0(A)) = 0

for all k ≥ 1 implying that λγ(B) = 0 for η̂-a.e. γ.
This shows that ηγ is singular with respect to λγ for η̂-a.e. γ. The proof is finished. �

7.1.1. Existence of hyperbolic times for f0 and consequences to R0. Now we show that a posi-
tive measure subset of Fu(x0,δ2) has absolutely continuous disintegrations, which is enough to
conclude the proof of Proposition 7.1 by Lemma 7.2, except for the bounds on the densities.

We start by noting that since vectors in center-unstable cones Ccu
Σ for Σ ∈ Ξ have angles with

the horizontal (stable) directions bounded away from zero, then there exists β0 > 0 such that for
any cu-curve γ : (a,b) → Σ in a cross-section Σ we have the following bound on the derivative

(26) 1
β0

≤
(

p | γ
)′
≤ β0.

We need the notion of hyperbolic time for the one-dimensional map f [2]. We know that this
map is piecewise C1+α and the boundaries Γ0 of the intervals I1, . . . , In can be taken as a singular
set for f (where the map is not defined or is not differentiable) which behaves like a power of the
distance to Γ0, as follows. Denoting by d the usual distance on the intervals I, there exist B > 0
and β > 0 such that

• 1
B ·d(x,Γ0)β ≤

∣

∣ f ′
∣

∣≤ B ·d(x,Γ0)−β;
•
∣

∣ log | f ′(x)|− log | f ′(y)|
∣

∣≤ B ·d(x,y) ·d(x,Γ0)−β,
for all x,y ∈ I with d(x,y) < d(x,Γ0)/2. This is true of f since in Subsection 4.3 it was shown
that f ′ | I j either is bounded from above and below away from zero, or else is of the form xβ with
β ∈ (0,1).

Given δ > 0 we define dδ(x,Γ0) = d(x,Γ0) if d(x,Γ0) < δ and 1 otherwise.
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Definition 7.3. Given b,c,δ > 0 we say that n ≥ 1 is a (b,c,δ)-hyperbolic time for x ∈ I if

(27)
n−1
∏

j=n−k

∣

∣ f ′
(

f j(x)
)
∣

∣

−1
≤ e−ck and

n−1
∏

j=n−k
dδ
(

f j(x),Γ0
)

≥ e−bk

for all k = 0, . . . ,n−1.
Since f has positive Lyapunov exponent υ-almost everywhere, i.e.

lim
n→+∞

1
n log

∣

∣( f n)′(x)
∣

∣> 0 for υ-almost all x ∈ I,

and dυ
dλ is bounded from above (where λ is the Lebesgue length measure on I), thus | logd(x,Γ0)|

is υ-integrable and for any given ε > 0 we can find δ > 0 such that for υ-a.e. x ∈ I

lim
n→∞

1
n

n−1
∑
j=0

− logdδ( f j(x),Γ0) =
Z

− logdδ(x,Γ0)dυ(x) < ε.

This means that f is non-uniformly expanding and has slow recurrence to the singular set. Hence
we are in the setting of the following result.
Theorem 7.4 (Existence of a positive frequency of hyperbolic times). Let f : I → I be a C1+α

map, behaving like a power of the distance to a singular set Γ0, non-uniformly expanding and
with slow recurrence to Γ0 with respect to an absolutely continuous invariant probability measure
υ. Then for b,c,δ > 0 small enough there exists θ = θ(b,c,δ) > 0 such that υ-a.e. x ∈ I has
infinitely many (b,c,δ)-hyperbolic times. Moreover if we write 0 < n1 < n2 < n2 < .. . for the
hyperbolic times of x then their asymptotic frequency satisfies

liminf
N→∞

#{k ≥ 1 : nk ≤ N}

N ≥ θ for υ-a.e. x ∈ I.

Proof. A complete proof can be found in [2, Section 5] with weaker assumptions corresponding
to Theorem C in that paper.

�

From now on we fix values of (b,c,δ) so that the conclusions of Theorem 7.4 are true.
We now outline the properties of these special times. For detailed proofs see [2, Proposition

2.8] and [3, Proposition 2.6, Corollary 2.7, Proposition 5.2].
Proposition 7.5. There are constants β1,β2 > 0 depending on (b,c,δ) and f only such that,
if n is (b,c,δ)-hyperbolic time for x ∈ I, then there are neighborhoods Wk(x) ⊂ I of f n−k(x),
k = 1, . . . ,n, such that

(1) f k |Wk(x) maps Wk(x) diffeomorphically to the ball of radius β1 around f n(x);
(2) for every 1 ≤ k ≤ n and y,z ∈Wk(x)

d
(

f n−k(y), f n−k(z)
)

≤ e−ck/2 ·d
(

f n(y), f n(z)
)

;
(3) for y,z ∈Wn(x)

1
β2

≤

∣

∣( f n)′(y)
∣

∣

∣

∣( f n)′(z)
∣

∣

≤ β2.
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The conjugacy p◦R = f ◦ p between the actions of the Poincaré map and the one-dimensional
map on the space of leaves, together with the bounds on the derivative (26), enables us to extend
the properties given by Proposition 7.5 to any cu-curve inside B(η), as follows.

Let γ : J → Ξ be a cu-curve in Ξ\Γ such that γ(s) ∈ B(η) for Lebesgue almost every s ∈ J, J
a non-empty interval — such a curve exists since the basin B(η) contains entire strips of some
section Σ ∈ Ξ except for a subset of zero area. Note that we have the following limit in the weak∗

topology

lim
n→+∞

λn
γ = η where λn

γ =
1
n

n−1
∑
j=0

(R0)
j
∗(λγ),

by the choice of γ and by an easy application of the Dominated Convergence Theorem.

Proposition 7.6. There are constants κ0,κ1 > 0 depending on (b,c,δ) and R0,β0,β1,β2 only
such that, if x ∈ γ and n is big enough and a (b,c,δ)-hyperbolic time for p(x) ∈ I, then there are
neighborhoods Vk(x) of Rn−k(x) on Rn−k(x)(γ), k = 1, . . . ,n, such that

(1) Rk |Vk(x) maps Vk(x) diffeomorphically to the ball of radius κ0 around Rn(x) on Rn(γ);
(2) for every 1 ≤ k ≤ n and y,z ∈Vk(x)

dRn−k(γ)
(

Rn−k(y),Rn−k(z)
)

≤ β0 · e−ck/2 ·dRn(γ)
(

Rn(y),Rn(z)
)

;

(3) for y,z ∈Vn(x)
1
κ1

≤

∣

∣D(Rn | γ)(y)
∣

∣

∣

∣D(Rn | γ)(z)
∣

∣

≤ κ1;

(4) the inducing time of Rk on Vk(x) is constant, i.e. rn−k |Vk(x) ≡ const..

Here dγ denotes the distance along γ given by the shortest smooth curve in γ joining two given
points and λγ denotes the normalized Lebesgue length measure induced on γ by the area form λ2

on Ξ.

Remark 7.7. Item (4) of Proposition 7.6 ensures that in items (1) through (3) of this proposition
we can replace Rk by Rrk(x) everywhere. So the statement of Proposition 7.6 may be read as a
statement about certain iterates of the map R0.

Proof of Proposition 7.6. Let x0 = p(x) and Wk(x0) be given by Proposition 7.5, k = 1, . . .n. We
have that p(γ) is an interval in I and that p | γ : γ → p(γ) is a diffeomorphism — we may take γ
with smaller length if needed.

If n is big enough, then Wn(x0) ⊂ p(γ). Moreover the conjugacy implies that the following
maps are all diffeomorphisms

Vk(x)
Rk
−→ Rk(Vk(x))

p ↓ ↓ p

Wk(x0)
f k

−→ B
(

f k(x0),κ0
)

,

and the diagram commutes, where Vk(x) =
(

p | Rk(γ)
)−1(Wk(x0)

)

, k = 1, . . . ,n. Using the
bounds (26) to compare derivatives we get κ0 = β1/β0 and κ1 = β0 ·β2.
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To get item (4) we just note that by definition of (b,c,δ)-hyperbolic time none of the sets
Wk(x0) may intersect Γ0. According to the definition of Γ0, this means that orbits through x,y ∈
Vk(x) cannot cut different cross-sections in Ξ before the next return in time τ(x),τ(y) respectively.
Hence every orbit through Wk(x0) cuts the same cross-sections in its way to the next return cross-
section. In particular the number of cross-section cuts is the same, i.e. r |Vk(x) is constant, k =
1, . . . ,n. Hence by definition of rk we obtain the statement of item (4) since R(Vk(x)) = Vk−1(x)
by definition. This completes the proof of the proposition. �

We define for n ≥ 1

Hn = {x ∈ γ : n is a (b,c/2,δ)-hyperbolic time for p(x)}.

As a consequence of items (1-2) of Proposition 7.6, we have that Hn is an open subset of γ and
for any x ∈ γ∩Hn we can find a connected component γn of Rn(γ)∩B(Rn(x),κ0) containing x
such that Rn | Vn(x) : Vn(x) → γn is a diffeomorphism. In addition γn is a cu-curve according to
Corollary 2.6, and by item (3) of Proposition 7.6 we deduce that

(28) 1
κ1

≤
d
(

Rn
∗(λγ) | B(Rn(x),κ0)

)

dλγn
≤ κ1, λγn − a.e. on γn,

where λγn is the Lebesgue induced measure on γn for any n ≥ 1, if we normalize both measures
so that

(

(Rn)∗(λγ) | B(Rn(x),κ0)
)

(γn) = λγn(γn), i.e. their masses on γn are the same.
Moreover the set Rn(γ∩Hn) has an at most countable number of connected components which

are diffeomorphic to open intervals. Each of these components is a cu-curve with diameter
bigger than κ0 and hence we can find a pairwise disjoint family γn

i of κ0-neighborhoods around
Rn(xi) = Rrn(xi)(xi) in Rn(γ), for some xi ∈ Hn, with maximum cardinality, such that

(29) ∆n =
[

i
γn

i ⊂ Rn(γ∩Hn
)

and
(

(R)n
∗(λγ) | ∆n

)

(∆n) ≥
1

2κ1
·λγ(Hn).

Indeed since Rn(γ∩Hn) is one-dimensional, for each connected component the family ∆n may
miss a set of points of length at most equal to the length of one γn

i , for otherwise we would
manage to include an extra κ0-neighborhood in ∆n. Hence we have in the worst case (assuming
that there is only one set γn

i for each connected component)

λγn
(

Rn(γ∩Hn)\∆n
)

≤ λγn
(

[

i
γn

i
)

= λγn(∆n) so that λγn(∆n) ≥
1
2 ·λγn

(

Rn(γ∩Hn)
)

and the constant κ1 comes from (28).
For a fixed small ρ > 0 we consider ∆n,ρ given by the balls γn

i with the same center xn,i but a
reduced radius of κ0 −ρ. Then the same bound in (29) still holds with 2κ1 replaced by 3κ1.

We re-index each γn
i to γrn(xn,i) and regroup the balls with the same index n in the class Dn,ρ,

for all n ≥ 1. The index now reflects the number of iterates of R0 (instead of R) needed to get the
uniform expansion with bounded distortion into a disk with uniform radius. We write Dn for the
family of disks from ∪ j≥1∆ j with the same expanding iterate (the disks with the same centers as
the ones from Dn,ρ but with their original size). Since rk ≤ r0 · k we have the following relation
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for all k ≥ 1

(30)
r0·k
[

i=0
Di,ρ ⊃

k
[

j=0
∆ j.

We define the following sequences of measures

ωn
ρ =

1
n

n−1
∑
j=0

(R0)
j
∗(λγ) | D j,ρ and λ

n
γ = λn

γ −ωn
ρ, n ≥ 1.

Then any weak∗ limit point η̃ = limk ωnk
ρ for some subsequence n1 < n2 < .. . and η = limk λ

n′k
γ

(where n′k may be taken as a subsequence of nk), are R0-invariant measures which satisfy η =
η̃+η.

We claim that η̃ 6≡ 0, thus η = η̃ as a consequence of the ergodicity of η. In fact, we can bound
the mass of ωn

ρ from below using the density of hyperbolic times from Theorem 7.4, the bound
from (29) and the relation (30) through the following Fubini-Toneli-type argument

ωn
ρ(M) ≥

1
3κ1 ·n

[n/r0]−1

∑
j=0

λγ(H j) =
[n/r0]

3κ1n

Z Z

χi(x)dλγ(x)d#[n/r0](i)

=
[n/r0]

3κ1n

Z Z

χi(x)d#[n/r0](i)dλγ(x) ≥
θ

6κ1r0
> 0,

for every n big enough by the choice of γ. Here [x] = max{k ∈ Z : k ≤ x} and #n(J) = #J/n
for any J ⊂ {0, . . . ,n− 1} is the uniform discrete measure on the first n integers. Also we set
χi(x) = 1 if x ∈ Hi and zero otherwise, i = 0, . . . ,n−1.

7.1.2. Approximating unstable curves by images of curves at hyperbolic times. We now observe
that since η(Fu(x0,δ2)) > 0 and x0 is a density point of η |Fu(x0,δ2), then ωn

ρ(Fu(x0,δ2))≥ c for
some constant c > 0 for all big enough n. If we assume that δ2 < ρ, which poses no restriction,
then we see that the cu-curves from D j,ρ intersecting Fu(x0,δ2) will cross this horizontal strip
when we restore their original size. Thus the leaves ∪n−1

j=0D j in the support of ωn
0 which intersect

Fu(x0,δ2) cross this strip. Given any sequence γnk of leaves in Dnk crossing Fu(x0,δ2) with n1 <
n2 < n3 < .. . , then there exists a C1-limit leaf γ∞ also crossing Fu(x0,δ2), by the Ascoli-Arzela
Theorem. We claim that this leaf coincides with the unstable manifold of its points, i.e. γ∞ =
W u(x,Σ) for all x ∈ γ∞. This shows that the accumulation curves γ∞ are defined independently of
the chosen sequence γnk of curves in Dn.

To prove the claim let us fix l > 0 and take a big k so that nk � l. We note that for any distinct
x,y ∈ γ∞ there are xk,yk ∈ γnk such that (xk,yk) → (x,y) when k → ∞. Then for xk,yk there exists
a neighborhood Vnk of a point z ∈ γ such that γnk = Rnk

0 (Vnk) and nk = rh(z).
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We take j ≥ 1 such that r j(z) ≤ nk − l < r j+1(z). Setting p = r j+1(z)− (nk − l) we can now
write for some u,v ∈Vnk

d(xk,yk) = d
(

Rh− j+1(Rp
0(u)

)

,Rh− j+1(Rp
0(v)

)

≥
e c

4 (h− j+1)

β0
·d
(

Rp
0(u),Rp

0(v)
)

≥
c0
β0

e
c
4 (h− j+1) ·d(u,v),

where c0 > 0 is a lower bound (13) for the least expansion of R0 along the center-unstable cone,
see Subsection 4.2. This shows that

d
(

R−l
0 (xk),R−l

0 (yk)
)

≤
β0
c0

e−
c
4

h− j+1
l ·l ·d(xk,yk) ≤

β0
c0

e−
c
4 ·

l
r0 ·d(xk,yk).

By Proposition 7.5 and the C1-smoothness of R0 away from Γ we get

d
(

R−l
0 (x),R−l

0 (y)
)

≤
β0
c0

e−
c
4 ·

l
r0 ·d(x,y)

letting k → ∞. Hence y is in the unstable manifold of x with respect to R0 in F(x0,δ), thus
y ∈W u(x,Σ) by construction, see the beginning of Section 7. This proves the claim.

We define Fu
∞ to be the family of all leaves γ∞ obtained as C1 accumulation points of leaves in

F
u
n = {ξ ∈ ∪n−1

j=0D j : ξ crosses Fu(x0,δ2)}.

We note that Fu
∞ ⊂ Fu(x0,δ2). Since for all n we have ωn

0 ≥ ωn
ρ and so ωn

0(∪Fu
n) > c, we get

that η
(

∪Fu
∞
)

≥ c. By definition of Fu
n and by (28) we see that ωn

0 | Fu
n disintegrates along the

partition Fu
n of Fu

n = ∪Fu
n into measures ωn

ξ having density with respect to λξ uniformly bounded
from above and below, for almost every ξ ∈ Fu

n.
To take advantage of this in order to prove Proposition 7.1 we consider a sequence of increas-

ing partitions (Vk)k≥1 of W s(x0,Σ) whose diameter tends to zero. This defines a sequence Pk
of partitions of F̃ = ∪0≤n≤∞Fu

n as follows: we fix k ≥ 1 and say that two elements ξ ∈ Fu
i ,ξ

′ ∈
Fu

j ,0 ≤ i, j ≤ ∞ are in the same atom of Pk when both intersect W s(x,Σ) in the same atom of Vk
and either i, j ≥ k or i = j < k.

If q is the projection q : F̃ →W s(x0,Σ) given by the transversal intersection ξ∩W s(x0,Σ) for
all ξ ∈ F̃, then F̃ can be identified with a subset of the real line. Thus we may assume without
loss that the union ∂Pk of the boundaries of Pk satisfies η(∂Pk) = η̂(∂Pk) = 0 for all k ≥ 1, by
suitably choosing the sequence Vk.

7.1.3. Upper and lower bounds for densities. Given ζ ∈ F̃ we write p : Fu(x0,δ2) → ζ the pro-
jection along stable leaves and ω for ω0. Writing Pk(ζ) for the atom of Pk which contains ζ, then
since Pk(ζ) is a union of leaves, for any given Borel set B ⊂ ζ and n ≥ 1

(31) ωn(
Pk(ζ)∩ p−1(B)

)

=

Z

ωn
ξ
(

Pk(ζ)∩ p−1(B)
)

dω̂n(ξ)
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through disintegration, where ω̂n is the measure on F̃ induced by ωn. Moreover by (28) and
because each curve in F̃ crosses Fu(x0,δ2)

(32) 1
κ1κ2

·λζ(B)≤
1
κ1

·λξ
(

p−1(B)
)

≤ ωn
ξ
(

Pk(ζ)∩ p−1(B)
)

≤ κ1 ·λξ
(

p−1(B)
)

≤ κ1κ2 ·λζ(B)

for all n,k ≥ 1 and ω̂n-a.e. ξ ∈ F̃, where κ2 > 0 is a constant such that
1
κ2

·λζ ≤ λξ ≤ κ2 ·λζ for all ξ ∈ F̃,

which exists since the angle between the stable leaves in any Σ ∈ Ξ and any cu-curve is bounded
from below. Finally letting ζ ∈ Fu

∞ and choosing B such that η
(

∂p−1(B)
)

= 0 (which poses no
restriction), assuming that η

(

∂
(

Pk(ζ)∩ p−1(B)
)

)

= 0 we get from (31) and (32) for all k ≥ 1

(33) 1
κ1κ2

·λζ(B) · η̂
(

Pk(ζ)
)

≤ η
(

Pk(ζ)∩ p−1(B)
)

≤ κ1κ2 ·λζ(B) · η̂
(

Pk(ζ)
)

by the weak∗ convergence of ωn to η. Thus to conclude the proof we are left to check that
η
(

∂
(

Pk(ζ)∩ p−1(B)
))

= 0. For this we observe that Pk(ζ)∩ p−1(B) can be written as the product
q(Pk(ζ))×B. Hence the boundary is equal to

(

∂q(Pk(ζ))×B
)

∪
(

q(Pk(ζ))×∂B
)

⊂ q−1(∂q(Pk(ζ))
)

∪ p−1(B)

and the right hand side has η-zero measure by construction.
This completes the proof of Proposition 7.1 since we have {ζ}= ∩k≥1Pk(ζ) for all ζ ∈ F̃ and,

by the Theorem of Radon-Nikodym, the bounds in (33) imply that the disintegration of η | ∪Fu
∞

along the curves ζ ∈ Fu
∞ is absolutely continuous with respect to Lebesgue measure along these

curves and with uniformly bounded densities from above and from below.

7.1.4. The support covers the whole attractor. Finally to conclude that supp(µ) = Λ it is enough
to show that supp(µ) contains some cu-curve γ : (a,b) → Σ in some subsection Σ ∈ Ξ. Indeed,
letting x0 ∈Λ∩Σ be a point of a forward dense regular X -orbit and fixing c∈ (a,b) and ε > 0 such
that a < c−ε < c+ε < b, then for any ρ > 0 there exists t > 0 satisfying dist

(

γ(c),Xt(x0)
)

< ρ.
Since W s(Xt(x0),Σ

)

t
(

γ | (c− ε,c + ε)
)

= {z} (because γ is a cu-curve in Σ and ρ > 0 can be
made arbitrarily small, where t means transversal intersection), then, by the construction of the
adapted cross-section Σ (see Section 2), this means that z ∈ W s(Xt(x0)

)

. Hence the ω-limit sets
of z and x0 are equal to Λ. Thus supp(µ) ⊇ Λ because supp(µ) is X -invariant and closed, and
Λ ⊇ supp(µ) because Λ is an attracting set.

We now use (33) to show that η̂-almost every γ∈ F̃ is contained in supp(η), which is contained
in supp(µ) by the construction of µ from η in Section 6. In fact, η̂-almost every ζ ∈ F̃ is a density
point of η̂ | F̃ and so for any one ζ of these curves we have η̂

(

Pk(ζ)
)

> 0 for all k ≥ 1. Fixing
z ∈ ζ and choosing ε > 0 we may find k ≥ 1 big enough and a small enough open neighborhood
B of z in ζ such that

Pk(ζ)∩ p−1(B) ⊂ B(z,ε)∩Σ and η
(

Pk(ζ)∩ p−1(B)
)

> 0,

by the left hand side inequality in (33). Since ε > 0 and z∈ ζ where arbitrarily chosen, this shows
that ζ ∈ supp(η) ⊂ supp(µ) and completes the proof of Theorem C.
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