
Algebra and Discrete Mathematics RESEARCH ARTICLE
Number ?. (????). pp. 1–15

c© Journal “Algebra and Discrete Mathematics”

τ-complemented and τ-supplemented modules

Khaled Al-Takhman, Christian Lomp, Robert Wisbauer

Abstract. Proper classes of monomorphisms and short exact
sequences were introduced by Buchsbaum to study relative homo-
logical algebra. It was observed in abelian group theory that com-
plement submodules induce a proper class of monomorphism and
this observations were extended to modules by Stenström, Gener-
alov, and others. In this note we consider complements and supple-
ments with respect to (idempotent) radicals and study the related
proper classes of short exact sequences.

1. Proper classes and τ-supplements

With the intention of formalising the theory of Ext functors depend-
ing on a specific choice of monomorphisms, Buchsbaum introduced in
[4] certain conditions on a class of monomorphisms which are needed
to study relative homological algebra. This lead to he notion of proper
classes of monomorphisms and short exact sequences. Well-known ex-
amples of such classes are the pure exact sequences which can be defined
by choosing a class P of (finitley presented) modules and considering
those sequences on which Hom(P,−) is exact for each P ∈ P. These
techniques are outlined, for example, in Mishina and Skornjakov [10],
Sklyarenko [13] and [16]. It was observed in abelian group theory that
complement submodules induce a proper class of short exact sequences
and this motivated the investigation of such question for modules over
arbitrary rings. First results in this direction were obtained, for exam-
ple, by Stenström [14] and Generalov [5, 7]. For a more comprehensive
presentation of the results and the sources we refer to E. Mermut’s PhD
thesis [9].

Our interest in this approach to the structure theory of modules is
based on an observation mentioned in Stenström [14], namely that over
any ring, supplement submodules induce a proper class of short exact
sequences. This may help to bring some order in the variations and
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generalisations of supplemented and lifting modules coming up recently
by involving properties from torsion theory.

1.1. Proper classes. Let E be a class of short exact sequences in σ[M ].
If

0 // K
f

// L
g

// N // 0

belongs to E, then f is called an E-mono and g said to be an E-epi. The
class E is called proper if it satisfies the conditions

P.1 E is closed under isomorphisms;

P.2 E contains all splitting short exact sequences in σ[M ];

P.3 the class of E-monos is closed under composition;
if f ′, f are monos and f ′ ◦ f is an E-mono, then f is an E-mono;

P.4 the class of E-epis is closed under composition;
if g, g′ are epis and g ◦ g′ is an E-epi, then g is an E-epi.

The class of all splitting short exact sequences in σ[M ] is an example
of a proper class.

1.2. Purities. Let P be a class of modules in σ[M ]. Denote by E
P the

class of all short exact sequences in σ[M ] on which Hom(P,−) is exact
for each P ∈ P. It is straightforward to prove that E

P is a proper class.
This type of class is called projectively generated and its elements are
called P-pure sequences.

The ”classical” purity is obtained by taking for P all finitely presented
modules in σ[M ]; for M = R this is the Cohn purity (e.g., [16, § 33]).

1.3. Copurities. Let Q be a class of modules in σ[M ]. Denote by EQ

the class of all short exact sequences in σ[M ] on which Hom(−, Q) is
exact for each Q ∈ Q. Then EQ is a proper class. This type of class is
called injectively generated and its elements are called Q-copure sequences
(see [16, § 38]).

1.4. Relative injectivity and projectivity. Let E be a proper class
of short exact sequences in σ[M ].

A module P ∈ σ[M ] is called E-projective if Hom(P,−) is exact on
all short exact sequences in E.

Dually, a module Q ∈ σ[M ] is called E-injective if Hom(−, Q) is exact
on all short exact sequences in E.

It follows from standard arguments that the class of all E-projective
modules is closed under direct sums and direct summands, and the class
of all E-injective modules is closed under direct products and direct sum-
mands.
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1.5. Class of complement submodules. Let Ec be the class of short
exact sequences 0 → K → L → N → 0 in σ[M ] such that K is a
complement (closed) submodule of L. Then:

(1) Ec is a proper class in σ[M ].

(2) Every (semi-) simple module (in σ[M ]) is Ec-projective.

Proof. (1) The conditions P.1 and P.2 are easily verified.

P.3. Let K ⊆ L and L ⊆ N be closed submodules. Choosing K̂ ⊆
L̂ ⊆ N̂ , we have

K = K̂ ∩ L = K̂ ∩ L̂ ∩ N = K̂ ∩ N,

proving that K is closed in N .
Consider K ⊆ L ⊆ N . If K is closed in N , then K = K̂∩N = K̂∩L,

that is, K is closed in L.

P.4. The composition of two epimorphisms g and h can be presented
by the commutative diagram with exact rows and columns,

0 // K

=

��

// U

i

��

// U/K //

��

0

0 // K // L

gh

��

g
// L/K //

h

��

0

L/U
=

// L/U,

where U/K = Keh, for some K ⊆ U ⊆ L.
Assume g and h to have closed kernels. Suppose that U = Ke gh is

not closed in L and denote by U the essential closure of U in L. Then
K is closed in U and Keh = U/K � U/K, contradicting the assumption
that h has a closed kernel.

On the other hand, assume U = Ke gh to be closed. Suppose that
Keh has a proper essential extension V in L/K. Then U = (Keh)g−1 �

(V )g−1, contradiction our condition on Keh. This shows that Keh is a
closed submodule of L/K.

(2) Let K ⊆ L be a closed submodule and S ⊆ L/K any simple
submodule. Then S ' N/K for some submodule K ⊆ N ⊆ L. By
assumption, K is a maximal submodule and is not essential in N . Hence
the map N → N/K ' S splits showing that Hom(S,L) → Hom(S,L/K)
is surjective and that S is Ec-projective.

Since direct sums of Ec-projectives are again Ec-projective, every
semisimple module is Ec-projective.
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1.6. τ-complement submodules. Let τ be an idempotent preradical
for σ[M ] with associated classes Tτ and Fτ . Then for a submodule K ⊆ L
where L ∈ σ[M ], the following are equivalent:

(a) every N ∈ Tτ is projective with respect to the projection L → L/K;

(b) there exists a submodule U ⊆ L such that

K ∩ U = 0 and τ(L/K) = (U + K)/K ' U ;

(c) there exists a submodule U ⊆ L such that

K ∩ U = 0 and τ(L/K) ⊆ (U + K)/K ' U.

If this conditions are satified, then K is called a τ -complement in L.

Proof. (a)⇒(b) A pullback construction yields the commutative diagram
with exact rows

0 // K
iK

//

=

��

K̃ //

��

τ(L/K) //

i

��

0

0 // K // L
g

// L/K // 0.

Since τ(L/K) ∈ Tτ , there exists a morphism h : τ(L/K) → L with
i = hg. By the Homotopy Lemma (e.g., [16, 7.16]), this implies that the
top row splits, that is,

K̃ = K ⊕ U, for some U ⊆ K̃ and (K + U)/K = τ(L/K).

(b)⇒(a) Let N ∈ Tτ and f ∈ Hom(N,L/K). Then Im f ⊆ τ(L/K)
and it can be seen from the diagram in the proof of (a)⇒(b) that there
is a morphism h : N → L with f = hg.

(b)⇔(c) This is easy to verify.

1.7. Corollary. Let τ be a preradical for σ[M ] and K ⊆ L where L ∈
σ[M ].

(1) If K is a τ -complement in L and L/K ∈ Tτ , then K is a direct
summand.

(2) If L ∈ Tτ , then every τ -complement submodule of L is a direct
summand.

For the preradical induced by the class of all (semi-)simple modules
we find an interesting relationship with the complement submodules.
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1.8. Neat submodules. A monomorphism f : K → L is called neat if
any simple module S is projective relative to L → L/Im f , that is, the
Hom sequence Hom(S,L) → Hom(S,L/K) → 0 is exact. The class of
short exact sequences with neat monomorphisms is a projectively gener-
ated class in the sense of 1.2.

As shown in 1.5, all sequences in Ec are neat.

1.9. When neat submodules are closed in σ[M ]. For a module M
the following are equivalent:

(a) every neat submodule of M is closed;

(b) a submodule of M is closed if and only if it is neat;

(c) for every L ∈ σ[M ], closed submodules of L are neat;

(d) for every essential submodule U ⊆ M , SocM/U 6= 0;

(e) every M -singular module is semi-artinian.

Proof. (a)⇔(b) is clear since closed submodules are neat.

(c)⇒(a) is obvious.

(a)⇒(d) Let U � M be a proper submodule. Then U is not closed
and hence not neat in M . Thus there exists a morphism g : S → M/U
where S is simple, that can not be extended to a morphism S → M . In
particular, this implies that Im g 6= 0, that is, SocM/U 6= 0.

(d)⇒(e) Let U ⊆ V ⊆ M . If U � M then V � M and hence (d)
implies that every factor module of M/U has nonzero socle, that is,
M/U is semi-artinian (see [6, 3.12]).

By [6, Proposition 4.3], the set {M/U |U � M} is a generating set
of all M -singular M -generated modules and every M -singular module is
a submodule of M -generated M -singular modules. Thus if all the M/U
have nonzero socles then this is also true for all M -singular modules.

(e)⇒(c) Let K ⊆ L be a neat submodule and assume that it has a
proper essential extension K ⊆ L. Then K/K is an M -singular module
and hence, by assumption, contains a simple submodule S = N/K where
K �N ⊆ K. Now neatness of K ⊆ L implies that the map N → N/K =
S splits. This contradicts K � N proving that K is closed in L.

For M = R we obtain the following characterisation which was
(partly) proved in [5, Theorem 5]:

1.10. When neat submodules are closed in R-Mod. For a ring R
the following are equivalent:

(a) every neat left ideal of R is closed;

(b) a left ideal of R is closed if and only if it is neat;
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(c) for every left R-module, closed submodules are neat;

(d) for every essential left ideal I ⊆ R, SocR/I 6= 0;

(e) every singular module is semi-artinian.

Rings with these properties are calledC-rings (in [12]).

Dualising the notions considered above yields the following.

1.11. τ-supplement submodules. Let τ be a radical for σ[M ] with
associated classes Tτ and Fτ . Then for a submodule K ⊆ L where L ∈
σ[M ], the following are equivalent:

(a) every N ∈ Fτ is injective with respect to the inclusion K → L;

(b) there exists a submodule U ⊆ L such that

K + U = L and U ∩ K = τ(K);

(c) there exists a submodule U ⊆ L such that

K + U = L and U ∩ K ⊆ τ(K).

If this conditions are satisfied, then K is called a τ -supplement in L.

Proof. (a)⇒(b) Consider the commutative diagram with exact rows

0 // K
i

//

p

��

L //

��

L/K //

=

��

0

0 // K/τ(K) // L/τ(K) // L/K // 0.

Since K/τ(K) ∈ Fτ , there exists h : L → K/τ(K) with p = ih. By
the Homotopy Lemma (e.g., [16, 7.16]), this implies that the bottom row
splits, that is,

L/τ(K) = K/τ(K) ⊕ U/τ(K), for some τ(K) ⊆ U ⊆ L.

This means L = K + U and U ∩ K = τ(K).

(b)⇒(a) By the given data, L/τ(K) = K/τ(K) ⊕ U/τ(K). Let
N ∈ Fτ and f ∈ Hom(K,N). Then τ(K) ⊆ Ke f and we have the
commutative diagram

0 // K
i

//

p

��
f

��	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

L //

��

L/K //

=

��

0

K/τ(K) //

f̄
zzvv

v
v
v
v
v
v
v

L/τ(K) // L/K // 0.

N
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Since the middle row splits we obtain a morphism h : L → N with
f = ih.

(b)⇔(c) One direction is trivial.
Assume K + U = L and K ∩ U ⊆ τ(K). Putting U ′ = U + τ(K) we

have
K + U ′ = L and K ∩ U ′ = K ∩ U + τ(K) = τ(K).

1.12. Corollary. Let τ be a radical for σ[M ] and K ⊆ L where L ∈
σ[M ].

(1) If K is a τ -supplement in L and K ∈ Fτ , then K is a direct
summand.

(2) If L ∈ Fτ , then every τ -supplement submodule of L is a direct
summand.

(3) If K is a τ -supplement in L and X ⊆ K, then K/X is a τ -
supplement in L/X.

Proof. (1) and (2) follow from the preceding observations. (3) Let U ⊆ L

be such that K +U = L and K ∩U ⊆ τ(K). Then K/X +(U +X)/X =
L/X and

K ∩ (U + X)/X = (K ∩ U + X)/X ⊆ (τ(K) + X)/X ⊆ τ(K/X).

As a special case we consider the radical (for σ[M ]) cogenerated by
the simple modules.

1.13. Co-neat submodules. A monomorphism f : K → L is called
co-neat if any module Q with RadQ = 0 is injective relative to it, that
is, the Hom sequence Hom(L,Q) → Hom(K,Q) → 0 is exact. The class
of short exact sequences with co-neat monomorphisms is an injectively
generated class in the sense of 1.3.

1.14. Characterisation of co-neat submodules. For a submodule
K ⊆ L, the following are equivalent:

(a) K → L is a co-neat submodule;

(b) there exists a submodule U ⊆ L such that

K + U = L and U ∩ K = RadK;

(c) there exists a submodule U ⊆ L such that

K + U = L and U ∩ K ⊆ RadK.
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If these conditions are satisfied, then K is a Rad-supplement in L. If
RadK � K, then K is co-neat (Rad-supplement) in L if and only if it
is a supplement in L (see [9]).

1.15 Lemma. A small submodule N of a module L is co-neat in L if
and only if RadN = N .

Proof. Let N � L. If N is co-neat in L, then there exists K ⊆ L such
that N + K = L and N ∩ K = RadN . Since N � L, K = L and
hence N = N ∩ L = RadN . On the other hand assume N � L and
RadN = N . Then N + L = L and N ∩ L = N = RadN , thus N is a
co-neat submodule of L.

1.16. When are co-neat submodules coclosed Let M be a module.
Then the following conditions are equivalent:

(a) every non-zero co-neat submodule of a module in σ[M ] is a coclosed
submodule;

(b) every non-zero M -small module in σ[M ] is a Max module (resp.
has a maximal submodule).

Proof. (a)⇒(b) If N � L and RadN = N , then by the Lemma 1.15 N
is a co-neat submodule of L. But by hypothesis co-neat submodules are
coclosed submodules and hence not small - a contradiction.

(b)⇒(a) Let N be a co-neat submodule of a module L ∈ σ[M ]. Then
for any submodule U ⊆ N , N/U is co-neat in M/U . To see this let K
be a submodule of L such that N +K = L and N ∩K = Rad(N). Then
N/U + (K + U)/U = L/U and

N/U (K + U)/U = ((N K) + U)/U = (RadN + U)/U ⊆ RadN/U.

Hence N/U is co-neat in L/U . Suppose N/U � L/U , then RadN/U =
N/U by the Lemma 1.15. But by hypothesis N/U is a Max module,
and hence has a proper maximal submodule. Hence N/U 6� L/U for all
U ⊂ N implies N is coclosed in L.

Let M be a cosemisimple module. Then RadN = 0 for any N ∈
σ[M ]. Hence any non-zero submodule of a module in σ[M ] is coclosed.
Moreover any non-zero module is a Max module. However a submodule
N of a module L is co-neat if and only if it is a direct summand. Thus
if M is not semisimple, there are coclosed submodules which are not co-
neat. This shows that in general the dual statement of the statement for
neat submodules (1.9 (b)⇔(e)) does not hold.
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2. τ-supplemented modules

Throughout this section τ will denote a radical for σ[M ]. Recall that a
submodule K ⊆ L is called a τ -supplement provided there exists some
U ⊆ L such that U + K = L and U ∩ K ⊆ τ(K) (1.11). To some ex-
tent the theory of supplemented, lifting and semiperfect modules can be
transferred to the corresponding notions based on τ -supplements. This
will be sketched in this section.

2.1. Definition. A module L is said to be τ -supplemented if every
submodule K ⊆ L has a τ -supplement in L, and it is called amply τ -
supplemented if for any submodules K,V ⊆ L such that K + V = L,
there is a τ -supplement U for K with U ⊆ V .

2.2. τ-supplemented modules. Let L be a τ -supplemented module in
σ[M ].

(1) Every submodule K ⊆ L with K ∩ τ(L) = 0 is a direct summand.
In particular, if L is τ -torsion-free, then L is semisimple.

(2) Every factor module and every direct summand of L is τ -supplemented.

(3) L/τ(L) is a semisimple module.

(4) L = U ⊕ N where N is semisimple and τ(U) � U .

Proof. (1) Recall that τ(K) ⊆ K ∩ τ(L) and then refer to 1.12.

(2) and (3) are also obvious consequences of 1.12.

(4) Let N ⊆ L be a complement for τ(L), i.e. N ∩ τ(L) = 0 and
N ⊕ τ(L) � L. This implies τ(N) = 0. By assumption, there exists
U ⊆ L such that N + U = L and N ∩ U ⊆ τ(U).By construction,

N ∩ U = N ∩ (N ∩ U) ⊆ N ∩ τ(U) ⊆ N ∩ τ(L) = 0,

hence L = N⊕U and τ(L) = τ(N)⊕τ(U) = τ(U). Thus N⊕τ(U)�N⊕U
and this implies τ(U) � U . By (1), N is semisimple.

2.3. Sums of τ-supplemented modules. Let L ∈ σ[M ].

(1) Let L1, U ⊆ L be submodules where L1 is τ -supplemented. If L1+U
has a τ -supplement in L, then so does U .

(2) If L1 and L2 are τ -supplemented modules in σ[M ] and L = L1+L2,
then L is τ -supplemented.

(3) Any finite sum of τ -supplemented modules is τ -supplemented.

(4) If L is τ -supplemented, then every finitely L-generated module is
τ -supplemented.
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Proof. (1) By assumption, there exists X ⊆ L such that (L1+U)+X = L
and (L1 +U)∩X ⊆ τ(X). Now (U + X)∩L1 has a τ -supplement in L1,
that is, some Y ⊆ L1 with

(U + X) ∩ L1 + Y = L1 and (U + X) ∩ Y ⊆ τ(Y ).

Since U + X + Y = L we have that Y is a τ -supplement of U + X in
L. To prove that X + Y is a τ -supplement of U in L is remains to
show that U ∩ (X + Y ) ⊆ τ(X + Y ). Now Y + U ⊆ L1 + U , hence
X ∩ (Y + U) ⊆ X ∩ (L1 + U) ⊆ τ(X) and therefore

(X + Y )∩U ⊆ X ∩ (Y + U) + Y ∩ (X + U) ⊆ τ(X) + τ(Y ) ⊆ τ(X + Y ).

(2) Let U ⊆ L be any submodule. Then L1 + L2 + U = L trivially
has a τ -supplement in L and hence, by (1), L2 + U has a τ -supplement
in L. Again by (1), this implies that U has a τ -supplement inL. Thus L
is a τ -supplemented module.

(3) and (4) are immediate consequences of (1) and 2.2(2).

2.4. Amply τ-supplemented modules. If L ∈ σ[M ] is an amply
τ -supplemented module, then

(1) direct summands of L are amply τ -supplemented and

(2) factor modules of L are amply τ -supplemented.

Proof. (1) Assume L = K ′ ⊕ K and let X,Y be submodules of K with
K = X + Y . Since L = K ′ + X + Y , there exists Y ′ ⊆ Y such that
Y ′+K ′+X = L and Y ′∩(K ′+X) ⊆ τ(Y ′). Now Y ′∩X ⊆ Y ′∩(X+K ′) ⊆
τ(Y ′) and

K = K ∩ L = K ∩ (Y ′ + (K ′ ⊕ X))

= K ∩ (K ′ ⊕ X) + Y ′ = X + Y ′.

Hence Y ′ is a τ -supplement of X in K and Y ′ ⊆ Y

(2) Assume X ⊆ L and L/X = K/X + K ′/X, where X ⊆ K ⊆ L,
X ⊆ K ′ ⊆ L. Since L = K + K ′, there exists Y ⊆ K ′ such that
K + Y = L and K ∩ Y ⊆ τ(Y ). We will show that Y + X/X is a τ -
supplement of K/X in L/X. It is clear that (Y + X)/X + K/X = L/X
and that (Y + X)/X ⊆ K ′/X. Also we have

K/X ∩ (Y + X)/X = ((K ∩ Y ) + X)/X

⊆ (τ(Y ) + X)/X ⊆ τ(Y + X/X).
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2.5. Corollary. Let L be amply τ -supplemented in σ[M ].

(1) If K is a τ -supplement in L and K ∈ Fτ , then K is amply τ -
supplemented.

(2) If L ∈ Fτ , then every τ -supplement submodule of L is is amply
τ -supplemented.

Proof. (1) and (2) follow directly from 1.12.

An R-module L is called π-projective if for any submodules U, V of
L such that U + V = L, there exists f ∈ End(L) with Im(f) ⊆ U and
Im(1 − f) ⊆ V (see [16, 41.14] for details).

2.6. Proposition. Let L ∈ σ[M ].

(1) If every submodule of L is τ -supplemented, then L is an amply
τ -supplemented module.

(2) If L is π-projective and τ -supplemented, then L is amply τ -supple-
mented.

Proof. (1) Assume U, V ⊆ L such that L = U + V . Since U is τ -
supplemented, there exists Y ⊆ U such that U ∩ V + Y = U and also
U ∩ V ∩ Y ⊆ τ(Y ). We know that V ∩ Y = U ∩ V ∩ Y ⊆ τ(Y ) and it is
clear that L = Y + V .

(2) Assume L = X+Y , so there exists e ∈ End(L) such that Le ⊆ X,
L(1− e) ⊆ Y . It is clear that X(1− e) ⊆ X. Since L is τ -supplemented,
there exists C ⊆ L such that C + X = L and C ∩ X ⊆ τ(C). Hence

L = Le + L(1 − e)

= Le + (X + C)(1 − e) ⊆ X + C(1 − e)

Therefore L = X + C(1 − e). It can be shown easily that C(1 − e) ⊆ Y ,
and that X ∩C(1− e) = (X ∩C)(1− e). Since X ∩C ⊆ τ(C), it follows
that X ∩ C(1 − e) ⊆ τ(C(1 − e)). Hence C(1 − e) is a τ -supplement of
X in L and C(1 − e) ⊆ Y , i.e., L is amply τ -supplemented.

2.7. Corollary. For M the following are equivalent:

(a) every module in σ[M ] is τ -supplemented;

(b) every module in σ[M ] is amply τ -supplemented.

2.8. τ-dense summands. Let L ∈ σ[M ]. For a submodule U ⊆ L the
following are equivalent:

(a) there is a decomposition L = X ⊕ X ′ with X ⊆ U and X ′ ∩ U ⊆
τ(X ′);
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(b) there is an idempotent e ∈ End(L) with Le ⊆ U and U(1 − e) ⊆
τ(U(1 − e));

(c) there is a direct summand X of L with X ⊆ U and U/X ⊆ τ(L/X);

(d) U has a τ -supplement V in L such that U ∩V is a direct summand
of U ;

(e) there is a decomposition U = X ⊕ Y , such that X is a direct sum-
mand of L and Y ⊆ τ(L).

In this case we say that U contains a τ -dense direct summand.

Proof. Compare [16, 41.11] and [15, Theorem 2.8].

2.9. τ-lifting modules. A module L ∈ σ[M ] is called τ -lifting if every
submodule of L contains a τ -dense direct summand.

This concept has been introduced by P. F. Smith and I. Al-Khazzi in
[1] for more general classes X of modules instead of a torsion theory τ .

2.10. Properties of τ-lifting modules. Let L ∈ σ[M ] be a τ -lifting
module. Then:

(1) RadL ⊆ τ(L) and if RadL 6= τ(L), then L has a nonzero direct
summand that is τ -torsion.

(2) Any direct summand of L is τ -lifting.

Proof. (1) By 2.2(3), L/τ(L) is semisimple and hence RadL ⊆ τ(L).

Suppose RadL 6= τ(L). Then there is a maximal submodule K ⊆ L
with τ(L) 6⊆ K. By assumption, K contains a τ -dense summand, that
is a submodule A ⊆ K with L = A ⊕ B and K ∩ B ⊆ τ(B) and K ∩ B
is a maximal submodule in B. Thus τ(B) = B or K ∩ B = τ(B). In
the latter case τ(L) = τ(A) ⊕ τ(B) ⊆ K, contradicting the choice of K.
Thus L = A ⊕ B where B = τ(B).

(2) Assume L = K ⊕ K ′ and let X ⊆ K. Since L is τ -lifting, L =
N ⊕ N ′ with N ⊆ X and X ∩ N ′ ⊆ τ(N ′). So K = N ⊕ (K ∩ N ′) and

X ∩ (K ∩ N ′) = X ∩ N ′ ⊆ τ(N ′)
⊆ τ(L) = τ(K) ⊕ τ(K ′) = τ(N) ⊕ τ(K ∩ N ′) ⊕ τ(K ′).

But X ∩N ′ ⊆ K ∩N ′, hence X ∩N ′ ⊆ τ(K ∩N ′). So K is τ -lifting.

2.11. τ-covers. An epimorphism in σ[M ] f : P → L is called a τ -cover
provided Ke f ⊆ τ(P ). If P is projective in σ[M ], then f is called a
projective τ -cover (in σ[M ]).
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The notion of (projective) Rad-covers was studied in [3, 17] under the
name generalised (projective) covers. Nakahara [11] also studied ρ-covers
under the name ρ-semicovers, for a (normal) preradical ρ.

The following lemma is needed to show general properties of τ -covers
(compare [2, 8.17]).

2.12. Lemma. If f : L → N is an epimorphism such that Ker(f) ⊆
τ(L), then f(τ(L)) = τ(N).

2.13. Properties of (projective) τ-covers.

(1) If f : P → L is a projective τ -cover and g : L → N is a τ -cover,
then gf : P → N is a projective τ -cover.

(2) If each fi : Pi → Li, i ∈ I is a (projective) τ -cover, then the map
⊕Ifi :

⊕
I Pi →

⊕
I Li is a (projective) τ -cover.

Proof. (1) To show that Ke gf ⊆ τ(P ), let x ∈ Ke gf , so f(x) ∈ Ke g ⊆
τ(L) = f(τ(P )), hence f(x) = f(t1), where t1 ∈ τ(P ), which implies
that x − t1 ∈ Ke f ⊆ τ(P ), therefore x ∈ τ(P ).

(2) This follows directly from the facts that τ commutes with direct
sums and that a direct sum of projective modules is projective.

From the definition, the following is clear: If K ⊆ L is a τ -supplement
for U ⊆ L, then K → K/K ∩ U ∼= L/U is a τ -cover.

Now we give a connection between τ -covers and τ -supplements.

2.14. Projective τ-cover and τ-supplements. For U ⊆ L with L in
σ[M ] the following are equivalent:

(a) L/U has a projective τ -cover;

(b) U has a τ -supplement V which has a projective τ -cover;

(c) if V ⊆ L and L = U +V , then U has a τ -supplement V ′ ⊆ V such
that V ′ has a projective τ -cover.

Proof. (a)⇒(b) Assume that f : P → L/U is a projective τ -cover of
L/U . Then there exists g : P → L such that f = πg where π : L → L/U
denotes the canonical projection. Denote by V the image of g, i.e. V =
Im(g). Since g−1(U) = Ke f , we have Ke g ⊆ Ke f , i.e. P is a projective
τ -cover of V . As U ∩V = g(Ke f) ⊆ g(τ(P )) ⊆ τ(g(P )) = τ(V ), we have
V is a τ -supplement of U in L having the τ -projective cover P .

(b)⇒(a) Let V be a τ -supplement of U in L having a projective τ -
cover f : P → V . Consider g : V → V/U ∩ V = L/U , this is a τ -cover
of L/U . By 2.13 it follows that gf : P → L/U is a projective τ -cover of
L/U .
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(a)⇒(c) Assume that f : P → L/U is a τ -cover and P is projective.
Whenever L = U +V , then V/(V ∩U) ' L/U and P is also a projective
τ -cover of V/(V ∩ U). By (2), there exists V ′ ⊆ V such that V ′ is a
τ -supplement of V ∩U in V , having a projective τ -cover. Since V ′∩U =
V ′ ∩ (V ∩ U) and

L = V + U = V ′ + (V ∩ U) + U = V ′ + U,

V ′ is a τ -supplement of U in L.

(c)⇒(b) follows from L = U + L.

2.15. τ-semiperfect. A module L ∈ σ[M ] is called τ -semiperfect (τ -
perfect), if every factor module of L (any direct sum of copies of L) has
a projective τ -cover.

From the above results we obtain the

2.16. Characterisation of τ-semiperfect modules. For a module
L ∈ σ[M ] the following are equivalent:

(a) L is τ -semiperfect;

(b) L is τ -supplemented by supplements which have projective τ -covers;

(c) L is amply τ -supplemented by supplements which have projective
τ -covers.

2.17. Corollary. Let L ∈ σ[M ] be τ -semiperfect, then

(a) L/τ(L) is semisimple;

(b) if L is also τ -torsion-free, then L is semisimple

If M = R and L is projective in R-Mod then it is Rad-semiperfect
(Rad-perfect) if and only if it is semiperfect (perfect). This was estab-
lished in [3, 11, 17].
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