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Abstract

Orthogonal polynomials satisfy a recurrence relation of order two, where appear
two coefficients. If we modify one of these coefficients at a certain order, we obtain a
perturbed orthogonal sequence. In this work we consider in this way some perturbed
of Chebyshev polynomials of second kind and we deal with the problem of finding
the connection coefficients that allow to write the perturbed sequence in terms of
the original one and in terms of the canonical basis. From the connection relations
obtained and from two other relations, we deduce some results about zeros and
interception points of these perturbed polynomials. All the work is valid for arbitrary
order of perturbation.
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1 Introduction

Perturbed orthogonal polynomials are obtained by modifying, in a certain way, a finite
number of elements of the two sequences of coefficients presented in the linear recurrence
relation of order two satisfied by these polynomials. In this work, we focus our attention
on elementary modifications of only one of these two coefficients at a unique specified
order r, the so-called, in literature, generalized co-recursive or co-dilated polynomials.
During the last decades, this subject have interested several authors. We would like to
cite, with respect to the co-recursive case (r = 0), the references [9, 10, 25, 29, 52, 55];
concerning the co-dilated situation, we consider [17, 41]; for the co-modified sequences
refer to [14, 15, 51]; for the generalized co-polynomials see [6, 18, 32]. Also, we call
the attention to the general articles [47, 59]. We notice that perturbed orthogonal
polynomials have some applications, which motivate further their study [17, 26, 27, 29,
32, 55]. This type of perturbation is a transformation that can promote a significative
change of properties of the original sequence, but the second degree character is preserved
by it [35, 38]. The PSDF algorithm (see [12]) allows to explicit some semi-classical
properties of perturbed second degree forms leading, in special, to the second order linear
differential equation. It is well known that the four Chebyshev sequences [21, 22, 46] are
the most important cases of second degree forms [39]. In particular, for the purposes of
perturbation, the family of second kind is the most simple among them, because it is
self-associated [40], therefore it is often taken as study case in the mentioned literature.
There are some specific works about perturbed Chebyshev families, namely [41] about
the co-dilated case of the second kind form, and [39, 53] concerning all the four forms.
Also, in [13], we present some semi-classical properties obtained with PSDF [12] for the
second kind sequence corresponding to the complete perturbation of order 1 and the
perturbation of 2 by dilatation, generalizing most known results. In [12], we give similar
properties for the co-recursive and co-dilated sequences of order 3.

In the present work, we focus our attention on connection coefficients and some
consequences related to zeros and interception points valid for any order r of perturbation
of the second kind Chebyshev sequence.
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About connection coefficients for orthogonal polynomials the reader can find an ex-
tensive bibliography in [57]. In fact, the literature on this subject is vast and a wide
variety of methods have been developed using several techniques. Here, we refer mainly
to the following references [1, 2, 3, 8, 11, 24, 30, 31, 49, 50, 56]. Zeros of orthogonal poly-
nomials is another widely discussed subject due to its applications in several problems of
applied sciences [54] and their crucial role in quadrature formulas [22]. In particular, sev-
eral authors have dedicated attention to the relationship between the zeros of perturbed
polynomials and the zeros of the original sequences finding results about interlacing and
monotonicity behaviors and distribution functions for co-recursive and co-dilated cases,
see [9, 25, 28, 32, 52, 54, 55], and more recently [6, 7, 17].

Let us summarize the contents of this article. In Section 2, we present the theoret-
ical background concerning orthogonal polynomials [10, 35], perturbation [10, 32, 35],
connection coefficients [42, 43] and properties of the four families of Chebyshev polyno-
mials [46]. It is natural to consider the first, third and four kinds Chebyshev families as
perturbed of the sequence of second kind [13]. From this point on, we shall deal only
with the second kind Chebyshev family and its elementary perturbations of order r by
translation and by dilatation [12]. The contribution of this article is focused on finding
explicit results about connection coefficients and some of their consequences valid for
any order of perturbation. We think that this point is important, because thus one can
choose the parameter of perturbation and its order in such a way a prescribed behavior
occurs, for example, the positiveness of connection coefficients or the location of certain
zeros or interception points. Section 3 is dedicated to the connection coefficients that
allow to write the perturbed family in terms of the original one (Section 3.1) and in
terms of the canonical basis (Section 3.2). We started this study from some tables of the
first connection coefficients, for fixed values of the order r of perturbation, recursively
computed by the symbolic software CCOP - Connection Coefficients for Orthogonal
Polynomials [43, 44, 45].1 We realize that the connection coefficients are constant by
diagonal and have very simple expressions, therefore it was easy to infer closed formulas
valid for any r. Demonstrations of these formulas will be done by induction. From the
connection relations deduced in Section 3.1 and from the connection coefficients of the
second kind Chebyshev family in terms of the canonical basis, we deduce in Section
3.2, the connection coefficients of perturbed polynomials in terms of the canonical ba-
sis. Section 4 concerns some results about zeros and interception points of perturbed
polynomials. We begin by presenting the Hadamard–Gershgörin location of zeros. We
determine the values of the parameters of perturbation for which there are zeros out-
side the interval [−1, 1]. After that, results are deduced from the connection relations
previously obtained and from two other relations. We point out the fact that the be-
havior of perturbed polynomials at the origin are related to the parity of r. Depending
on the values of the parameters of perturbation, the smallest and the greatest zeros
of perturbed polynomials have a special location with respect to the extremal zeros of
Chebyshev polynomials of the same degree. Perturbed polynomials with fixed degree

1CCOP is written in theMathematicar language and is available in the libraryNumeralgo ofNetlib
(http://www.netlib.org/numeralgo/) as na34 package.
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and different values of parameters intercept each other at the zeros of two other Cheby-
shev polynomials with prescribed degrees: these points are stable, they do not depend
on perturbation. Interceptions points can be simple or double depending on the degrees
of polynomials and their relationship with r. We distinguish the interceptions points
that are common zeros. In the last section, we present some graphical representations in
order to illustrate results given herein about zeros and interception points. In fact, these
graphs were the source of inspiration to the development of this study. The reasonings
and arguments employed in the proofs are similar for the translation and the dilatation
cases, but the dilatation one is more simple, because perturbed sequences are symmetric.
We remark that zeros of perturbed Chebyshev polynomials satisfy some interlacing and
monotonicity properties, not studied here, that can be the subject for a forthcoming
article.

2 Theoretical background

2.1 Connection coefficients for perturbed orthogonal polynomials

Let P be the vector space of polynomials with coefficients in C and let P ′ be its topo-
logical dual space. We denote by 〈u, p〉 the effect of u ∈ P ′ on p ∈ P. In particular,
〈u, xn〉 := (u)n , n ≥ 0, represent the moments of u. A form u is normalized if its first
moment is unit, e.g., (u)0 = 1. Let {Pn}n≥0 be a monic polynomial sequence (MPS)
with degPn = n, n ≥ 0, e.g., Pn(x) = xn + . . .. Then there exists a unique sequence
{un}n≥0, un ∈ P ′, called the dual sequence of {Pn}n≥0, such that < un, Pm >= δn,m,
n,m ≥ 0. The form u0 is called the canonical form of {Pn}n≥0, it is normalized, e.g.,
(u0)0 = 1.

A form u is said regular [36, 37] if and only if there exists a polynomial sequence
{Pn}n≥0, such that:

〈u, PnPm〉 = 0 , n 6= m , n,m ≥ 0 , (1)〈
u, P 2

n

〉
= kn 6= 0 , n ≥ 0 . (2)

Consequently degPn = n, n ≥ 0, and any Pn can be taken monic, then {Pn}n≥0 is
called a monic orthogonal polynomial sequence (MOPS) with respect to u. Necessarily
u = (u)0u0, (u)0 6= 0. If we take u normalized, then u = u0. In this work, we will always
consider MOPS and normalized forms. The identities (1) are called the orthogonality
conditions and (2) are the regularity conditions.

The sequence {Pn}n≥0 is regularly orthogonal with respect to u if and only if [36, 37]
there are two sequences of coefficients {βn}n≥0 and {γn+1}n≥0, with γn+1 6= 0, n ≥ 0,
such that, {Pn}n≥0 satisfies the following initial conditions and linear recurrence relation
of order 2

P0(x) = 1, P1(x) = x− β0, (3)

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 2. (4)
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Furthermore, the recurrence coefficients {βn}n≥0 and {γn+1}n≥0 satisfy:

βn =

〈
u, xP 2

n(x)
〉

kn
, n ≥ 0,

γn+1 =
kn+1

kn
, n ≥ 0. (5)

We remark that, from (3) and (5), the regularity conditions (2) are equivalent to the
conditions γn+1 6= 0, n ≥ 0. As usual, we suppose that, βn = 0, γn+1 = 0 and Pn(x) = 0,
for alln < 0.

The MOPS {Pn}n≥0 is real if and only if βn ∈ R and γn+1 ∈ R − {0}. These
conditions are equivalent to (u)n ∈ R, n ≥ 0 and u is real. If, in addition, we suppose
that γn+1 > 0, n ≥ 0, then u is positive definite, because this condition is equivalent to
< u, p >> 0, ∀p ∈ P: p 6≡ 0, p(x) ≥ 0, x ∈ R [10, 35].

A form u is symmetric if and only if (u)2n+1 = 0, n ≥ 0. A polynomial sequence,
{Pn}n≥0, is symmetric if and only if Pn(−x) = (−1)nPn(x), n ≥ 0. If {Pn}n≥0 is a
MOPS with respect to u, then these conditions are equivalent to βn = 0, n ≥ 0 [10, 35].

The rth-associated sequence of a MOPS {Pn}n≥0 satisfying (3)-(4) is a MOPS {P (r)
n }n≥0

whose recurrence coefficients are given by [10, 35]

β(r)n = βn+r , γ
(r)
n+1 = γn+1+r , n , r ≥ 0 . (6)

Let us consider two perturbed sequences of a MOPS {Pn}n≥0 satisfying (3)-(4), ob-
tained by modifying only one of its recurrence coefficients at order r. We shall modify
βr by translation and γr by dilatation by means of two parameters µr and λr. Thus, the
rth-perturbed sequence by translation, for r ≥ 0, noted by {P tn(µr; r)(x)}n≥0, is a MOPS
with the following recurrence coefficients

βtr = βr + µr , β
t
n = βn , n 6= r , n ≥ 0 ; γtn+1 = γn+1 , n ≥ 0 . (7)

When r = 0, we recover the so-called co–recursive sequence [9, 10], for which only the
initial polynomial P1(x) is perturbed becoming P t1(µ0; 0)(x) = x − β0 − µ0. The rth-
perturbed sequence by dilatation, for r ≥ 1, noted by {P dn(λr; r)(x)}n≥0, is a MOPS with
the following recurrence coefficients

βdn = βn , n ≥ 0 ; γdr = λrγr , λr 6= 0, 1 , γdn+1 = γn+1 , n 6= r − 1, n ≥ 0 . (8)

We note by ũ := ut (µr; r) and ũ := ud (λr; r), the forms with respect to which these
families are orthogonal. In literature, these sequences are often designated as rth-
generalized co-recursive and rth-generalized co-dilated polynomials and both situations
as rth-generalized co-polynomials [32]. Also, they are particular cases of a general per-
turbation of order r defined in [35]. Perturbation by translation destroys the symmetry,
but does not change the positive definiteness character of the original sequence. Pertur-
bation by dilatation does not change the symmetry; moreover if λr > 0, it preserves also
the positive definiteness character.
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The canonical sequence {Xn}n≥0, Xn(x) = xn, is orthogonal with respect to the
Dirac measure δ0, 〈δ0, f〉 = f(0), defined by the moments (δ0)n = δ0,n, n ≥ 0. This
sequence is not regularly orthogonal, since it satisfies (3)-(4) with recurrence coefficients

βn = 0 , γn+1 = 0 , n ≥ 0 . (9)

Given any two MPS {Pn}n≥0 and {P̃n}n≥0, not necessarily orthogonal, the coeffi-
cients that satisfy the connection relation (CR)

P̃n(x) =
n∑

m=0

λP̃Pn,mPm(x), n ≥ 0, (10)

are called the connection coefficients (CC) λn,m := λP̃Pn,m := λn,m(P̃ ← P ). It is obvious
that these coefficients exist and are unique, because the polynomial sequences are linearly
independent. In the case Pm(x) = Xm(x) = xm, m ≥ 0, we have

P̃n(x) =

n∑
m=0

λP̃Xn,mx
m, (11)

with λP̃Xn,m := λn,m(P̃ ← X). We shall consider also the Viète’s formulas [58] that

establish a relationship between λP̃Xn,m and the zeros {ξ(n)m }m=1(1)n of P̃n, in particular

λP̃Xn,n−1 = −
n∑

m=1

ξ(n)m , λP̃Xn,0 = (−1)n
n∏

m=1

ξ(n)m , n ≥ 1 . (12)

Let us suppose that the MPS {Pn}n≥0 is orthogonal with respect to u, then multi-
plying both members of (10) by Pk(x), applying u and taking into account (1) and (2),
we obtain [42, p.295]

λP̃Pn,m =

〈
u, P̃nPm

〉
kn

, 0 ≤ m ≤ n , n ≥ 0 . (13)

In addition, let us suppose that the MPS {P̃n}n≥0 is orthogonal with respect to ũ, and
that {Pn}n≥0 and {P̃n}n≥0 are given by their recurrence coefficients {βn}n≥0, {γn+1}n≥0
and {β̃n}n≥0, {γ̃n+1}n≥0, respectively. In (13), using (4) and (5) for both sequences, it is
possible to demonstrate that the CC fulfill the following boundary and initial conditions
and general recurrence relation [42, pp.295-296] (see, also, [43])

λP̃Pn,m = 0 , n < 0 or m < 0 or m > n ; λP̃Pn,n = 1 , n ≥ 0 ; λP̃P1,0 = β0 − β̃0 , (14)

λP̃Pn,m =
(
βm − β̃n−1

)
λP̃Pn−1,m − γ̃n−1λP̃Pn−2,m + γm+1λ

P̃P
n−1,m+1 + λP̃Pn−1,m−1 , (15)

0 ≤ m ≤ n− 1 , n ≥ 2 .

If {Pn}n≥0 and {P̃n}n≥0 are symmetric, then from (13) and the symmetry of u, we
have

λP̃P2n−1,2m = 0 , λP̃P2n,2m+1 = 0 , 0 ≤ m ≤ n− 1 , n ≥ 1 .
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Moreover, as βn = 0 = β̃n, n ≥ 0, the relation (15) is equivalent to

λP̃P2n,2m = γ2m+1λ
P̃P
2n−1,2m+1 + λP̃P2n−1,2m−1 − γ̃2n−1λP̃P2n−2,2m ,

λP̃P2n+1,2m+1 = γ2m+2λ
P̃P
2n,2m+2 + λP̃P2n,2m − γ̃2nλP̃P2n−1,2m+1 ,

for 0 ≤ m ≤ n−1 , n ≥ 1. Furthermore, in the case Pn ≡ Xn, due to (9), these relations
become

λP̃X2n,2m = λP̃X2n−1,2m−1 − γ̃2n−1λP̃X2n−2,2m ,

λP̃X2n+1,2m+1 = λP̃X2n,2m − γ̃2nλP̃X2n−1,2m+1 .

2.2 The four families of Chebyshev polynomials

There are four sequences of Chebyshev polynomials, they are called Chebyshev polyno-
mials of first (Tn), second (Pn), third (Vn) and fourth (Wn) kinds. W. Gaustchi [21]
named these last two sequences in this way, before they had been designated as airfoil
polynomials (see, e.g., [19]). Their trigonometric definitions are

Tn(x) =
1

2n−1
cosnt , Pn(x) =

1

2n
sin(n+ 1)t

sin t
,

Vn(x) =
1

2n
cos(n+ 1

2)t

cos 1
2 t

, Wn(x) =
1

2n
sin(n+ 1

2)t

sin 1
2 t

,

where x = cos t, t ∈ [0, π], n ≥ 0. Notice that, as in this work we always consider
monic polynomials, thus some normalization constants must appear in the preceding
definitions. From them, it is trivial to obtain explicit formulas for the zeros [46, pp.20-
21]

Tn : ρ
(n)
k = cos

(
(k− 1

2
)π

n

)
, k = 1(1)n ; Pn : ξ

(n)
k = cos

(
kπ

n+ 1

)
, k = 1(1)n, (16)

Vn : ρ
(n)
k = cos

(
(k− 1

2
)π

n+ 1
2

)
, k = 1(1)n ; Wn : ρ

(n)
k = cos

(
kπ

n+ 1
2

)
, k = 1(1)n.(17)

Using some trigonometric identities, it can be shown that these families satisfy (3)-(4)
with the following recurrence coefficients [46]

Tn : βn = 0 , n ≥ 0 , γ1 =
1

2
, γn+1 =

1

4
, n ≥ 1 ,

Pn : βn = 0 , n ≥ 0 , γn+1 =
1

4
, n ≥ 1 , (18)

Vn : β0 = 1
2 , βn = 0 , n ≥ 1 , γn+1 =

1

4
, n ≥ 0 ,

Wn : β0 = −1
2 , βn = 0 , n ≥ 1 , γn+1 =

1

4
, n ≥ 0 .
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Therefore, {Tn}n≥0 and {Pn}n≥0 are symmetric, {Vn}n≥0 and {Wn}n≥0 are not; they
are all positive definite. As {Pn}n≥0 has the most simple recurrence coefficients, then
it is natural to consider {Tn}n≥0, {Vn}n≥0 and {Wn}n≥0 as perturbed of {Pn}n≥0 as
follows [13]

Tn(x) = P dn (2; 1) (x) , Vn(x) = P tn

(
1

2
; 0

)
(x) , Wn(x) = P tn

(
−1

2
; 0

)
(x) . (19)

With respect to the association, we have that T
(1)
n ≡ V

(1)
n ≡ W

(1)
n ≡ Pn; moreover

P
(r)
n ≡ Pn, ∀r ≥ 0, e.g., Pn is a self-associated sequence [40].

The following CR that allow to express {Tn}n≥0, {Vn}n≥0 and {Wn}n≥0 in terms of
{Pn}n≥0 are well known [46, pp.4,8]

Tn+2(x) = Pn+2(x)− 1

4
Pn(x) , n ≥ 0 , (20)

Vn+1(x) = Pn+1(x)− 1

2
Pn(x) , n ≥ 0 , (21)

Wn+1(x) = Pn+1(x) +
1

2
Pn(x) , n ≥ 0 . (22)

One goal of this article is to generalize these CR putting in the first member of them
any perturbed polynomial P tn(µr; r)(x) and P dn(λr; r)(x) of the sequence of second kind.

The CC Cn,m = λPXn,m and the CR of {Pn}n≥0 in the canonical basis are [48, p.223]

P2n(x) =

n∑
ν=0

C2n,2νx
2ν , (23)

C2n,2ν =
(−1)n−ν

22(n−ν)

(
n+ ν

n− ν

)
, ν = 0(1)n, C2n,2ν+1 = 0, ν = 0(1)n− 1 ; (24)

P2n+1(x) =
n∑
ν=0

C2n+1,2ν+1x
2ν+1 , (25)

C2n+1,2ν+1 =
(−1)n−ν

22(n−ν)

(
n+ ν + 1

n− ν

)
, ν = 0(1)n, C2n+1,2ν = 0, ν = 0(1)n .(26)

Another goal of this article is to generalize these well known CC and CR putting in
the first member of them any perturbed polynomial P tn(µr; r)(x) and P dn(λr; r)(x) of the
sequence of second kind. From the above identities, we obtain, in particular, that

Cn,n−1 = 0 , C2n,0 =
(−1)n

22n
, C2n+1,0 = 0 , n ≥ 0 , (27)

which implies, by (12), that

n∑
k=1

ξ
(n)
k = 0 , (28)

2n∏
k=1

ξ
(2n)
k =

(−1)n

22n
=⇒ P2n(0) 6= 0 ,

2n+1∏
k=1

ξ
(2n+1)
k = 0 =⇒ P2n+1(0) = 0 . (29)

8



We remark that C2n,2ν+1 = 0, ν = 0(1)n− 1, C2n+1,2ν = 0 and P2n+1(0) = 0, n ≥ 0 are
assured by symmetry.

The four kinds of Chebyshev polynomials [21, 46] belong to the Jacobi class of clas-

sical polynomials {P (α,β)
n (x)}n≥0 [36, 37] orthogonal with respect to the form J (α, β).

A Jacobi form is regular if and only if α 6= −n, β 6= −n, α + β 6= −(n+ 1), n ≥ 1; it is
symmetric for α = β; it is positive definite if and only if α+1 > 0 and β+1 > 0 and has
the following integral representation for Re(1 + α) > 0 and Re(1 + β) > 0 [10, 36, 37]

< J (α, β), f >=
1

2α+β+1

Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ 1

−1
(1 + x)α(1− x)βf(x)dx .

Let us note the Chebyshev normalized forms by T1 (α = β = −1
2), U (α = β = 1

2), T3
(α = 1

2 , β = −1
2) and T4 (α = −1

2 , β = 1
2) ; their integral representations are given by

[46]

< T1, f >=
1

π

∫ +1

−1

f(x)√
1− x2

dx , < U , f >=
2

π

∫ 1

−1
f(x)

√
1− x2dx , (30)

< T3, f >=
1

π

∫ 1

−1
f(x)

√
1 + x

1− x
dx , < T4, f >=

1

π

∫ 1

−1
f(x)

√
1− x
1 + x

dx . (31)

Chebyshev forms are of second degree [4]. Perturbed Chebyshev polynomials are
also of second degree and consequently they are semi-classical [38, 39]; the PSDF -
Perturbed Second Degree Forms symbolic algorithm [12] allowed to explicit some of their
main properties, namely the second order linear differential equation [13, 12]. Integral
representations of perturbed Chebyshev forms are given in the co-recursive case in [9]
and in the co-dilated situation of order 1 in [41]. To the best of my knowledge, these
integral representations remain an open problem for orders of perturbation greater than
or equal to two.

From now on, {Pn}n≥0 will note the sequence of monic Chebyshev polynomials of
second kind.

3 Connection coefficients and connection relations in terms
of the Chebyshev polynomials of second kind

In this section, we shall give the CC and the CR that allow to express {P tn(µr; r)(x)}n≥0
and {P dn(µr; r)(x)}n≥0 in terms of {Pn}n≥0, for any order r of perturbation. That is, we
shall deal with

λtn,m := λP
tP

n,m = λn,m(P t(µr; r)← P ) and λdn,m := λP
dP

n,m = λn,m(P d(λr; r)← P ) .

We begin by two lemmas, where we rewrite the general recurrence relation (14)-(15)
in the two particular cases considered, replacing {βn}n≥0, {γn+1}n≥0 and {β̃n}n≥0,

9



{γ̃n+1}n≥0 by their particular values obtained from (7), (8) and (18) and given by

βtr = µr , β
t
n = 0, n 6= r ; γtn+1 =

1

4
, n ≥ 0 , r ≥ 0 , or (32)

βdn = 0 ; γdr = λr
1

4
, γdn+1 =

1

4
, n 6= r − 1 , n ≥ 0 , r > 0 . (33)

Lemma 3.1 For the co-recursive case (r = 0),

λtn,n = 1, n ≥ 0 ; λt1,0 = −µ0 ; (34)

λtn,m =
1

4

(
−λtn−2,m + λtn−1,m+1

)
+ λtn−1,m−1 , 0 ≤ m < n , n ≥ 2 . (35)

For the rth-perturbed by translation case (r ≥ 1),

λtn,n = 1, n ≥ 0 ; λt1,0 = 0 ; (36)

λtr+1,m = −µrλtr,m +
1

4

(
−λtr−1,m + λtr,m+1

)
+ λtr,m−1 , 0 ≤ m < r + 1 ; (37)

λtn,m =
1

4

(
−λtn−2,m + λtn−1,m+1

)
+ λtn−1,m−1, 0 ≤ m < n, n 6= r + 1, n ≥ 2. (38)

Figure 1: Representation of recurrence relations (37) and (38) for the rth-perturbed by
translation case for r ≥ 1.

r −1

r +1

m −1 m +1

λ t
r+1,m

λ t
r ,m+1

λ t
r−1,m

λ t
r ,m−1

λ t
r ,m

n − 2

n

m −1 m +1

λ t
n,m

λ t
n−1,m+1

λ t
n−2,m

λ t
n−1,m−1

Lemma 3.2 For the rth-perturbed by dilatation case (r ≥ 1),

λdn,n = 1, n ≥ 0 ; λd1,0 = 0 ; (39)

λdr+1,m =
1

4

(
−λrλdr−1,m + λdr,m+1

)
+ λdr,m−1 , 0 ≤ m < r + 1 ; (40)

λdn,m =
1

4

(
−λdn−2,m + λdn−1,m+1

)
+ λdn−1,m−1, 0 ≤ m < n, n 6= r + 1, n ≥ 2.(41)
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Figure 2: Representation of recurrence relations (40) and (41) for the rth-perturbed by
dilatation case for r ≥ 1.

r −1

r +1

m −1 m +1

λd
r+1,m

λd
r ,m+1

λd
r−1,m

λd
r ,m−1

n − 2

n

m −1 m +1

λd
n,m

λd
n−1,m+1

λd
n−2,m

λd
n−1,m−1

The software CCOP - Connection Coefficients for Orthogonal Polynomials [44, 45]
(see, also, [42]) written in the Mathematicar language, includes an implementation of
the recurrence relations (14)-(15) that allows the symbolic recursive computation of the
first CC from the recurrence coefficients of the two polynomial sequences involved. In
the cases under study, CCOP produced the results given in Tables 1 and 2 for the pertur-
bation of order r = 3. From these results and others, we discover that CC are constant
by downward diagonal with very simple expressions and it was easy to infer the closed
formulas corresponding to an arbitrary order r of perturbation and any nonnegative
integers n and m. It was by this procedure that we formulate Theorems 3.3 and 3.4,
and Propositions 3.5 and 3.6 presented next. Tables 3 and 4 generalize Table 1 for any
odd or even orders (r ≥ 0) in the translation case; Tables 5 and 6 generalize Table 2 for
any odd or even orders (r ≥ 1) in the dilatation case. In fact, there are slight differences
depending on the parity of r.
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Table 1: CC for the 3rd-perturbed by translation case with parameter µ3.

m 0 1 2 3 4 5 6 7 8 9 10 11 . . .
n

0 1
1 0 1
2 0 0 1
3 0 0 0 1

4 0 0 0 −µ3 1
5 0 0 −µ3

4 0 −µ3 1
6 0 −µ3

16 0 −µ3
4 0 −µ3 1

7 −µ3
64 0 −µ3

16 0 −µ3
4 0 −µ3 1

8 0 −µ3
64 0 −µ3

16 0 −µ3
4 0 −µ3 1

9 0 0 −µ3
64 0 −µ3

16 0 −µ3
4 0 −µ3 1

10 0 0 0 −µ3
64 0 −µ3

16 0 −µ3
4 0 −µ3 1

11 0 0 0 0 −µ3
64 0 −µ3

16 0 −µ3
4 0 −µ3 1

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Table 2: CC for the 3rd-perturbed by dilatation case with parameter λ3.

m 0 1 2 3 4 5 6 7 8 9 10 . . .
n

0 1
1 0 1
2 0 0 1
3 0 0 0 1

4 0 0 (1−λ3)
4 0 1

5 0 (1−λ3)
16 0 (1−λ3)

4 0 1

6 (1−λ3)
64 0 (1−λ3)

16 0 (1−λ3)
4 0 1

7 0 (1−λ3)
64 0 (1−λ3)

16 0 (1−λ3)
4 0 1

8 0 0 (1−λ3)
64 0 (1−λ3)

16 0 (1−λ3)
4 0 1

9 0 0 0 (1−λ3)
64 0 (1−λ3)

16 0 (1−λ3)
4 0 1

10 0 0 0 0 (1−λ3)
64 0 (1−λ3)

16 0 (1−λ3)
4 0 1

...
...

...
...

...
...

...
...

...
...

...
...

. . .
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Theorem 3.3 CC for the rth-perturbed by translation case (r ≥ 0) written by diagonal

Diagonal 0: λtn,n = 1 , n ≥ 0 ; (42)

Diagonal 2i− 1: λtn,n−2i+1 = 0 , 2i− 1 ≤ n < r + i ; (43)

λtn,n−2i+1 = − µr
4i−1

, n ≥ r + i ; i = 1(1)r + 1 ; (44)

Diagonal 2i: λtn,n−2i = 0 , n ≥ 2i , i = 1(1)r ; (45)

Diagonal m: λtn,n−m = 0 , n ≥ m , m ≥ 2r + 2 . (46)

Proof. We shall do a demonstration by diagonal proving that the elements given by
these formulas are solutions of recurrence relations of Lemma 3.1. We remark that
(37) involves five CC and (38) four. We shall reason by induction: first we treat
the initial diagonals of orders 0, 1 and 2, after that, we deal with the diagonals
2i−1 and 2i using as induction assumption the diagonals 2i−3 and 2i−2. In each
one, we begin by proving an initial element and thereafter we show that a generic
subsequent element coincides with the preceding one in the same diagonal.

Diagonal 0 : As both polynomials sequences are monic, (42) is verified. Since
the perturbation occurs at order r of the recurrence coefficients, it will only affect
polynomials of degrees greater than or equal to r+ 1 (see (4)), in such a way that
P tn(µr; r) ≡ Pn, n = 0(1)r, which is equivalent to

λtn,m = 0 , 0 ≤ m ≤ n− 1 , λtn,n = 1 , n = 0(1)r , (47)

which correspond to the first r + 1 rows in all tables.

−µr

0

0

0 1

−µr

0

0

−µr

m = n −1,n ≥ r + 2
Diagonal 1	



m = r,n = r +1

r +1

r −1
r −1 r +1

n

n − 2
n − 2 n

0

1

1

0

0

1

1

0

m = n − 2,n ≥ r + 2m = r −1,n = r +1

r +1

r −1
r − 2 r

n

n − 2
n − 3 n −1

Diagonal 2	



0

Diagonal 1: Taking i = 1 in (43) and (44), we get:

λtn,n−1 = 0 , 1 ≤ n ≤ r ; λtn,n−1 = −µr , n ≥ r + 1 .

The first part is a consequence of (47). With respect to the second part, for
n = r + 1, we obtain λtr+1,r = −µr that satisfy the recurrence (37) for m = r as
follow

λtr+1,r = −µrλtr,r+
1

4

(
−λtr−1,r + λtr,r+1

)
+λtr,r−1 ⇔ −µr = −µr×1+

1

4
(−0 + 0)+0 ,
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taking into account (14), and (47) for n = r and m = r− 1. For n ≥ r+ 2, we use
the other recurrence (38) for m = n− 1 and we get

λtn,n−1 =
1

4

(
−λtn−2,n−1 + λtn−1,n

)
+λtn−1,n−2 =

1

4
(−0 + 0)+λtn−1,n−2 = . . . = λtr+1,r,

considering (14).

Diagonal 2: Supposing r ≥ 1, taking i = 1 in (45), we obtain λtn,n−2 = 0, n ≥ 2.
For n = 2(1)r, this is assured by (47). In order to prove it for n = r+ 1, we should
use the relation (37) for m = r − 1

λtr+1,r−1 = −µrλtr,r−1+
1

4

(
−λtr−1,r−1 + λtr,r

)
+λtr,r−2 ⇔ 0 = −µr×0+

1

4
(−1 + 1)+0 ,

using (47) for n = r and m = r − 2, r − 1, and (42). For n ≥ r + 2, we use the
relation (38) for m = n− 2

λtn,n−2 =
1

4

(
−λtn−2,n−2 + λtn−1,n−1

)
+ λtn−1,n−3 =

1

4
(−1 + 1) + λtn−1,n−3 =

λtn−1,n−3 = . . . = λtr+1,r−1 ,

considering (42).

0

0

0

0

0

0

0

0

0 ≤ m ≤ 2r − n,
Diagonal 2i	



n = r +1,

r +1

r −1
m −1 m +1

n

n − 2
m −1 m +1

0 ≤ m ≤ r − 2 r + 2 ≤ n ≤ 2r

0
0

0

Diagonal 2i-1	


m = r − i +1,

r + i

r + i − 2
r − i r − i + 2

n = r + i

−µr

4 i−2
−µr

4 i−1

−µr

4 i−2
−µr

4 i−1

−µr

4 i−1

−µr

4 i−2

m = n − 2i +1,n ≥ r + i +1

n − 2i + 2
n

n − 2

n − 2i

Diagonal 2i, i ≥ 2: At this point, we can easily conclude that λr+1,m = 0,
0 ≤ m ≤ r−2 by application of the relation (37), because all elements involved are
zero (from this point on, (37) will not be needed anymore). The same situation
occurs for λtn,m = 0, r+ 2 ≤ n ≤ 2r, 0 ≤ m ≤ 2r−n using this time (38). We have
just proved the finite triangle of zeros appearing after row of order r. Now, using
(38), it is trivial to realise that all diagonals of even order 2i (i ≥ 2) are null, due
to the reason already invoked, therefore we have showed (45) and a part of (46).

Diagonal 2i−1, 1 ≤ i ≤ r+1: The first part given by (43) belongs to the triangle
of zeros. Let us work on the second part (44). We begin by proving the first

18



nonzero element for n = r+ i and m = n− 2i+ 1 = r− i+ 1, λtr+i,r−i+1 = − µr
4i−1 .

We use the relation (38) and we obtain

λtr+i,r−i+1 =
1

4

(
−λtr+i−2,r−i+1 + λtr+i−1,r−i+2

)
+ λtr+i−1,r−i ⇔

− µr
4i−1

=
1

4

(
0− µr

4i−2

)
+ 0 ,

on accounting of (47), the finite triangle of zeros and (14), and by the induction
hypothesis for i − 1, e.g., the preceding odd diagonal of order 2i − 3. For the
rest of the diagonal, we write (38) for m = n− 2i+ 1 and applying the induction
assumption, we get

λtn,n−2i+1 =
1

4

(
−λtn−2,n−2i+1 + λtn−1,n−2i+2

)
+ λtn−1,n−2i =

1

4

( µr
4i−2

− µr
4i−2

)
+ λtn−1,n−2i = λtn−1,n−2i = . . . = λtr+i,r−i+1 = − µr

4i−1
.

0

0

Diagonal 2r+3	


m = 0,n = 2r + 3

2r + 3

2r +1

−1 1

−µr

4 r

−µr

4 r

m = n − 2r − 3
n ≥ 2r + 4

0

0
n

n − 2

n − 2r − 4 n − 2r − 2

−µr

4 r

−µr

4 r

0

0

0

0

m ≥ 2r + 4
Diagonal m	



n

n − 2
n − m −1 n − m +1

n ≥ m

Diagonal 2r + 3: We have to do a final effort to show that this diagonal is null
unlike the odd preceding one of order 2r + 1; after that, applying (38), it will be
trivial to realize that all odd diagonals of greater order are null and (46) will be
entirely verified. Essentially this occurs because λt2r+2,−1 = 0 from (14). In fact,
using (38) for n = 2r + 3 and applying (44) for i = r + 1, two elements of the
diagonal 2r + 1 appear and we obtain

λt2r+3,0 =
1

4

(
−λt2r+1,0 + λt2r+2,1

)
+ λt2r+2,−1 =

1

4

(µr
4r
− µr

4r

)
+ 0 = 0.

For the other elements of this diagonal 2r + 3, from (38), for n ≥ 2r + 4, follows

λtn,n−2r−3 =
1

4

(
−λtn−2,n−2r−3 + λtn−1,n−2r−2

)
+ λtn−1,n−2r−4 =

1

4

(µr
4r
− µr

4r

)
+ λtn−1,n−2r−4 = λtn−1,n−2r−4 = . . . = λt2r+3,0 = 0 .
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Theorem 3.4 CC for the rth-perturbed by dilatation case (r ≥ 1) written by diagonal

Diagonal 0: λdn,n = 1 , n ≥ 0 ;

Diagonal 2i− 1: λdn,n−2i+1 = 0 , n ≥ 2i− 1 , i = 1(1)r ; (48)

Diagonal 2i: λdn,n−2i = 0 , 2i ≤ n < r + i ; (49)

λdn,n−2i =
(1− λr)

4i
, n ≥ r + i, i = 1(1)r ; (50)

Diagonal m: λdn,n−m = 0 , n ≥ m , m ≥ 2r + 1 . (51)

Proof. This proof is analogous to the demonstration of the preceding theorem, but this
case is more simple, because both sequences are symmetric and the two relations
of Lemma 3.2 involve the same four CC. In this case, it is trivial to realize that
all odd diagonals are null, because all CC involved in computations are zero; thus,
(48) and (51) for m odd are proved. We omit the details concerning the initial
triangle of zeros, which corresponds to a part of (48) and to (49), because they
are trivial. With respect to even diagonals, we have to distinguish three situations
corresponding to diagonals of orders 2, 2i and 2r + 2. As before, we shall apply a
reasoning by induction.

1
0

Diagonal 2	


m = r −1,n = r +1

r +1

r −1

r − 2 r
1− λr
4

m = n − 2,n > r +1

1
1

n

n − 2

n − 3 n −1

1− λr
4

1− λr
4

1

Diagonal 2: Taking i = 1 in (50), we get λdn,n−2 = (1−λr)
4 , n ≥ r+ 1. Let us prove

the first element for n = r + 1 and m = r − 1 by the relation (40)

λdr+1,r−1 =
1

4

(
−λrλdr−1,r−1 + λdr,r

)
+ λdr,r−2 ⇔

(1− λr)
4

=
1

4
(−λr × 1 + 1) + 0,

on accounting of (14) and (49) already proved. For the other elements, we apply
the relation (41) for m = n− 2 and using (14), we get

λdn,n−2 =
1

4

(
−λdn−2,n−2 + λdn−1,n−1

)
+ λdn−1,n−3 =

1

4
(−1 + 1) + λdn−1,n−3 =

λdn−1,n−3 = . . . = λdr+1,r−1 =
(1− λr)

4
.
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Diagonal 2i – first nonzero element	


m = r − i

r + i

r + i − 2
r − i +1r − i −1

1− λr
4 i

1≤ i ≤ r

1− λr
4 i−1

0

0
n = r + i

Diagonal 2i	


m = n − 2i

n

n − 2

n − 2i +1n − 2i −1

1− λr
4 i

1≤ i ≤ r

1− λr
4 i−1

1− λr
4 i

1− λr
4 i−1n > r + i

Diagonal 2i, 1 ≤ i ≤ r: We begin by proving the first nonzero element: taking
n = r+ i in (50), we get λdr+i,r−i = (1−λr)

4i
. Using (41) for n = r+ i and m = r− i,

we obtain

λdr+i,r−i =
1

4

(
−λdr+i−2,r−i + λdr+i−1,r−i+1

)
+ λdr+i−1,r−i−1 ⇔

(1− λr)
4i

=
1

4

(
0 +

(1− λr)
4i−1

)
+ 0 ,

taking into account the triangle of zeros and the hypothesis of induction for i− 1.
For the rest of the diagonal (n > r+ i), we write (41) for m = n− 2i and we apply
the induction assumption two times getting

λdn,n−2i =
1

4

(
−λdn−2,n−2i + λdn−1,n−2i+1

)
+ λdn−1,n−2i−1 =

1

4

(
−(1− λr)

4i−1
+

(1− λr)
4i

)
+ λdn−1,n−2i−1 =

λdn−1,n−2i−1 = . . . = λdr+i,r−i =
(1− λr)

4i
.

Diagonal 2r+2 – first element	



2r + 2

2r

1−1

1− λr
4 r

1− λr
4 r

0

0

m = 0,n = 2r + 2
Diagonal 2r+2	


m = n − 2r − 2

n − 2r − 3 n − 2r −1

n

0

1− λr
4 r

0

1− λr
4 r

n > 2r + 2

n − 2

Diagonal 2r+ 2: As before, we begin by proving the first element. We write (41)
for n = 2r + 2 and m = 0, obtaining

λd2r+2,0 =
1

4

(
−λd2r,0 + λd2r+1,1

)
+ λd2r+1,−1 =

1

4

(
−(1− λr)

4r
+

(1− λr)
4r

)
+ 0 = 0,
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from (50) for i = r, n = 2r and n = 2r + 1; and (14). For the other elements, we
write (41) for m = n− 2r − 2 and n > 2r + 2, and we use (50) for i = r getting

λdn,n−2r−2 =
1

4

(
−λdn−2,n−2r−2 + λdn−1,n−2r−1

)
+ λdn−1,n−2r−3 =

1

4

(
−(1− λr)

4r
+

(1− λr)
4r

)
+ λdn−1,n−2r−3 =

λdn−1,n−2r−3 = . . . = λd2r+2,0 = 0 .

After this, it is evident that all even diagonals of greater order are null, because
all CC involved in computations are zero; thus we have proved the remainder part
of (51).

In order to obtain the CR (10), we have to consider in the preceding tables CC λn,m by
row, e.g., with n fixed and m = 0(1)n. Doing this, we easily obtain next two propositions.
In both cases, we remark that there is one set of r + 1 trivial initial CR ((52) and (55))
and another set of initial CR ((53) and (56)) corresponding to the above mentioned
triangle of zeros. Main CR (54) and (57) give a perturbed polynomial in terms of r + 2
and r+1 Chebyshev polynomials, respectively. From the degrees of polynomials involved
in these relations, considering n even or n odd, and taking into account the symmetry of
{Pn}n≥0, it is easy to realize a fact that we already know, that perturbed by dilatation
are symmetric, but the same is not true for perturbed by translation.

Proposition 3.5 CR and CC for the rth-perturbed by translation case (r ≥ 0)

P tk(µr; r)(x) = Pk(x) , k = 0(1)r , (52)

λtk,k = 1 ; λtk,m = 0 , 0 ≤ m ≤ k − 1 .

P tk(µr; r)(x) = Pk(x)− µr
k−r−1∑
i=0

1

4i
Pk−2i−1(x) , k = r + 1(1)2r , (53)

λtk,k = 1 ; λtk,k−2i−1 = −µr/4i , i = 0(1)k − r − 1 ;

λtk,k−2i−2 = 0 , i = 0(1)k − r − 1 ; λtk,m = 0 , 0 ≤ m ≤ 2r − k − 1 .

P tn+2r+1(µr; r)(x) = Pn+2r+1(x)− µr
r∑
i=0

1

4i
Pn+2(r−i)(x) , n ≥ 0 , (54)

λtn+2r+1,n+2r+1 = 1 ; λtn+2r+1,n+2(r−i) = −µr/4i , i = 0(1)r ;

λtn+2r+1,n+2(r−i)−1 = 0 , i = 0(1)r − 1 ; λtn+2r+1,m = 0 , 0 ≤ m ≤ n− 1 .

Proposition 3.6 CR and CC for the rth-perturbed by dilatation case (r ≥ 1)

P dk (λr; r)(x) = Pk(x) , k = 0(1)r , (55)

λdk,k = 1 ; λdk,m = 0 , 0 ≤ m ≤ k − 1 .
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P dk (λr; r)(x) = Pk(x) +
1− λr

4

k−r∑
i=1

1

4i−1
Pk−2i(x) , k = r + 1(1)2r − 1 , (56)

λdk,k = 1 ; λdk,k−2i+1 = 0, i = 1(1)k − r ;

λdk,k−2i = (1− λr)/4i, i = 1(1)k − r ; λdk,m = 0 , 0 ≤ m ≤ 2r − k − 1 .

P dn+2r(λr; r)(x) = Pn+2r(x) +
1− λr

4

r∑
i=1

1

4i−1
Pn+2(r−i)(x) , n ≥ 0 , (57)

λdn+2r,n+2r = 1 ; λdn+2r,n+2(r−i)+1 = 0 , i = 1(1)r;

λdn+2r,n+2(r−i) = (1− λr)/4i , i = 1(1)r ; λdn+2r,m = 0 , 0 ≤ m ≤ n− 1 .

The following two corollaries give CR for perturbations by translation of first orders.

Corollary 3.7 CR for the co-recursive case

P t0 (µ0; 0) ≡ P0 , P
t
n+1 (µ0; 0) (x) = Pn+1(x)− µ0Pn(x) , n ≥ 0 . (58)

CR for the perturbed of order 1 by translation case

P t0 (µ1; 1) ≡ P0 , P
t
1 (µ1; 1) ≡ P1 ; P t2 (µ1; 1) (x) = P2(x)− µ1P1(x) ; (59)

P tn+3 (µ1; 1) (x) = Pn+3(x)− µ1Pn+2(x)− µ1
4
Pn(x) , n ≥ 0 . (60)

CR for the perturbed of order 2 by translation case

P t0 (µ1; 1) ≡ P0 , P
t
1 (µ1; 1) ≡ P1 , P

t
2 (µ1; 1) ≡ P2 ;

P t3 (µ1; 1) (x) = P3(x)− µ1P2(x) , P t4 (µ1; 1) (x) = P4(x)− µ1P3(x)− µ1
4
P1(x) ;

P tn+5 (µ1; 1) (x) = Pn+5(x)− µ1Pn+4(x)− µ1
4
Pn+2(x)− µ1

42
Pn(x) , n ≥ 0 .

Notice that (58) corresponds to a well known relation [10, 35], furthermore, it gives as
particular cases (21) and (22).

Corollary 3.8 CR for the perturbed of order 1 by dilatation case

P d0 (λ1; 1) ≡ P0 , P
d
1 (λ1; 1) ≡ P1 ,

P dn+2 (λ1; 1) (x) = Pn+2(x) +
1

4
(1− λ1)Pn(x) , n ≥ 0. (61)

CR for the perturbed of order 2 by dilatation case

P d0 (λ2; 2) ≡ P0 , P
d
1 (λ2; 2) ≡ P1 , P

d
2 (λ2; 2) ≡ P2 ,

P d3 (λ2; 2) (x) = P3(x) +
1

4
(1− λ2)P1(x) , (62)

P dn+4 (λ2; 2) (x) = Pn+4(x) +
1

4
(1− λ2)Pn+2(x) +

1

42
(1− λ2)Pn(x) , n ≥ 0.(63)

Notice that (61) admits as particular case (20).
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4 Connection coefficients and connection relations in terms
of the canonical basis

In this section, our goal is to explicit the CC for rth-perturbed by translation and by
dilatation of the Chebyshev polynomials of second kind in terms of the canonical basis:

λtXn,m := λP
tX

n,m = λn,m(P t(µr; r)← X) and λdXn,m := λP
dX

n,m = λn,m(P d(λr; r)← X).

Our starting point are the CR given by Propositions 3.5 and 3.6, and the CR and
the CC Cn,m := Cn,m(P ← X) stated by (23)-(26). First, we need a lemma.

Lemma 4.1

Λmn =
m∑
µ=n

aµ

µ∑
ν=0

bν =
n−1∑
ν=0

bν

m∑
µ=n

aµ +
m∑
ν=n

bν

m∑
µ=ν

aµ , m ≥ n ≥ 0 . (64)

Proof. The case n = 0 corresponds to a well known situation

Λm0 =

m∑
µ=0

aµ

µ∑
ν=0

bν =

m∑
ν=0

bν

m∑
µ=ν

aµ , m ≥ 0 . (65)

For n ≥ 1, adding and subtracting a same quantity, we can write

Λmn =
n−1∑
µ=0

aµ

µ∑
ν=0

bν −
n−1∑
µ=0

aµ

µ∑
ν=0

bν +
m∑
µ=n

aµ

µ∑
ν=0

bν =

m∑
µ=0

aµ

µ∑
ν=0

bν −
n−1∑
µ=0

aµ

µ∑
ν=0

bν .

Now, we apply (65) two times to the last member of the preceding equality, and
then, in the first term obtained, we separate each of the two sums into two ones
considering that m ≥ n, and we get the desired result

Λmn =

m∑
ν=0

bν

m∑
µ=ν

aµ −
n−1∑
ν=0

bν

n−1∑
µ=ν

aµ =

n−1∑
ν=0

bν

{ n−1∑
µ=ν

aµ +

m∑
µ=n

aµ

}
+

m∑
ν=n

bν

m∑
µ=ν

aµ −
n−1∑
ν=0

bν

n−1∑
µ=ν

aµ .

4.1 Translation case

Theorem 4.2 CC λtXn,m := λn,m(P t ← X) for the rth-perturbed by translation case
(r ≥ 0) in terms of the canonical basis. For k = 0(1)r, it holds

λtXk,ν = Ck,ν , ν = 0(1)k . (66)
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If k = 2k′, then for k′ = r′ + 1(1)r, being r = 2r′ or r = 2r′ + 1, it holds

λtX2k′,2ν = C2k′,2ν , ν = 0(1)k′ , (67)

λtX2k′,2ν+1 = − µr

4(k′−1)

k′−1∑
µ=r−k′

4µC2µ+1,2ν+1 , ν = 0(1)r − k′ , (68)

λtX2k′,2ν+1 = − µr

4(k′−1)

k′−1∑
µ=ν

4µC2µ+1,2ν+1 , ν = r − k′ + 1(1)k′ − 1 . (69)

If k = 2k′ + 1, then for k′ = r′(1)r − 1, if r = 2r′; or for k′ = r′ + 1(1)r − 1, if
r = 2r′ + 1, it holds

λtX2k′+1,2ν+1 = C2k′+1,2ν+1 , ν = 0(1)k′ , (70)

λtX2k′+1,2ν = − µr
4k′

k′∑
µ=r−k′

4µC2µ,2ν , ν = 0(1)r − k′ , (71)

λtX2k′+1,2ν = − µr
4k′

k′∑
µ=ν

4µC2µ,2ν , ν = r − k′ + 1(1)k′ . (72)

For n ≥ 0, it holds

λtX2(n+r)+1,2ν+1 = C2(n+r)+1,2ν+1 , ν = 0(1)n+ r , (73)

λtX2(n+r)+1,2ν = − µr

4(n+r)

n+r∑
µ=n

4µC2µ,2ν , ν = 0(1)n , (74)

λtX2(n+r)+1,2ν = − µr

4(n+r)

n+r∑
µ=ν

4µC2µ,2ν , ν = n+ 1(1)n+ r . (75)

λtX2(n+r+1),2ν = C2(n+r+1),2ν , ν = 0(1)n+ r + 1 , (76)

λtX2(n+r+1),2ν+1 = − µr

4(n+r)

n+r∑
µ=n

4µC2µ+1,2ν+1 , ν = 0(1)n , (77)

λtX2(n+r+1),2ν+1 = − µr

4(n+r)

n+r∑
µ=ν

4µC2µ+1,2ν+1 , ν = n+ 1(1)n+ r . (78)

Proof. From (52), (23) and (25) immediately follow the initial conditions (66). For
deducing the remainder initial conditions (67)-(72), we must consider two cases
corresponding to k = 2k′ (r = 2r′ and r = 2r′ + 1) and to k = 2k′ + 1 (r = 2r′

and r = 2r′ + 1). We are going to demonstrate the first case, the other is similar.
Taking k = 2k′ in (53), we get

P t2k′(µr; r)(x) = P2k′(x)− µr
2k′−r−1∑
i=0

1

4i
P2(k′−i)−1 , k = r + 1(1)2r . (79)
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If r = 2r′, then 2k′ = 2r′ + 2(2)2r ⇔ k′ = r′ + 1(1)r. If r = 2r′ + 1, then
2k′ = 2r′ + 2(2)2r ⇔ k′ = r′ + 1(1)r. In (79), we do the change of variable
µ = k′ − i, i = 0(1)2k′ − r − 1 and we use (25); after that we apply Lemma 4.1,
thus the preceding sum becomes

1

4(k′−1)

k′−1∑
µ=r−k′

4µP2µ+1(x) =
1

4(k′−1)

k′−1∑
µ=r−k′

4µ
µ∑
ν=0

C2µ+1,2ν+1x
2ν+1 =

1

4(k′−1)

{ r−k′−1∑
ν=0

k′−1∑
µ=r−k′

4µC2µ+1,2ν+1x
2ν+1 +

k′−1∑
ν=r−k′

k′−1∑
µ=ν

4µC2µ+1,2ν+1x
2ν+1

}
.

Writing the first two polynomials of (79) in the canonical basis by means of (10)
and (23), we obtain

2k′∑
ν=0

λtX2k′,νx
ν =

2k′∑
ν=0

C2k′,2νx
2ν −

µr

4(k′−1)

{ r−k′−1∑
ν=0

k′−1∑
µ=r−k′

4µC2µ+1,2ν+1x
2ν+1 +

k′−1∑
ν=r−k′

k′−1∑
µ=ν

4µC2µ+1,2ν+1x
2ν+1

}
.

By identifying the CC in both sides of this equation, we achieve to identities (67)
and (69).

Now, we apply the same technique for deducing (73)-(75). Taking n← 2n in (54),
we obtain

P t2(n+r)+1(µr; r)(x) = P2(n+r)+1(x)− µr
r∑
i=0

1

4i
P2(n+r−i)(x) . (80)

In the preceding sum, we do the change of variable µ = n + r − i, i = 0(1)r and
we use (23); after that we apply Lemma 4.1, thus we get

1

4(n+r)

n+r∑
µ=n

4µP2µ(x) =
1

4(n+r)

n+r∑
µ=n

4µ
µ∑
ν=0

C2µ,2νx
2ν =

1

4(n+r)

{ n−1∑
ν=0

( n+r∑
µ=n

4µC2µ,2ν

)
x2ν +

n+r∑
ν=n

( n+r∑
µ=ν

4µC2µ,2ν

)
x2ν
}
.

Writing the first two polynomials of (80) in the canonical basis by means of (11)
and (25), we obtain

2(n+r)+1∑
ν=0

λtX2(n+r)+1,νx
ν =

n+r∑
ν=0

C2(n+r)+1,2ν+1x
2ν+1 −

µr

4(n+r)

{ n−1∑
ν=0

( n+r∑
µ=n

4µC2µ,2ν

)
x2ν +

n+r∑
ν=n

( n+r∑
µ=ν

4µC2µ,2ν

)
x2ν
}
.
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By identifying the CC in both sides, we achieve to identities (73)-(75). In order to
demonstrate the identities (76)-(78), we must take n ← 2n + 1 in (54) and apply
the same technique as before. We obtain

P t2(n+r+1)(µr; r)(x) = P2(n+r+1)(x)− µr
r∑
i=0

1

4i
P2(n+r−i)+1(x) . (81)

Doing µ = n + r − i, i = 0(1)r and using (25), the preceding sum can be written
as

1

4(n+r)

n+r∑
µ=n

4µP2µ+1(x) =
1

4(n+r)

n+r∑
µ=n

4µ
µ∑
ν=0

C2µ+1,2ν+1x
2ν+1 .

We write the first two polynomials of (81) in the canonical basis by means of (11)
and (23), then we apply Lemma 4.1; thus we get

2(n+r+1)∑
ν=0

λtX2(n+r+1),νx
ν =

n+r+1∑
ν=0

C2(n+r+1),2νx
2ν −

µr

4(n+r)

{ n−1∑
ν=0

( n+r∑
µ=n

4µC2µ+1,2ν+1

)
x2ν+1 +

n+r∑
ν=n

( n+r∑
µ=ν

4µC2µ+1,2ν+1

)
x2ν+1

}
.

By identifying the CC in both sides of this equation, we achieve to identities (76)-
(78).

This theorem allows us to conclude that λtXn,m coincide with Cn,m, when n and m have

same parity. Otherwise, if n and m have opposite parity, then λtXn,m depend on the
parameter µr of perturbation. Replacing CC of Chebyshev C2n,2ν and C2n+1,2ν+1 by their
expressions given by (24) and (26) and doing some simple combinatorial simplifications
[48, 49, 50], we derive next result that furnish explicit formulas for λtXn,m in terms of
binomial coefficients.

Theorem 4.3 CC λtXn,m := λn,m(P t ← X) for the r-perturbed by translation case (r ≥ 0)
in terms of the canonical basis.

If k = 2k′, then for k′ = 0(1)r′, being r = 2r′ or r = 2r′ + 1, it holds

λtX2k′,2ν =
(−1)k

′−ν

4(k′−ν)

(
k′ + ν

k′ − ν

)
, ν = 0(1)k′ , (82)

λtX2k′,2ν+1 = 0 , ν = 0(1)k′ − 1 . (83)

If k = 2k′ + 1, then for k′ = 0(1)r′, being r = 2r′ or r = 2r′ + 1, it holds

λtX2k′+1,2ν+1 =
(−1)k

′−ν

4(k′−ν)

(
k′ + ν + 1

k′ − ν

)
, ν = 0(1)k′ , (84)

λtX2k′+1,2ν = 0 , ν = 0(1)k′ . (85)
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If k = 2k′, then for k′ = r′ + 1(1)r, being r = 2r′ or r = 2r′ + 1, it holds

λtX2k′,2ν =
(−1)k

′−ν

4(k′−ν)

(
k′ + ν

k′ − ν

)
, ν = 0(1)k′ , (86)

λtX2k′,2ν+1 = − µr

4(k′−ν−1)

k′−1∑
µ=r−k′

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)
, ν = 0(1)r − k′ − 1 , (87)

λtX2k′,2ν+1 = − µr

4(k′−ν−1)

k′−1∑
µ=ν

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)
, ν = r − k′(1)k′ − 1 . (88)

If k = 2k′ + 1, then for k′ = r′(1)r − 1, if r = 2r′; or for k′ = r′ + 1(1)r − 1, if
r = 2r′ + 1, it holds

λtX2k′+1,2ν+1 =
(−1)k

′−ν

4(k′−ν)

(
k′ + ν + 1

k′ − ν

)
, ν = 0(1)k′ , (89)

λtX2k′+1,2ν = − µr

4(k′−ν)

k′∑
µ=r−k′

(−1)µ−ν
(
µ+ ν

µ− ν

)
, ν = 0(1)r − k′ − 1 , (90)

λtX2k′+1,2ν = − µr

4(k′−ν)

k′∑
µ=ν

(−1)µ−ν
(
µ+ ν

µ− ν

)
, ν = r − k′(1)k′ . (91)

For n ≥ 0, it holds

λtX2(n+r)+1,2ν+1 =
(−1)n+r−ν

4(n+r−ν)

(
n+ r + ν + 1

n+ r − ν

)
, ν = 0(1)n+ r ; (92)

λtX2(n+r)+1,2ν = − µr

4(n+r−ν)

n+r∑
µ=n

(−1)µ−ν
(
µ+ ν

µ− ν

)
, ν = 0(1)n− 1 ; (93)

λtX2(n+r)+1,2ν = − µr

4(n+r−ν)

n+r∑
µ=ν

(−1)µ−ν
(
µ+ ν

µ− ν

)
, ν = n(1)n+ r . (94)

λtX2(n+r+1),2ν =
(−1)n+r+1−ν

4(n+r+1−ν)

(
n+ r + 1 + ν

n+ r + 1− ν

)
, ν = 0(1)n+ r + 1 ; (95)

λtX2(n+r+1),2ν+1 = − µr

4(n+r−ν)

n+r∑
µ=n

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)
, ν = 0(1)n− 1 ; (96)

λtX2(n+r+1),2ν+1 = − µr

4(n+r−ν)

n+r∑
µ=ν

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)
, ν = n(1)n+ r . (97)

Proof. Identities (82)-(85) follow from (66), (24) and (26). Identities (86)-(97) are
derived from (67)-(78) replacing C2n,2ν and C2n+1,2ν+1 by their expressions given
by (24) and (26) and doing some simple simplifications.

28



From the last two theorems, we easily obtain the following corollary that gives CC
for perturbations of first orders in terms Cn,m and in terms of binomial coefficients. In
simplifications, we use systematically the combinatorial identity [49, p.11](

n

m+ 1

)
=

(
n+ 1

m+ 1

)
−
(
n

m

)
.

Corollary 4.4 CC λtXn,m := λn,m(P t ← X) for perturbed by translation. Recall that

λtXn,n = 1, ∀n ≥ 0. For order 0 (co-recursive case) and n ≥ 0

λtX0,0 = 1 .

λtX2n+1,2ν+1 = C2n+1,2ν+1 , λ
tX
2n+1,2ν = −µ0C2n,2ν , ν = 0(1)n .

λtX2n+2,2ν = C2n+2,2ν =
(−1)n+1−ν

4(n−ν+1)

(
n+ ν + 1

n− ν + 1

)
,

λtX2n+2,2ν+1 = −µ0C2n+1,2ν+1 , ν = 0(1)n .

For order 1 and n ≥ 0

λtXk,ν = Ck,ν , ν = 0(1)k , k = 0, 1 .

λtX2,2ν = C2,2ν , ν = 0, 1⇔ λtX2,0 = −1

4
; λtX2,1 = −µ1 .

λtX2n+3,2ν+1 = C2n+3,2ν+1 =
(−1)n−ν+1

4(n−ν+1)

(
n+ ν + 2

n− ν + 1

)
, ν = 0(1)n+ 1 ;

λtX2n+3,2ν = −µ1
4

(
C2n,2ν + 4C2n+2,2ν

)
=
µ1(−1)n−ν

4(n−ν+1)

(
n+ ν

n− ν + 1

)
, ν = 0(1)n ;

λtX2n+3,2n+2 = −µ1 .

λtX2n+4,2ν = C2n+4,2ν =
(−1)n−ν

4(n−ν+2)

(
n+ ν + 2

n− ν + 2

)
, ν = 0(1)n+ 2 ;

λtX2n+4,2ν+1 = −µ1
4

(
C2n+1,2ν+1 + 4C2n+3,2ν+1

)
=
µ1(−1)n−ν

4(n−ν+1)

(
n+ ν + 1

n− ν + 1

)
, ν = 0(1)n ; λtX2n+4,2n+3 = −µ1 .

For order 2 and n ≥ 0

λtXk,ν = Ck,ν , ν = 0(1)k , k = 0(1)2 .

λtX3,2ν+1 = C3,2ν+1, ν = 0, 1⇔ λtX3,1 = −1

2
; λtX3,0 = −µ2C2,0 =

µ2
4
, λtX3,2 = −µ2 ;

λtX4,2ν = C4,2ν , ν = 0(1)2⇔ λtX4,0 =
1

42
, λtX4,2 = −3

4
;

λtX4,1 = −µ2
4

(1 + 4C3,1) =
µ2
4
, λtX4,3 = −µ2 .

λtX2n+5,2ν+1 = C2n+5,2ν+1 =
(−1)n−ν

4(n−ν+2)

(
n+ ν + 3

n− ν + 2

)
, ν = 0(1)n+ 2 ;

29



λtX2n+5,2ν = −µ2
42
(
C2n,2ν + 4C2n+2,2ν + 42C2n+4,2ν

)
= −µ2(−1)n−ν

4(n−ν+2)

{(n+ ν

n− ν

)
+

(
n+ ν + 1

n− ν + 2

)}
, ν = 0(1)n ;

λtX2n+5,2n+2 = −µ2
4

(
1 + 4C2n+4,2n+2

)
=
µ2
2

(n+ 1) , λtX2n+5,2n+4 = −µ2 .

λtX2n+6,2ν = C2n+6,2ν =
(−1)n−ν+3

4(n−ν+3)

(
n+ ν + 3

n− ν + 3

)
, ν = 0(1)n+ 3 ;

λtX2n+6,2ν+1 = −µ2
42
(
C2n+1,2ν+1 + 4C2n+3,2ν+1 + 42C2n+5,2ν+1

)
,

= −µ2(−1)n−ν

4(n−ν+2)

{(n+ ν + 1

n− ν

)
+

(
n+ ν + 2

n− ν + 2

)}
, ν = 0(1)n ;

λtX2n+6,2n+3 = −µ2
4

(
1 + 4C2n+5,2n+3

)
=
µ2
4

(2n+ 3) , λtX2n+6,2n+5 = −µ2 .

4.2 Dilatation case

Let us present analogous of preceding results for the dilatation case.

Theorem 4.5 CC λdXn,m := λn,m(P d ← X) for the rth-perturbed by dilatation (r ≥ 1) in
terms of the canonical basis. For k = 0(1)r, it holds

λdXk,ν = Ck,ν , ν = 0(1)k , k = 0(1)r . (98)

If k = 2k′, then for k′ = r′ + 1(1)r − 1, being r = 2r′ or r = 2r′ + 1, it holds

λdX2k′,2ν+1 = 0 , ν = 0(1)k′ − 1 , (99)

λdX2k′,2ν = C2k′,2ν +
1− λr

4k′

k′−1∑
µ=r−k′

4µC2µ,2ν , ν = 0(1)r − k′ , (100)

λdX2k′,2ν = C2k′,2ν +
1− λr

4k′

k′−1∑
µ=ν

4µC2µ,2ν , ν = r − k′ + 1(1)k′ − 1 . (101)

If k = 2k′ + 1, then for k′ = r′(1)r − 1, if r = 2r′; or for k′ = r′ + 1(1)r − 1, if
r = 2r′ + 1, it holds

λdX2k′+1,2ν = 0 , ν = 0(1)k′ , (102)

λdX2k′+1,2ν+1 = C2k′+1,2ν+1 +
1− λr

4k′

k′−1∑
µ=r−k′−1

4µC2µ+1,2ν+1, ν = 0(1)r − k′ − 1,(103)

λdX2k′+1,2ν+1 = C2k′+1,2ν+1 +
1− λr

4k′

k′−1∑
µ=ν

4µC2µ+1,2ν+1, ν = r − k′(1)k′ − 1. (104)
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For n ≥ 0, it holds

λdX2(n+r),2ν+1 = 0 , ν = 0(1)n+ r − 1 , (105)

λdX2(n+r),2ν = C2(n+r),2ν +
1− λr
4(n+r)

n+r−1∑
µ=n

4µC2µ,2ν , ν = 0(1)n , (106)

λdX2(n+r),2ν = C2(n+r),2ν +
1− λr
4(n+r)

n+r−1∑
µ=ν

4µC2µ,2ν , ν = n+ 1(1)n+ r − 1 . (107)

λdX2(n+r)+1,2ν = 0 , ν = 0(1)n+ r , (108)

λdX2(n+r)+1,2ν+1=C2(n+r)+1,2ν+1 +
1− λr
4(n+r)

n+r−1∑
µ=n

4µC2µ+1,2ν+1, ν = 0(1)n, (109)

λdX2(n+r)+1,2ν+1=C2(n+r)+1,2ν+1+
1− λr
4(n+r)

n+r−1∑
µ=ν

4µC2µ+1,2ν+1, ν = n+ 1(1)n+ r − 1.(110)

Proof. This demonstration is similar to the proof of Proposition 4.2, but in this case all
polynomials involved are symmetric. From (55), (23) and (25) immediately follow
the initial conditions (98). For deducing the remainder initial conditions (99)-
(104), like before, we must consider two cases corresponding to k = 2k′ (r = 2r′

and r = 2r′ + 1) and to k = 2k′ + 1 (r = 2r′ and r = 2r′ + 1). We are going to
demonstrate the first case, the other is similar. Taking k = 2k′ in (56), we get

P d2k′(λr; r) = P2k′ +
1− λr

4

2k′−r∑
i=1

1

4(i−1)
P2(k′−i), k = r + 1(1)2r − 1. (111)

If r = 2r′, then 2k′ = 2r′ + 2(2)2r − 2 ⇔ k′ = r′ + 1(1)r − 1. If r = 2r′ + 1, then
2k′ = 2r′+ 2(2)2r− 2⇔ k′ = r′+ 1(1)r− 1. In (111), we do the change of variable
µ = k′ − i, i = 1(1)2k′ − r and we use (23); after that we apply Lemma 4.1, thus
the preceding sum becomes

1

4(k′−1)

k′−1∑
µ=r−k′

4µP2µ(x) =
1

4(k′−1)

k′−1∑
µ=r−k′

4µ
µ∑
ν=0

C2µ,2νx
2ν =

1

4(k′−1)

{ r−k′−1∑
ν=0

k′−1∑
µ=r−k′

4µC2µ,2νx
2ν +

k′−1∑
ν=r−k′

k′−1∑
µ=ν

4µC2µ,2νx
2ν
}
.

Writing the first two polynomials of (111) in the canonical basis by means of (11)
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and (23), taking into account the symmetry of P d2k′ , we obtain

k′∑
ν=0

λdX2k′,2νx
2ν =

k′∑
ν=0

C2k′,2νx
2ν +

1− λr
4k′

{ r−k′−1∑
ν=0

( k′−1∑
µ=r−k′

4µC2µ,2ν

)
x2ν +

k′−1∑
ν=r−k′

( k′−1∑
µ=ν

4µC2µ,2ν

)
x2ν
}
.

By identifying the CC in both sides of this equation, we achieve to identities (99)-
(101).

Now, we apply the same technique for deducing (105)-(107). Taking n ← 2n in
(57), we obtain

P d2(n+r)(λr; r)(x) = P2(n+r)(x) +
1− λr

4

r∑
i=1

1

4(i−1)
P2(n+r−i)(x) . (112)

In the preceding sum, we do the change of variable µ = n + r − i, i = 1(1)r and
we use (23); after that we apply Lemma 4.1, thus we get

1

4(n+r−1)

n+r−1∑
µ=n

4µP2µ(x) =
1

4(n+r−1)

n+r−1∑
µ=n

4µ
µ∑
ν=0

C2µ,2νx
2ν =

1

4(n+r−1)

{ n−1∑
ν=0

( n+r−1∑
µ=n

4µC2µ,2ν

)
x2ν +

n+r−1∑
ν=n

( n+r−1∑
µ=ν

4µC2µ,2ν

)
x2ν
}
.

Writing the first two polynomials of (112) in the canonical basis by means of (11)
and (23), taking into account the symmetry of P d2(n+r), we obtain

n+r∑
ν=0

λdX2(n+r),2νx
2ν =

n+r∑
ν=0

C2(n+r),2νx
2ν + (113)

1− λr
4(n+r)

{ n−1∑
ν=0

( n+r−1∑
µ=n

4µC2µ,2ν

)
x2ν +

n+r−1∑
ν=n

( n+r−1∑
µ=ν

4µC2µ,2ν

)
x2ν
}
.

By identifying the CC in both sides, we achieve to identities (105)-(107). In order
to demonstrate the identities (108)-(110), we must take n ← 2n + 1 in (57) and
apply the same technique as before. We obtain

P d2(n+r)+1(λr; r)(x) = P2(n+r)+1(x) +
1− λr

4

r∑
i=1

1

4(i−1)
P2(n+r−i)+1(x) . (114)

Doing µ = n + r − i, i = 1(1)r and using (25), the preceding sum can be written
as

1

4(n+r−1)

n+r−1∑
µ=n

4µP2µ+1(x) =
1

4(n+r−1)

n+r−1∑
µ=n

4µ
µ∑
ν=0

C2µ+1,2ν+1x
2ν+1 .
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We write the first two polynomials of (114) in the canonical basis by means of (11)
and (25), taking into account the symmetry of P d2(n+r)+1, then we apply Lemma
4.1; thus we get

n+r∑
ν=0

λdX2(n+r)+1,2ν+1x
2ν+1 =

n+r∑
ν=0

C2(n+r)+1,2ν+1x
2ν+1 +

1− λr
4(n+r)

{ n−1∑
ν=0

( n+r−1∑
µ=n

4µC2µ+1,2ν+1

)
x2ν+1 +

n+r−1∑
ν=n

( n+r−1∑
µ=ν

4µC2µ+1,2ν+1

)
x2ν+1

}
.

By identifying the CC in both sides of this equation, we achieve to identities (108)-
(110).

Due to symmetry λdXn,m vanish when n and m have different parity, otherwise depend
on the parameter λr of perturbation. In this theorem, replacing C2n,2ν and C2n+1,2ν+1

by their expressions given by (24) and (26), we derive next result that gives explicit
formulas for λdXn,m.

Theorem 4.6 CC λdXn,m := λn,m(P d ← X) for the r-perturbed by dilatation case (r ≥ 1)
in terms of the canonical basis.

If k = 2k′, then for k′ = 0(1)r′, being r = 2r′ or r = 2r′ + 1, it holds

λdX2k′,2ν =
(−1)k

′−ν

4(k′−ν)

(
k′ + ν

k′ − ν

)
, ν = 0(1)k′ , (115)

λdX2k′,2ν+1 = 0 , ν = 0(1)k′ − 1 . (116)

If k = 2k′ + 1, then for k′ = 0(1)r′, being r = 2r′ or r = 2r′ + 1, it holds

λdX2k′+1,2ν+1 =
(−1)k

′−ν

4(k′−ν)

(
k′ + ν + 1

k′ − ν

)
, ν = 0(1)n′ , (117)

λdX2k′+1,2ν = 0 , ν = 0(1)k′ . (118)

If k = 2k′, then for k′ = r′ + 1(1)r − 1, being r = 2r′ or r = 2r′ + 1, it holds

λdX2k′,2ν+1 = 0 , ν = 0(1)k′ − 1 , (119)

λdX2k′,2ν =
1

4(k′−ν)

{
(−1)k

′−ν
(
k′ + ν

k′ − ν

)
+ (1− λr)

k′−1∑
µ=r−k′

(−1)µ−ν
(
µ+ ν

µ− ν

)}
, (120)

ν = 0(1)r − k′ − 1 ,

λdX2k′,2ν =
1

4(k′−ν)

{
(−1)k

′−ν
(
k′ + ν

k′ − ν

)
+ (1− λr)

k′−1∑
µ=ν

(−1)µ−ν
(
µ+ ν

µ− ν

)}
, (121)

ν = r − k′(1)k′ − 1 .
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If k = 2k′ + 1, then for k′ = r′(1)r − 1, if r = 2r′; or for k′ = r′ + 1(1)r − 1, if
r = 2r′ + 1, it holds

λdX2k′+1,2ν = 0 , ν = 0(1)k′ , (122)

λdX2k′+1,2ν+1 =
1

4(k′−ν)

{
(−1)k

′−ν
(
k′ + ν + 1

k′ − ν

)
+ (1− λr)

k′−1∑
µ=r−k′−1

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)}
,

ν = 0(1)r − k′ − 2 , (123)

λdX2k′+1,2ν+1 =
1

4(k′−ν)

{
(−1)k

′−ν
(
k′ + ν + 1

k′ − ν

)
+ (1− λr)

k′−1∑
µ=ν

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)}
,

ν = r − k′ − 1(1)k′ − 1 . (124)

For n ≥ 0, it holds

λdX2(n+r),2ν+1 = 0 , ν = 0(1)n+ r − 1 , (125)

λdX2(n+r),2ν =
1

4(n+r−ν)

{
(−1)n+r−ν

(
n+ r + ν

n+ r − ν

)
+ (1− λr)

n+r−1∑
µ=n

(−1)µ−ν
(
µ+ ν

µ− ν

)}
,

ν = 0(1)n− 1 , (126)

λdX2(n+r),2ν =
1

4(n+r−ν)

{
(−1)n+r−ν

(
n+ r + ν

n+ r − ν

)
+ (1− λr)

n+r−1∑
µ=ν

(−1)µ−ν
(
µ+ ν

µ− ν

)}
,

ν = n(1)n+ r − 1 .

λdX2(n+r)+1,2ν = 0 , ν = 0(1)n+ r , (127)

λdX2(n+r)+1,2ν+1 =
1

4(n+r−ν)

{
(−1)n+r−ν

(
n+ r + ν + 1

n+ r − ν

)
+(1− λr)

n+r−1∑
µ=n

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)}
, ν = 0(1)n− 1, (128)

λdX2(n+r)+1,2ν+1 =
1

4(n+r−ν)

{
(−1)n+r−ν

(
n+ r + ν + 1

n+ r − ν

)
+(1− λr)

n+r−1∑
µ=ν

(−1)µ−ν
(
µ+ ν + 1

µ− ν

)}
, ν = n(1)n+ r − 1. (129)

Proof. Identities (115)-(118) follow from (66), (24) and (26). Identities (119)-(129)
are derived from (99)-(110) replacing C2n,2ν and C2n+1,2ν+1 by their expressions
given by (24) and (26) and doing some simple simplifications.

From last two theorems, we easily obtain λdXn,m for perturbations of first orders.

Corollary 4.7 CC λdXn,m := λn,m(P d ← X) for perturbed by dilatation. Recall that
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λdXn,n = 1, ∀n ≥ 0. For order 1 and n ≥ 0

λdXk,ν = Ck,ν , ν = 0(1)k , k = 0, 1 .

λdX2n+2,2ν+1 = 0 , ν = 0(1)n .

λdX2n+2,2ν = C2n+2,2ν +
1− λ1

4
C2n,2ν

=
(−1)n−ν+1

4(n−ν+1)

{(n+ ν + 1

n− ν + 1

)
− (1− λ1)

(
n+ ν

n− ν

)}
, ν = 0(1)n ;

λdX2n+3,2ν = 0 , ν = 0(1)n+ 1 .

λdX2n+3,2ν+1 = C2n+3,2ν+1 +
1− λ1

4
C2n+1,2ν+1

=
(−1)n−ν+1

4(n−ν+1)

{(n+ ν + 2

n− ν + 1

)
− (1− λ1)

(
n+ ν + 1

n− ν

)}
, ν = 0(1)n .

For order 2 and n ≥ 0

λdXk,ν = Ck,ν , ν = 0(1)k , k = 0(1)2 .

λdX3,2ν = 0 , ν = 0, 1 ; λdX3,1 = C3,1 +
1− λ2

4
= −1 +

1− λ2
4

.

λdX2n+4,2ν+1 = 0 , ν = 0(1)n+ 1 .

λdX2n+4,2ν = C2n+4,2ν +
1− λ2

42

{
C2n,2ν + 4C2n+2,2ν

}
=

(−1)n−ν

4(n−ν+2)

{(n+ ν + 2

n− ν + 2

)
− (1− λ2)

(
n+ ν

n− ν + 1

)}
, ν = 0(1)n ;

λdX2n+4,2n+2 = C2n+4,2n+2 +
1− λ2

4
=

1

4

(
− (2n+ 3) + (1− λ2)

)
= −2n+ 2 + λ2

4
.

λdX2n+5,2ν = 0 , ν = 0(1)n+ 2 .

λdX2n+5,2ν+1 = C2n+5,2ν+1 +
1− λ2

42

{
C2n+1,2ν+1 + 4C2n+3,2ν+1

}
=

(−1)n−ν

4(n−ν+2)

{(n+ ν + 3

n− ν + 2

)
− (1− λ2)

(
n+ ν + 1

n− ν + 1

)}
, ν = 0(1)n ;

λdX2n+5,2n+3 = C2n+5,2n+3 +
1− λ2

4
= −n+ 2

2
+

1− λ2
4

.

5 Some properties of zeros and intersection points

In this section, we are going to deduce some results concerning zeros and intersection
points of perturbed Chebyshev polynomials valid for any order r of perturbation. Our
goal is to explain the main properties observed in the graphical representations pre-
sented as illustration at the end of this work. Let us note the zeros of P tn(µr; r)(x) and

P dn(λr; r)(x), ordered by increasing size, by {ξt(n)k (µr; r)}k=1(1)n and {ξd(n)k (λr; r)}k=1(1)n,

or or simply by {ξt(n)k }k=1(1)n and {ξd(n)k }k=1(1)n.
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5.1 Hadamard–Gershgörin location of zeros

Let us consider the symmetric tridiagonal Jacobi matrix associated with the MOPS
{Pn(x)}n≥0 given by (3)-(4),

J =


β0 α1

α1 β1 α2

α2 β2 α3

. . .
. . .

. . .

 ,

such that, α2
n+1 = γn+1, n ≥ 0. Denoting by Jn, n ≥ 1, the n × n matrix constituted

by the first n rows and n columns of J , we have that, Pn(x) = det(xIn − Jn), n ≥ 1,
where In notes the identity matrix of order n. Thus zeros of Pn are eigenvalues of Jn,
n ≥ 1 [10, p.30]. By definition the Gershgörin discs of any matrix A = (aij)1≤i,j≤n are

D(n)
i = {z ∈ C : |z − aii| ≤

∑n
j=1 |aij |}, 1 ≤ i ≤ n. The Gerschgorin discs of Jn are

D(1)
1 = {β0} .

D(n)
1 = {z ∈ C : |z − β0| ≤ |α1|} , n ≥ 2 ;

D(n)
i = {z ∈ C : |z − βi−1| ≤ |αi−1|+ |αi|} , 2 ≤ i ≤ n− 1 , n ≥ 2 ;

D(n)
n = {z ∈ C : |z − βn−1| ≤ |αn−1|} , n ≥ 2 .

The location of Hadamard–Gershgörin assures that all eigenvalues of Jn (zeros of Pn(x))
are in

D(n) = ∪ni=1D
(n)
i , n ≥ 1 ,

and if there are m discs disjoints from the others, then their union contains exactly m
eigenvalues [23].

Gershgörin intervals of the Jacobi matrix, J , of Chebyshev polynomials of second
kind and their union are

D(1)
1 = D(1) = {0} . D(2)

1 = D(2)
2 = D(2) = [−1

2
,
1

2
] .

D(n)
1 = [−1

2
,
1

2
] ; D(n)

i = [−1, 1] , 2 ≤ i ≤ n− 1 ; D(n)
n = [−1

2
,
1

2
] , n ≥ 3 .

D(n) = [−1, 1] , n ≥ 3 .

Let us denote the Jacobi matrices associated with {P tn(µr; r)(x)}n≥0 and
{P dn(λr; r)(x)}n≥0 by J t(µr; r) and Jd(λr; r), the corresponding Gershgörin discs by

Dt(n)i (µr; r) and Dd(n)i (λr; r), 0 ≤ i ≤ n, and their union by

Dt(n)(µr; r) = ∪ni=1D
t(n)
i (µr; r) , Dd(n)(λr; r) = ∪ni=1D

d(n)
i (λr; r) .
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From (18), (32) and (33), we have

J t(µr; r) =



0 1
2

1
2 0 1

2
. . .

. . .
. . .

1
2 µr

1
2
. . .

. . .
. . .

1
2 0 1

2
. . .

. . .
. . .


,
← line r + 1

Jd(λr; r) =



0 1
2

1
2 0 1

2
. . .

. . .
. . .

1
2 0

√
λr
2√

λr
2 0 1

2
. . .

. . .
. . .

1
2 0 1

2
. . .

. . .
. . .


.
← line r
← line r + 1

If µr, λr ∈ R and λr > 0, we are in the positive definite case, these matrices are real
(and symmetric), then their eigenvalues are real and distinct and Gershgörin discs are
intervals [23]. Perturbation by translation modify only the row of order r+ 1 of J , then
Gershgörin dics are

Dt(1)1 (µ0; 0) = {µ0} , Dt(n)1 (µ0; 0) = [µ0 −
1

2
, µ0 +

1

2
] , n ≥ 2 ;

Dt(r+1)
r+1 (µr; r) = [µr −

1

2
, µr +

1

2
] , Dt(n)r+1(µr; r) = [µr − 1, µr + 1], n ≥ r + 2, r ≥ 1;

Dt(n)i (µr; r) = D(n)
i , i 6= r + 1 , 1 ≤ i ≤ n , n ≥ 1 , r ≥ 0 ;

and their union is the following, for r = 0,

Dt(1)(µ0; 0) = {µ0} ; Dt(2)(µ0; 0) = [−1

2
,
1

2
] ∪ [µ0 −

1

2
, µ0 +

1

2
] ;

Dt(n)(µ0; 0) = [−1, 1] ∪ [µ0 −
1

2
, µ0 +

1

2
] , n ≥ 3 ;

for r = 1,

Dt(1)(µ1; 1) = {0} ; Dt(2)(µ1; 1) = [−1

2
,
1

2
] ∪ [µ1 −

1

2
, µ1 +

1

2
] ;

Dt(3)(µ1; 1) = [−1

2
,
1

2
] ∪ [µ1 − 1, µ1 + 1] ;

Dt(n)(µ1; 1) = [−1, 1] ∪ [µ1 − 1, µ1 + 1] , n ≥ 4 ;
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for r = 2,

Dt(1)(µ2; 2) = {0} ; Dt(2)(µ2; 2) = [−1

2
,
1

2
] ; Dt(3)(µ2; 2) = [−1, 1] ∪ [µ2 −

1

2
, µ2 +

1

2
];

Dt(n)(µ2; 2) = [−1, 1] ∪ [µ2 − 1, µ2 + 1] , n ≥ 4 ;

and for r ≥ 3,

Dt(1)(µr; r) = {0} ; Dt(2)(µr; r) = [−1

2
,
1

2
] ; Dt(k)(µr; r) = [−1, 1] , k = 3(1)r ;

Dt(r+1)(µr; r) = [−1, 1] ∪ [µr −
1

2
, µr +

1

2
];

Dt(n)(µ2; 2) = [−1, 1] ∪ [µr − 1, µr + 1] , n ≥ r + 2 .

Perturbation by dilatation affects rows of orders r and r+ 1 of J , then Gershgörin discs
are

Dd(1)1 (λr; r) = {0} , r ≥ 1 ; Dd(n)1 (λ1; 1) = [−
√
λ1
2
,

√
λ1
2

] , n ≥ 2 ;

Dd(n)r (λr; r) = [−1 +
√
λr

2
,
1 +
√
λr

2
] , n ≥ r + 1 , r ≥ 2 ;

Dd(r+1)
r+1 (λr; r) = [−

√
λr
2
,

√
λr
2

] , r ≥ 1 ;

Dd(n)r+1 (λr; r) = [−1 +
√
λr

2
,
1 +
√
λr

2
] , n ≥ r + 2 , r ≥ 1 ;

Dd(n)i (λr; r) = D(n)
i , i 6= r , i 6= r + 1 , 1 ≤ i ≤ n , n ≥ 1 , r ≥ 1 ;

and their union is the following, for r=1,

Dd(1)(λ1; 1) = {0} ; Dd(2)(λ1; 1) = [−
√
λ1
2
,

√
λ1
2

] ;

Dd(3)(λ1; 1) = [−1

2
,
1

2
] ∪ [−1 +

√
λ1

2
,
1 +
√
λ1

2
] = [−1 +

√
λ1

2
,
1 +
√
λ1

2
] ;

Dd(n)(λ1; 1) = [−1, 1] ∪ [−1 +
√
λ1

2
,
1 +
√
λ1

2
] , n ≥ 4 ;

for r = 2,

Dd(1)(λ2; 2) = {0} ; Dd(2)(λ2; 2) = [−1

2
,
1

2
] ;

Dd(3)(λ2; 2) = Dd(4)(λ2; 2) = [−1

2
,
1

2
] ∪ [−1 +

√
λ2

2
,
1 +
√
λ2

2
] = [−1 +

√
λ2

2
,
1 +
√
λ2

2
] ;

Dd(n)(λ2; 2) = [−1, 1] ∪ [−1 +
√
λ2

2
,
1 +
√
λ2

2
] , n ≥ 5 ;

and for r ≥ 3,

Dd(1)(λr; r) = {0} ; Dd(2)(λr; r) = [−1

2
,
1

2
] ; Dd(k)(λr; r) = [−1, 1], k = 3(1)r;

Dd(n)(λr; r) = [−1, 1] ∪ [−1 +
√
λr

2
,
1 +
√
λr

2
] , n ≥ r + 1 .
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Depending on the values of parameters of perturbation (µr and λr), we can obtain some
more information about the location of zeros, provided by next two propositions.

Proposition 5.1 For the rth-perturbed by translation case (r ≥ 0). If µr ∈ R, µr 6= 0,
r ≥ 0, it holds

1. For r = 0, it holds:

(a) For n = 1, Dt(1)(µ0; 0) = {µ0}.
(b) For n = 2, it holds the same as 2.(a) (see next), but with µ0 instead of µ1.

(c) For n ≥ 3, it holds the same as 3.(a) (see next), but with µ0 instead of µr.

2. For r = 1, it holds:

(a) For n = 2, it holds:

- If −1 ≤ µ1 < 0, then Dt(2)(µ1; 1) = [µ1 − 1
2 ,

1
2 ].

- If 0 < µ1 ≤ 1, then Dt(2)(µ1; 1) = [−1
2 , µ1 + 1

2 ].

- If µ1 > 1 or µ1 < −1, then [−1
2 ,

1
2 ] ∩ [µ1 − 1

2 , µ1 + 1
2 ] = ∅, there is one zero

of P t2(µ1; 1)(x) in [µ1 − 1
2 , µ1 + 1

2 ], the other one is in [−1
2 ,

1
2 ].

(b) For n = 3, it holds:

- If −3
2 ≤ µ1 ≤ −

1
2 , then Dt(3)(µ1; 1) = [µ1 − 1, 12 ].

- If −1
2 ≤ µ1 ≤

1
2 , then Dt(3)(µ1; 1) = [µ1 − 1, µ1 + 1].

- If 1
2 ≤ µr ≤

3
2 , then Dt(3)(µ1; 1) = [−1

2 , µ1 + 1].

- If µ1 >
3
2 or µ1 < −3

2 , then [−1
2 ,

1
2 ] ∩ [µ1 − 1, µ1 + 1] = ∅, there is a unique

zero of P t3(µ1; 1)(x) in [µ1 − 1, µ1 + 1], the others ones are in [−1
2 ,

1
2 ].

(c) For n ≥ 4, it holds the same as 3.(b) (see next), but with µ1 instead of µr.

3. For r ≥ 2, it holds:

(a) For n = r + 1, it holds:

- If −3
2 ≤ µr ≤ −

1
2 , then Dt(n)(µr; r) = [µr − 1

2 , 1].

- If −1
2 ≤ µr ≤

1
2 , then Dt(n)(µr; r) = [−1, 1].

- If 1
2 ≤ µr ≤

3
2 , then Dt(n)(µr; r) = [−1, µr + 1

2 ].

- If µr >
3
2 or µr < −3

2 , then [−1, 1] ∩ [µr − 1
2 , µr + 1

2 ] = ∅, there is a unique
zero of P tn(µr; r)(x) in [µr − 1

2 , µr + 1
2 ], the others ones are in [−1, 1].

(b) For for n ≥ r + 2, it holds:

- If −2 ≤ µr < 0, then Dt(n)(µr; r) = [µr − 1, 1].

- If 0 < µr ≤ 2, then Dt(n)(µr; r) = [−1, µr + 1].

- If µr > 2 or µr < −2, then [−1, 1] ∩ [µr − 1, µr + 1] = ∅, there is a unique
zero of P tn(µr; r)(x) in [µr − 1, µr + 1], the others ones are in [−1, 1].

Proposition 5.2 For the rth-perturbed by dilatation case (r ≥ 1). If λr ∈ R, λr > 0,
λr 6= 1, r ≥ 1, it holds
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1. For r = 1, it holds:

If λ1 > 0, then Dd(3)(λ1; 1) = [−1+
√
λ1

2 , 1+
√
λ1

2 ].

If 0 < λ1 < 1, then Dd(n)(λ1; 1) = [−1, 1], n ≥ 4.

If λ1 > 1, then Dd(n)(λ1; 1) = [−1+
√
λ1

1 , 1+
√
λ1

1 ], n ≥ 4.

2. For r = 2, it holds:

If λ2 > 0, then Dd(3)(λ2; 2) = Dd(4)(λ2; 2) = [−1+
√
λ2

2 , 1+
√
λ2

2 ].

If 0 < λ2 < 1, then Dd(n)(λ2; 2) = [−1, 1], n ≥ 5.

If λ2 > 1, then Dd(n)(λ2; 2) = [−1+
√
λ2

2 , 1+
√
λ2

2 ], n ≥ 5.

3. For r ≥ 3, it holds:

If 0 < λr < 1, then Dd(n)(λr; r) = [−1, 1], n ≥ r + 1.

If λr > 1, then Dd(n)(λr; r) = [−1+
√
λr

2 , 1+
√
λr

2 ], n ≥ r + 1.

From these two propositions and (19), we can deduce the following Hadamard–Gershgörin
location of zeros for the others families of Chebyshev

T1(x), T2(x) : Dd(1)(2; 1) = {0} , Dd(2)(2; 1) = [−
√

2

2
,

√
2

2
] ,

Tn(x) , n ≥ 3 : Dd(n)(2; 1) = [−1 +
√

2

2
,
1 +
√

2

2
] , n ≥ 3 .

V1(x) , V2(x) : Dt(2)
(

1

2
; 0

)
=

{
1

2

}
, Dt(2)

(
1

2
; 0

)
= [−1

2
, 1] ,

Vn(x) , n ≥ 3 : Dt(n)
(

1

2
; 0

)
= [−1, 1] , n ≥ 3 .

W1(x) , W2(x) : Dt(2)
(
−1

2
; 0

)
=

{
−1

2

}
, Dt(2)

(
−1

2
; 0

)
= [−1,

1

2
] ,

Wn(x) , n ≥ 3 : Dt(n)
(
−1

2
; 0

)
= [−1, 1] , n ≥ 3 .

Notice that from (16)-(17), we know that the sets of zeros of {Tn}n≥0, {Vn}n≥0 and
{Wn}n≥0 are contained in [−1, 1].

Remark 5.3 For degree n ≤ 3, we could investigate the location of zeros of first poly-
nomials from their explicit expressions that depend on the parameters of perturbation.

5.2 Zeros at the origin

From the CC in terms of the canonical basis given by Theorems 4.3 and 4.6 and Viète’s
formulas (12), we can derive some information about zeros of perturbed Chebyshev
polynomials at the origin.
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Proposition 5.4 For the rth-perturbed by translation case (r ≥ 0), it holds

λtXk,k−1 = 0 =
k∑
i=1

ξt
(k)
i , k = 0(1)r , (130)

λtXn,n−1 = −µr ⇔
n∑
i=1

ξt
(n)
i = µr , n ≥ r + 1 . (131)

λtX2n,0 =
(−1)n

22n
⇔

2n∏
k=1

ξt
(2n)
k =

(−1)n

22n
⇒ P t2n(µr; r)(0) 6= 0 , n ≥ 0 . (132)

If r = 2r′ + 1, then

λtX2n+1,0 = 0⇔
2n+1∏
k=1

ξt
(2n+1)
k = 0⇔ P t2n+1(µr; r)(0) = 0 , n ≥ 0 . (133)

If r = 2r′, then

λtX2k′+1,0 = 0⇔
2k′+1∏
k=1

ξt
(2k′+1)
k = 0⇔ P t2k′+1(µr; r)(0) = 0, k′ = 0(1)r′ − 1, (134)

λtX2n+1,0=µr
(−1)n+1

22n
⇔

2n+1∏
k=1

ξt
(2n+1)
k =µr

(−1)n

22n
⇒P t2n+1(µr; r)(0) 6= 0, n ≥ r′.(135)

Proof. We calculate λtXn,0 and λtXn,n−1 using mainly Theorem 4.3 and we establish the

relationship with the sum and the product of zeros {ξt(n)k }k=1(1)n by means of Viète
formulas (12). From the product, we conclude about P tn(µr; r)(0).

From (66) and (27), we get (130). From (66) and (27), we obtain (133), for
n = 0(1)r′; and (134). These results stem from the fact that first r + 1 perturbed
polynomials coincide with Chebyshev polynomials, as stated by (52).

Taking ν = k′ − 1 in (88), we get λtX2k′,2k′−1 = −µr. Doing ν = k′ in (91),

we have λtX2k′+1,2k′ = −µr. Taking ν = n + r in (94) and in (97), we obtain

λtX2(n+r)+1,2(n+r) = −µr and λtX2(n+r+1),2(n+r)+1 = −µr. Thus (131) is proved.

Taking ν = 0 in (82), (86) and (95), we obtain (132) for n = 0(1)r′, for n = r′+1(1)r
and for n ≥ r + 1, respectively, e.g., for n ≥ 0.

Doing ν = 0 in (90), we get

λtX2k′+1,0 = − µr
22k′

k′∑
µ=r−k′

(−1)µ = −(−1)r−k
′
µr

22k′

2k′−r∑
µ=0

(−1)µ.

If r = 2r′, then
∑2(k′−r′)

µ=0 (−1)µ = 1 and we obtain (135), for n = r′(1)r − 1. If

r = 2r′+ 1, then
∑2(k′−r′)+1

µ=0 (−1)µ = 0 and we obtain (133), for n = r′+ 1(1)r−1.
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At last, taking ν = 0 in (93), we have

λtX2(n+r)+1,0 = − µr

22(n+r)

n+r∑
µ=n

(−1)µ = −(−1)nµr

22(n+r)

r∑
µ=0

(−1)µ .

If r = 2r′, then
∑2r′

µ=0(−1)µ = 1 and we obtain (135), for n ≥ r. If r = 2r′ + 1,

then
∑2r′+1

µ=0 (−1)µ = 0 and we obtain (133), for n ≥ r. We remark that in (133),

P t2k′+1(µr; r)(x) is not symmetric.

Proposition 5.5 For the rth-perturbed by dilatation case (r ≥ 1), it holds

P d2n+1(λr; r)(0) = 0⇔
2n+1∏
i=1

ξd
(2n+1)
i = 0⇔ λdX2n+1,0 = 0 , n ≥ 0 . (136)

λdXn,n−1 = 0 =
n∑
i=1

ξd
(n)
i = 0 , n ≥ 0 . (137)

If r = 2r′, then

λdX2n,0 =
(−1)n

22n
=

2n∏
i=1

ξd
(2n)
i , n ≥ 0 . (138)

If r = 2r′ + 1, then

λdX2k′,0 =
(−1)k

′

22k′
=

2k′∏
i=1

ξd
(2k′)
i , k′ = 0(1)r′ , (139)

λdX2k′,0 =
(−1)k

′

22k′
λr =

2k′∏
i=1

ξd
(2k′)
i , k′ = r′ + 1(1)r − 1 , (140)

λdX2(n+r),0 = − (−1)n

22(n+r)
λr =

2n∏
i=1

ξd
(2n)
i , n ≥ 0 . (141)

For r ≥ 1,

P d2n(λr; r)(0) 6= 0 , n ≥ 0 . (142)

Proof. The symmetry of the sequence {P dn(λr; r)(x)}n≥0 implies that (136) and (137)
are verified. We calculate λdXn,0 and λdXn,n−1 using mainly Theorem 4.6. The rest of
the proof is similar with the preceding one.
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5.3 Location of extremal zeros of perturbed Chebyshev polynomials

We notice that for any monic polynomials, we have

lim
x→+∞

Pn(x) = +∞ , lim
x→−∞

P2n(x) = +∞ , lim
x→−∞

P2n+1(x) = −∞. (143)

From symmetry follows that P2n+1(0) = 0 and real zeros are symmetric with respect to
the origin. Regular orthogonality ensures that two polynomials of consecutive degrees
can not have a common zero [10]. In the positive definite case, all zeros are distinct real
numbers and an interlacing property holds between zeros of Pn and Pn+1; also there are
some monotonicity properties to consider [10]. Semi-classical character, in particular,
classical character, by means of the structure relation

Φ(x)P ′n+1(x) =
1

2
(Cn+1(x)− C0(x))Pn+1(x) + γn+1Dn+1Pn(x) ,

Dn+1(x) 6= 0, n ≥ 0 [35, p.123], guarantees that zeros are simple [34, pp.235-236]. Cheby-
shev forms are classical and they admit integral representations with positive weights
in [−1, 1] [46], thus they are positive definite and then zeros of Chebyshev polynomials
satisfy all cited properties in [−1, 1].

Next two propositions provide some information about the location of the smallest
and the greatest zeros (the extremal zeros) of perturbed Chebyshev polynomials with
respect to the extremal zeros of Chebyshev polynomials of second kind with the same
degree. Results are obtained from the CR of Propositions 3.5 and 3.6 and depend on
the signs of µr and 1 − λr. Let us note the zeros of P tk(µr; r)(x) and P dk (λr; r)(x) by

{ξt(k)i }i=1(1)k and {ξd(k)i }i=1(1)k, ordered by increasing size.

Proposition 5.6 For the rth-perturbed by translation case (r ≥ 0). If µr ∈ R, for
k ≥ r + 1, it holds

1. sgn
[
P tk(µr; r)(ξ

(k)
k )
]

= −sgn(µr).

2. sgn
[
P tk(µr; r)(ξ

(k)
1 )
]

= (−1)ksgn(µr).

3. If µr > 0, then:

(a) ∃ i, 1 ≤ i ≤ k: ξt
(k)
i > ξ

(k)
k ; P tk(µr; r)(ξ

t(k)
i ) = 0.

(b) The number of zeros of P tk(µr; r)(x) greater than ξ
(k)
k is odd.

(c) ∀x ≤ ξ(k)1 : (−1)kP tk(µr; r)(x) > 0.

(d) There are no zeros of P tk(µr; r)(x) less than ξ
(k)
1 .

4. If µr < 0, then:

(a) ∀y ≥ ξ(k)k : P tk(µr; r)(y) > 0.

(b) There are no zeros of P tk(µr; r)(x) greater than ξ
(k)
k .
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(c) ∃ i, 1 ≤ i ≤ k: ξt
(k)
i < ξ

(k)
1 ; P tk(µr; r)(ξ

t(k)
i ) = 0.

(d) The number of zeros of P tk(µr; r)(x) less than ξ
(k)
1 is odd.

Proof. Let us deal with the CR (53). Similar reasonings can be applied to the CR (54)
leading to exactly the same conclusions. We remark that in (53) the polynomials
under sum have degrees smaller than the degree k of Pk(x) and of P tk(µr; r)(x)
and have opposite parity with respect to it; moreover all their zeros belong to

]ξ
(k)
1 , ξ

(k)
k [. Next, we will evaluate (53) at the first, ξ

(k)
1 , and the last, ξ

(k)
k , zeros of

Pk(x), and at any x < ξ
(k)
1 and any y > ξ

(k)
k , and we note the signs of polynomials

at those points according with (143).

P tk(µr; r)(ξ
(k)
k ) = Pk(ξ

(k)
k )︸ ︷︷ ︸

= 0

−µr
k−r−1∑
i=0

1

4i
Pk−2i−1(ξ

(k)
k )︸ ︷︷ ︸

> 0

, (144)

P tk(µr; r)(y) = Pk(y)︸ ︷︷ ︸
> 0

−µr
k−r−1∑
i=0

1

4i
Pk−2i−1(y)︸ ︷︷ ︸

> 0

, ∀y > ξ
(k)
k , (145)

P t2k(µr; r)(ξ
(2k)
1 ) = P2k(ξ

(2k)
1 )︸ ︷︷ ︸

= 0

−µr
2k−r−1∑
i=0

1

4i
P2k−2i−1(ξ

(2k)
1 )︸ ︷︷ ︸

< 0

, (146)

P t2k+1(µr; r)(ξ
(2k+1)
1 ) = P2k+1(ξ

(2k+1)
1 )︸ ︷︷ ︸

= 0

−µr
2k−r∑
i=0

1

4i
P2k−2i(ξ

(2k+1)
1 )︸ ︷︷ ︸

> 0

. (147)

P t2k(µr; r)(x) = P2k(x)︸ ︷︷ ︸
> 0

−µr
2k−r−1∑
i=0

1

4i
P2k−2i−1(x)︸ ︷︷ ︸

< 0

, ∀x < ξ
(2k)
1 ,(148)

P t2k+1(µr; r)(x) = P2k+1(x)︸ ︷︷ ︸
< 0

−µr
2k−r∑
i=0

1

4i
P2k−2i(x)︸ ︷︷ ︸

> 0

, ∀x < ξ
(2k+1)
1 .(149)

From the above considerations, we can easily deduce the following conclusions.
Item 1 follows from (144), and item 2 follows from (146)-(147). If µr > 0, then:

(144) =⇒ P tk(µr; r)(ξ
(k)
k ) < 0 =⇒ 3.(a) =⇒ 3.(b), by (143); (146)-(149) =⇒ 3.(c)

=⇒ 3.(d). If µr < 0, then: (144) =⇒ P tk(µr; r)(ξ
(k)
k ) > 0 with (145) =⇒ 4.(a)

=⇒ 4.(b); (146) =⇒ P t2k(µr; r)(ξ
(2k)
1 ) < 0 and (147) =⇒ P t2k+1(µr; r)(ξ

(2k+1)
1 ) > 0,

then, by (143), we have 4.(c); 4.(c) =⇒ 4.(d), again by (143).

Proposition 5.7 For the rth-perturbed by dilatation case (r ≥ 1). If λr ∈ R, for
k ≥ r + 1, it holds

1. sgn
[
P dk (λr; r)(ξ

(k)
k )
]

= sgn(1− λr).

2. sgn
[
P dk (λr; r)(ξ

(k)
1 )
]

= (−1)ksgn(1− λr).
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3. If λr < 1, then:

(a) ∀y ≥ ξ(k)k : P dk (λr; r)(y) > 0.

(b) There are no real zeros of P dk (λr; r)(x) greater than ξ
(k)
k .

(c) ∀x ≤ ξ(k)1 : (−1)kP dk (λr; r)(x) > 0.

(d) There are no real zeros of P dk (λr; r)(x) less than ξ
(k)
1 .

(e) All real zeros of P dk (λr; r)(x) are in ]ξ
(k)
1 , ξ

(k)
k [.

4. If λr > 1, then:

(a) ∃ i, 1 ≤ i ≤ k : ξd
(k)
i > ξ

(k)
k ; P dk (λr; r)(ξ

d(k)
i ) = 0 and P dk (λr; r)(−ξd

(k)
i ) = 0,

−ξd(k)i < −ξ(k)k = ξ
(k)
1 .

(b) The numbers of real zeros of P dk (λr; r)(x) less than ξ
(k)
1 and greater than ξ

(k)
k

are odd (they are necessarily equal).

Proof. As perturbed polynomials P dk (λr; r)(x) are symmetric, their zeros are sym-
metric with respect to the origin. This fact is important in item 4 and allows to
obtain 3.(d) from 3.(b). We deal with the RC (56), the same can be done with
(57). We remark that in (56) the polynomials under sum have degrees smaller
than the degree k of Pk(x) and have the same parity of it; moreover all their zeros

belong to ]ξ
(k)
1 , ξ

(k)
k [. We will evaluate (56) at the first and the last zeros of Pk(x),

and at certain x and y, and we follow the same method of the proof of preceding
proposition.

About similar properties of extremal zeros for perturbed orthogonal polynomials with a
different type of perturbation of the second recurrence coefficient γ̃r = γr + λr see [28].

5.4 Zeros and interception points of perturbed Chebyshev polynomials

We point out some results about zeros and interception points of perturbed polynomials
with different parameters of perturbation and same degree; for that we need to use the
explicit formulas of zeros of Chebyshev polynomials of second kind (16).

Proposition 5.8 For the rth-perturbed by translation case (r ≥ 0).

1. It holds,

P tn(µr; r) ≡ Pn , 0 ≤ n ≤ r ,
P tn(µr; r)(x) = Pn(x)− µrPr(x)Pn−r−1(x) , n ≥ r + 1 . (150)

2. For n ≥ r + 1, the polynomials

P tn(µr; r) , P
t
n(µ′r; r) , Pn , µr 6= µ′r, µr 6= 0, µ′r 6= 0 , (151)

intersect each other at the zeros of Pr and at the zeros of Pn−r−1.
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3. ξ is a double interception point of (151) if and only if ξ is a common zero of Pr
and Pn−r−1.

4. For n = i(r + 1) + r, i ≥ 1, r ≥ 1; all zeros of Pr are double interception points
of (151) - in fact they are double common zeros (see item 8) - and the number of
distinct interception points is n− r − 1.

5. If r is even, then: if n is even, then the origin is a simple interception point of
(151); if n is odd, then the origin is not an interception point of (151).

If r is odd, then: if n is even, then the origin is a simple interception point of
(151); if n is odd, then the origin is a double interception point of (151).

6. ξ is a common zero of (151) if and only if ξ is a common zero of Pn and Pr or ξ
is a common zero of Pn and Pn−r−1.

7. ξ is a double common zero of (151) if and only if ξ is a common zero of Pr, Pn
and Pn−r−1.

8. For n = i(r + 1) + r, i ≥ 1, r ≥ 1, all zeros of Pr are double common zeros of
(151).

9. If n and r are odd, then the origin is a double common zero of (151). If n is odd
and r is even, or if n is even, then the origin is not a common zero of (151).

Proof.

1. From P tn(µr; r)(x) = Pn(x) − µrPr(x)P
(r+1)
n−r−1(x) [32, p.205] and (18), we ob-

tain immediately the relation (150), taking into account that {Pn}n≥0 is self-

associated, thus P
(r+1)
n−r−1 ≡ Pn−r−1.

2. From (150), we consider At(x) = P tn(µr; r)(x)−Pn(x), Bt(x) = P tn(µ′r; r)(x)−
Pn(x) and Ct(x) = P tn(µr; r)(x) − P tn(µ′r; r)(x). ∃ ξ: At(ξ) = 0 ∧ Bt(ξ) =
0 ∧ Ct(ξ) = 0⇔ Pr(ξ)Pn−r−1(ξ) = 0⇔ Pr(ξ) = 0 ∨ Pn−r−1(ξ) = 0.

3. ξ is a double interception point of (151) if and only if At(ξ) = 0∧(At)′(ξ) = 0,
Bt(ξ) = 0 ∧ (Bt)′(ξ) = 0 and Ct(ξ) = 0 ∧ (Ct)′(ξ) = 0. These conditions are
equivalent to

Pr(ξ) = 0 ∨ Pn−r−1(ξ) = 0 (152)

P ′r(ξ)Pn−r−1(ξ) = −Pr(ξ)P ′n−r−1(ξ). (153)

If ξ is not be a zero of Pr, Pr(ξ) 6= 0, then by (152), we must have Pn−r−1(ξ) =
0; in that case we know that P ′n−r−1(ξ) 6= 0, because zeros of Chebyshev
polynomials are simple. Then, (153) would be equivalent to a contradiction.
The same reasoning can be applied if if we suppose that ξ is not be a zero of
Pn−r−1. In conclusion, we must have Pr(ξ) = 0 ∧ Pn−r−1(ξ) = 0.
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4. All zeros of Pr(x) are also zeros of Pn−r−1(x) if and only if ∃i ≥ 1: n =
i(r + 1) + r, r ≥ 1. In fact, from (16), the zeros of Pr(x) and of Pn−r−1(x)

are respectively ξ
(r)
k = cos(k π

r+1), k = 1(1)r and ξ
(n−r−1)
k = cos(k π

n−r ), k =
1(1)n−r, for n ≥ r+1. Thus, it must ∃i ≥ 1: π

r+1 = i π
n−r ⇔ n−r = i(r+1).

The number of distinct interception points is equal to the number of distinct
zeros of Pr(x)Pn−r−1(x), e.g., degPr(x) + degPn−r−1(x) − r = n − r − 1.
Remark that, it must be n− r − 1 ≥ r.

5. Writing (150) for r → 2r′, n → 2n′, we obtain P t2n′(µ2r′ ; 2r′)(x) − P2n′(x) =
−µ2r′P2r′(x)P2n′−2r′−1(x). Now, from symmetry, we know that P2r′(x) is
even, so the origin is not a zero, and P2n′−2r′−1(x) is odd, so the origin is a
zero and it is simple, then we get the conclusion. The other cases are similar.

6. Follows from (150).

7. A double common zero is a special double interception point. Then the result
follows from items 3 and 6.

8. We would like to apply item 7 concerning all zeros of Pr. All zeros of Pr are
also zeros of Pn if and only if ∃j ≥ 2: n = j(r+ 1)−1, r ≥ 1 if and only if all
zeros of Pr are also zeros of Pn−r−1, because n = j(r+1)−1 = (j−1)(r+1)+r
and we can take i = j − 1 in such a way item 4 is also verified.

9. From symmetry, the origin is a zero of Pm(x) if and only if m is odd. The
parity of Pn−r−1 is determined by the parity of n and r. If n and r are odd,
then n− r− 1 is odd, and the origin is a common zero of Pr, Pn and Pn−r−1;
then we get the first part of the result from item 7. If n is odd and r is even,
then n − r − 1 is even and, from item 6, we get the conclusion. If n is even,
we apply again item 6.

Proposition 5.9 For the rth-perturbed by dilatation case (r ≥ 1).

1. It holds,

P dn(λr; r) ≡ Pn , 0 ≤ n ≤ r ,

P dn(λr; r)(x) = Pn(x) +
1− λr

4
Pr−1(x)Pn−r−1(x) , n ≥ r + 1 . (154)

2. For n ≥ r + 1, the polynomials

P dn(λr; r) , P
d
n(λ′r; r) , Pn , λr 6= λ′r, λr 6= 1, λ′r 6= 1 , (155)

intersect each other at the zeros of Pr−1 and at the zeros of Pn−r−1.

3. ξ is a double interception point of (155) if and only if ξ is a common zero of Pr−1
and Pn−r−1.
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4. For n = r(i + 1), i ≥ 1, r ≥ 1; all zeros of Pr−1 are double interception points of
(155) and the number of distinct interception points is n− r − 1.

5. If r is even, then: if n is even, then the origin is a double interception point of
(155); if n is odd, then the origin is a simple interception point of (155).

If r is odd, then: if n is even, then the origin is is not an interception point of
(155); if n is odd, then the origin is a simple interception point of (155).

6. ξ is a common zero of (155) if and only if ξ is a common zero of Pn and Pr−1 or
ξ is a common zero of Pn and Pn−r−1.

7. For n = jr − 1, j ≥ 2, r ≥ 1, all zeros of Pr−1 are common zeros of (155).

8. ξ is a double common zero of (155) if and only if ξ is a common zero of Pr−1, Pn
and Pn−r−1.

9. All zeros of Pr−1 can not be simultaneously double common zeros of (155).

10. If n is odd, then the origin is a simple common zero of (155). If n is even, then
the origin is not a common zero of (155).

Proof. It is analogous to the proof of the preceding proposition. Nevertheless, we
point out some details in some items.

1. From P dn(λr; r)(x) = Pn(x)+(1−λr)γrPr−1(x)P
(r+1)
n−r−1(x) [32, p.206] and (18),

we get the recurrence relation (154), because P
(r+1)
n−r−1 ≡ Pn−r−1.

4. All zeros of Pr−1 are also zeros of Pn−r−1 if and only if ∃ i ≥ 1: π
r = i π

n−r ⇔
n − r = ir ⇔ n = r(i + 1). Now, apply item 3. The number of distinct
interception points is degPr−1(x) + degPn−r−1(x) − (r − 1) = n − r − 1.
Remark that it must be n− r − 1 ≥ r − 1.

9. In fact, from item 8, all zeros of Pr−1 are common zeros of Pn and Pn−r−1 if
and only if ∃i, j ∈ N, i ≥ 1, j ≥ 2: n = r(i + 1) = jr − 1 ⇔ j = i + 1 + 1

r ,
from items 4 and 7. But in that case j /∈ N.

10. Follows from the symmetry of all polynomials involved. If n is odd, then
polynomials (155) are all odd, and we get the first part of the result. We are
going to show that the origin can not be a double common zero of (155). If
r is even, then r − 1 is odd, but n− r − 1 is even, so the condition of item 8
fails. If r is odd, then r − 1 is even, then that condition fails again. If n is
even, the origin is not a zero of Pn.

Remark 5.10 Comparing (54) with (150), or (56) with (154), we immediately obtain
the following linearization formula for the Chebyshev polynomials of second kind

Pr(x)Pn+r(x) =

r∑
i=0

1

4i
Pn+2(r−i)(x) , n ≥ 0 , r ≥ 0 .
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Here r is just a degree and lost the meaning of order of perturbation. This formula is a
particular case of a linearization formula for Gegenbauer polynomials given in [16, 57].

6 Graphical representations

In this section, we present some graphical representations with comments in order to
illustrate results for zeros and interception points given in the preceding section. Figures
3, 4, 5 and 6 concern Propositions 5.6 and 5.7. Figures 7, 8, 9 and 10 refer to Propositions
5.8 and 5.9. In all figures, we can observe properties satisfied by perturbed polynomials
at the origin given in Propositions 5.4 and 5.5.
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c)−1L (in French) [On the sequence of orthogonal polynomials associated with the
form u = δc + λ(x− c)−1L], Period. Math. Hung. 21 (1990) 223-248.
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Figure 3: Some perturbed of order 0 by translation with negative parameters µ0 =
−5(1)− 1 (in black), positive parameters µ0 = 1(1)5 (in red) of Chebyshev polynomials
of second kind (in bleu) of degrees n = 5, 6.
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Figure 4: Some perturbed of order 1 by translation with negative parameters µ0 =
−5(1)− 1 (in black), positive parameters µ0 = 1(1)5 (in red) of Chebyshev polynomials
of second kind (in bleu) of degrees n = 5, 6.
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Figure 5: Some perturbed of order 1 by dilatation with parameters λ1 = −5(1)−1 < 1
(in black) and λ1 = 3(1)7 > 1 (in red) of Chebyshev polynomials of second kind (in bleu)
of degrees n = 5, 7, 6 and 8.
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Figure 6: Some perturbed of order 2 by dilatation with parameters λ2 = −5(1)−1 < 1
(in black) and λ2 = 3(1)7 > 1 (in red) of Chebyshev polynomials of second kind (in bleu)
of degrees n = 5, 7, 6, 8.
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Figure 7: Some perturbed of order 5 by translation with parameters µ′5 = −5(1) −
1 < 0 (in black) and µ5 = 1(1)5 > 0 (in red) of Chebyshev polynomials of second kind
(in bleu).
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Figure 8: Some perturbed of order 6 by dilatation with parameters λ′6 = −5(1)−1 < 1
(in black) and λ6 = 3(1)7 > 1 (in red) of Chebyshev polynomials of second kind (in bleu).
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Figure 9: Some perturbed of order 5 by translation with negative parameters µ′5 =
−5(1)− 1 < 0 (in black) and positive parameters, µ5 = 1(1)5> 0 (in red) of Chebyshev

polynomials of second kind (in bleu) of degree n = 17. All zeros of P5(x) (−
√
3
2 ≈

−0.87, −1
2 , 0, 1

2 ,
√
3
2 ≈ 0.87) are double common zeros of P t17(µ

′
5; 5)(x), P t17(µ5; 5)(x)

and P17(x). There are 11 distinct interception points. There is a zero of P t17(µ
′
5; 5)(x)

on the left of -1. There is a zero of P t17(µ5; 5)(x) on the right of 1. Other zeros are in
[−1, 1]. All zeros are real and simple. Polynomials are not symmetric.
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Figure 10: Some perturbed of order 6 by dilatation with parameters λ′6 = −5(1) −
1 < 1 (in black) and λ6 = 3(1)7 > 1 (in red) of Chebyshev polynomials of second kind

(in bleu) of degree n = 18. All zeros of P5(x) (−
√
3
2 ≈ −0.87, −1

2 , 0, 1
2 ,
√
3
2 ≈ 0.87)

are double interception points of P d18(λ
′
6; 6)(x), P d18(λ6; 6)(x) and P18(x). There are no

common zeros. There are 11 distinct interception points. P d18(λ
′
6; 6)(x) has 6 real zeros

in [−1, 1] and it has 6 pairs of complex conjugate zeros. P d18(λ6; 6)(x) has 16 real zeros
in [−1, 1], it has a zero on the left of -1 and a zero on the right of 1. Polynomials and
zeros are symmetric.
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