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Abstract. Holomorphic vector fields of strict Siegel type with
an isolated singularity at the origin are considered. It is proved
that, under suitable conditions always verified in dimension 3, the
saturated of a transversal section to the separatrix associated to
a certain eigenvalue together with the n− 1 dimensional invariant
subspace through the origin transverse to that separatrix contains
a neighbourhood of the origin. As an application we prove that
those vector fields admit a semi-complete representative. Another
consequence is an extension of the Theorem of Mattei-Moussu, al-
ready obtained by Elizarov and Il’Yashenko by a different method.

1. Introduction

Let X be a holomorphic vector field in C2 with an isolated singularity
at the origin and such that the eigenvalues of its linear part are both
non zero. Then the foliation associated to X admits a semi-complete
representative [10]. We can ask if this result is still valid for higher
dimensions.

In C2, the Siegel Domain is a thin set (it has measure zero). Contrary
to the C2 case, for Cn, with n ≥ 3, the interior of the Siegel Domain is
non empty; thus the Siegel Domain represents an important set for the
problem above. As the conclusions for the Poincaré Domain are easy,
we will focus in the Siegel Domain.

Let X : (Cn, 0) → (Cn, 0), n ≥ 3, be a holomorphic vector field,
where λ1, . . . ,λn represent the eigenvalues of DX(0), verifying:

a) the origin is an isolated singularity
b) X is of Siegel type (0 belongs to the convex hull of {λ1, . . . , λn})
c) all eigenvalues of DX(0) are non zero and there exists a straight

line through the origin (of C) separating λ1 from the others eigen-
values in the complex plane

d) up to a change of coordinates, X =
∑n

i=1 λixi(1 + fi(x))∂/∂xi,
where x = (x1, . . . , xn) and fi(0) = 0 for all i.

Up to multiplication by a constant we can assume that λ1 = 1.
In this paper only vector fields with an isolated singularity at the

origin are considered, even if not explicitly stated.
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It is important to remark that if n = 3 and X is a vector field with an
isolated singularity at the origin and of strict Siegel type (the convex
hull of {λ1, . . . , λn} contains a neighbourhood of the origin), then c)
and d) are immediately satisfied; in particular, there exists at least one
eigenvalue λi such that the angle between λi and the other eigenvalues
is greater than π/2 (the eigenvalues viewed as vectors in R2).

Let X, in (C2, 0), be a holomorphic vector field with an isolated sin-
gularity at the origin and of “strict Siegel type” (λ1/λ2 ∈ R−, where
λ1 and λ2 are the eigenvalues of DX(0)). Then X admits two separa-
trices. Let Σ be a transversal section to one of the separatrices and F
the foliation associated to X. It is well known that the saturated of Σ
by F together with the other separatrix contains a neighbourhood of
the origin [8]. For higher dimension we obtain:

Proposition. Let X be a holomorphic vector field verifying a), b),
c) and d). The saturated of a transversal section to the separatrix
tangent to the eigenspace associated to λ1 at a point in the separatrix
(sufficiently close to the origin), together with the invariant manifold
transverse to that separatrix contains a neighbourhood of the origin.

As an application we prove:

Theorem. Let F be the foliation associated to a holomorphic vector
field X verifying a), b), c) and d). Then F admits a semi-complete
vector field, in a neighbourhood of the singularity, as its representative.

In particular, any vector field in (C3, 0) of strict Siegel type admits
a semi-complete representative.

It is obvious that if X and Y , two holomorphic vector fields, are
analytically equivalent in a neighbourhood of a singularity then the
holonomy relatively to the separatrices, if they exist, are analytically
conjugated (there exist holomorphic vector fields, defined in a neigh-
bourhood of the origin of Cn, n ≥ 3, without separatrices [5, 7]).

Mattei and Moussu proved the reciprocal of this result for vector
fields, in (C2, 0), of strict Siegel type (if the eigenvalues of the linear
part, at the singularity, are in the Poincaré Domain and do not verify
any resonance relation between them, then both X and the holonomy
are linearizable).

An extension, in a sense, of the Theorem of Mattei and Moussu is
also proved, as a corollary of the proposition:

Theorem. Let X and Y be two vector fields verifying a), b), c) and
d). Denote by hX

1 and hY
1 the holonomies of X and Y relatively to

the separatrices of X and Y tangent to the eigenspace associated to
the first eigenvalue, respectively. Then if hX

1 and hY
1 are analytically

conjugated, X and Y are analytically equivalent.

This result has already been proved by Elizarov and Il’Yashenko [3].
However our proof is, in our opinion, simpler then theirs.
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2. Vector fields of strict Siegel type

Let X : U ⊆ Cn → Cn and Y : V ⊆ Cn → Cn be holomorphic vector
fields with a singularity at the origin. We say that X is analytically
conjugated to Y in a neighbourhood of the origin if there exists a
holomorphic diffeomorphism H : V1 → U1, where 0 ∈ U1 ⊆ U , 0 ∈
V1 ⊆ V , such that H(0) = 0 and

Y = (DH)−1(X ◦ H).

We say that X and Y are analytically equivalent if X is analytically
conjugated to fY , for some holomorphic function f verifying f(0) �= 0.

The integral curves of any vector field X define a foliation of complex
dimension 1. Two vector fields X and Y define the same foliation, in a
neighbourhood of a point p, iff there exists a holomorphic function f ,
with f(p) �= 0, such that X = fY .

Let X : (Cn, 0) → (Cn, 0) be a vector field, with an isolated singu-
larity at the origin, and {λ1, . . . , λn} the set of eigenvalues of DX(0).
We say that X is of strict Siegel type if 0 ∈ C belongs to the interior of
the convex hull of the set {λ1, . . . , λn}. In the particular case n = 3,
λi/λj �∈ R for every i �= j.

Let X be a holomorphic vector field satisfying a), b), c) and d) and
assume that it is written in its normal form

X =
n∑

i=1

λixi(1 + fi(x))∂/∂xi(1)

Thus the x1-axis is the separatrix associated to the eigenvalues that
can be separated from the others by a straight line through the origin:
λ1. From now on we assume that λ1 = 1. Denote by Xn the set of
eigenvalues of type (1) verifying the conditions described above.

Let Σ = {(ε, x2, . . . , xn) : |xi| ≤ ε, ∀i = 2, . . . , n} be a transversal
section to the x1-axis at the point c(0), where c : [0, 2π] → Cn is the
curve defined by c(θ) = (εeiθ, 0, . . . , 0) with ε > 0 sufficiently close to
zero. There exists 0 < δ < ε such that Σθ = {(εeiθ, x2, . . . , xn) : |xi| ≤
δ,∀i = 2, . . . , n} is contained in the saturated of Σ (δ exists because
[0, 2π] is compact).

Let l be a straight line through the origin, in the complex plane, sep-
arating λ1 from the others eigenvalues and L the part of its orthogonal
straight line, through the origin, contained in the left half-plane with
the vertex inclued. Suppose that α + iβ is a directional vector of L,
with α > 0. Let L̄ be the complex conjugate of L. We define the set

T = {z ∈ C : z = x + iy, x ∈ L̄,−π < y ≤ π}
It is easy to verify that the image of T by the application φ(z) = εez

covers {z : |z| ≤ ε} \ {0}. Moreover, this application is one-to-one.
Fixed z ∈ T we consider the curve given by the line segment joining

z and the intersection of the straight line parallel to L̄ through z with



4 HELENA REIS

the imaginary axis: cz(t) = z + 1
α+iβ

t (denote by tz the instant that cz

intersects the imaginary axis).
For each x1, with |x1| ≤ ε, let z = z(x1) ∈ T be such that εez =

x1. Let rx1 be the logarithmic spiral curve rx1(t) = (εecz(t), 0, . . . , 0),
rx1 : [0, tz[→ {xi = 0, i ≥ 2}. Denote now by rx the lift of rx1 to
the leaf through the point x = (x1, . . . , xn). The curve rx1 is such
that rx1(0) = (x1, 0, . . . , 0) and |rx1(tz)| = ε. Consequently, rx verifies
rx(0) = x and |p1(rx(tz))| = ε, where pi(x) = xi.

For simplicity in the notation, from now on let v = α + iβ and
kx = tz(x).

λ

λ

1

2

ε

l

L

L
_

L=L
_

l

π

−π

π

−π

λ3

λ4

λ1

λ2

λ3

λ4

ε
T

T

v

v_

v

Figure 1

Lemma 1. Let X ∈ Xn. Let V be the set of points x such that rx

intersects Σθ, for some θ. Then the set V ∪ {x1 = 0} contains a
neighbourhood of the origin.

Proof. Denote by FX the foliation associated to the vector field X.
There exists a positive real number ε < 1 such that the projection p1
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is transverse to the leaves of FX in a neighbourhood of the polydisc

Pε,δ = {x ∈ Cn : |x1| ≤ ε, |xi| ≤ δ, i ≥ 2}

where δ is given as above.
Fix x0

1 �= 0 such that |x0
1| ≤ ε and let z be such that εez = x0

1. The

differential equation (1) restricted to x1 = εecz(t) = x0
1e

t
v is equivalent

to the system of differential equations:
dx2

dt
=

λ2

v
x2(1 + A2(x

0
1e

t
v , x2, . . . , xn))

...
dxn

dt
=

λn

v
xn(1 + An(x0

1e
t
v , x2, . . . , xn))

(2)

where Ai are holomorphic functions such that Ai(0, 0, 0) = 0, ∀i ≥ 2.
We take ε also in such a manner that in Pε,δ:

|Ai(x)| ≤

∣∣∣∣
(
λi

v

)∣∣∣∣
2

∣∣∣∣λi

v

∣∣∣∣ , ∀i ≥ 2(3)

Remark 1. As the eigenvalues λ2, . . . , λn are all in the side of the
straight line l not containing the direction v, the angle between each
eigenvalue and v is greater than π/2. Thus the real part of λi/v is
negative.

Fix x0 ∈ Pε,δ such that x0
i �= 0, ∀i. We are going to prove that

the solution of the differential equation (2) verifies x(t) ∈ Pε,δ for all
t ∈ [0, kx0

1
]. Remark that p(rx0(t)), where p(x) = (x2, . . . , xn), is the

solution of (2) with initial condition (x2(0), . . . , xn(0)) = (x0
2, . . . , x0

n)
and satisfies |p1(rx0(t))| = ε (i.e., intersects a transversal section of c)
iff t = kx0

1
. The case xi = 0 for some i ≥ 2 is analogous: remark that

{xi = 0} are invariant manifolds of the foliation.
We have that (2) is equivalent to the system

Log

(
xi(t)

x0
i

)
=

(
λi

v
t +

∫ t

0

λi

v
Ai(x

0
1e

s
v , x2(s) . . . , xn(s))ds)

)
As Log(w) = log |w| + i arg w we have:

log

∣∣∣∣xi(t)

x0
i

∣∣∣∣ = 

(

λi

v
t +

∫ t

0

λi

v
Ai(x

0
1e

s
v , x2(s), . . . , xn(s))ds

)
and then

|xi(t)| = |x0
i |e�(

λi
v

)t+�(
λi
v

∫ t
0 Ai(x

0
1e

s
v ,x2(s),... ,xn(s))ds), ∀i ≥ 2
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But as ∣∣∣∣
(
λi

v

∫ t

0

Ai(x
0
1e

s
v , x2(s), . . . , xn(s))ds

)∣∣∣∣
≤

∣∣∣∣λi

v

∣∣∣∣ ∫ t

0

|Ai(x
0
1e

s
v , x2(s), . . . , xn(s))|ds

≤
∣∣∣∣λi

v

∣∣∣∣
∣∣∣∣
(

λi

v

)∣∣∣∣
2

∣∣∣∣λi

v

∣∣∣∣ t = −

(

λi

v

)
t

2

we conclude that

|xi(t)| ≤ |x0
i |e�(

λi
v

)t+|�(
λi
v

∫ t
0 A(x0

1e
s
v ,x2(s),... ,xn(s))ds)|

≤ |x0
i |e�(

λi
v

)t−�(
λi
v

) t
2

≤ |x0
i | (≤ ε)

for all t ∈ [0, kx0
1
], as 
(λi

v
) is a negative real number.

The condition d) is important to the proof of this lemma. The con-
dition is pertinent as there exist vector fields, in C3, verifying a), b)
and c) and not admitting any holomorphic manifold tangent to the
manifold {z = 0} [1].

Remark 2. If the angles between λ1 and the remaining eigenvalues are
greater than π/2 we can consider the imaginary axis as l. In this case
for each x ∈ Pε,δ, rx can be lifted along the radial directions.

Remark 3. If λ1 �= 1, L̄ should be the reflection of L over the straight
line through the origin and λ1.

As an immediate consequence of Lemma 1 we can say:

Proposition 1. Let X be a holomorphic vector field verifying a), b),
c) and d). The saturated of a transversal section to the separatrix
tangent to the eigenspace associated to λ1 at a point in the separatrix
(sufficiently close to the origin), toghether with the invariant manifold
transverse to that separatrix contains a neighbourhood of the origin.

Proof. By a linear change of coordinates X can be written in the form
(1). Let Σθ = {(εeiθ, x2, . . . , xn) : |xi| ≤ δ,∀i ≥ 2} be the transversal
sections defined before, which belong to the saturated of Σ, for all
θ ∈ [0, 2π]. Fix x ∈ Pε,δ such that x1 �= 0 ({x1 = 0} is the invariant
manifold transverse to the x1-axis). By Lemma 1 the lift of rx belongs
to Pε,δ and is such that rx(kx1) ∈ Σθ, for some θ. So x belongs to
the saturated of Σ, i.e., of a transversal section to a small curve in the
x1-axis.

The analogous of Mattei-Mossu’s Theorem for higher dimension can
be enunciated in the following way:
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Theorem 1. Let X and Y be two vector fields verifying a), b), c) and
d). Denote by hX

1 and hY
1 the holonomies of X and Y relatively to

the separatrices of X and Y tangent to the eigenspace associated to
the first eigenvalue, respectively. Then if hX

1 and hY
1 are analytically

conjugated, X and Y are analytically equivalent.

Proof. Again, we can assume that X and Y are written in its normal
form (1) with the first eigenvalue equal to 1 in both cases. We are going
to construct a holomorphic diffeomorphism, in a neighbourhood of the
origin, taking the leaves of X into the leaves of Y . Denote by FX and
FY the foliations associated to the vector fields X and Y , respectively.

Let Pε,δ, l and L as in the proof of Lemma 1, where ε < 1 is such
that (3) is satisfied in Pε,δ and the projection p1 is transverse to all
leaves of FX ∩ Pε,δ and of FY ∩ Pε,δ, excluding the leaves contained in
the invariant manifold {x1 = 0}.

Let (λ1, . . . , λn) and (β1, . . . , βn) denote the eigenvalues of DX(0)
and DY (0), respectively. As hX

1 and hY
1 are analytically conjugated

and λ1 = 1 = β1, we have that λi = βi, ∀i.
Let c be the curve defined before (c(θ) = (εeiθ, 0, . . . , 0)) and ΣX

θ

and ΣY
θ the “vertical” transversal sections to the separatrices {xi =

0, i ≥ 2} of X and Y , respectively, at the point c(θ).
Let h0 : ΣX

0 → ΣY
0 be the analytical conjugacy between hX

1 and hY
1 .

Denote by lθ : ΣX
0 → ΣX

θ and l̄θ : ΣY
0 → ΣY

θ the aplications obtained by
lifting the curve c to the leaves of FX and FY , respectively. We define
the holomorphic diffeomorphism ht = l̄t ◦ h0 ◦ l−1

t . The conjugacy
relation ¯l2π ◦ h0 = h0 ◦ l2π (l2π and ¯l2π are the holomomies) together
with h2π = ¯l2π ◦ h0 ◦ l−1

2π implies that h2π = h0. So we established
a diffeomorphism along all transversal sections to the x1-axis at any
point of the curve c.

By Lemma 1, rX
x (kx1) ∈ ΣX

θ and rY
x (kx1) ∈ ΣY

θ , for some θ, for every
x in Pε,δ. Thus the diffeomorphism h0 can also be transported along
the spiral curves rX

x and rY
x .

We have established an analytically conjugacy, Φ, between the foli-
ations FX \ {x1 = 0} and FY \ {x1 = 0} in a neighbourhood of the
origin. We have to prove that this conjugacy can be extended to the
invariant manifold {x1 = 0}. As Φ is holomorphic in Pε,δ \ {x1 = 0}
and {x1 = 0} is a thin set, it is sufficient to prove that Φ is bounded
[6]. For this, we have to follow the constraction of Φ.

From now on we use the variables x to FX and y to FY . Fix x0 ∈ Pε,δ.

Taking x1(t) = x0
1e

t
v , rX

x0(t) is such that

d

dt
|xi(t)|2 = 2
( ¯xi(t)x

′
i(t))

= 2

(

λi

v

)
|xi(t)|2
(1 + Ai(x

0
1e

t
v , y(t), z(t)))
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In this way, there is a constant b > 0 such that

d

dt
log |xi(t)|2 ≤ 2


(
λi

v

)
(1 + b) =⇒ |xi(kx0

1
)| ≤ |x0

i |e
�(

λi
v

)(1+b)k
x0
1

Let y0 = harg(x(k
x0
1
))(x(kx0

1
)). By construction Φ(x0) = sy0(kx0

1
),

where sy0 is the lift of sy0
1

= (y0
1e

− t
v , 0, . . . , 0) to the leaf through y0.

Thus, we obtain:

|yi(t)| ≤ |y0
i |e

−�(
λi
v

)(1+b)k
x0
1 , i ≥ 2

and so, if q is such that |y0
i | ≤ q|xi(kx0

1
)|, for all i ≥ 2, we obtain:

|yi(kx0
1
)| ≤ q|xi(tx0

1
)|e−k

x0
1
�(

λi
v

)(1+b) ≤ qe
�(

λi
v

)(1+b)k
x0
1e

−�(
α2
v

)(1+b)k
x0
1 |x0

i | = q|x0
i |

We conclued that Φ−1 and, consequently, Φ are bounded. Thus Φ
admits a holomorphic extension Φ̃ to the invariant manifold {x1 = 0}.
As Φ̃ has a holomorphic inverse map (the inverse map is constructed
taking now the leaves of Y into the leaves of X in a similar way), Φ̃ is
a diffeomorphism in a neighbourhood of the origin.

It remains to prove that Φ̃ takes the leaves of FX |{x1=0} into the
leaves of FY |{x1=0}.

Let Z = DΦ̃(X ◦ Φ̃). As FY |Pε,δ\{x1=0} coincides with FZ |Pε,δ\{x1=0},
there exists a holomorphic function f , defined in Pε,δ \ {x1 = 0}, such
that fY = Z. In particular f = Z2

Y2
, where Y2 (Z2) is the second

component of Y (Z). As Y2 = x2(β2 + . . . ), where dots means terms
of order greater or equal to 1, and both Y2 and Z2 are holomorphic,
f can be holomorphically extended to U \ {x1 = 0, x2 = 0}. Finally,
as {x1 = 0, x2 = 0} is a set of complex codimension greater than 1, f

admitts a holomorphic extension, f̃ , to {x1 = 0, x2 = 0} [6, pag. 31]

and this extension verifies f̃Y = Z in U . Thus X and Y are analytically
equivalent.

3. Semi-completude of vector fields of strict Siegel type

The definition of a semi-complete vector field relatively to a (rela-
tively compact) open set U was introduced in [9].

Definition 1. Let X be a holomorphic vector field defined in complex
manifold M and U ⊆ M an open subset of M . We say that X is
semi-complete relatively to U if there exists a holomorphic application

Φ : Ω ⊆ C × U → U

where Ω is an open set containing {0} × U such that

a) Φ(0, x) = x ∀x ∈ M

b) X(x) =
d

dT
|T=0Φ(T, x)

c) Φ(T1+T2, x) = Φ(T2, Φ(T1, x)), when the two members are defined



EQUIVALENCE AND SEMI-COMPLETUDE 9

d) (Ti, x) ∈ Ω and (Ti, x) → ∂Ω ⇒ Φ(Ti, x) → ∂U

We call Φ the semi-complete flow associated to the vector field X.
We say that X is complete if there is a holomorphic application

Φ : C × M → M satisfying a), b) and c).

Semi-complete vector fields are essentially the local version of com-
plete vector fields, where blow-up on finite time cannot occur:

Proposition 2. [9] Let X be a complete holomorphic vector field on a
complex manifold M . The restriction of X to any connected (relatively
compact) open set U (U ⊆ M) is a semi-complete vector field relatively
to U .

Therefore, if a holomorphic vector field in an open set U is not semi-
complete it cannot be extended to a compact manifold containing U .

To each one of its orbits (leaves), L, we can associate a holomorphic
differential 1-form, denoted by dTL, such that dTL(X) = 1. A sufficient
conditions for a vector field to be semi-complete in an open set U is
presented in [10]. The regular orbits of a vector field X (X �≡ 0) are
Riemann surfaces.

Proposition 3. [10] Let X be a holomorphic vector field defined in a
neighbourhood U of the origin of Cn. Suppose that for all regular orbits
L of X and every c : [0, 1] → L such that c(0) �= c(1) the integral of
dTL over c is non zero. Then the vector field X is semi-complete in U .

The foliations, in complex manifolds of dimension 2, associated to
semi-complete vector fields with an isolated singularity are completely
characterized [4, 10]. In particular it is proved that if X : (C2, 0) →
(C2, 0), with an isolated singularity at the origin, is such that the eigen-
values of DX(0) are non zero, there exists a holomorphic function f ,
with f(0) �= 0 such that fX is semi-complete.

Let X : (Cn, 0) → (Cn, 0) be a holomorphic vector field with an
isolated singularity at the origin. If the eigenvalues of DX(0) are in
the Poincaré Domain and do not have resonances between themselves,
X is analytically conjugated to its linear part and, consequently, X is
a semi-complete vector field.

Assume now that X is in the Poincaré Domain but there exist reso-
nance relations between the eigenvalues of its linear part, at the isolated
singularity. It is well known that we can rearrange the variables so that
the Dulac’s normal form of X can be written in the form:

n∑
i=1

(λixi + pi(x1, . . . , xi−1))∂/∂xi

where pi is a polynomial. This vector field is obviously semi-complete:
we integrate ẋ1 = λ1x1 and replace its solution in the equation ẋ2 =
λ1x2 + p(x1), which is now a linear non-autonomous holomorphic or-
dinary differential equation. Proceeding in the same way for the other
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equations and remarking that, in the Poincaré Domain the Dulac’s nor-
mal form of a holomorphic vector field X is analytically conjugated to
X, the conclusion follows.

Assume now that X : (Cn, 0) → (Cn, 0) is a holomophic vector field
of Siegel type, with an isolated singularity at the origin and verifying
c) and d). Thus it can be written in the form (1):

Z =
n∑

i=1

λixi(1 + fi(x))∂/∂xi

Denote by F the foliation defined by Z. The vector fields Z and Y ,
where Y is given by

Y = λ1x∂/∂x1 +
n∑

i=2

λixi(1 + fi(x))(1 + f1(x))−1∂/∂xi

represent the same foliation in a neighbourhood of the origin. In this
way, each foliation associated to vector fields as above can be repre-
sented by a vector field of the type:

λ1x∂/∂x1 +
n∑

i=2

λixi(1 + gi(x))∂/∂xi

where gi are holomorphic functions in a neighbourhood of the origin
satisfying gi(0) = 0.

The study of foliations admitting a semi-complete representative of
“strict Siegel type” in C2 is based in the following fact: the lift of the
radial curves x1(t) = Aet through points in a certain neighbourhood of
the origin remain in the same neighbourhood [10].

In a sense, Proposition 1 is a generalization, for higher dimensions
and under certain conditions, of this result: spiral curves are considered
instead of radial curves. So, the proof of our theorem (classification) is
similar to the one in [10].

Theorem 2. Let F be the foliation associated to a holomorphic vector
field X verifying a), b), c) and d). Then F admits a semi-complete
vector field, in a neighbourhood of the singularity, as its representative.

Proof. Let F be the foliation associated to a vector field X satisfying
a), b), c) and d). X is analytically equivalent, in a neighbourhood of
the singularity, to the vector field

Y = x1∂/∂x1 +
n∑

i=2

λixi(1 + gi(x))

where gi are holomorphic functions in a neighbourhood of the origin
with gi(0) = 0 for all i. Denote by FY the foliation associated to Y .
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There exists a neighbourhood of the origin in which the projection
p1 is transverse to the leaves of FY except to the set {x1 = 0}. Let Pε,δ

be a polydisc as in Lemma 1, contained in that neighbourhood.
Let L be a regular leaf of FY and cL : [0, 1] → L an open curve such

that
∫

cL
dTL = 0. Denote p1(cL) by c. Then

0 =

∫
cL

dTL =

∫
c

dx1

x1

As the 1-dimensional vector field x∂/∂x is semi-complete, c is a
closed curve, homotopic to a point in {xi = 0, i ≥ 2}\{0}. We proceed
now as in [10].

Let S = {(keiθ, 0, . . . , 0) : θ ∈ [0, 2π], 0 ≤ k ≤ ε} ⊆ {xi = 0, i ≥ 2}.
The curve c is contained in S.

Take a homotopy, following the spiral directions defined in the last
section, between c and a curve c̄ contained in the set {(x1, 0, . . . , 0) :
|x1| = |c(0)|} ⊆ S. In the proof of lemma 1 it is implicit that this
homotopy can be lifted, by p1, to L. So we have a homotopy between
cL and c̄L, where c̄L is the lift, by p1, of c̄ to L. As cL is an open
curve, p1 is transverse to the leaves of FY and the homotopy is made
along the spiral directions, c̄L is also an open curve. More specifically,
c̄L(0) = cL(0) and c̄L(1) = cL(1).

The curve c̄ is also a closed curve homotopic to a point. Consider the
homotopy H(s, t) between c̄ and the constant curve c̄(0) = c̄(1) such
that H(s, 0) = c̄(0) and H(s, 1) = c̄(1) for every s ∈ [0, 1]. This homo-
topy can be lifted, by p1, to a homotopy between c̄L and a curve c0 that
projects into a point. As p1 is transverse to the leaves of FY , c0 must
be constant. But such c0(0) = c̄L(0) �= c̄L(1) = c0(1). Contradiction.

So cL is closed and, consequently, Y is semi-complete in some neigh-
bourhood of the origin.

As X and Y are analytically equivalent, Y is analytically conjugated
to fX, for some holomorphic function f with f(0) �= 0. Thus F admits
a semi-complete vector field as representative.

As we said before, any vector field in (C3, 0) with an isolated singu-
larity at the origin and of strict Siegel type satisfies c) and d); therefore
admits a semi-complete representative.
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