
On an algorithm to decide whether

a free group is a free factor of another1

Pedro V. Silva2, Pascal Weil3

Abstract

We revisit the problem of deciding whether a finitely generated sub-
group H is a free factor of a given free group F . Known algorithms solve
this problem in time polynomial in the sum of the lengths of the generators
of H and exponential in the rank of F . We show that the latter depen-
dency can be made exponential in the rank difference rank(F)− rank(H),
which often makes a significant difference.

For the classical facts about free groups recorded below without a reference,
we refer the reader to the book by Lyndon and Schupp [6].

It is well-known that the minimal sets of generators, or bases, of a free group
F all have the same cardinality, called the rank of F . Moreover, if F has finite
rank r, every r-element generating set of F is a basis, see [6, Prop. I.3.5]. In
this paper, we will consider only finite rank free groups.

Let H be a subgroup of a free group F , written H ≤ F . Then H itself is
a free group whose rank may be greater than the rank of F . We say that H
is a free factor of F , written H ≤ff F , if there exist bases B of H and A of
F such that B ⊆ A (free factors can be defined in all groups, by a universal
property, but the operational definition given here is sufficient for the purpose
of this study). It is well known that one can decide whether a given finite rank
subgroup H ≤ F is a free factor of F , but the known algorithms have a rather
high time complexity. More precisely, the best of these algorithms require time
that is polynomial in the size of H and exponential in the rank of F . This point
is discussed in more detail in Section 1.3 below.

Once a basis A of the ambient free group F is fixed, there is a natural and
elegant representation of the finitely generated subgroups of F by A-labeled
graphs (or inverse automata), which has been used to great profit by many
authors since the late 1970s. This construction — a graphical representation of
ideas that go back to the early part of the twentieth century [11, Chap. 11] —
was made explicit by Serre [12] and Stallings [13], and is discussed and used in

1The first author acknowledges support from C.M.U.P., financed by F.C.T. (Portugal)
through the programmes POCTI and POSI, with national and European Community struc-
tural funds. Both authors acknowledge support from the European Science Foundation pro-
gram AutoMathA.

2Centro de Matemática, Faculdade de Ciências – Universidade do Porto – R. Campo Alegre
687 – 4169-007 Porto, Portugal. pvsilva@fc.up.pt

3LaBRI, CNRS – 351 cours de la Libération – 33405 Talence Cedex – France. pascal.

weil@labri.fr

1

[7, 8, 2] and many others. Given a finite set of generators ofH (as reduced words
over the alphabet A ∪ A−1), this representation can be effectively constructed
(see [13], [8], etc). Moreover the number of vertices and edges of this graph
is bounded above by ℓ, the sum of the lengths of a set of generators of H ,
and the whole representation can be computed in time at most O(ℓ2) (in fact,
in time O(ℓ log∗ ℓ) according to a recent announcement [15]). We discuss this
representation in more detail in Section 1.2 below.

We propose a new algorithm to decide whether a given finitely generated
subgroup of a free group F is a free factor of F , based on a careful analysis
of the construction of the graph representation of H . This new algorithm is
polynomial in the size of H and exponential in the rank difference between
F and H . In many instances, this represents a substantial advantage over
exponential dependency in the rank of F .

1 Background

If A is a basis of a free group F , we often write F = F (A) and we represent
the elements of F as reduced words over the alphabet A. More precisely, we
consider the set of all words on the symmetrized alphabet A ∪ A−1, where
A−1 = {a−1 | a ∈ A} is a set that is disjoint from A, equipped with an explicit
bijection with A, namely a 7→ a−1. Such a word is reduced if it contains no
factor of the form aa−1 or a−1a with a ∈ A, and it is well known that F can be
identified with the set of reduced words over A. We denote by ρ the map that
assigns to each word u the corresponding reduced word uρ ∈ F (A), obtained by
iteratively deleting all factors of the form aa−1 or a−1a (a ∈ A).

1.1 On inverse automata

We describe the main tool for the representation of subgroups of free groups in
terms of automata (see [10]). Readers less familiar with this terminology may
think of automata as edge-labeled graphs.

An automaton on alphabet A is a triple of the form A = (Q, q0, E) where Q
is a finite set called the state set, q0 ∈ Q is the initial state, and E ⊆ Q×A×Q
is the set of edges, or transitions. A transition (p, a, q) is said to be from state p,
to state q, with label a. The label of a path in A (a finite sequence of consecutive
transitions) is the sequence of the labels of its transitions, a word on alphabet

A, that is, an element of the free monoid A∗. We write p
u
−→ q if there is a path

from state p to state q with label u. The language accepted by A is the set
L(A) of all words in A∗ which label a path in A from q0 to q0.

This definition of automata leads naturally to the definition of a homomor-
phism ϕ from an automaton A = (Q, q0, E) to an automaton A′ = (Q′, q′0, E

′)
(over the same alphabet A): ϕ is a mapping from Q to Q′ such that ϕ(q0) = q′0,
and such that whenever (p, a, q) ∈ E, we also have (ϕ(p), a, ϕ(q)) ∈ E′.

The automaton A is called deterministic if no two distinct edges with the

2

same initial state bear the same label, that is,

(p, a, q), (p, a, q′) ∈ E =⇒ q = q′.

The automaton is called trim if every state q ∈ Q lies in some path from q0 to
q0.

In the sequel, we consider automata where the alphabet is symmetrized,
that is, the alphabet is of the form A ∪ A−1. We say that A is dual if for each
a ∈ A, there is an a-labeled edge from state p to state q if and only if there is
an a−1-labeled edge from q to p,

(p, a, q) ∈ E ⇐⇒ (q, a−1, p) ∈ E.

Let us immediately record the following fact.

Fact 1.1 Let A be a dual automaton. If a word u labels a path in A from state
p to state q, then so does the corresponding reduced word uρ. Moreover L(A)
is a submonoid of (A ∪A−1)∗ and L(A)ρ is a subgroup of F (A). ⊓⊔

Now let A = (Q, q0, E) be a trim dual automaton and let p, q ∈ Q be states
of A. If w = a1 · · · an ∈ (A∪A−1)∗ is a non-empty word, the expansion of A by
(p, w, q) is the automaton obtained from A by adding n−1 vertices q1, . . . , qn−1

and 2n edges

p
a1−→ q1

a2−→ . . .
an−1

−→ qn−1
an−→ q

and

q
a−1

n−→ qn−1

a
−1

n−1

−→ . . .
a
−1

2−→ q1
a
−1

1−→ p.

Note that this automaton is still trim and dual. Moreover, if p = q = q0, then
we observe the following.

Proposition 1.2 Let A = (Q, q0, E) be a trim dual automaton, let H = L(A)ρ
and let w be a non-empty word. If B is the expansion of A by (q0, w, q0), then

L(B)ρ is the subgroup generated by H and wρ, that is, L(B)ρ = 〈H,w〉.

Proof. Let C be the dual automaton consisting of the state q0 and the states
and edges added to A in the expansion. It is immediate that L(C)ρ is the
subgroup of F (A) generated by wρ.

If w ∈ L(B), we can factor a path q0
w
−→ q0 according to the successive

visits of state q0. The resulting factorization of w makes it clear that w is a
product of elements of L(A) and L(C). Thus, L(B) is the submonoid generated
by L(A) ∪ L(C), and L(B)ρ is the subgroup generated by L(A)ρ and wρ. This
concludes the proof. ⊓⊔

3

1.2 Reduced inverse automata

The automaton A is called inverse if it is deterministic, trim and dual. It is
reduced if every state q ∈ Q lies in some path from q0 to q0, labeled by a
(possibly empty) reduced word. We note the following result, a cousin of [14,
Thm 1.16].

Proposition 1.3 If A and B are reduced inverse automata and L(A)ρ = L(B)ρ,
then A and B are isomorphic.

Proof. Let A = (Q, q0, E) and B = (P, p0, D) be reduced inverse automata
such that L(A)ρ = L(B)ρ. We construct an isomorphism ϕ between A and B
as follows. We first let ϕ(q0) = p0.

Let q ∈ Q. Since A is reduced, there exist reduced words u and v such that
the word uv is reduced, q0

u
−→ q and q

v
−→ q0. Then uv ∈ L(A)ρ, so uv ∈ L(B)ρ,

and since uv is reduced, we have uv ∈ L(B). Thus uv labels a path in B from

p0 to p0, and we let ϕ(q) be the unique state in P such that p0
u
−→ϕ(q)

v
−→ p0.

We first verify that ϕ is well defined. Suppose that uv and u′v′ are reduced

words such that q0
u
−→ q

v
−→ q0 and q0

u′

−→ q
v′

−→ q0. We want to show that if

p0
u
−→ p

v
−→ p0 and p0

u′

−→ p′
v′

−→ p0 in B, then p = p′. If u′v is a reduced word,

then as above, u′v labels a path in B from p0 to p0, say, p0
u′

−→ p′′
v
−→ p0 and

the deterministic property of B implies that p′ = p′′ = p.
If u′v is not reduced, and a is the first letter of v, then the last letter of

u′ is a−1 while the last letter of u is not a−1. Therefore u′u−1 is reduced,

u′u−1 ∈ L(A) and again, there is a path in B of the form p0
u′

−→ p′′
u−1

−→ p0. By
determinism, it follows that p′ = p′′ = p.

This shows that ϕ is well defined. A dual construction yields a well-defined
mapping ψ from P toQ such that, whenever uv is a reduced word and p0

u
−→ p

v
−→ p0

in B, then q0
u
−→ψ(p)

v
−→ q0 in A. Using the determinism of A and B, it is now

immediate that ψ ◦ ϕ is the identity on Q and ϕ ◦ ψ is the identity on P .
There remains to verify that ϕ is a homomorphism. More precisely, let

(q, a, q′) be a transition in A, and let uv and u′v′ be reduced words such that

q0
u
−→ q

v
−→ q0 and q0

u′

−→ q′
v′

−→ q0. In particular, we have p0
u
−→ϕ(q)

v
−→ p0

and p0
u′

−→ϕ(q′)
v′

−→ p0 in B.

q0

q

q′

q0

u v

a

u′ v′

4

If uav′ is reduced, then in B, there is a path from p0 to p0 labeled uav′,
and by determinism, there is a transition (ϕ(q), a, ϕ(q′)). If uav′ is not reduced,
then either ua is not reduced or av′ is not reduced. If ua is not reduced, then
u = u1a

−1 and by determinism, q0
u1−→ q′. As in the first part of the proof, it

follows that at least one of u1v
′ and u1u

′−1
is reduced, so p0

u1−→ϕ(q′) in B and
hence there is a transition (ϕ(q), a, ϕ(q′)). The case where av′ is not reduced is
handled symmetrically, and this concludes the proof. ⊓⊔

Let H be a subgroup of F (A). Say that an automaton A on alphabet A
represents H if A is reduced and inverse and if L(A)ρ = H . Proposition 1.3
shows that there exists at most one such automaton, and we denote it by ΓA(H)
if it exists. We now discuss the existence and the construction of ΓA(H) when
H is finitely generated. (As it turns out, ΓA(H) always exists, but our interest
in this paper is restricted to algorithmic questions, and hence to the finite rank
case.)

Let A be an automaton and let p, q be distinct states of A. The automaton
obtained from A by identifying states p and q is constructed as follows: its state
set is Q \ {p, q} ∪ {n}, where n is a new state; its initial state is q0 (or n if p
or q is equal to q0); and its set of transitions is obtained from E by replacing
everywhere p and q by n. If A is trim or dual, then so is the automaton obtained
from A by identifying a pair of states.

Now let A be a dual automaton. If A is not deterministic, there exist
transitions (r, a, p) and (r, a, q) with p 6= q and a ∈ A ∪A−1. Identifying p and
q yields a new dual automaton B, and we say that B is obtained from A by an
elementary reduction of type 1.

Fact 1.4 Let A be a dual automaton and let B be obtained from A by an
elementary reduction of type 1. Then L(A)ρ = L(B)ρ. ⊓⊔

Proof. It is easily seen that L(A) ⊆ L(B). For the converse, we use the notation
given above: in B, the states p and q of A are replaced with a new state n. Let
u ∈ L(B). Then there exists a path labeled u from the initial state of B (say,
q0) to itself. If that path does not visit state n, then u also labels a path from
q0 to itself in A and hence u ∈ L(A).

If that path does visit state n, we consider the factorization of u given by
the passage of that path through n: we have u = u0u1 · · ·ur, r ≥ 1 and

q0
u0−→n

u1−→n · · ·n
ur−→ q0.

It follows that in A, ui-labelled paths exist, with end states p or q. Then one of
u0 and u0a

−1a labels a path in A from q0 to q. Similarly, one of ur and a−1aur

labels a path from q to q0. And for each 1 ≤ i ≤ r, one of ui, a
−1aui, uia

−1a

and a−1auia
−1a labels a path in A from q to q. Therefore, there exists a path

in A of the form q0
v
−→ q0 such that uρ = vρ, which concludes the proof. ⊓⊔

5

Again, let A be a deterministic dual automaton. If A is not reduced, let

q be a state such that, for every pair of paths q0
x
−→ q and q

y
−→ q0 labeled by

reduced words x and y, the product word xy fails to be reduced. Note that
q cannot be equal to q0. If B is obtained from A by omitting state q and the
transitions involving it, we observe that B is again deterministic and dual, and
we say that B is obtained from A by an elementary reduction of type 2.

Fact 1.5 Let A be a deterministic dual automaton and let B be obtained from
A by an elementary reduction of type 2. Then L(A)ρ = L(B)ρ. ⊓⊔

Proof. It is easily seen that L(B) ⊆ L(A). Conversely, let u ∈ L(A) and
suppose that B was obtained from A by omitting state q. In particular, there
exists a uniquely determined state p and a uniquely determined letter a ∈ A ∪
A−1 such that the only transitions of A involving q are (p, a, q) and (q, a−1, p).

If the path q0
u
−→ q0 in A does not visit state q, then it is also a path in B and

u ∈ L(B).
If that path does visit state q, we consider the factorization of u given by

the passage of that path through q: we have u = u0u1 · · ·ur, r ≥ 1 and

q0
u0−→ q

u1−→ q · · · q
ur−→ q0.

It follows that every ui (i < r) ends with a and every uj (0 < j) starts with a−1.
Cancelling the factors aa−1 that occur between the ui yields a path from q0 to
q0 in B. Moreover, if v is the label of that path, then vρ = uρ, which concludes
the proof. ⊓⊔

Let A be a trim, dual automaton, and let B be an automaton obtained by
iteratively performing elementary reductions, first of type 1 and then of type 2,
until none is possible. Then B is a reduced inverse automaton, we write B = Aρ
and we say that B is obtained from A by reduction. Moreover, Facts 1.4 and
1.5 show that L(A)ρ = L(B)ρ.

This leads directly to the well-known algorithm to construct a reduced
inverse automaton representing a given finitely generated subgroup H . Let
h1, . . . , hn be generators of H , and let us consider the automaton obtained from
the trivial automaton (one vertex q0, no transitions) by performing successively
expansions by (q0, hi, q0) (1 ≤ i ≤ n) and then reducing the automaton. It
follows from Proposition 1.2 that the resulting automaton is ΓA(H). Note that
it does not matter which set of generators of H was used, nor in which order
the generators were used.

Remark 1.6 This construction of ΓA(H) is well known, and can be described
in many different ways, notably in terms of immersions over the bouquet of
circles (Stallings [13]) or of closed inverse submonoids of a free inverse monoid
(Margolis and Meakin [7]). ⊓⊔

6

There is a well-known converse to the above construction: if A is a reduced
inverse automaton and H = L(A)ρ, then H has finite rank and a basis for H
can be computed as follows (see Stallings [13]). Given a spanning tree T of the
(graph underlying the) automatonA, for each state p, let up be the reduced word
labeling a path from q0 to p inside the tree T . For each transition e = (p, a, q),
let be = upau

−1
q : then a basis of H consists of the elements be, where e runs

over the transitions e = (p, a, q) not in T and such that a ∈ A.
We note that, given a finite set h1, . . . , hn of elements of F (A) with total

length ℓ =
∑

i |hi|, one can construct ΓA(H) in time at most O(ℓ2) and ΓA(H)
has v ≤ ℓ− r + 1 states. Moreover, finding a basis of H can be done in time at
most O(v2) (this bound can be improved, see Touikan [15]).

1.3 On the complexity of Whitehead and other algorithms

It is well known that one can decide, given H a subgroup of a finite rank free
group F , whether H is a free factor of F . We briefly describe here the main
known algorithms and discuss their complexity.

Let H be a finitely generated subgroup of a free group F of rank r, with
basis A. Let h1, . . . , hn be a generating set of H . By the results summarized in
Section 1.2, up to a quadratic time computation, we may assume that h1, . . . , hn

is a basis of H . Let ℓ = |h1|+ · · ·+ |hn| be the total length of the tuple (hi)i,
and let d = r − n be the rank difference between F and H – which we assume
to be positive, since H can be a proper free factor of F only if n < r.

Federer and Jónsson (see [6, Prop. I.2.26]) gave the following observation
and decision procedure: H is a free factor of F if and only if there exist d words
hn+1, . . . , hr, each of length at most max{|hi| | 1 ≤ i ≤ n}, such that h1, . . . , hn

generate the whole of F . The resulting algorithm requires testing every suitable
d-tuple of reduced words on alphabet A. Each of these tests (does a certain
r-tuple of words generate F?) takes time polynomial in the total length of
the r-tuple, and hence in dℓ. However, the number of tests is O(rdℓ), which is
exponential in ℓ and d.

This approach leads to the following.

Fact 1.7 Deciding whether H ≤ff K is in NP , with respect to dℓ. ⊓⊔

Proof. To verify that H ≤ff K, we need to guess d words of length at most
ℓ, and verify that together with H , they generate F , which can be done in
O((dℓ)2). ⊓⊔

Another approach is based on the use of Whitehead automorphisms. We
refer the readers to [6, Sec. I.4] for the definition of these automorphisms, it
suffices to note here that the setW of non length preserving Whitehead automor-
phisms of F has exponential cardinality (in terms of r). A result of Whitehead
[6, Prop. I.4.24] shows the following: if there exists an automorphism ϕ such
that the total length of (ϕ(hi))i is strictly less than ℓ, then there exists such
an automorphism in W . In particular, an algorithm to compute the minimum

7

total length of an automorphic image of the tuple (hi)i consists in repeatedly
applying the following step: try every automorphism ψ ∈ W until the total
length of (ψ(hi))i is strictly less than the total length of (hi)i; if such a ψ exists,
replace (hi)i by (ψ(hi))i; otherwise, stop and output the total length of (hi)i.

This applies to the decision of the free factor relation since H ≤ff F if and
only if there exists an automorphism ϕ mapping h1, . . . , hn to a subset of A,
that is, such that the total length of (ϕ(hi))i is exactly n. This algorithm
may require O((ℓ − n)card(W)) steps, each of which consists in computing the
image of a tuple of length at most ℓ under an automorphism, and hence has
complexity O(ℓ). Thus the time complexity of this algorithm is O(ℓ card(W)),
which is linear in ℓ and exponential in r.

A variant of this algorithm was established by Gersten [1], who showed
that a similar method applies to find the minimum size (number of vertices) of
ΓA(ϕ(H)), when ϕ runs over the automorphisms of F (A). It is clear that H is
a free factor of F (A) if and only if there exists an automorphism ϕ such that
ΓA(ϕ(H)) has a single vertex. The time complexity is computed as above, where
the number of vertices of ΓA(H) is substituted for the total length of a basis
for H . As noted earlier, this number of vertices is usually substantially smaller
than the total length of a basis, but the two values are linearly dependent, so
the order of magnitude of the time complexity is not modified, notably the
exponential dependence in r.

Remark 1.8 The discussion of Whitehead’s algorithm above concerns only the
so-called easy part of the algorithm (see for instance Kapovich, Myasnikov and
Shpilrain [3]). Recent results by Myasnikov and Shpilrain [9], Khan [4] and
Donghi Lee [5] on the possible polynomial complexity of the hard part of the
algorithm also consider the rank of the ambient free group as a constant, and
do not discuss the actual exponential dependence in that parameter. ⊓⊔

2 A careful look at the expansions and reduc-

tions of inverse automata

Let A be a reduced inverse automaton.
Let B be obtained from A by performing an expansion, say by (p, w, q), and

then reducing the resulting automaton. In this situation, we write A −→
(p,w,q)
exp

B, or simply A −→exp B. We distinguish two special cases.
• If the reduction following the expansion does not involve identifying or

omitting states of A, or equivalently if A embeds in B, we say that B is obtained

from A by a reduced expansion and we write A −→
(p,w,q)
re B or A −→re B.

• If the states p and q are equal to the distinguished state q0 of A, we say
that B is obtained from A by an e-step and we write A −→w

e B, or simply
A −→e B.

Finally, let B be obtained from A by identifying two distinct vertices p and
q, and then reducing the resulting automaton. Then we say that B is obtained

8

from A by an i-step and we write A −→p=q
i B, or simply A −→i B.

Note that if A −→exp B, A −→re B, A −→e B or A −→i B, then B is a
reduced inverse automaton.

We first record a few facts.

Fact 2.1 Let u be a reduced word labeling a path in A from a state p to a state
p′, and from a state q to a state q′,

p
u
−→ p′, q

u
−→ q′.

By definition of the reduction of dual automata, the identification of p and q

implies that of p′ and q′, and the converse holds as well. Thus A −→p=q
i B if

and only if A −→p′=q′

i B. ⊓⊔

Let us now examine in detail the effect of an operation of the form −→exp.

Fact 2.2 Let p, q be states of A and let w be a non-empty reduced word. Let
u be the longest prefix of w that can be read in A from state p, and let v be the
longest suffix of w that can be read in A to state q (that is, v−1 is the longest
prefix of w−1 that can be read in A from state q). We distinguish two cases:

(1) If |u| + |v| < |w|, then w = uw′v for some non-empty reduced word w′.
If we let p′ (resp. q′) be the end (resp. start) state of the path labeled u
(resp. v) and starting in p (resp. ending in q),

p
u
−→ p′

w
−→ q′

v
−→ q,

then the reduction process on the result of the expansion of A by (p, w, q)
identifies the |u| first edges and the |v| last edges of the added path with

existing edges of A, so that A −→
(p,w,q)
exp B if and only if A −→

(p′,w′,q′)
exp B

and the latter is a reduced expansion.

(2) If |u| + |v| ≥ |w|, then there exist words x, y, z, with y possibly empty,
such that u = xy, v = yz and w = xyz. Let p′, p′′, q′, q′′ be the states of
A defined by the following paths

p
x
−→ p′

y
−→ p′′, q′

y
−→ q′′

z
−→ q.

Then A −→
(p,w,q)
exp B if and only if A −→p′=q′

i B, if and only if A −→p′′=q′′

i

B.

⊓⊔

We derive from Fact 2.2 the following statement.

Proposition 2.3 Let A and B be inverse automata. If A −→w
e B, then A −→i

B or A −→
(p,u,q)
re B for some states p and q and a reduced word u such that

|u| ≤ |w|.

9

The following converse statements are derived from Facts 2.1 and 2.2.

Proposition 2.4 Let A be a reduced inverse automaton, let H = L(A)ρ, let u

and v be reduced words labeling paths q0
u
−→ p and q0

v
−→ q in A, and suppose

that A −→p=q
i B. Then A −→uv−1

e B and L(B)ρ = 〈H,uv−1〉.

Proof. Let A′ be the expansion of A by (q0, uv
−1, q0). The analysis in Fact 2.2

(2) shows that a step in the reduction of A′ is provided by the automaton
obtained in identifying p and q. The uniqueness statement in Proposition 1.3
then shows that A −→uv−1

e B and we conclude by Proposition 1.2. ⊓⊔

Proposition 2.5 Let A and B be reduced inverse automata, let w be a reduced

word such that A −→
(p,w,q)
re B, let H = L(A)ρ, and let let u and v be re-

duced words labeling paths q0
u
−→ p and q0

v
−→ q in A. Then A −→uwv−1

e B and

L(B)ρ = 〈H,uwv−1〉.

Proof. Since the expansion of A by (p, w, q) is a reduced expansion, the word
uwv−1 is reduced and the expansion by (q0, uwv

−1, q0) falls in the situation

described in Fact 2.2 (1). In view of Proposition 1.2, it follows that A −→uwv−1

e

B, which concludes the proof.

⊓⊔

We now introduce a measure of the length of a reduced expansion or an i-step
σ, written λ(σ): if σ is an i-step, then λ(σ) = 0; if σ is a reduced expansion,

σ =−→
(p,w,q)
re , its length is the length of w, λ(σ) = |w|. We extend this notion of

length to finite sequences of i-steps and reduced expansions: if σ̄ = (σ1, . . . , σn)
is such a sequence, we let

λ(σ̄) = (λ(σ1), . . . , λ(σn)).

Finally, we introduce an order relation on the set of finite sequences of non-
negative integers. Let k̄ = (k1, . . . , kn) and ℓ̄ = (ℓ1, . . . , ℓm) be such sequences.
We say that k̄ � ℓ̄ if

either n < m,

or n = m and
∑n

i=1 k
2
i <

∑m

i=1 ℓ
2
i ,

or n = m,
∑n

i=1 k
2
i =

∑m
i=1 ℓ

2
i and k̄ precedes ℓ̄ in the lexicographic order.

It is routine to check that � is a well-order on the set of finite sequences
on non-negative integers, which is stable under the concatenation of sequences.
We write k̄ ≺ ℓ̄ if k̄ � ℓ̄ and k̄ 6= ℓ̄.

Proposition 2.6 Let A, A′ and B be inverse automata such that A′ is obtained

from A by a reduced expansion σ1 and B is obtained from A′ by an i-step σ2,

A −→re A
′ −→i B.

Then there exist a sequence of reduced expansions or i-steps σ̄′ of length 1 or 2

such that B is obtained from A by applying the steps in σ̄′ and λ(σ̄′) ≺ λ(σ1, σ2).

10

Proof. Suppose that A −→
(p,w,q)
re A′ −→r=s

i B. The length of this sequence of
transformations is (|w|, 0).

Let Q be the state set of A and let u and v be reduced paths from q0 to p
and q,

q0
u
−→ p, q0

v
−→ q.

Then uwv−1 is a reduced word and L(A′)ρ = 〈L(A)ρ, uwv−1〉 by Proposi-
tion 1.2. We distinguish three cases, depending whether or not r and s lie in
Q.

Case 1: r, s ∈ Q. Let x and y be reduced words labeling paths in A from q0
to r and s respectively. Then the same words label similar paths in A′ and it
follows from Proposition 2.4 that

L(B)ρ = 〈L(A′)ρ, xy−1〉 = 〈L(A)ρ, uwv−1, xy−1〉.

Let also A′′ and B′ be determined by A −→r=s
i A′′ −→uwv−1

e B′. Then
L(B′)ρ is also equal to 〈L(A)ρ, xy−1, uwv−1〉, so that B = B′ by Proposition 1.3.

Note that the words u and v label paths from state q0 in A′′ as well. It
follows from Proposition 2.3 that, if uwv−1 6∈ L(A′′), then B can be obtained

from A′′ by an i-step or by a reduced expansion of the form −→
(t,z,t′)
re with

|z| ≤ |w|.
Thus B is obtained from A either by a sequence of 1 or 2 transformations,

of length 0 or (0, k) with 0 ≤ k ≤ |w|. This is ≺-less than (|w|, 0), as expected.

Case 2: r ∈ Q and s 6∈ Q. Let z be a reduced word labeling a path from q0
to r in A, and hence also in A′. Let g be the unique reduced word labeling a
path from p to s in A′, using only edges that were not in A. By assumption, g
is a proper, non-empty prefix of w. Moreover, by Propositions 1.2 and 2.4,

L(B)ρ = 〈L(A′)ρ, ugz−1〉 = 〈L(A)ρ, uwv−1, ugz−1〉.

Let h be the longest common suffix of g and z, so that g = g′h, z = z′h,
g′z′

−1
is reduced and we have the following paths in A′,

q0
z′

−→ r′
h
−→ r, p

g′

−→ s′
h
−→ s.

Fact 2.1 shows that A′ −→r′=s′

i B, so we may assume that h = 1, g = g′ and
z = z′. There is a possibility that the word g is now empty (if h was in fact
equal to g), but in that case, we are returned to the situation of Case 1, with
s′ = p. Thus we may still assume that g 6= 1. In particular, the word ugz−1 is
reduced.

Then let A′′ and B′ be defined by A −→ugz−1

e A′′ −→uwv−1

e B′. Again
L(B′)ρ = 〈L(A)ρ, uwv−1, ugz−1〉, so B = B′ by Proposition 1.3.

Proposition 2.3 states that each e-step can be replaced by an i-step or by a
reduced expansion of length bounded above by the length of the e-step. Going

11

back to Fact 2.2, we see that the e-step A −→ugz−1

e A′′ can be replaced by a
transformation of length k ≤ |g| since both u and z can be read from state q0
in A. As for the e-step A′′ −→uwv−1

e B, it can be replaced by a transformation
of length ℓ ≤ |w| − |g| since ug (a prefix of uw) and v can be read from state q0
in A′′.

Now, it suffices to verify that (k, ℓ) ≺ (|w|, 0), which is easily done if we
observe that k + ℓ ≤ |w| (so k2 + ℓ2 ≤ |w|2) and k < |w|.

Case 3: r, s 6∈ Q. In that case, the word w factors as w = w1w2w3 and the
path in A′ made of edges added to A factors as

p
w1−→ r

w2−→ s
w3−→ q.

Since r 6= s and these vertices are not in Q, each of the three factors w1, w2, w3

is non-empty. Moreover,

L(B)ρ = 〈L(A′)ρ, uw1w3v
−1〉 = 〈L(A)ρ, uwv−1, uw1w3v

−1〉.

Let h be the longest common suffix of w1 and w−1
3 , so that w1 = w′

1h,
w3 = h−1w′

3, w
′

1w
′

3 is reduced and we have the following paths in A′,

p
w′

1−→ r′
h
−→ r

w2−→ s
h
←− s′

w′

3−→ q.

Proposition 2.1 shows that A′ −→r′=s′

i B, so we may assume that h = 1,
w1 = w′

1 and w3 = w′

3. There is a possibility that the words w1 or w3 be now
empty (if h was in fact equal to w1 or w3), but in that case, we are returned to
the situation of Cases 1 or 2, with r′ = p or s′ = q. Thus we may still assume
that w1 6= 1 and w3 6= 1. In particular, the word uw1w3v

−1 is reduced.
Then let A′′ and B′ be defined by A −→uw1w3v−1

e A′′ −→uwv−1

e B′. Then
L(B′)ρ = 〈L(A)ρ, uwv−1, uw1w3v

−1〉, so B = B′ by Proposition 1.3.

As in Case 2, we use Fact 2.2 to verify that the e-step A −→uw1w3v−1

e A′′ can
be replaced by a reduced expansion of length k = |w1w3| since u and v are the
maximal prefixes of uw1w3v

−1 and its inverse that can be read from state q0 in
A. As for the e-step A′′ −→uwv−1

e B, it can be replaced by a reduced expansion
of length ℓ = |w2| since uw1 and vw−1

3 are the maximal prefixes of uwv−1 and
its inverse that can be read from state q0 in A′′.

Now, it suffices to verify that (k, ℓ) ≺ (|w|, 0), which is easily done if we
observe that k + ℓ = |w| (so k2 + ℓ2 ≤ |w|2) and k < |w|. ⊓⊔

3 Deciding whether H ≤ff F

3.1 A geometric characterization of free factors

We put together the technical results from Section 2 to prove the following
characterization of free factors.

12

Theorem 3.1 Let H,K be finitely generated subgroups of F = F (A) and as-

sume that d = rank(K)− rank(H) > 0. Then H is a free factor of K if and only

if the inverse automaton ΓA(H) can be transformed in ΓA(K) by a sequence of

d′ ≤ d i-steps followed by d− d′ reduced expansions.

Proof. We first observe that H is a free factor of K if and only if there exist
d elements k1, . . . , kd of F (A) such that 〈H ∪ {k1, . . . , kd}〉 = K. This follows
from the fact that an r-element generating set in a rank r free group, is a basis
[6, Prop. I.3.5].

By definition of e-steps, this means that H ≤ff K if and only if ΓA(H) yields
ΓA(K) by a sequence of d e-steps.

Now Propositions 2.3, 2.4 and 2.5 show that this is equivalent to the fact
that ΓA(H) yields ΓA(F (A)) by a sequence of d i-steps or reduced expansions.

Since � is a well-order on the set of finite sequences of non-negative integers,
we may consider a sequence σ̄ of d i-steps and reduced expansions leading from
ΓA(H) to ΓA(K), which is �-minimal. Proposition 2.6 then shows that the
i-steps in σ̄ come before the reduced expansions. Thus, H ≤ff K if and only
if ΓA(H) yields ΓA(K) by a sequence of d′ i-steps followed by d − d′ reduced
expansions. ⊓⊔

Corollary 3.2 Let H be a finitely generated subgroup of F = F (A), let A0

be the set of letters in A that occur in ΓA(H) and let d = |A0| − rank(H) =
rank(F (A0))− rank(H). Then H is a free factor of F if and only if ΓA(H) can

be transformed into a one-vertex automaton by a sequence of d i-steps.

Proof. We first observe that H ≤ F (A0) and F (A0) ≤ff F (A). It follows from
standard results that H is a free factor of F (A) if and only if it is a free factor
of F (A0).

Now Theorem 3.1 shows that H ≤ff F (A0) if and only if ΓA(H) yields some
inverse automaton B by a sequence of d′ i-steps, and B yields ΓA(F (A0)) by a
sequence of d− d′ reduced expansions.

Note that every letter of A0 occurs in B. Moreover, since ΓA(F (A0)) has
only one state, B must be a one-state automaton as well by definition of reduced
expansions. Thus B = ΓA(F (A0)) and d′ = d. ⊓⊔

3.2 The algorithm

With the notation of Corollary 3.2, the algorithm to decide whether H ≤ff K

consists of the following. For each pair (p, q) of distinct states of ΓA(H), compute
B such that ΓA(H) −→p=q

i B. Repeat the same process for each B and continue
until you have computed the result of all sequences of d i-steps from ΓA(H).
Then H ≤ff F if and only if one of these automata has a single state.

Let v be the number of states of ΓA(H) (which is certainly less than the
total length of a basis of H). Then there are O(v2) (more precisely 1

2 (v2 − v))
possible i-steps, each of which takes O(v2) time, and the resulting automata
have at most v − 1 states. The sequences of i-steps that need to be explored

13

can be viewed as a tree, whose nodes have O(v2) children and whose depth is
d. There are, therefore, at most O(v2d) nodes to explore.

For each of them, we need to compute the reduction of an automaton, in
time at most O(v2), so the time complexity is O(v2d+2).

Theorem 3.3 Given a tuple h1, . . . , hn of elements of F (A) of total length ℓ,

one can decide whether the subgroup H generated by the hi is a free factor of

F (A) in time O(ℓ2d+2), where d = |A0| − rank(H) and A0 is the set of letters

in A that occur in the hi.

Remark 3.4 The tree exploration described above can be somewhat speeded
up by the following observation: for every i-stepA −→i B, we have rank(L(B)ρ) ≤
rank(L(B)ρ) or rank(L(B)ρ) = rank(L(B)ρ)+ 1. In the first case, the i-step can-
not be part of a sequence of d i-steps leading to an increase of the rank by d,
and the subtree below B can be ignored.

There are naturally further implementation tricks and ideas that can reduce
the decision process, however without changing the worst-case complexity. ⊓⊔

The algorithm to decide whether H ≤ff K, for given subgroups H,K ≤ F

as in Theorem 3.1, can be described in the same fashion, with identical time
complexity.

References

[1] S. Gersten. On Whitehead’s algorithm, Bull. Am. Math. Soc. 10 (1984)
281-284.

[2] I. Kapovich and A.G. Myasnikov. Stallings Foldings and Subgroups of Free
Groups, J. Algebra, 248, 2 (2002), 608-668.

[3] I. Kapovich, P. Schupp, V. Shpilrain. Generic properties of Whitehead’s
algorithm and isomorphism rigidity of random one-relator groups, Pacific

J. Math. 223 (2006) 113-140.

[4] B. Khan. The structure of automorphic conjugacy in the free group of rank
two. In: Proc. Special Session on Interactions between Logic, Group Theory

and Computer Science, Contemp. Mathematics 349 (2004).

[5] D. Lee. Counting words of minimum length in an automorphic orbit, eprint
arXiv:math.GR/0311410.

[6] R. Lyndon and P. Schupp. Combinatorial group theory, Springer, (1977,
reprinted 2001).

[7] S. Margolis and J. Meakin. Free inverse monoids and graph immersions,
Int. J. Algebra and Comput. 3 (1993) 79–100.

14

[8] S. Margolis, M. Sapir, P. Weil. Closed subgroups in pro-V topologies and
the extension problem for inverse automata, Intern. J. Algebra and Com-

putation 11 (2001) 405–445.

[9] A.G. Myasnikov, V. Shpilrain. Automorphic orbits in free groups, J. Alge-

bra 269 (2003) 18-27.

[10] D. Perrin. Automata, in (J. Leeuwen ed.) Handbook of Theoretical Com-

puter Science, vol. B, Elsevier, 1990.

[11] J. Rotman. An introduction to the theory of groups, 4th edition, Springer,
1995.

[12] J.-P. Serre. Arbres, amalgames, SL2, Astérisque 46, Soc. Math. France,
1977. English translation: Trees, Springer Monographs in Mathematics,
Springer, 2003.

[13] J. Stallings. The topology of graphs, Inventiones Mathematicæ 71 (1983)
551–565.

[14] J. Stephen. Applications of automata theory to presentations of monoids

and inverse monoids, Ph.D. Dissertation, University of Nebraska, 1987.

[15] N. Touikan. http://www.sci.ccny.cuny.edu/∼shpil/algcryp2005.

html.

[16] E. Ventura. On fixed subgroups of maximal rank, Comm. Algebra, 25

(1997), 3361-3375.

15

