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Abstract. We consider members of some well studied classes of finite transformation
monoids and give descriptions of their abelian kernels relative to decidable pseudovarieties
of abelian groups.

Introduction

The computability of kernels of finite monoids became a popular problem in Finite Semi-
group Theory after a paper of Rhodes and Tilson [23]. Independent solutions were given by
Ash [3] and Ribes and Zalesskĭı [24]. Both solutions contains deep results which led to the
development of the theory in various directions. See, for instance, [19, 2]. Computing kernels
relative to other pseudovarieties has then interested various researchers. We can refer Ribes
and Zalesskĭı [25], the second author [5] or Steinberg [26]. As computing kernels is directly
connected with the Mal’cev product of pseudovarieties of monoids where the second factor
is a pseudovariety of groups (see [18]), decidability results can be obtained by this way.

The interest of the second author in using in practice the algorithm to compute the abelian
kernel of a finite monoid obtained in [5] led him to work towards a concrete implementation.
Having this idea in mind, by detailing some aspects and improving the efficiency of that
algorithm (see [6]) a concrete implementation in GAP [27] was then produced.

Fruitful computations have afterwards been achieved by the second and third authors [7, 9]
when considering some classes of monoids for which the third author [14, 15, 16] and Gomes,
Jesus and the third author [17] gave extremely simple presentations.

We observe that the interest of this kind of computations goes far beyond the computations
themselves. For example, they have been at the basis of theoretical results such as those
obtained by the second and third authors in [8], which extend the notion of solvability of
groups, and later generalized with the collaboration of Margolis and Steinberg [10].

In this work we consider kernels relative to decidable pseudovarieties of abelian groups. An
algorithm was obtained by Steinberg [26], having the first and second authors [4] described
the necessary details to achieve an implementation using GAP. The implementation used to
perform tests that led us to get a better intuition and, ultimately, to the results presented in
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this paper, was achieved by the second author1 using the GAP language. The GAP package
SgpViz [11] has been very useful to visualize the results.

Besides this brief introduction, this paper is divided into four main sections. A fifth section
containing a few consequences and conjectures is also included.

The first section contains the preliminaries and is divided into several subsections. No-
tation and definitions are given. Several results are recalled and some others are new and
proved here. These results are to be used in Sections 2 and 4.

In Section 2 we compute the relative abelian kernels of finite cyclic, dihedral and symmetric
groups. These are the maximal subgroups of the monoids considered in this paper.

Aiming to keep the paper as self-contained as possible, we present in Section 3 a summary
of the results, which are relevant here, on presentations of the transformation monoids POIn,
PODIn, POPIn, PORIn and In.

In Section 4 we give descriptions of the kernels relative to all decidable pseudovarieties of
abelian groups of the transformation monoids considered in Section 3.

1. Preliminaries

A pseudovariety of groups is a class of finite groups closed under formation of finite direct
products, subgroups and homomorphic images. In this paper we are particularly interested
in the class Ab of all finite abelian groups, which is clearly a pseudovariety, and its subpseu-
dovarieties.

It is well known that the computation of the kernel of a finite semigroup relative to a
pseudovariety of groups can be reduced to the computation of the kernel of a finite monoid
relative to the same pseudovariety of groups, so we will mainly be concerned with monoids,
as is usual.

For general background on Green relations and inverse semigroups, we refer the reader
to Howie’s book [20]. For general notions on profinite topologies and finite semigroups,
Almeida’s book [1] is our reference.

This section is divided into several subsections. The first one recalls a connection between
supernatural numbers and pseudovarieties of abelian groups. Then we introduce some nota-
tion. The third subsection recalls an algorithm due to Steinberg [26] to compute the closure
of a subgroup of a finitely generated free abelian group relative to the profinite topology of
the free abelian group given by a decidable pseudovariety of abelian groups. The definition
of relative kernel of a finite monoid is recalled in Subsection 1.4. In Subsection 1.5 we prove
two general results that will be applied in Section 2 to the groups considered in this paper.
In Subsection 1.6 we prove a combinatorial result that will be used in Subsection 4.4 to
describe the relative abelian kernels of the monoids PORIn.

1.1. Supernatural numbers and pseudovarieties of abelian groups. A supernatural
number is a formal product of the form π = Πpp

np where p runs over all natural prime
numbers and 0 ≤ np ≤ +∞.

We say that a supernatural number Πpnp has finite support if all np, except possibly a
finite number, are zero. There is an evident notion of division of supernatural numbers. It

1The second author wishes to thank José Morais for his help in programming some parts which led to
much more efficient implementations.
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leads to the also evident notion of greatest common divisor of two supernatural numbers. A
supernatural number is said to be recursive if the set of all natural numbers which divide it is
recursive. In particular, supernatural numbers of finite support are recursive. A supernatural
number Πpnp of finite support such that all the exponents np are finite is said to be finite and
is naturally identified with a positive natural number. All other supernatural numbers are
said to be infinite. In general we use the Greek letter π for a (possibly infinite) supernatural
number, but when the supernatural number is known to be finite, we prefer to use a roman
letter, e.g. k. We say that the supernatural number π is odd when gcd(2, π) = 1 and that it
is even otherwise, that is, when gcd(2, π) = 2.

To a supernatural number π we associate the pseudovariety of abelian groups Hπ of all
finite abelian groups whose torsion coefficients divide π (i.e. Hπ = 〈{Z/mZ | m divides π}〉).
See Steinberg’s paper [26] for details. Notice that the pseudovariety of abelian groups associ-
ated to a natural number k is just 〈Z/kZ〉, the pseudovariety generated by the cyclic group of
order k. In particular, the pseudovariety of groups corresponding to the natural number 1 is
the trivial pseudovariety. Observe that to the supernatural number Πp∞, where p runs over
all positive prime numbers, is associated the pseudovariety Ab of all finite abelian groups.
Observe also that decidable pseudovarieties of abelian groups correspond to recursive super-
natural numbers and that the converse is also true. All supernatural numbers considered in
this paper are recursive.

For a pseudovariety H of groups and a finite set A, we denote by FH(A) the relatively free
group on A in the variety of groups (in the Birkhoff sense) generated by H.

Let π be a supernatural number and Hπ the corresponding pseudovariety of abelian groups.
The following holds:

Proposition 1.1. [26] Let n be a positive integer and let A be a finite set of cardinality n.
Then if π is a natural number, FHπ(A) = (Z/πZ)n. Otherwise, that is, when π is infinite,
FHπ(A) = Zn, the free abelian group on n generators.

It turns out that the pseudovarieties of abelian groups corresponding to natural numbers
are locally finite, while those corresponding to infinite supernatural numbers are non lo-
cally finite. The relatively free groups appearing in the last proposition will be turned into
topological spaces, the finite ones being discrete.

1.2. Notation. Throughout the paper n will denote a positive integer. Without surprise,
after Proposition 1.1, the free abelian group Zn plays a fundamental role here.

In order to render our notation more understandable, we will use subscripts in some
components of the elements of Zn. For instance, we write (0, . . . , 0, 1(i), 0, . . . , 0) with the
meaning of “(0, . . . , 0, 1, 0, . . . , 0) (1 is in the position i)”. We adopt the usual notation for
the neutral element of an abelian group: (0, . . . , 0) ∈ Zn is simply denoted by 0. The set
of non-negative integers, also named natural numbers, is a monoid under addition and is
denoted by N.

Let A = {a1, . . . , an} be a finite ordered alphabet. The canonical homomorphism γ :
A∗ → Zn, from the free monoid on A into the n-generated free abelian group, defined by
γ(ai) = (0, . . . , 0, 1(i), 0, . . . , 0) will be widely used (for the alphabets in the context). The
image under γ of a rational language of A∗ is a rational subset of Nn (⊆ Zn), thus it is a
semilinear set, i.e. a finite union of sets of the form a + b1N + · · · + brN. There exists an
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algorithm (see, for instance, [5, 6]) to compute (a semilinear expression for) the image of a
rational language of A∗ by γ, when it is given by means of a rational expression.

Suppose that M is an A-generated finite monoid and let ϕ : A∗ → M be an onto homo-
morphism. We say that an element x ∈M can be represented by a word w ∈ A∗ (or that w
is a representation of x) if ϕ(w) = x.

When a monoid M is given through a monoid presentation 〈A | R〉, we always assume
that A is an ordered alphabet and ϕ denotes the homomorphism ϕ : A∗ →M associated to
the presentation. Thus, a presentation of a monoid determines two homomorphisms which
will be represented throughout the paper by the Greek letters ϕ and γ.

1.3. Topologies for the free abelian group. Let π be an infinite supernatural number
and Hπ the corresponding pseudovariety of abelian groups.

The pro-Hπ topology on Zn is the least topology rendering continuous all homomorphisms
of Zn into groups of Hπ. The free abelian group Zn endowed with this topology is a topological
group. When Hπ = Ab, the pseudovariety of all finite abelian groups, the pro-Hπ topology
is usually referred simply as profinite topology.

For a subset X of Zn, we denote by ClHπ(X) the pro-Hπ closure of X. The pro-Ab closure
will in general be referred as the profinite closure. The following holds [5].

Proposition 1.2. For a, b1, . . . , br ∈ Nn, the profinite closure of the subset a+b1N+· · ·+brN
of Zn is a+ b1Z + · · ·+ brZ. �

Next we recall an algorithm to compute the pro-Hπ closure of a subgroup G of the free
abelian group Zn. See [4, 26] for details.

Let M be a matrix whose rows generate G. We say that M represents G. Notice that, by
adding rows of zeros when necessary, we may suppose that M is an n× n matrix.

Algorithm 1.3. INPUT: a subgroup G of Zn given through an integer n× n matrix M .
OUTPUT: a matrix representing the pro-Hπ closure of G.

(1) Compute invertible integer matrices P and Q such that

PMQ = S =


a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

...
0 0 0 . . . an


is a diagonal matrix. Notice that if, for 1 ≤ i ≤ n− 1, ai|ai+1, then the matrix S is
in Smith Normal Form.

(2) For each ai, compute bi = gcd(ai, π) (note that we are assuming that π is recursive)
and consider the matrix

S =


b1 0 0 . . . 0
0 b2 0 . . . 0
...

...
...

...
0 0 0 . . . bn

 .
(3) Return the matrix SQ−1.

The matrix returned represents the pro-Hπ closure of G.
Next example illustrates the usage of the algorithm. It will be referred in Section 2.2.
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Example 1.4. (1) Let G = nZ. Then ClHπ(G) = gcd(n, π)Z. More generally, let G be
a subgroup of Zn represented by a diagonal matrix. A matrix representing the pro-
Hπ closure of G can be obtained from M by replacing each nonzero entry a with
gcd(a, π).

(2) Let G be the subgroup of Z2 represented by the matrix M =

[
2 0
1 1

]
. Then[

0 1
−1 2

] [
2 0
1 1

] [
1 −1
0 1

]
=

[
1 0
0 2

]
.

In order to use the notation of the algorithm just stated, we write S =

[
1 0
0 2

]
and

Q =

[
1 −1
0 1

]
. We thus have Q−1 =

[
1 −1
0 1

]−1

=

[
1 1
0 1

]
.

If π is even, then gcd(2, π) = 2. So, in this case, S =

[
1 0
0 2

]
and ClHπ(G) can be

represented by

SQ−1 =

[
1 0
0 2

] [
1 1
0 1

]
=

[
1 1
0 2

]
and therefore ClHπ(G) = G.

If π is odd, then gcd(2, π) = 1 and we get SQ−1 =

[
1 1
0 1

]
. Thus {(1, 1), (0, 1)} is

a basis of the pro-Hπ closure of G and it follows that ClHπ(G) = Z2.

1.4. Relative kernels of finite monoids. Let M and N be finite monoids. A relational
morphism of monoids τ : M−→◦ N is a function from M into P(N), the power set of N ,
such that:

(a) For all s ∈M, τ(s) 6= ∅;
(b) For all s1, s2 ∈M, τ(s1)τ(s2) ⊆ τ(s1s2);
(c) 1 ∈ τ(1).

A relational morphism τ : M−→◦ N is, in particular, a relation in M ×N . Thus, compo-
sition of relational morphisms is naturally defined. Homomorphisms, seen as relations, and
inverses of onto homomorphisms are examples of relational morphisms.

Given a pseudovariety H of groups, the H-kernel of a finite monoid M is the submonoid
KH(M) =

⋂
τ−1(1), with the intersection being taken over all groups G ∈ H and all relational

morphisms of monoids τ : M−→◦ G. Sometimes we refer to the H-kernel simply as relative
kernel. When H is Ab, we use the terminology abelian kernel. Accordingly, when H is a
subpseudovariety of Ab, we say relative abelian kernel.

As an example we can state the following proposition which was proved in a slightly more
general form in [5]. See also [7].

Proposition 1.5. The abelian kernel of a finite group is precisely its derived subgroup. �

All statements of the following remark follow directly from the definition or are easy to
prove (and well known, in any case).

Remark 1.6. Let H and H′ be pseudovarieties of groups and let M be a finite monoid. Then
5



(1) If H ⊆ H′, then KH′(M) ⊆ KH(M).
(2) If N is a subsemigroup of M that is a monoid, then KH(N) ⊆ KH(M) ∩N .
(3) KH(M) contains the idempotents of M .

When the subsemigroup of M mentioned in the second statement of previous remark is
the group of units, the inclusion can be replaced by an equality, as stated in the following
lemma.

Lemma 1.7. [7, Lemma 4.8] Let G be the group of units of a finite monoid M . Then
KH(M)∩G = KH(G), for any pseudovariety of groups H. In particular, KAb(M)∩G = G′. �

As a consequence of Proposition 1.5 and the first step of Remark 1.6 we get the following:

Corollary 1.8. Any relative abelian kernel of a finite group contains its derived subgroup.
�

Let π be an even supernatural number. It is clear that H2 ⊆ Hπ, thus, for any finite
monoid M , KAb(M) ⊆ KHπ(M) ⊆ KH2(M). Consequently we have the following:

Proposition 1.9. Let M be a finite monoid such that KH2(M) = KAb(M). Then, for any
even supernatural number π, KHπ(M) = KAb(M). �

1.5. Some results concerning relative abelian kernels. Let π be an infinite supernat-
ural number, let Hπ be the corresponding pseudovariety of abelian groups and let M be a
finite A-generated monoid. The following result was proved by the second author [5] for the
case Hπ = Ab and generalized by Steinberg [26] to cover all other cases.

Proposition 1.10. Let x ∈M . Then x ∈ KHπ(M) if and only if 0 ∈ ClHπ(γ(ϕ−1(x))).

Next we recall some facts proved by the first and second authors [4]. In order to compute
ClHπ(γ(ϕ−1(x))) we can calculate ClAb(γ(ϕ

−1(x))) in an intermediate step, as the next result
shows.

Proposition 1.11. Let x ∈M . Then ClHπ(γ(ϕ−1(x))) = ClHπ(ClAb(γ(ϕ
−1(x)))).

Now let k be a finite supernatural number and Hk be the corresponding pseudovariety of
abelian groups. We consider the projection ck : Zn → (Z/kZ)n (defined by: ck(r1, . . . , rn) =
(r1 mod k, . . . , rn mod k)) and the homomorphism γk = ck ◦ γ : A∗ → (Z/kZ)n. Note that
for a word w ∈ A∗, the ith component of γk(w) is the number of occurrences modulo k of
the ith letter of A in w.

Next proposition is similar to Proposition 1.11. It allows us to compute γk(ϕ
−1(x)) using

ClAb(γ(ϕ
−1(x))) in an intermediate step.

Proposition 1.12. Let x ∈M . Then γk(ϕ
−1(x)) = ck(ClAb(γ(ϕ

−1(x)))).

An analogous to Proposition 1.10 was also stated in [4]:

Proposition 1.13. Let x ∈M . Then x ∈ KHk
(M) if and only if 0 ∈ γk(ϕ

−1(x)).

The following is another simple and useful characterization of the Hk-kernel proved in the
same paper.

Proposition 1.14. Let x ∈ M . Then x ∈ KHk
(M) if and only if x can be represented by a

word w ∈ A∗ such that, for any letter a ∈ A, |w|a ≡ 0 mod k.
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Note that, as a consequence, we get that if x ∈ KHk
(M), then x can be represented by

a word whose length is a multiple of k. The following result and its proof is similar to [9,
Theorem 3.4].

Theorem 1.15. Let T be a monoid, let x1, x2, . . . , xs, y be a set of generators of T such that
yk = 1 and let S be the submonoid of T generated by x1, x2, . . . , xs. If for each i ∈ {1, . . . , s}
there exists ui ∈ S such that yxi = uiy, then KHk

(T ) ⊆ S. �

Proof. Let x ∈ KHk
(T ). Then, by Proposition 1.14, we can represent x as a word w ∈

{x1, x2, . . . , xs, y}∗ with a number of occurrences of the generator y that is a multiple of k.
Then, applying the relations yxi = uiy, i ∈ {1, . . . , s} from the left hand side to the right
hand side of w and the relation yk = 1 whenever possible, we can represent x without any
occurrence of y, whence x ∈ S. �

Another important result of this subsection is Proposition 1.17 that gives a simple and
efficient way to compute the Hk-kernel of a finite group. In order to state it, we need to
introduce a subgroup of a group containing the derived subgroup.

Given a finite group G, denote by G[k] the subgroup of G generated by the commutators
of G (that is, the elements of the form xyx−1y−1, x, y ∈ G) and by the k-powers of G (that
is, the elements of the form xk, x ∈ G). In other words, G[k] is the subgroup of G containing
the derived subgroup G′ and the k-powers.

Lemma 1.16. The subgroup G[k] is normal in G.

Proof. Let G1 and G2 be finite groups and let ϕ : G1 → G2 be a homomorphism. We
have that ϕ(xyx−1y−1) = ϕ(x)ϕ(y)ϕ(x−1)ϕ(y−1) = ϕ(x)ϕ(y)(ϕ(x))−1(ϕ(y))−1 and ϕ(xk) =

(ϕ(x))k, thus ϕ(G1
[k]) ⊆ G2

[k].
In particular, taking the inner automorphism ϕg : G → G defined by ϕg(x) = gxg−1, we

have that, for any g ∈ G, gG[k]g−1 ⊆ G[k], concluding the proof. �

Since G′ ⊆ G[k], we have that the factor group G/G[k] is abelian. Furthermore, the order
of any element xG[k] of G/G[k] divides k, which implies that G/G[k] ∈ Hk.

Proposition 1.17. For a finite group G, we have: KHk
(G) = G[k].

Proof. The projection p : G→ G/G[k] is such that p−1(1) = G[k], thus KHk
(G) ⊆ G[k].

Conversely, by Corollary 1.8, G′ ⊆ G[k]. Since the elements of the form xk may be written
involving each generator of G a multiple of k times, the result follows from Proposition 1.14.

�

1.6. A combinatorial result. We end the section of preliminaries with a combinatorial
result (Proposition 1.22) to be used in Section 4.3.

Let j be an integer. Consider the set

B(j) = {r(n− 1)− i+ j | (i, r) ∈ {1, . . . , n− 1} × {0, . . . , n− 1}}.

Lemma 1.18. B(j) consists of n(n− 1) consecutive integers.

Proof. Denote by m and M , respectively, the minimum and the maximum of B(j). Clearly
m = 0(n− 1)− (n− 1) + j and M = (n− 1)(n− 1)− 1 + j. As M −m+ 1 = n(n− 1), it
suffices to prove B(j) has cardinality n(n− 1) to conclude that all integers between m and
M belong to B(j).
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On the other hand, as n(n−1) is precisely the cardinality of {1, . . . , n−1}×{0, . . . , n−1},
to prove that B(j) has also cardinality n(n−1) it is enough to observe that, for (i, r), (i′, r′) ∈
{1, . . . , n− 1}× {0, . . . , n− 1}, if r(n− 1)− i+ j = r′(n− 1)− i′ + j, then i = i′ and r = r′.
Now observe that −(n − 1) < i − i′ < n − 1 and r(n − 1) − i + j = r′(n − 1) − i′ + j ⇔
(r − r′)(n − 1) − (i − i′) = 0. But this implies that r = r′, from what follows that also
i = i′. �

As an immediate consequence of the preceding lemma we get the following:

Corollary 1.19. If d is a divisor of n(n− 1), then B(j) contains n(n− 1)/d multiples of d.

The proof of Lemma 1.18 has also the following corollary as an immediate consequence.

Corollary 1.20. The function g : {1, . . . , n−1}×{0, . . . , n−1} → B(j) defined by g(i, r) =
r(n− 1)− i+ j is a bijection.

Let X = {1, . . . , n − 1} × {1, . . . , n} × {0, . . . , n − 1} and suppose now that 1 ≤ j ≤ n.
Denote by U = ∪j∈{1,...,n}B(j) × {j} the disjoint union of the B(j)’s. From the preceding
corollary we get immediately the following:

Corollary 1.21. The function f : X → U defined by f(i, j, r) = (r(n − 1) − i + j, j) is a
bijection.

Denote by A(n, d) the set of elements ofX corresponding, via the bijection of the preceding
corollary, to elements of U whose first component is a multiple of d, that is

A(n, d) = {(i, j, r) ∈ X : d | (r(n− 1) + j − i)}.
As a consequence of Corollary 1.19 we get the main result of this section.

Proposition 1.22. If d is a divisor of n(n− 1), then |A(n, d)| = n2(n− 1)/d. �

2. Relative abelian kernels of some finite groups

As already observed, along this paper, cyclic, dihedral and symmetric groups appear
frequently. This section provides the computations of relative abelian kernels of finite groups
of these kinds. We will consider them as given by the monoid presentations of the following
example. In this section n is a positive integer.

Example 2.1. (1) Cn = 〈g | gn = 1〉 (the cyclic group of order n);
(2) D2n = 〈h, g | h2 = gn = hgn−1hgn−1 = 1〉 (the dihedral group of order 2n);
(3) Sn = 〈a, g | a2 = gn = (ga)n−1 = (agn−1ag)3 = (agn−jagj)2 = 1 (2 ≤ j ≤ n − 2)〉

(the symmetric group on a base set with n elements).

The presentation given for Sn requires some words. Consider the transposition a = (1 2)
and the n-cycle g = (1 2 · · · n) of Sn. Then, it is well known that {a, g} is a set of generators
of Sn and, from a group presentation due to Moore [21], one can easily deduce [16] the
monoid presentation for Sn given in the above example.

As Proposition 1.10 (together with Proposition 1.11 or even Proposition 1.12) makes clear,
one possible strategy to compute relative abelian kernels is to start computing profinite
closures. This is what we do in this section for the cases of kernels relative to pseudovarieties
corresponding to infinite supernatural numbers.
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2.1. Profinite closures. In this subsection the n-generated free abelian group Zn is con-
sidered endowed with the profinite topology.

Let G = 〈A | r1 = r2 = · · · = rs = 1〉 be a monoid presentation of a finite group. As
any word in ϕ−1(1) can be obtained from the empty word by inserting or removing some
relators, we have that γ(r1)N + · · · + γ(rs)N ⊆ γ(ϕ−1(1)) ⊆ γ(r1)Z + · · · + γ(rs)Z. Using
Proposition 1.2 we have the following lemma.

Lemma 2.2. With the above notation, ClAb(γ(ϕ
−1(1))) = γ(r1)Z + · · · + γ(rs)Z, that is,

ClAb(γ(ϕ
−1(1))) is the subgroup of Zn generated by γ(r1), γ(r2), . . . , γ(rs).

Next result shows, in particular, that to compute ClAb(γ(ϕ
−1(x))), where x is an element

of the group G, it is not important which representative of x is used.

Lemma 2.3. Let wx ∈ A∗ be a representative of x ∈ G. Then

ClAb(γ(ϕ
−1(x))) = γ(wx) + ClAb(γ(ϕ

−1(1))).

Proof. Observe that γ(wx)+ClAb(γ(ϕ
−1(1))) = ClAb(γ(wx)+γ(ϕ

−1(1))), since addition in Zn

is continuous. As wxϕ
−1(1) ⊆ ϕ−1(x), we have that γ(wx) + γ(ϕ−1(1)) ⊆ γ(ϕ−1(x)), which

implies that γ(wx) + ClAb(γ(ϕ
−1(1))) ⊆ ClAb(γ(ϕ

−1(x))).
For the reverse inclusion it suffices to observe that γ(ϕ−1(x)) ⊆ γ(wx) + ClAb(γ(ϕ

−1(1))).
But this is immediate, since any word w representing x can be obtained from wx by inserting
or removing the relators a finite number of times, thus γ(w) ∈ γ(wx)+γ(r1)Z+· · ·+γ(rs)Z =
γ(wx) + ClAb(γ(ϕ

−1(1))). �

Next we apply the results just obtained to the groups Cn, D2n and Sn.

The case of the cyclic group Cn.
Let x ∈ Cn and let r be a non negative integer such that gr is a word representing x (i.e.
x = ϕ(gr)). As by Lemma 2.2 ClAb(γ(ϕ

−1(1))) = nZ, by using Lemma 2.3 we have that
ClAb(γ(ϕ

−1(x))) = γ(gr) + nZ = r + nZ.

The case of the dihedral group D2n.
Let x ∈ D2n and let wx ∈ A∗ be a representative of x. By Lemma 2.2, ClAb(γ(ϕ

−1(1))) =
(2, 0)Z + (0, n)Z + (2, 2n− 2)Z. Using now Lemma 2.3 we have that

ClAb(γ(ϕ
−1(x))) = γ(wx) + (2, 0)Z + (0, n)Z + (2, 2n− 2)Z

= γ(wx) + (2, 0)Z + (0, n)Z + (0,−2)Z

=

{
γ(wx) + (2, 0)Z + (0, 1)Z if n is odd
γ(wx) + (2, 0)Z + (0, 2)Z if n is even.
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The case of the symmetric group Sn.
Using similar notation and arguments we have

ClAb(γ(ϕ
−1(x))) = γ(wx) + (2, 0)Z + (0, n)Z + (n− 1, n− 1)Z + (6, 3n)Z + (4, 2n)Z

= γ(wx) + (2, 0)Z + (0, n)Z + (n− 1, n− 1)Z

=

{
γ(wx) + (2, 0)Z + (0, n)Z + (0, n− 1)Z if n is odd
γ(wx) + (2, 0)Z + (0, n)Z + (1, 1)Z if n is even

=

{
γ(wx) + (2, 0)Z + (0, 1)Z if n is odd
γ(wx) + (2, 0)Z + (1, 1)Z if n is even.

2.2. Relative abelian kernels. Next we compute relative abelian kernels of cyclic, dihedral
and symmetric groups.

We start by applying to these particular cases the fact that the abelian kernel of a finite
group is its derived subgroup (Proposition 1.5). One can easily compute the derived subgroup
of a dihedral group (see [12]) and it is well known that the derived subgroup of the symmetric
group is the alternating subgroup. We thus have the following:

Lemma 2.4. (1) The abelian kernel of a finite abelian group is the trivial subgroup;
(2) The abelian kernel of the dihedral group D2n of order 2n is the subgroup

〈g2〉 =

{
〈g〉 if n is odd
{g2i | 0 ≤ i ≤ n

2
} if n is even

of D2n, where g is the generator of order n;
(3) The abelian kernel of Sn is the alternating subgroup An.

For kernels relative to proper subpseudovarieties of Ab we will distinguish the cases of
pseudovarieties corresponding to infinite supernatural numbers and those corresponding to
natural numbers.

Let π be an infinite supernatural number and let Hπ be the corresponding pseudovariety
of abelian groups. Recall (Proposition 1.10) that for x ∈ G, x ∈ KHπ(G) if and only if
0 ∈ ClHπ(γ(ϕ−1(x))). Note also that Proposition 1.11 allows us to use the computations of
Subsection 2.1 to calculate ClHπ(γ(ϕ−1(x))).

The case of the cyclic group Cn.
Let x = ϕ(gr) ∈ Cn and let d = gcd(n, π). By the Example 1.4 we have ClHπ(γ(ϕ−1(x))) =
r + dZ.

Since there exists t ∈ Z such that 0 = r + dt if and only if r is a multiple of d, we have

KHπ(Cn) = 〈gd〉,
where d = gcd(n, π).

The case of the dihedral group D2n.
Let x ∈ D2n. Then

ClHπ(γ(ϕ−1(x))) = ClHπ(ClAb(γ(ϕ
−1(x))))

=

{
ClHπ(γ(wx) + (2, 0)Z + (0, 1)Z) if n is odd
ClHπ(γ(wx) + (2, 0)Z + (0, 2)Z) if n is even.
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We will consider two sub-cases according to whether π is even or π is odd.
Subcase 1: π even. As gcd(2, π) = 2, by making use of Example 1.4, we have that

ClHπ(γ(ϕ−1(x))) =

{
γ(wx) + (2, 0)Z + (0, 1)Z if n is odd
γ(wx) + (2, 0)Z + (0, 2)Z if n is even

= ClAb(γ(ϕ
−1(x))).

Therefore
KHπ(D2n) = KAb(D2n) = D′

2n = 〈g2〉.

Subcase 2: π odd. As gcd(2, π) = 1, by making again use of Example 1.4, we have
ClHπ(γ(ϕ−1(x))) = Z2. Thus

KHπ(D2n) = D2n.

The case of the symmetric group Sn.
Let x ∈ Sn. Then

ClHπ(γ(ϕ−1(x))) =

{
ClHπ(γ(wx) + (2, 0)Z + (0, 1)Z) if n is odd
ClHπ(γ(wx) + (2, 0)Z + (1, 1)Z) if n is even.

We consider again two subcases and make use of Example 1.4.
Subcase 1: π even. We have

ClHπ(γ(ϕ−1(x))) =

{
γ(wx) + (2, 0)Z + (0, 1)Z if n is odd
γ(wx) + (0, 2)Z + (1, 1)Z if n is even

thus, also in this case, ClHπ(γ(ϕ−1(x))) = ClAb(γ(ϕ
−1(x))) and therefore,

KHπ(Sn) = An.

Subcase 2: π odd. Again ClHπ(γ(ϕ−1(x))) = Z2 and therefore

KHπ(Sn) = Sn.

Similar results for finite supernatural numbers could be attained in an entirely analogous
way, but here we prefer to observe that these correspond to particular cases of Proposi-
tion 1.17 and give alternative proofs. Let k be a natural number and let Hk be the corre-
sponding pseudovariety of abelian groups.

The case of the cyclic group Cn.
Let G = Cn. Since Cn is abelian, there is no need to consider the commutators. Let
d = gcd(n, k). As d | k, we have that G[k] = 〈gk〉 ⊆ 〈gd〉. Let r and s be integers such that
d = rk + sn. Thus gd = grkgsn = grk ∈ G[k]. Thus 〈gd〉 ⊆ G[k], and therefore G[k] = 〈gd〉.

The case of the dihedral group D2n.
Let G = D2n. As 〈g2〉 = G′, we have that 〈g2〉 ⊆ G[k]. Note that the relation hgn−1 = gh
follows from the defining relations for D2n and therefore the elements of D2n may be written
i the form gi or hgi, with i ∈ {1, . . . , n}. We consider again two subcases, according to
whether k is even or odd.

Subcase 1: k even. As hghg = h2gn−1g = h2gn = 1, we may conclude that, for i ∈
{1, . . . , n}, (hgi)2 = hgihgi = hgi−1hgn−1gi = hgi−1hgi−1 = 1. It follows that G[k] = 〈g2〉 =
G′.
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Subcase 2: k odd. Note that, as k = 2r + 1, for some r, (hgi)k = (hgi)2r+1 = hgi, for
i ∈ {1, . . . , n}. In particular, h, hg ∈ G[k], thus g = h · hg ∈ G[k]. It follows that G[k] = G.

The case of the symmetric group Sn.
Let σ ∈ Sn. Once again, we consider two subcases, according to whether k is even or odd.

Subcase 1: k even. It is clear that σk ∈ An and therefore S [k]
n = An = S ′n.

Subcase 2: k odd. In this case, σk has the same parity than σ, thus Sn
[k] can not be

contained in An. Since An has index 2 in Sn, S [k]
n must be Sn.

Summarizing, we have:

Theorem 2.5. Let π be a (finite or infinite) supernatural number and let Hπ be the corre-
sponding pseudovariety of abelian groups. Then:

(1) KHπ(Cn) = 〈gd〉, where d = gcd(n, π).

(2) If π is even, then KHπ(D2n) = KAb(D2n) = D′
2n = 〈g2〉.

If π is odd, then KHπ(D2n) = D2n.

(3) If π is even, KHπ(Sn) = KAb(Sn) = An.
If π is odd, KHπ(Sn) = Sn.

Since any relative kernel of a finite monoid M is a submonoid of M , as a consequence of
Remark 1.6 and previous theorem we have:

Corollary 2.6. Let π be an odd supernatural number and let Hπ be the corresponding pseu-
dovariety of abelian groups. Let M be a finite monoid all of whose maximal subgroups are
symmetric or dihedral groups. If M is generated by its group-elements, then KHπ(M) = M .

3. On presentations of some transformation monoids

In this section we give some background on the inverse monoids whose relative abelian
kernels will be described.

To avoid ambiguities, from now on we take n ≥ 4. Notice that, for n ≤ 3, the relative
abelian kernels of the finitely many semigroups under consideration can be easily computed
using the already referred implementation in GAP [27] of the algorithm presented in [4].

The reader can find more details and the proofs of the facts presented in this section in
[13, 14, 15, 16, 17].

3.1. The inverse symmetric monoid In. We begin by recalling some well known facts
on the symmetric inverse monoid In on a base set with n elements, i.e. the inverse monoid
(under composition) of all injective partial transformations on a set with n elements.

Notice that the symmetric group Sn is the group of units of the monoid In and that two
elements of In are R-related or L-related if they have the same domain or the same image,
respectively. Moreover, given s, t ∈ In, we have s ≤J t if and only if | Im(s)| ≤ | Im(t)|.
Hence, for k ∈ {0, 1, . . . , n}, being Jk = {s ∈ In | | Im(s)| = k}, we have

In/J = {J0 <J J1 <J · · · <J Jn}.

Since |Jk| =
(

n
k

)2
k!, for k ∈ {0, 1, . . . , n}, it follows that In has

∑n
k=0

(
n
k

)2
k! elements. Ob-

serve that Jn = Sn. Moreover, the maximal subgroups of In contained in Jk are isomorphic
to Sk, for 1 ≤ k ≤ n. We obtain a generating set of In, with three elements, by joining
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to the permutations a = (1 2) and g = (1 2 · · · n), which generate Sn, any injective partial
transformation of rank n− 1. For instance, if

c =

(
2 3 · · · n
2 3 · · · n

)
then the set {a, g, c} generates the monoid In. In particular, we have the following:

Corollary 3.1. The inverse symmetric monoid In is generated by its group-elements.

Combining the monoid presentation for Sn given in Example 2.1 with the Popova pre-
sentation of In [22], one can deduce [16] the following presentation of In, in terms of the
generators a, g and c:

〈 a, g, c | a2 = gn = (ga)n−1 = (agn−1ag)3 = (agn−jagj)2 = 1 (2 ≤ j ≤ n− 2),
gn−1agcgn−1ag = gacagn−1 = c = c2, (ca)2 = cac = (ac)2 〉.

3.2. Some inverse submonoids of In. A partial transformation σ of a chain Xn with
n elements, say Xn = {1 < 2 < · · · < n}, is called order-preserving [order-reversing] if,
x ≤ y implies xσ ≤ yσ [xσ ≥ yσ], for all x, y ∈ Dom(σ). We denote by POIn the
inverse submonoid of In of all order-preserving transformations and by PODIn the inverse
submonoid of In whose elements are all order-preserving or order-reversing transformations.

Let c = (c1, c2, . . . , ct) be a sequence of t (t ≥ 0) elements from the chain Xn. We say that
c is cyclic [anti-cyclic] if there exists no more than one index i ∈ {1, . . . , t} such that ci > ci+1

[ci < ci+1], where ct+1 = c1. Then, given a partial transformation σ on the chain Xn such that
Dom(σ) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at, we say that σ is orientation-preserving
[orientation-reversing] if the sequence of its images (a1σ, . . . , atσ) is cyclic [anti-cyclic]. We
denote by POPIn the inverse submonoid of In of all orientation-preserving transformations
and by PORIn the inverse submonoid of In of all orientation-preserving transformations
together with all orientation-reversing transformations.

Notice that, POIn ⊂ PODIn ⊂ PORIn and POIn ⊂ POPIn ⊂ PORIn, by definition.

Let M be one of the monoids POIn, PODIn, POPIn or PORIn. As for In, given two
elements s, t ∈M , we have s ≤J t if and only if | Im(s)| ≤ | Im(t)|, whence

M/J = {J0 <J J1 <J · · · <J Jn},
where Jk = {s ∈M : | Im(s)| = k}, for 0 ≤ k ≤ n.

Concerning maximal subgroups, the monoid POIn is aperiodic, while each H-class of an
element s ∈ PODIn has exactly two elements (an order-preserving one and another being
order-reversing), unless the rank of s is one or zero, in which case its H-class is trivial. On the
other hand, for 1 ≤ k ≤ n, the H-class of an element s ∈ POPIn of rank k has precisely k
elements, being a cyclic group of order k if s is a group-element. Finally, given s ∈ PORIn,
if | Im(s)| = k ≥ 3, then the H-class of s has 2k elements and, if s is a group-element, it is
isomorphic to the dihedral group D2k and if | Im(s)| = 2 then H-class of s has precisely two
elements, otherwise it has just one element.

Next, let us consider the elements x0, x1, . . . , xn−1 of POIn defined by:

(1) x0 =

(
2 · · · n− 1 n
1 · · · n− 2 n− 1

)
;

(2) xi =

(
1 · · · n− i− 1 n− i n− i+ 2 · · · n
1 · · · n− i− 1 n− i+ 1 n− i+ 2 · · · n

)
, for 1 ≤ i ≤ n− 1.
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Consider also the permutation (that reverts the order)

h =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
of PODIn and the n-cycle

g =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
,

which is an element of POPIn. Hence, A = {x0, x1, . . . , xn−1}, B = A∪{h}, C = A∪{g} and
D = A∪{h, g} are sets of generators of POIn, PODIn, POPIn and PORIn, respectively.

Furthermore, consider the following set of monoid relations:

R1: xix0 = x0xi+1, 1 ≤ i ≤ n− 2;
R2: xjxi = xixj, 2 ≤ i+ 1 < j ≤ n− 1;
R3: x

2
0x1 = x2

0 = xn−1x
2
0;

R4: xi+1xixi+1 = xi+1xi = xixi+1xi, 1 ≤ i ≤ n− 2;
R5: xixi+1 · · ·xn−1x0x1 · · ·xi−1xi = xi, 0 ≤ i ≤ n− 1;
R6: xi+1 · · ·xn−1x0x1 · · ·xi−1x

2
i = x2

i , 1 ≤ i ≤ n− 1;
R7: gxi = xi+1g, 1 ≤ i ≤ n− 2;
R8: gx0x1 = x1 and xn−1x0g = xn−1;
R9: g

n = 1;
R10: h

2 = 1;
R11: hx0 = x1 · · ·xn−1h and hxi = xn−i+1 · · ·xn−1x0x1 · · ·xn−i−1h, for 1 ≤ i ≤ n− 1;
R12: x

n−1
0 h = xn−1 · · ·x3x

2
2;

R13: hg = gn−1h;
R14: (gn−1(x1g)

n−1)n−2h = (gn−1(x1g)
n−1)n−2((x1g)

n−2g2)n−2gn−1.

Observe that, we are adopting the following convention: given i, j ∈ {0, . . . , n − 1}, if
i ≤ j the expression xi · · ·xj represents the word of length j − i + 1 such that the letter in
the position p ∈ {1, . . . , j − i+ 1} is xi+p−1 (i.e. the indices of the letters are ordered in the
usual way and are consecutive), and if j < i the expression xi · · ·xj represents the empty
word. For example, the expression x3 · · ·x2 denotes the empty word.

Hence, 〈A | R1 − R6〉, 〈B | R1 − R6, R10 − R12〉, 〈C | R1 − R9〉 and 〈D | R1 − R14〉 are
presentations of the monoids POIn, PODIn, POPIn and PORIn, respectively.

Next, we recall a set of canonical words associated to each of these presentations.
Let k ∈ {1, . . . , n−1}, ` = n−k (1 ≤ ` ≤ n−1) and wj = x`−j+1 · · ·x`−j+k, for 1 ≤ j ≤ `.

Notice that |wj| = k, for 1 ≤ j ≤ `. Let Ak [Ck] be the set of all words(∏`
j=1 uj

)
x`

0

(∏`
j=1 vj

) [
gi

(∏`
j=1 uj

)
x`

0

(∏`
j=1 vj

)]
,

where [0 ≤ i ≤ n − 1,] uj is a suffix of wj and vj is a prefix of wj, for 1 ≤ j ≤ `,
0 ≤ |u1| ≤ · · · ≤ |u`| ≤ k [1 ≤ |u1| ≤ · · · ≤ |u`| ≤ k] and k ≥ |v1| ≥ · · · ≥ |v`| ≥ 0. Also,
define A0 = C0 = {xn

0}, An = {1} and Cn = {gi | 0 ≤ i ≤ n−1}. Then Ā = A0∪A1∪· · ·∪An

and C̄ = C0 ∪C1 ∪ · · · ∪Cn are sets of canonical words for POIn and POPIn, respectively.
Now, let Bk = Ak ∪ {wh | w ∈ Ak}, for 2 ≤ k ≤ n, and Bk = Ak, for k = 0, 1. Also,

define Dk = Ck ∪ {wh | w ∈ Ck}, for 3 ≤ k ≤ n, and Dk = Ck, for 0 ≤ k ≤ 2. Then
B̄ = B0 ∪B1 ∪ · · · ∪Bn and D̄ = D0 ∪D1 ∪ · · · ∪Dn are sets of canonical words for PODIn

and PORIn, respectively.
14



Notice that, for 0 ≤ k ≤ n, the sets of words Ak, Bk, Ck and Dk represent the transfor-
mations of rank k of POIn, PODIn, POPIn and PORIn, respectively.

Of particular interest for us, are the words corresponding to elements of rank n− 1:

An−1 = {xixi+1 · · ·xn−1x0x1 · · ·xj−1 | 1 ≤ i ≤ n, 1 ≤ j ≤ n},
Bn−1 = {xixi+1 · · ·xn−1x0x1 · · ·xj−1h

t | 1 ≤ i ≤ n, 1 ≤ j ≤ n, t = 0, 1},
Cn−1 = {grxixi+1 · · ·xn−1x0x1 · · ·xj−1 | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, 0 ≤ r ≤ n− 1},
Dn−1 = {grxixi+1 · · ·xn−1x0x1 · · ·xj−1h

t | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, 0 ≤ r ≤ n− 1, t = 0, 1}.
Again, let M be one of the monoids POIn, PODIn, POPIn or PORIn. Denote by X

the set of generators of M and by W the set of canonical words of M considered above. Let
ϕ : X∗ −→M be the onto homomorphism extending the map X −→M , x 7→ x.

Given an element s ∈M , we denote by ws the (unique) element of ϕ−1(s)∩W , called the
canonical word associated to s.

Remark 3.2. Let M ∈ {POIn,PODIn} and let s ∈ M be an element of rank n− 1. Then
s is an idempotent if and only if there exists i ∈ {0, . . . , n− 1} such that

ws = xi · · ·xn−1x0x1 · · ·xi−1.

Notice that, if s is not an idempotent, then |ws|x0 = 1 and there exists i ∈ {1, . . . , n− 1}
such that either |ws|xi

= 0 or |ws|xi
= 2.

On the other hand, if M ∈ {POPIn,PORIn} and s ∈ M is an element of rank n − 1,
then s is an idempotent if and only if ws = gn−1x1 · · ·xn−1 (which corresponds to the same
element of M that the word x0x1 · · ·xn−1) or there exists i ∈ {1, . . . , n− 1} such that

ws = xi · · ·xn−1x0x1 · · ·xi−1.

It is known (see [17]) that PORIn is generated by the transformations g, h and x1. There-
fore {g, h, x1g} is also a set of generators of PORIn. As

x1g =

(
1 2 · · · n− 2 n− 1
2 3 · · · n− 1 1

)
is a partial permutation, we obtain the following:

Corollary 3.3. The monoid PORIn is generated by its group-elements.

4. Main results

This section is devoted to our main results. We give descriptions of the kernels relative
to decidable pseudovarieties of abelian groups of the monoids POIn, PODIn, POPIn,
PORIn and In for which we already recalled simple presentations. As the kernel of a finite
monoid relative to the trivial pseudovariety is the monoid itself, we just need to consider
pseudovarieties of abelian groups corresponding to infinite recursive supernatural numbers
or to natural numbers greater than 1.

4.1. The case of POIn. In this subsection we show that any relative abelian kernel of
POIn equals the abelian kernel of POIn.

Theorem 4.1. [7] The abelian kernel of POIn consists of all idempotents and all elements
of rank less than n− 1. �
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The abelian kernel of POIn contains all elements of rank less than n − 1, so it must be
the case of any relative abelian kernel of POIn.

Now, let x ∈ POIn be an element of rank n − 1. In [7, page 445] it was proved that
(considering the letters ordered as follows: x0 < x1 < · · · < xn−1)

ClAb(γ(ϕ
−1(x))) ⊆ γ(wx) + (1, . . . , 1)Z,

whence, using Proposition 1.12, for any k > 1, we have

γk(ϕ
−1(x)) ⊆ γk(wx) + (1, . . . , 1)Z/kZ.

By Remark 3.2, if x is not idempotent, then γ(wx) has the first component 1 and the other
components are 0 or 2, whence the same happens with γk(wx) (except that if k = 2 none of
the components is 2) and so 0 6∈ γk(ϕ

−1(x)). It follows that the KHk
(POIn) = KAb(POIn).

Moreover, this equality holds even when the supernatural number under consideration is not
finite:

Theorem 4.2. Let π 6= 1 be a supernatural number. Then KHπ(POIn) = KAb(POIn).

Proof. Suppose that k > 1 is a finite divisor of π. As Hk ⊆ Hπ, we have that

KAb(POIn) ⊆ KHπ(POIn) ⊆ KHk
(POIn) = KAb(POIn).

Thus the inclusions must in fact be equalities, concluding the proof. �

4.2. The case of PODIn. In this subsection we compute the relative abelian kernels of
the monoid PODIn.

First we recall:

Theorem 4.3. [9] If n is an even integer, the abelian kernel of PODIn consists precisely of
the elements of the abelian kernel of POIn. If n is an odd integer, then the abelian kernel of
PODIn consists of the abelian kernel of POIn united with the set of elements corresponding
to words of the form xi · · ·xn−1x0x1 · · ·xn−i, for 1 ≤ i ≤ n. �

Considering the presentation of PODIn recalled in Section 3, as an immediate consequence
of Theorem 1.15, we have:

Corollary 4.4. If k is even, then KHk
(PODIn) ⊂ POIn. �

Let π be a supernatural number.
Let Ji denote the J-class of PODIn of the elements of rank i, for 0 ≤ i ≤ n.
As the group of units Jn of PODIn is the cyclic group generated by the permutation of

order two h =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
, by Theorem 2.5 and Lemma 1.7, we have

KHπ(PODIn) ∩ Jn = KHπ(Jn) = 〈hgcd(2,π)〉 =

{
{1}, if 2 divides π
{1, h}, otherwise.

Next, we concentrate on the elements of rank less than n − 1. First, we notice that, by
Theorems 4.3 and 4.1, POIn ∩ (∪n−2

i=0 Ji) is contained in the abelian kernel of PODIn and
so it is contained in KHπ(PODIn).

Suppose that π is divisible by 2. Then, as KH2(PODIn) ⊂ POIn (by Corollary 4.4), we
have

POIn∩(∪n−2
i=0 Ji) ⊆ KHπ(PODIn)∩

(
∪n−2

i=0 Ji

)
⊆ KH2(PODIn)∩

(
∪n−2

i=0 Ji

)
⊆ POIn∩(∪n−2

i=0 Ji),
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whence KHπ(PODIn) ∩
(
∪n−2

i=0 Ji

)
= POIn ∩ (∪n−2

i=0 Ji).

On the other hand, admit that 2 does not divide π. Then
(
POIn ∩ (∪n−2

i=0 Ji)
)
∪ {h} ⊂

KHπ(PODIn) and, since any element of PODIn can be factorized as a product of a certain
element of POIn (with the same rank) by h, it follows that ∪n−2

i=0 Ji ⊂ KHπ(PODIn).
Summarizing, we have

KHπ(PODIn) ∩
(
∪n−2

i=0 Ji

)
=

{
POIn ∩ (∪n−2

i=0 Ji), if 2 divides π
∪n−2

i=0 Ji, otherwise.

Now, we just have to determine which elements of Jn−1 belong to KHπ(PODIn).
We recall that

{wi,j,t = xixi+1 · · ·xn−1x0x1 · · ·xj−1h
t | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 0 ≤ t ≤ 1}

is a set of canonical words for Jn−1.
It is clear that

γ(wi,j,t) =

{
(1, . . . , 1, 0(j+1), . . . , 0(i), 1, . . . , 1, t), 1 ≤ j ≤ i ≤ n
(1, . . . , 1, 2(i+1), . . . , 2(j), 1, . . . , 1, t), 1 ≤ i < j ≤ n,

for t = 0, 1 (considering the letters ordered as follows: x0 < x1 < · · · < xn−1 < h).
Let x ∈ PODIn be an element of rank n− 1. The second and third authors showed in [9]

that x ∈ KAb(PODIn) if and only if

γ(wx) ∈ (1, 1, . . . , 1, 0)Z + (0, 0, . . . , 0, 2)Z + (2, 0, . . . , 0)Z
+ (0, 1, 0, . . . , 0, 1, 0)Z + · · ·+ (0, . . . , 0, 1(n−1

2
+1), 1(n+1

2
+1), 0, . . . , 0)Z,

if n is odd, and

γ(wx) ∈ (1, 1, . . . , 1, 0)Z + (0, 0, . . . , 0, 2)Z + (2, 0, . . . , 0)Z
+ (0, 1, 0, . . . , 0, 1, 0)Z + · · ·+ (0, . . . , 0, 1(n

2 )
, 0, 1(n

2
+2), 0, . . . , 0)Z

+ (0, . . . , 0, 2(n
2
+1), 0, . . . , 0)Z,

if n is even. Notice that these expressions were deduced from the presentation of PODIn

[17] recalled in Section 3.
Hence, x ∈ KH2(PODIn) if and only if γ2(wx) belongs to

(1, 1, . . . , 1, 0)Z/2Z+
(0, 1, 0, . . . , 0, 1, 0)Z/2Z + · · ·+ (0, . . . , 0, 1(n−1

2
+1), 1(n+1

2
+1), 0, . . . , 0)Z/2Z,

if n is odd, and to

(1, 1, . . . , 1, 0)Z/2Z+
(0, 1, 0, . . . , 0, 1, 0)Z/2Z + · · ·+ (0, . . . , 0, 1(n

2 )
, 0, 1(n

2
+2), 0, . . . , 0)Z/2Z,

if n is even.
Now, suppose that wx = wi,j,t, for some 1 ≤ i ≤ n, 1 ≤ j ≤ n and 0 ≤ t ≤ 1. If n is even,

then it is clear that x ∈ KH2(PODIn) if and only if i = j and t = 0, i.e. x ∈ KH2(PODIn) if
and only if x is an idempotent of Jn−1, whence KH2(PODIn)∩ Jn−1 = KAb(PODIn)∩ Jn−1.
On the other hand, if n is odd, then it is easy to show that x ∈ KH2(PODIn) if and only if
t = 0 and i = j or i = n− j + 1, i.e. x ∈ KH2(PODIn) if and only if x is an idempotent of
Jn−1 or x = xixi+1 · · ·xn−1x0x1 · · ·xn−i, for some 1 ≤ i ≤ n, whence we have, also in this
case, KH2(PODIn) ∩ Jn−1 = KAb(PODIn) ∩ Jn−1.
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Hence KH2(PODIn) = KAb(PODIn), for all n ∈ N, and so, using Proposition 1.9, we get
the following result:

Theorem 4.5. If π is an even supernatural number, then KHπ(PODIn) = KAb(PODIn).
�

Next, let k be an odd natural number and consider again an element x ∈ PODIn of rank
n− 1. As 2Z/kZ = Z/kZ, we have:

(1) If n is odd, then x ∈ KHk
(PODIn) if and only if

γk(wx) ∈ (1, 1, . . . , 1, 0)Z/kZ + (0, 0, . . . , 0, 2)Z/kZ + (2, 0, . . . , 0)Z/kZ
+ (0, 1, 0, . . . , 0, 1, 0)Z/kZ + · · ·+ (0, . . . , 0, 1(n−1

2
+1), 1(n+1

2
+1), 0, . . . , 0)Z/kZ

= (1, 1, . . . , 1, 0)Z/kZ + (0, 0, . . . , 0, 1)Z/kZ + (1, 0, . . . , 0)Z/kZ
+ (0, 1, 0, . . . , 0, 1, 0)Z/kZ + · · ·+ (0, . . . , 0, 1(n−1

2
+1), 1(n+1

2
+1), 0, . . . , 0)Z/kZ

= (1, 1, . . . , 1, 0)Z/kZ + (0, 0, . . . , 0, 1)Z/kZ
+ (0, 1, 0, . . . , 0, 1, 0)Z/kZ + · · ·+ (0, . . . , 0, 1(n−1

2
+1), 1(n+1

2
+1), 0, . . . , 0)Z/kZ;

(2) If n is even, then x ∈ KHk
(PODIn) if and only if

γk(wx) ∈ (1, 1, . . . , 1, 0)Z/kZ + (0, 0, . . . , 0, 2)Z/kZ + (2, 0, . . . , 0)Z/kZ
+ (0, 1, 0, . . . , 0, 1, 0)Z/kZ + · · ·+ (0, . . . , 0, 1(n

2 )
, 0, 1(n

2
+2), 0, . . . , 0)Z/kZ

+ (0, . . . , 0, 2(n
2
+1), 0, . . . , 0)Z/kZ

= (1, 1, . . . , 1, 0)Z/kZ + (0, 0, . . . , 0, 1)Z/kZ + (1, 0, . . . , 0)Z/kZ
+ (0, 1, 0, . . . , 0, 1, 0)Z/kZ + · · ·+ (0, . . . , 0, 1(n

2 )
, 0, 1(n

2
+2), 0, . . . , 0)Z/kZ

+ (0, . . . , 0, 1(n
2
+1), 0, . . . , 0)Z/kZ

= (1, 1, . . . , 1, 0)Z/kZ + (0, 0, . . . , 0, 1)Z/kZ
+ (0, 1, 0, . . . , 0, 1, 0)Z/kZ + · · ·+ (0, . . . , 0, 1(n

2 )
, 0, 1(n

2
+2), 0, . . . , 0)Z/kZ

+ (0, . . . , 0, 1(n
2
+1), 0, . . . , 0)Z/kZ.

Then, supposing that wx = wi,j,t, for some 1 ≤ i ≤ n, 1 ≤ j ≤ n and 0 ≤ t ≤ 1, it is easy
to show that, for both n odd and even, we have x ∈ KHk

(PODIn) if and only if i = j or
i = n − j + 1. Hence, x ∈ KHk

(PODIn) if and only if x = xixi+1 · · ·xn−1x0x1 · · ·xi−1h
t or

x = xixi+1 · · ·xn−1x0x1 · · ·xn−ih
t, for some 1 ≤ i ≤ n and 0 ≤ t ≤ 1.

Now, let π be an odd supernatural. Then, π is divisible by some odd natural number k
and we have KHπ(PODIn) ⊆ KHk

(PODIn). In fact, the converse inclusion is also valid, as
we will show below.

First, notice that, by relations R11, we have x0h = hx1 · · ·xn−1 and

xn−1h = hxi+1 · · ·xn−1x0x1 · · ·xi−1,

whence

xixi+1 · · ·xn−1x0x1 · · ·xn−ih = xixi+1 · · ·xn−1x0x1 · · ·xn−i−1hxi+1 · · ·xn−1x0x1 · · ·xi−1,

for 1 ≤ i ≤ n − 1. It follows that, for 1 ≤ i ≤ n, xixi+1 · · ·xn−1x0x1 · · ·xi−1 and
xixi+1 · · ·xn−1x0x1 · · ·xn−ih are H-related elements of PODIn, whence

{xixi+1 · · ·xn−1x0x1 · · ·xi−1, xixi+1 · · ·xn−1x0x1 · · ·xn−ih}
is a cyclic group of order two and so it is contained in KHπ(PODIn). Therefore, since
h ∈ KHπ(PODIn), we have proved:
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Theorem 4.6. If π is an odd supernatural number, then KHπ(PODIn) consists of all per-
mutations of PODIn, of all elements of rank n−1 of the forms xixi+1 · · ·xn−1x0x1 · · ·xi−1h

t

and xixi+1 · · ·xn−1x0x1 · · ·xn−ih
t, with 1 ≤ i ≤ n and 0 ≤ t ≤ 1, and all transformations

with rank less than n− 1. �

4.3. The case of POPIn. Let M be a monoid and let U be its group of units. Take x ∈ U
and s ∈ M . Then, it is easy to show that sLxs. Furthermore, as the Green relation R is
compatible with the multiplication on the left, the correspondence

Hs −→ Hxs

t 7→ xt

is a bijection.
Next, let g be the n-cycle permutation and s any element of In with rank n − 1. Then,

s, gs, g2s, . . . , gn−1s are n domain-distinct (and so each one lies in a different R-class of In)
L-related elements of In of rank n−1. Hence, X, gX, g2X, . . . , gn−1X are n pairwise disjoint
subsets of Ls with |X| elements each, for any subset X of Hs.

Now, consider the monoid POPIn and let π be a supernatural number. Recall that:

Theorem 4.7. [7] The abelian kernel of POPIn consists of all idempotents and all elements
of rank less than n− 1. �

Let Ji denote the J-class of POPIn of the elements of rank i, for 0 ≤ i ≤ n.
As J0, J1, . . . , Jn−2 are contained in the abelian kernel of POPIn, we have also

∪n−2
i=0 Ji ⊂ KHπ(POPIn).

On the other hand, as the group of units Jn of POPIn is the cyclic group generated by the
permutation g = (1 2 · · · n), by Theorem 2.5 and by Lemma 1.7, we have

KHπ(POPIn) ∩ Jn = KHπ(Jn) = 〈ggcd(n,π)〉.

Thus, it remains to decide which elements of Jn−1 belong to KHπ(POPIn).
Let H be a maximal subgroup of POPIn contained in Jn−1. Then, H is a cyclic group of

order n− 1 and so, by Theorem 2.5, KHπ(H) has n−1
gcd(n−1,π)

elements. As

KHπ(H) ∪ ggcd(n,π)KHπ(H) ∪ g2 gcd(n,π)KHπ(H) ∪ · · · ∪ g( n
gcd(n,π)

−1) gcd(n,π)KHπ(H)

is a subset of KHπ(POPIn)∩Jn−1 (contained in a single L-class of POPIn) with cardinality
n

gcd(n,π)
· n−1

gcd(n−1,π)
and Jn−1 contains n distinct maximal subgroups of POPIn (and POPIn

is an inverse monoid), we have at least n · n
gcd(n,π)

· n−1
gcd(n−1,π)

elements in KHπ(POPIn)∩Jn−1.

Now, let k be any natural number.
Recall that

{wi,j,r = grxixi+1 · · ·xn−1x0x1 · · ·xj−1 | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, 0 ≤ r ≤ n− 1}

is a set of canonical words for Jn−1. Clearly, for all 0 ≤ r ≤ n− 1, we have

γ(wi,j,r) =

{
(1, . . . , 1, 0(j+1), . . . , 0(i), 1, . . . , 1, r), 1 ≤ j ≤ i ≤ n− 1
(1, . . . , 1, 2(i+1), . . . , 2(j), 1, . . . , 1, r), 1 ≤ i < j ≤ n

(considering the letters ordered as follows: x0 < x1 < · · · < xn−1 < g).
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Let x ∈ Jn−1. In [7, Corollary 4.7], the second and third authors showed that

γ(ψ−1(x)) = γ(wx) + (1, 1, . . . , 1, 0)Z +
n−2∑
i=1

fiZ + (1, 0, . . . , 0, 1)Z + (0, 0, . . . , 0, n)Z,

where fi = (0(1), . . . , 0,−1(i+1), 1(i+2), 0, . . . , 0(n+1)), for all 1 ≤ i ≤ n − 2. Notice that this
formula was deduced from the presentation of POPIn [14] recalled in the Section 3. It
follows that

γk(ψ
−1(x)) =

γk(wx) + (1, 1, . . . , 1, 0)Z/kZ +
n−2∑
i=1

fiZ/kZ + (1, 0, . . . , 0, 1)Z/kZ + (0, 0, . . . , 0, n)Z/kZ.

Next, admit that x ∈ KHk
(POPIn). Hence 0 ∈ γk(ψ

−1(x)) and so the system of equations

γ(wx) + (1, 1, . . . , 1, 0)z0 +
n−2∑
i=1

fizi + (1, 0, . . . , 0, 1)zn−1 + (0, 0, . . . , 0, n)zn ≡ 0 mod k,

with integer unknowns z0, z1, . . . , zn, has a solution. Let γ(wx) = (a0, a1, . . . , an−1, an). Then,
we have 

z0 + zn−1 ≡ −a0 mod k
z0 − z1 ≡ −a1 mod k
z0 + zi−1 − zi ≡ −ai mod k, 2 ≤ i ≤ n− 2
z0 + zn−2 ≡ −an−1 mod k
zn−1 + nzn ≡ −an mod k.

From this system it is easy to deduce the following equation:

(n− 1)(zn−1 + a0) ≡ (a1 + · · ·+ an−1) mod k.

Suppose that wx = wi,j,r, for some 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n and 0 ≤ r ≤ n − 1. Then
a0 = 1, a1 + · · ·+ an−1 = n− i+ j − 1 and an = r. Hence, the system of equations

(1)

{
(n− 1)(zn−1 + 1) ≡ (n− i+ j − 1) mod k
zn−1 + nzn ≡ −r mod k,

with integer unknowns zn−1 and zn, must have a solution. Now, from (1) we have{
(n− 1)zn−1 ≡ (j − i) mod k
(n− 1)zn−1 + n(n− 1)zn ≡ −r(n− 1) mod k

and so the equation

n(n− 1)zn ≡ −(r(n− 1) + j − i) mod k

has a solution, which implies that gcd(n(n − 1), k) divides r(n − 1) + j − i. It follows, by

Proposition 1.22, that the set KHk
(POPIn) ∩ Jn−1 has at most n2(n−1)

gcd(n(n−1),k)
elements. Since

gcd(n, n− 1) = 1, then gcd(n(n− 1), k) = gcd(n, k) gcd(n− 1, k) and so we have precisely

|KHk
(POPIn) ∩ Jn−1| =

n2(n− 1)

gcd(n(n− 1), k)
.

Therefore we have:
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Theorem 4.8. For all k ∈ N, the relative kernel KHk
(POPIn) consists of all permutations

generated by ggcd(n,k), of all elements of rank n− 1 of the form grxixi+1 · · ·xn−1x0x1 · · ·xj−1,
with 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, 0 ≤ r ≤ n− 1 and gcd(n(n− 1), k) | r(n− 1) + j − i, and all
transformations with rank less than n− 1. �

Now, let k = gcd(n(n− 1), π). Notice that, clearly, gcd(n, π) = gcd(n, k), gcd(n− 1, π) =
gcd(n − 1, k) and k = gcd(n(n − 1), k) = gcd(n, k) gcd(n − 1, k) = gcd(n, π) gcd(n − 1, π),
since gcd(n, n− 1) = 1. Thus, in particular, we have

KHπ(POPIn) ∩ Jn = 〈ggcd(n,π)〉 = 〈ggcd(n,k)〉 = KHk
(POPIn) ∩ Jn

and (as k divides π)
KHπ(POPIn) ⊆ KHk

(POPIn).

Moreover, since

|KHk
(POPIn)∩Jn−1| =

n2(n− 1)

gcd(n(n− 1), k)
=

n2(n− 1)

gcd(n, π) gcd(n− 1, π)
≤ |KHπ(POPIn)∩Jn−1|,

we have proved:

Theorem 4.9. Let π be a supernatural number. Then KHπ(POPIn) = KHk
(POPIn), with

k = gcd(n(n− 1), π). �

4.4. The case of PORIn. First notice that Corollaries 3.3 and 2.6 combined with the fact
that the maximal subgroups of PORIn are dihedral groups allow us to conclude immediately:

Proposition 4.10. If π is an odd supernatural number, then KHπ(PORIn) = PORIn. �

Next we will prove that KH2(PORIn) = KAb(PORIn).
Recall that in [9] it was proved that the abelian kernel of PORIn is contained in POPIn.

Denote by Ji the J-class of PORIn of all elements of rank i, for 0 ≤ i ≤ n. The following
result gives a description of the elements of PORIn ∩ Jn−1 that are in the abelian kernel of
PORIn.

Recall that {x0, x1, . . . , xn−1, h, g} is a set of generators of PORIn.

Theorem 4.11. [9] Let X = {x1, . . . , xn−1} and let x be the element of Jn−1 ∩ POPIn

corresponding to the word w = gk(xn−i · · ·xn−1)x0(x1 · · ·xj), with 0 ≤ k ≤ n−1, 1 ≤ i ≤ n−1
and 0 ≤ j ≤ n− 1. Then x ∈ KAb(PORIn) if and only if:

(i) |w|X is even, for n odd;
(ii) |w| is even, for n even.

From Lemmas 1.7 and 2.4 we have that KAb(PORIn)∩Jn = 〈g2〉 and it was also observed
in [9] that, for k < n − 1, KAb(PORIn) ∩ Jk consists of the elements of Jk that belong to
POPIn.

Now, using the presentation of PORIn recalled in Section 3, as an immediate consequence
of Theorem 1.15, we have:

Corollary 4.12. If k is even, then KHk
(PORIn) ⊂ POPIn.

It follows from Proposition 1.14 that if x ∈ KH2(PORIn) then there exists a word w
representing x such that |w|Y is even, for all subset Y of the set of generators, whence,
x ∈ KAb(PORIn), by Theorem 4.11. Therefore:
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Proposition 4.13. KH2(PORIn) = KAb(PORIn). �

By Propositions 4.10, 4.13 and 1.9, we get the main result of this subsection:

Theorem 4.14. Let π be a supernatural number and Hπ the associated pseudovariety of
abelian groups. Then KHπ(PORIn) = KAb(PORIn) if π is even and KHπ(PORIn) =
PORIn if π is odd. �

4.5. The case of In. We start this subsection, as the previous one, by noticing that Corol-
laries 3.1 and 2.6 combined with the fact that the maximal subgroups of In are symmetric
groups imply the following:

Proposition 4.15. If π is an odd supernatural number, then KHπ(In) = In. �

Now recall a description of the abelian kernel of In given by the second and third au-
thors [9].

Theorem 4.16. The abelian kernel of In consists of all even permutations of Sn, of all the
1
2
|Jn−1| elements (with rank n − 1) of An−1H

′An−1, where H is any maximal subgroup of
Jn−1, and of all transformations with rank less than n− 1. �

Next we will prove that KH2(In) = KAb(In). Notice that, by Theorem 2.5, the elements
of rank n belong to KH2(In) exactly when they belong to KAb(In). As KAb(In) contains all
transformations with rank less than n − 1 and is contained in KH2(In), it remains to check
that KH2(In)∩Jn−1 = KAb(In)∩Jn−1. Since KAb(In) ⊆ KH2(In), can be concluded by showing
that both sets have the same number of elements, that is, by showing that KH2(In) ∩ Jn−1

has 1
2
|Jn−1| elements. To achieve this we will follow the strategy used in [9] to prove part of

Theorem 4.16. With the same proof as [9, Lemma 6.1], we have the following lemma, which
implies that all H-classes of In ∩ Jn−1 have the same number of elements in KH2(In).

First we need some notation. Let 1 ≤ r, s ≤ n. We denote by Hr
s the H-class of Jn−1 of

the elements x such that Dom(x) = {1, 2, . . . , n} \ {r} and Im(x) = {1, 2, . . . , n} \ {s}. We
define Kr

s = Hr
s ∩ KH2(In).

Lemma 4.17. For 1 ≤ r, s, u, t ≤ n, there exist σ, ν ∈ An such that σKr
sν = Ku

v and
σKu

v ν = Kr
s .

Now we look at the relations of In given in Subsection 3.1. The word cac corresponds to
an element of rank n− 2, whence none of the relations (ca)2 = cac = (ac)2 can be applied to
an element of rank greater than n−2. On the other hand, the words involved in the relations
a2 = gn = (ga)n−1 = (agn−1ag)3 = (agn−jagj)2 = 1 and gn−1agcgn−1ag = gacagn−1 = c = c2

correspond to elements of rank not smaller than n− 1. Then we have:

Lemma 4.18. The element of Jn−1 ∩ In represented by the word ac does not belong to
KH2(In).

Proof. By Proposition 1.14, if an element x ∈ In belongs to KH2(In), then there exists a
word u representing x such that

(2)

{
|u|a ≡ 0 mod 2
|u|g ≡ 0 mod 2

We will conclude that no word representing the same element of In than ac satisfies the
condition (2), which proves that the element of In represented by ac does not belong to
KHk

(In).
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We have to take the parity of n into account.
If n is even, then it is easy to check that any word u obtained from ac using the relations

above is such that |u|a and |u|g have different parities. Thus |u|a mod 2 6= |u|g mod 2 and
so the condition (2) is not verified.

If n is odd, by applying to ac the relations above we only obtain words u such that |u|a is
odd. Thus also in this case condition (2) is not verified, as required. �

Let H be a maximal subgroup of Jn−1∩In. Then H is isomorphic to Sn−1 and its derived
subgroup, H ′, being isomorphic to An−1, has index 2 in H. Thus, the only subgroups of
H containing H ′ are H and H ′ itself. It follows from Lemma 4.18 there exists an element
in the J-class Jn−1 not belonging to KH2(In). As Lemma 4.17 guaranties that all H-classes
have the same number of elements in KH2(In), then each H-class has precisely half of the
elements in KH2(In).

We have proved the result announced:

Proposition 4.19. KH2(In) = KAb(In). �

Finally,using Propositions 4.15, 4.19 and 1.9 we get the main result of this subsection:

Theorem 4.20. Let π be a supernatural number and Hπ the associated pseudovariety of
abelian groups. Then KHπ(In) = KAb(In) if π is even and KHπ(In) = In if π is odd. �

5. Consequences

The notion of H-kernel is tightly related to an important operator of pseudovarieties: the
Mal’cev product (see [18]). Its definition, when the first factor is a pseudovariety V of monoids
and the second factor is a pseudovariety H of groups, may be given as follows:

V©m H = {M ∈ M : KH(M) ∈ V}.

Let POI, PODI, POPI and PORI be the pseudovarieties of monoids generated respectively
by {POIn | n ∈ N}, {PODIn | n ∈ N}, {POPIn | n ∈ N} and {PORIn | n ∈ N}.

In [9, Corollaries 3.7 and 3.8] the second and third authors observed that PODI ⊂ POI©m Ab
and that PORI ⊆ POPI©m Ab. From the work done here it follows better upper bounds. In
fact, using Corollary 4.4 we obtain the following:

Corollary 5.1. The inclusion PODI ⊆ POI©m H2 holds. �

Similarly, using Corollary 4.12, we have:

Corollary 5.2. The inclusion PORI ⊆ POPI©m H2 holds. �

The work presented in this paper was originally motivated by an attempt to compare these
pseudovarieties. Although possibly far from obtaining a solution, we leave here the following
conjectures:

Conjecture 5.3. The equality PODI = POI©m H2 holds. �

Conjecture 5.4. The equality PORI = POPI©m H2 holds. �
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