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Let [N\ — Al = A\ 4+ ¢, 1 A" 1 + ...+ ¢1 A+ ¢y be the characteristic polynomial of an
n-by-n matrix A over a given field K. The elegant proof of the Cayley-Hamilton theorem of
[1, p. 50] can be easily modified to prove that (see [2, p. 40]):

(~1)" P A = A e, AR T (1)

where AU stands for the adjugate of A (or classical adjoint — the transpose of the cofactor
matrix of A) and I for the identity matrix of order n. More generally, it can be easily modified
to prove that (see [3, p. 38]):

AT=A)2 = A" Aoy g) A2 (N e A" 2 N g T (2)
Proof. We start from the basic fact that:

AT—A)- A=A = (N ey N ey A o) ] (3)
and by noting that, by definition of adjugate, (A — A) ¥ is a polynomial in A of degree
n — 1 with coefficients in the space of the n-by-n matrices over K, say,

A —A)* =D, (N1 4+ D, 25A" 2 4+... 4+ D A+ Dy
By equating the terms in A of the same order in both sides of equation (3), we obtain:
D, 1=1
—A-Dp 14Dy o=cp 11
—A-D, o+ Dy 3=cp_ol

—A-Di+Dyg=c1 1
—A-D():C()I

Finally, by multiplying the first equation by A", the second by A"~!, and so on, up to the
last equation, and by adding the new equations up, we obtain the Cayley-Hamilton theorem.
This is the proof in [1, p. 50]. If, instead, we multiply the first equation by A"~!, the second
by A"2, etc., and stop precisely before the last equation, by summing up we obtain at the
left-hand side Dy, which is (—1)""1A*Y say, by putting A = 0. Hence, we get (1). (2) can be
proven by obtaining the coefficients of (A I — A) 4 step by step through the same procedure.
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