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Abstract

We probe deeper into the Discrete Markus-Yamabe Question for
polynomial planar maps and into the normal form for those maps
which answer this question in the affirmative. Furthermore, in a sym-
metric context, we show that the only nonlinear equivariant polyno-
mial maps providing an affirmative answer to the Discrete Markus-
Yamabe Question are those possessing Z2 as their group of symme-
tries. We use this to establish two new tools which give information
about the spectrum of a planar polynomial map.
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1 Introduction

The Discrete Markus-Yamabe Question, DMYQ(n), in dimension n was for-
mulated by Cima et al. [2] as follows:

[DMYQ(n)] Let F : Rn −→ Rn be a C1 map such that F (0) = 0 and for
any x ∈ Rn, JF (x) has all its eigenvalues with modulus less than one. Is it
true that 0 is a global attractor for the discrete dynamical system generated
by F?

These authors have found sufficient conditions for planar maps to provide an
affirmative answer to this question. We proceed with the study in dimension
2, since this is the only interesting dimension: the answer is negative for
higher dimensions, see Cima et al. [3] for examples in dimensions higher
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than 3 and van den Essen and Hubbers [4] for dimensions higher than 4, and
is affirmative in dimension 1.

An attentive look at the proof of Theorem B in Cima et al. [2] produces a
more explicit description of polynomial maps satisfying sufficient conditions
for an affirmative answer to the DMYQ(2), leading to a normal form for such
maps, as in Chamberland [1]. In particular this may be used for testing a
map for eigenvalues outside the unit disk.

After having established the normal form for maps that answer the DMYQ(2)
in the affirmative, we look at the symmetric setting. We formulate the Sym-
metric Discrete Markus-Yamabe Question, SDMYQ(n), as follows:

[SDMYQ(n)] Let F : Rn −→ Rn be a C1 map such that F (0) = 0 and
for any x ∈ Rn, JF (x) has all its eigenvalues with modulus less than one.
Suppose that the symmetries of F form a nontrivial compact subgroup of
O(n). Is it true that 0 is a global attractor for the discrete dynamical system
generated by F?

Note that a counterexample to the SDMYQ(2) is given in [2, theorem D],
where F is a rational map, and the symmetries of F constitute the group Z4.

We address this question for n = 2 when F is polynomial. We find
that only when the group of symmetries of the map is Z2 (a group of order
two), can a nonlinear polynomial map provide an affirmative answer to the
DMYQ(2) and a fortiori to the SDMYQ(2). In fact, we show that this is the
only symmetry group compatible with the hypotheses of the DMYQ(2). This
is then used as a test for the existence of expanding eigenvalues in symmetric
polynomial maps.

2 Normal Forms for Planar Polynomial Maps

We look deeper into the admissible form of polynomial maps which provide
an affirmative answer to the DMYQ(2).

Theorem 2.1 (Normal Form). Let F : R2 → R2 be a polynomial map such
that F (0) = 0 and all the eigenvalues of JF (x, y) have modulus smaller than
one for all (x, y) ∈ R2. Then F (x, y) = B(x, y)T +u2p(u)(α, β)T , where B is
a real matrix, α, β ∈ R, p is a real polynomial and u = ax+ by for a, b ∈ R.

Proof. Theorem B in Cima et al. [2] proves that the condition on the
eigenvalues of JF implies that F is obtained by an affine transformation
from a triangular map. The assumption that the origin is a fixed-point al-
lows us to work with linear instead of affine transformations. Furthermore,
the triangular map is such that the off-diagonal terms can be described by
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a polynomial in one variable alone. Therefore, from the triangular map
G(u, v) = K(u, v)T + (0, uq(u))T with K a real diagonal matrix and q a real
polynomial, we obtain by a linear change of coordinates L,

F (x, y) = L−1G(L(x, y)).

Let

L =

(
a b
c d

)
then for u = ax+ by we get

F (x, y) = L−1
(
KL

(
x
y

)
+

(
0

uq(u)

))
=

= L−1KL

(
x
y

)
+ uq(u)L−1

(
0
1

)
Let A = L−1KL, then A is a matrix with real eigenvalues. Consider now

(α, β)T = L−1(0, 1)T =
1

ad− bc

(
−b
a

)
, (1)

then we can rewrite F as follows:

F (x, y) = A

(
x
y

)
+ uq(u)

(
α
β

)
The proof follows taking

B

(
x
y

)
= A

(
x
y

)
+ uq(0)

(
α
β

)
and p(u) =

q(u)− q(0)

u
.

Theorem 2.1 is better used for identifying which maps do not provide an
affirmative answer to the DMYQ(2). In fact, while it may not be easy to
recognize an admissible form by looking at a map, it will be straighforward
to assert that, for instance, F (x, y) = (x

2
+y2, y

3
+y3) will not provide an affir-

mative answer to the DMYQ(2). This is because the non-linear polynomials
in the first and second coordinate have different degrees.

This provides a criterion for studying the spectrum of a polynomial planar
map as stated in the following:

Corollary 2.2. Let F : R2 → R2 be a polynomial map. If the quotient of the
nonlinear parts of the coordinates of F is not constant, then there exists a
point in R2 where the jacobian of F has an eigenvalue outside the unit disk.
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3 Symmetric Planar Polynomial Maps

In the context of symmetric maps some further results may be obtained. As
usual, the reference for the symmetric context is the book by Golubitsky et
al. [5]. Assume for the rest of this section that F : R2 → R2 has a compact
Lie group Γ as its group of linear symmetries. That is to say that Γ is the
largest group such that for all (x, y) ∈ R2 and all γ ∈ Γ we have

F (γ · (x, y)) = γ · F (x, y). (2)

We always assume nontrivial groups and actions.
We single out two possible group elements of Γ. These are represented

by κ and ζn and act on elements of the plane as

κ · (x, y)T = (x,−y)T

ζn · (x, y)T = e2πi/n.(x, y)T = (x cos
2π

n
− y sin

2π

n
, x sin

2π

n
+ y cos

2π

n
)T ,

where n ∈ N.
Note that any reflection may be written as κ above in suitable coordinates.

Proposition 3.1. Let Γ be a compact Lie group acting on R2. Assume Γ is
the symmetry group of a polynomial map F .

(i) If κ ∈ Γ then F does not answer the DMYQ(2) in the affirmative unless
F is of the form:

F (x, y) =

(
d1 0
0 d2

)(
x
y

)
+ y2p(y2)

(
1
0

)
.

(ii) If ζn ∈ Γ for n ≥ 3 then F does not answer the DMYQ(2) in the
affirmative unless F is linear. Moreover, the linear part of F is either
a homothety or a rotation matrix.

Proof. From Theorem 2.1 we know that, in order to satisfy the hypotheses
of the DMYQ(2), we must have F (x, y) = B(x, y)T + (αu2p(u), βu2p(u))T .
Then F is γ-equivariant if and only if both B and the nonlinear part satisfy
(2). We then write N(x, y) = (αr(u), βr(u)) with r(u) = u2p(u). The proof
proceeds in the following two steps:

(i) If κ ∈ Γ, then B · κ = κ · B if and only if B is a diagonal matrix.
Furthermore, we must have

N(κ.(x, y)) = (αr(ax− by), βr(ax− by))T

= (αr(ax+ by),−βr(ax+ by))T = κ.N(x, y),
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from which it follows that, if both α and β are nonzero, then{
r(ax+ by) = r(ax− by)
r(ax+ by) = −r(ax− by) ,

which is to say that r(ax− by) = −r(ax− by) and thus r(u) = −r(u) for all
u ∈ R2. Hence, r is identically zero.

If α = 0, and β 6= 0 then, from (1) in the proof of Theorem 2.1, b = 0.
We then have

r(ax− by) = −r(ax+ by) ⇔ r(ax) = −r(ax)

meaning that r is identically zero.
If β = 0, and α 6= 0 then, from (1) in the proof of Theorem 2.1, a = 0.

We then have

r(ax− by) = r(ax+ by) ⇔ r(−by) = r(by)

meaning that r is an even polynomial in y.
If both α and β are zero, the result holds trivially.

(ii) If ζn ∈ Γ for n ≥ 3, (2) implies that

N(ζn · (x, y)) =


αr

(
a(x cos

2π

n
− y sin

2π

n
) + b(x sin

2π

n
+ y cos

2π

n
)

)

βr

(
a(x cos

2π

n
− y sin

2π

n
) + b(x sin

2π

n
+ y cos

2π

n
)

)


must be equal to

ζn ·N(x, y) =


αr(ax+ by) cos

2π

n
− βr(ax+ by) sin

2π

n

αr(ax+ by) sin
2π

n
+ βr(ax+ by) cos

2π

n

 .

We therefore must have
αr(a(x cos 2π

n
− y sin 2π

n
) + b(x sin 2π

n
+ y cos 2π

n
)) =

= αr(ax+ by) cos 2π
n
− βr(ax+ by) sin 2π

n

βr(a(x cos 2π
n
− y sin 2π

n
) + b(x sin 2π

n
+ y cos 2π

n
)) =

= αr(ax+ by) sin 2π
n

+ βr(ax+ by) cos 2π
n
.
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If one of either α or β is zero, we observe that r is identically zero since
n ≥ 3. Otherwise, after some simplification, we obtain

−β2r(ax+ by) = α2r(ax+ by)

and again we see that r must be identically zero.

The following result finishes our description of planar polynomial maps
that provide an affirmative answer to the DMYQ(2).

Theorem 3.2. A nonlinear equivariant polynomial map satisfying DMYQ(2)
can only have Γ = Z2 as its symmetry group.

Proof. It is known (see, for instance, Golubitsky et al. [5], XII §1 (c)) that
every compact Lie group in GL(2) can be identified with a subgroup of the
orthogonal group O(2). The compact subgroups of O(2) that do not contain a
rotation ζn, n ≥ 3, are, in suitable coordinates, the trivial subgroup generated
by the identity; Z2, generated by either κ or minus the identity; and Z2⊕Z2

This last group contains the two reflections κ and −κ. Therefore if F has
these symmetries, it must satisfy both

F (x, y) =

(
d1 0
0 d2

)(
x
y

)
+

(
r(y2)

0

)
and

F (x, y) =

(
d1 0
0 d2

)(
x
y

)
+

(
0

r̃(x2)

)
and therefore, r = r̃ = 0. Since we are assuming Γ to be nontrivial, the proof
is finished.

We end this note with the following example: the lowest order (and per-
haps simplest) nonlinear polynomial map whose symmetry group is Z4 is of
the form F (x, y) = (αx− βy3, αy + βx3). By Theorem 3.2 this map cannot
answer the DMYQ(2) in the affirmative. Indeed, it is clear either by direct
computation or by applying Lemma 1.1 in [2] that the eigenvalues of the
jacobian of F are not all inside the unit disk.

In fact Theorem 3.2 together with Theorem B of [2] lead to a second
criterion for studying the spectrum of a polynomial planar map as follows:

Corollary 3.3. Let F : R2 → R2 be a polynomial map. If F has a non-trivial
symmetry group different from Z2, then there exists a point in R2 where the
jacobian of F has an eigenvalue outside the unit disk.
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