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Abstract

In this paper we introduce a radial version of the Kontorovich-
Lebedev transform in the unit ball. Mapping properties and an inver-
sion formula are proved in Lp.
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1 Introduction

The Kontorovich-Lebedev transform (KL-transform) was introduced by the
soviet mathematicians M.J. Kontorovich and N.N. Lebedev in 1938-1939
(see [4]) to solve certain boundary-value problems. The KL-transform arises
naturally when one uses the method of separation of variables to solve
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boundary-value problems formulated in terms of cylindrical coordinate sys-
tems. It has been tabulated by Erdelyi et al, (see [3]) and Prudnikov et al,
(see [11]). Its applications to the Dirichlet problem for a wedge were given
by Lebedev in 1965 (see [5]), while Lowndes in 1959 (see [7]) applied a vari-
ant of it to a problem of diffraction of transient electromagnetic waves by
a wedge. Some other applications can be found, for instance, in Skalskaya
and Lebedev in 1974 (see [6]).

This transform was extended by Zemanian in 1975 (see [13]) to the distri-
butional case, by Buggle in 1977 (see [1]) to some larger spaces of generalized
functions. A possible extension to the multidimensional case of this index
transform was investigated by the first author in his book (see [12]), where
it was introduced the essentially multidimensional KL-transform.

The main goal of this work is to introduce a radial version of the KL-
transform for the multidimensional case in the unit ball, prove its mapping
properties and establish an inversion formula.

Formally, the one dimensional KL-transform is defined as

Kiτ [f ] =

∫
R+

Kiτ (x) f(x) dx, (1)

where Kiτ denotes the modified Bessel function of pure imaginary index iτ
(also called Macdonald’s function). The adjoint operator associated to (1)
is

f(x) =
2

π2 x

∫
R+

τ sinh(πτ) Kiτ (x) Kiτ [f ] dτ. (2)

As we can see, in expression (2) the integration is realized with respect to the
index iτ of the Macdonald’s function. This fact, for instance, carries extra
difficulties in the deduction of norm estimates in certain function spaces.
For more details about the one-dimensional KL-transform and other index
transforms see [12].

The Macdonald’s function can be represented by the following Fourier
integral (see [2])

Kiτ (x) =

∫
R+

e−x coshu cos(τu) du, x > 0 (3)

=
1

2

∫
R
e−x coshu eiτu du, x > 0. (4)

Making an extension of the previous integral equation to the strip δ ∈[
0, π2

[
in the upper half-plane, we have, for x > 0, the following uniform
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estimate

|Kiτ (x)| ≤ e−iτ

2

∫
R
e−x cos δ coshu du

= e−δτ K0(x cos δ), x > 0 (5)

and in particular

|Kiτ (x)| ≤ K0(x), x > 0, τ ∈ R. (6)

The modified Bessel function Kν(x) function has the following asymp-
totic behavior (see [2] for more details) near the origin

Kν(x) = O
(
x−|Re(ν)|

)
, x→ 0, ν 6= 0 (7)

K0(x) = O (log x) , x→ 0+. (8)

Using relation (2.16.52.8) in [11] we have the formulas∫
R+

τ sinh((π − ε)τ) Kiτ (x) Kiτ (y) dτ

=
πxy sin ε

2

K1((x
2 + y2 − 2xy cos ε)

1
2 )

(x2 + y2 − 2xy cos ε)
1
2

, x, y > 0, 0 < δ ≤ π. (9)

In the sequel we will appeal to the following definition of homogeneous
functions:

Definition 1.1. (c.f. [8]) Let D ⊆ Rn. A function f : D → Rn is said
to be homogeneous of degree α in D if and only if f(λx) = λαf(x), for all
x ∈ D, λ > 0 and λx ∈ D. Here α ∈ R.

2 Definition, basic properties and inversion

In this section we introduce the radial KL-transform. Given a function f
defined in Bn

+, the radial KL-transform of f is given by

Kiτ [f ] =

∫
Bn+

Kiτ

(
|x|2
)
f(x) dx, (10)

where |x|2 = x21 + · · ·+ x2n, dx = dx1 ∧ . . . ∧ dxn and

Bn
+ =

{
x ∈ Rn+ : |x| ≤ 1

}
.
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We remark that for the case of n = 1, the index transform (10) is a sim-
ilar one used by Naylor in [9]. From (10) and definition of the Macdonald’s
function (3), we conclude that the KL-transform of a function f is an even
function of real variable τ and, without loss of generality, we can consider
only nonnegative variable τ . From the asymptotic behavior of the Macdon-
ald’s function given by (7), (8) and the Hölder inequality we observe that
(10) is absolutely convergent for any function f ∈ Lp(Bn

+). We have

Lemma 2.1. Let f ∈ Lp(B
n
+), with 1 < p < +∞. Then the following

uniform estimate by τ ≥ 0 for the KL-transform (10) holds

|Kiτ [f ]| ≤ C1 ||f ||Lp(Bn+), (11)

where C is an absolute positive constant given by

C1 =

(
(2π)2n−3

8q

) 1
2q (π

4

) 1
2

Γ
(

1
4q

)
Γ
(
1
2 + 1

4q

) , (12)

with q =
p

p− 1
.

Proof. To establish (11) we appeal to (6) and the Hölder inequality in order
to obtain

|Kiτ [f ]| ≤
∫
Bn+

K0(|x|2) |f(x)| dx

≤

(∫
Bn+

Kq
0(|x|2) dx

) 1
q
(∫

Bn+

|f(x)|p dx

) 1
p

=

(∫
Bn+

Kq
0(|x|2) dx

) 1
q

||f ||Lp(Bn+). (13)

Further, using spherical coordinates, generalized Minkowski inequality
and relation (2.5.46.6) in Prudnikov et al, [10], we get, in turn,(∫

Bn+

Kq
0(|x|2) dx

) 1
q

≤
∫
R+

(∫
Bn+

e−q|x|
2 coshu dx

) 1
q

du

=

∫
R+

(
(2π)n−2

∫ 1

0
e−qρ

2 coshuρn−1dρ

) 1
q

du
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≤
∫
R+

(
(2π)n−2

∫ +∞

0
e−qρ

2 coshudρ

) 1
q

du

=

(
(2π)n−2

2

√
π

q

) 1
q
∫
R+

1

(coshu)
1
2q

du

=

(
(2π)2n−3

8q

) 1
2q (π

4

) 1
2

Γ
(

1
4q

)
Γ
(
1
2 + 1

4q

) =: C1.

The previous lemma shows that the KL-transform of a Lp−function is
a continuous function on τ in R+ in view of uniform convergence in (10).
Moreover, we can deduce its differential properties. Precisely, performing
the differentiation by τ of arbitrary order k = 0, 1, . . . under the integral
representation (4) by Lebesgue’s theorem we find

∂k

∂τk
Kiτ (|x|2) =

1

2

∫
R
e−|x|

2 coshu eiτu (iu)k du, (14)

and ∣∣∣∣ ∂k∂τkKiτ (|x|2)
∣∣∣∣ ≤ ∫

R+

e−|x|
2 coshu uk du. (15)

Lemma 2.2. Under the conditions of Lemma 2.1 the KL-transform (10) is
an infinitely differentiable function on the nonnegative real axis and for any
k = 0, 1, . . . we have the following estimate∣∣∣∣ ∂k∂τkKiτ [f ]

∣∣∣∣ ≤ Bk ||f ||Lp(Bn+), (16)

where

Bk =

(
(2π)n−1

4
√
πq

) 1
q
∫
R+

uk

(coshu)
1
2q

du, k = 0, 1, 2, . . . . (17)

Proof. As in Lemma 2.1, making use of the Hölder inequality we derive

∣∣∣∣ ∂k∂τkKiτ [f ]

∣∣∣∣ ≤
(∫

Bn+

∣∣∣∣ ∂k∂τkKiτ (|x|2)
∣∣∣∣ dx

) 1
q

||f ||Lp(Bn+).
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Using estimate (15) it gives(∫
Bn+

∣∣∣∣ ∂k∂τkKiτ (|x|2)
∣∣∣∣ dx

) 1
q

≤
∫
R+

uk

(∫
Bn+

e−q |x|
2 coshu dx

) 1
q

du

≤
∫
R+

uk
(

(2π)n−2

2

√
π

q coshu

) 1
q

du

=

(
(2π)n−1

4
√
πq

) 1
q
∫
R+

uk

(coshu)
1
2q

du

=: Bk.

From the above properties of the KL-transform (10) one can discuss its
belonging to Lr(R+) for some 1 < r < +∞, investigating only its behavior
at infinity.

Lemma 2.3. The KL-transform (10) is a bounded map from any space
Lp(B

n
+), with p ≥ 1, into the space Lr(R+), where r ≥ 1 and parameters p

and r have no dependence.

Proof. Taking into account (5), with δ =
π

3
, we obtain

|Kiτ [f ]| ≤ e−
πτ
3

∫
Bn+

K0

(
|x|2

2

)
|f(x)| dx

≤ e−
πτ
3

(∫
Bn+

Kq
0

(
|x|2

2

)
dx

) 1
q
(∫

Bn+

|f(x)|p dx

) 1
q

≤ e−
πτ
3

∫
R+

(∫
Bn+

e−
q|x|2 coshu

2 dx

) 1
q

du ||f ||Lp(Bn+)

= e−
πτ
3

∫
R+

(
(2π)n−2

∫ 1

0
e−

qρ2 coshu
2 ρn−1dρ

) 1
q

du ||f ||Lp(Bn+)

≤ e−
πτ
3

∫
R+

(
(2π)n−2

∫ +∞

0
e−

qρ2 coshu
2 dρ

) 1
q

du ||f ||Lp(Bn+)

= e−
πτ
3

(
(2π)n−2

2

√
2π

q

) 1
q
∫
R+

1

(coshu)
1
2q

du ||f ||Lp(Bn+)
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= e−
πτ
3

(
(2π)2n−3

4q

) 1
2q (π

4

) 1
2

Γ
(

1
4q

)
Γ
(
1
2 + 1

4q

) ||f ||Lp(Bn+)

= C2 e−
πτ
3 ||f ||Lp(Bn+). (18)

Corolary 2.4. The classical Lp−norm for the KL-transform (10) in the
space Lr(R+), with r ≥ 1 is finite.

Proof. In fact,

||Kiτ [f ]||Lp(R+) ≤ C2
(∫ +∞

0
e−pδτdτ

) 1
p

||f ||Lp(Bn+)

=
C2

(pδ)
1
p

||f ||Lp(Bn+),

which proves our result.

Lemmas 2.1, 2.2 and 2.3 show that the KL-transform of an arbitrary
Lp−function is a smooth function with Lr−properties and furthermore, its
range

Kiτ (Lp(B
n
+)) =

{
g : g(τ) = Kiτ [f ]; f ∈ Lp(Bn

+)
}
, 1 < p < +∞ (19)

does not coincides with the space Lr(R+).
Our next aim is to obtain an inversion formula for the radial KL-transform

(10). For this purpose we shall use the regularization operator of type

(Iεg)(x) =
4|x|−n(sin ε)2

(2π)n−1

∫
R+

τ sinh((π − ε)τ) Kiτ (|x|2) g(τ) dτ, (20)

where x ∈ Bn
+ and ε ∈]0, π[.

Theorem 2.5. Let p > 1 and n ∈ N. On functions g(τ) = Kiτ [f ] which are
represented by (10) with density function f ∈ Lp(Bn

+), operator (20) has the
following representation

(Iεg)(x)

=
|x|−n+2 (sin ε)3

(2π)n−2

∫
Bn+

K1((|x|4 + |y|4 − 2|x|2|y|2 cos ε)
1
2 )

(|x|4 + |y|4 − 2|x|2|y|2 cos ε)
1
2

|y|2 f(y) dy, (21)

where K1(z) is the Macdonald’s function of index 1.
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Proof. Substituting the value of g(τ) as the KL-transform (10) into (20), we
change the order of integration by Fubini’s theorem taking into account the
estimate (5)

|(Iεg)(x)| ≤ 4K0(|x|2n cos δ1)(sin ε)2

|x|n(2π)n−1

×
∫
R+

τ sinh((π − ε)τ) e−(δ1+δ2)τ

∫
Bn+

K0(|y|2 cos δ2) |f(y)| dy dτ, (22)

where we choose δ1, δ2, such that δ1 + δ2 + ε > π. Hence with (9) we get
(21).

An inversion formula of the KL-transform (10) is established by the
following

Theorem 2.6. Let p > 1, g(τ) = Kiτ [f ] and f ∈ Lp(B
n
+) be a radial

function, i.e., f(x) = h(|x|), where h is a homogeneous of degree 2 − n.
Then

f(x) = lim
ε→0

4|x|−n(sin ε)2

(2π)n−1

∫
R+

τ sinh((π − ε)τ) Kiτ (|x|2) g(τ) dτ (23)

where the latter limit is with respect to Lp−norm in Lp(B
n
+).

Proof. Considering the integral (21) and the classical spherical coordinates

multiplied by |x|(sin ε)
1
2 , we find

||(Iεg)− f ||Lp(Bn+)

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(sin ε)2

(2π)n−2

∫ 2π

0

. . .

∫ 2π

0︸ ︷︷ ︸
n−2 times

∫ π
2

0

∫ [
|·|(sin ε)

1
2

]−1

0

R(| · |, ρ, ε) ρ3

[(ρ2 − cot ε)2 + 1]
h(| · |) dρ sinφ dφ dθ1 . . . dθn−2

−h(| · |)||Lp(Bn+)

=

∣∣∣∣∣
∣∣∣∣∣ (sin ε)22

∫ [|·|2 sin ε]−1

0

ρ

[(ρ− cot ε)2 + 1]

[
R(| · |,√ρ, ε) h(| · |) − 1

Cε(·)
h(| · |)

]
dρ

∣∣∣∣∣
∣∣∣∣∣
Lp(B

n
+)

≤ (sin ε)2

2

∫ [|·|2 sin ε]−1

0

ρ

(ρ− cot ε)2 + 1

∣∣∣∣∣∣∣∣R(| · |,√ρ, ε)h(| · |)− 1

Cε(·)
h(| · |)

∣∣∣∣∣∣∣∣
Lp(B

n
+)

dρ, ε > 0

(24)

where

R(|x|,√ρ, ε) = |x|2 sin ε
[
(ρ− cot ε)2 + 1

] 1
2 K1

(
|x|2 sin ε

[
(ρ− cot ε)2 + 1

] 1
2

)
, ε > 0,
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and

Cε(x) = sin ε

∫ [|x|2 sin ε]
−1

0

ρ

(ρ− cot ε)2 + 1
dρ

= cos ε

[
arctan

(cos ε

sin ε

)
− arctan

(
|x|2 cos ε− 1

|x|2 sin ε

)]
+

sin ε

2
ln

(
(cos ε− |x|2)2 + (sin ε)2

|x|4

)
, ε > 0.

For sufficiently small ε > 0 we have

0 < π −O(ε) < Cε(x) < π +O(ε).

Taking into account the relations (7) and (8), we have for R(|x|,√ρ, ε)
that

lim
ε→0+

R(|x|,√ρ, ε) = 1,

and since xK1(x) < 1, for x > 0, we conclude that R(|x|,√ρ, ε) is bounded
as a function of three variables. Further, since R(|x|,√ρ, ε) < 1 we obtain

||(Iεg)− f ||Lp(Bn+) ≤
sin ε

2
(Cε + 1)||h||Lp(Bn+)

= O(ε)→ 0, ε→ 0+, (25)

which leads to the equality (23).
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