On the adjugate of a matrix

António Guedes de Oliveira* Universidade do Porto

Let $|\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0$ be the characteristic polynomial of an *n*-by-*n* matrix *A* over a given field K. The elegant proof of the Cayley-Hamilton theorem of [1, p. 50] can be easily modified to prove that (see [2, p. 40]):

$$(-1)^{n-1} A^{\mathrm{adj}} = A^{n-1} + c_{n-1} A^{n-2} + \dots + c_1 I$$
(1)

where A^{adj} stands for the *adjugate* of A (or *classical adjoint* — the transpose of the cofactor matrix of A) and I for the identity matrix of order n. More generally, it can be easily modified to prove that (see [3, p. 38]):

$$(\lambda I - A)^{\text{adj}} = A^{n-1} + (\lambda + c_{n-1}) A^{n-2} + \dots + (\lambda^{n-1} + c_{n-1}\lambda^{n-2} + c_{n-2}\lambda^{n-3} + \dots + c_1) I$$
(2)

Proof. We start from the basic fact that:

$$(\lambda I - A) \cdot (\lambda I - A)^{\operatorname{adj}} = (\lambda^n + c_{n-1} \lambda^{n-1} + \dots + c_1 \lambda + c_0) I$$
(3)

and by noting that, by definition of adjugate, $(\lambda I - A)^{\text{adj}}$ is a polynomial in λ of degree n-1 with coefficients in the space of the *n*-by-*n* matrices over \mathbb{K} , say,

$$(\lambda I - A)^{\text{adj}} = D_{n-1} \lambda^{n-1} + D_{n-2} \lambda^{n-2} + \dots + D_1 \lambda + D_0$$

By equating the terms in λ of the same order in both sides of equation (3), we obtain:

$$D_{n-1} = I$$

$$-A \cdot D_{n-1} + D_{n-2} = c_{n-1} I$$

$$-A \cdot D_{n-2} + D_{n-3} = c_{n-2} I$$

$$\vdots \quad \vdots \quad \vdots$$

$$-A \cdot D_1 + D_0 = c_1 I$$

$$-A \cdot D_0 = c_0 I$$

Finally, by multiplying the first equation by A^n , the second by A^{n-1} , and so on, up to the last equation, and by adding the new equations up, we obtain the Cayley-Hamilton theorem. This is the proof in [1, p. 50]. If, instead, we multiply the first equation by A^{n-1} , the second by A^{n-2} , etc., and stop precisely before the last equation, by summing up we obtain at the left-hand side D_0 , which is $(-1)^{n-1}A^{adj}$, say, by putting $\lambda = 0$. Hence, we get (1). (2) can be proven by obtaining the coefficients of $(\lambda I - A)^{adj}$ step by step through the same procedure.

^{*}Work partially supported by the Centro de Matematica da Universidade do Porto (CMUP), financed by FCT (Portugal) through the programmes POCTI and POSI, with national and European Community structural funds.

References

- M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, Inc, New York (1992).
- [2] O. Taussky, "The factorization of the adjugate of a finite matrix", *Linear Algebra Appl.*, 1 (1968), pp. 39–41.
- [3] R.A. Frazer, W.J. Duncan, and A.R. Collar, *Elementary Matrices and Some Applica*tions to Dynamics and Differential Equations, Cambridge University Press, Cambridge, England, (1955).