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Abstract

We present a survey on the moduli spaces of rank 2 quadric bundles over a compact
Riemann surface X. These are objects which generalise orthogonal bundles and which
naturally occur through the study of the connected components of the moduli spaces of
Higgs bundles over X for the real symplectic group Sp(4,R), with non-maximal Toledo
invariant. Hence they are also related with the moduli space of representations of 71 (X)
in Sp(4,R). We explain this motivation in some detail.

1 Components of Higgs bundles moduli spaces

Higgs bundles over a compact Riemann surface X were introduced by Nigel Hitchin in
[25] as a pair (V,¢) where V is a rank 2 and degree d holomorphic vector bundle on X,
with fixed determinant, and ¢ a section of End(V) ® K with trace zero. K denotes the
canonical line bundle of X — the cotangent bundle of X. Nowadays those are also known
as SL(2, C)-Higgs bundles. In the same paper, Hitchin determined the Poincaré polynomial
of the corresponding moduli space My(SL(2,C)), for d odd. The method was based on
Morse-Bott theory, so smoothness of the moduli was an essential feature. It was then clear
that M4(SL(2,C)) has an extremely rich topological structure, so a natural question was to
ask about the topology of the moduli spaces of Higgs bundles for other groups. For SL(3,C),
this was achieved by P. Gothen in [20] and more recently, and using a new approach, O.
Garcia-Prada, J. Heinloth and A. Schmitt in [13, 12] obtained the same for SL(4,C) and
recursive formulas for SL(n,C). Other recent developments were achieved in [34] on the
study of M (SL(n,C)), which seem to confirm some fascinating conjectures [24]. All these
cases were done under the condition of coprimality between rank and degree, so that the
moduli spaces are smooth.

However, for a general real, connected, semisimple Lie group G, the moduli spaces M.(G)
of G-Higgs bundles with fixed topological type ¢ € m1(G), are non-smooth. This is one
of the reasons why the topology of M.(G) is basically unknown. Still, their most basic
topological invariant — the number of connected components — is a honourable exception
in this unknown territory, and much is known about it. If G is compact then M.(G) is non-
empty and connected for any ¢ € 71(G) [33] and the same is true if G is complex [17, 28].
In both cases the same holds even if G is just reductive or even non-connected (the only
difference is that for non-connected groups, the topological type is indexed not by 71 (G),
but by a different set [30]). When G is a real group, the situation can be drastically different.
There are two cases where extra components are known to occur: when G is a split real form
of G€ and when G is a non-compact group of hermitian type.

Suppose G is a split real form of GC. Intuitively this means that G is the “maximally
non-compact” real form of G*; see for example [32] for the precise definition. For instance
SL(n,R) and Sp(2n,R) are split real forms of SL(n,C) and of Sp(2n, C), respectively. For
these groups, Hitchin proved in [27] that there always exists at least one topological type ¢
for which M. (G) is disconnected and that the “extra” component is contractible and indeed
isomorphic to a vector space — this is the celebrated Hitchin component also known as
Teichmaller component. We will not pursue in this direction here.
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A non-compact semisimple Lie group G of hermitian type is characterised by the fact that
G/H is a hermitian symmetric space, where H C G is a maximal compact subgroup. Thus
G/H admits a complex structure compatible with the Riemannian structure, making it a
Kéhler manifold. If G/H is irreducible, the centre of the Lie algebra of H is one-dimensional
and this implies that the torsion-free part of 71(G) = m1(H) is isomorphic to Z, hence
the topological type gives rise to an integer d (usually the degree of some vector bundle),
called the Toledo invariant. This Toledo invariant is subject to a bound condition, called
the Milnor-Wood inequality, beyond which the moduli spaces M4(G) are empty. Moreover,
when |d| is maximal (and G is of tube type [5]) there is a so-called Cayler partner phenomena
which implies the existence of extra components for M4(G). This has been studied for many
classes of hermitian type groups [5] and proved in an intrinsic and general way recently in
[2].

On the other hand, the connected components of Mg4(G) for non-maximal and non-zero
Toledo invariant are not known in general. One exception is the case of U(p, ¢), which has
been basically dealt in [3, 4]. Two other exceptions are the cases of G = Sp(4,R) and of
G = S0¢(2,3) — the identity component of SO(2,3). In these two cases, it is known [16, 22]
that all the non-maximal subspaces are connected for each fixed topological type. Note that
in the case of SOg(2,3), the topological type is given by an element (d,w) € Z x Z/2 =
m1(SO00(2,3)), with d being the Toledo invariant; so for each d there are two components,
labeled by w. We expect that the same holds true in general, that is, M4(G) is connected
for non-maximal d and fixed topological type.

In this paper we give an overview of the proof given in [22] of the connectedness of
Ma(Sp(4,R)) and M4(SOp(2,3)) for non-maximal and non-zero d. In this study one is
naturally lead to consider a certain type of pairs, which we call quadric bundles, and the
corresponding moduli spaces, depending on a real parameter «. Denote them by N, (d).
The relevant parameter for the study of My(Sp(4,R)) and M4(SO0(2,3)) is @ = 0. The
idea is to obtain a description of the connected components of N o (d), for a specific value
a,, of the parameter «, and then vary «, analysing the wall-crossing in the spirit of [38, 4].
It turns out that a crucial step in that proof (namely in the description of of Na:n (d)) is a
detailed analysis of the Hitchin fibration for L-twisted SL(2,C)-Higgs bundles, taking into
account all the fibres of the Hitchin map and not only the generic ones. This was done in
[23], and we briefly describe this analysis.

In the last section of the paper we briefly mention some other results concerning the
spaces N, (d), obtained in [31], that lead to the description of some geometric and topolog-
ical properties of these moduli spaces. In particular, these results imply that, under some
conditions on d and on the genus of X, a Torelli type theorem holds for N (d).

2 From Higgs bundles to quadric bundles

2.1 Definitions and examples

Let X be a compact Riemann surface of genus g > 2, with canonical line bundle K = T*X 10,
the holomorphic cotangent bundle. Let G be a real semisimple, connected, Lie group. Fix
a maximal compact subgroup H C G with complexification HC C GC. If h© C g€ are
the corresponding Lie algebras, then the Cartan decomposition is g€ = ¢ @ m®, where
m® is the vector space defined as the orthogonal complement of h® with respect to the
Killing form. Since [m® h¢] c m®, then m® is a representation of H® via the isotropy
representation H® — GL(m®) induced by the adjoint representation Ad : G — GL(g®). If
Eyc is a principal H®-bundle over X, denote by Eyc(m®) = Eyec x e m® the vector bundle
associated to Eyc via the isotropy representation.

Definition 2.1. A G-Higgs bundle over X is a pair (Egc,¢) where Egc is a principal
holomorphic H®-bundle and ¢ is a global holomorphic section of Eyc(m®) ® K, called the
Higgs field.
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In practice we usually replace the principal H®-bundle Eyc by the corresponding vector
bundle associated to some standard representation of HC in some C™. Let us give two
examples.

If G = SL(n,C), then H® = G gives rise to a rank n vector bundle V with trivial
determinant and since m® = sl(n, C), the Higgs field ¢ is a traceless K-twisted endomorphism
of V. If we fix the determinant of V' to be any line bundle and impose the same traceless
condition to ¢ : V — V ® K, then we also call the pair (V,¢) an SL(n,C)-Higgs bundle,
although it is really a “twisted” SL(n,C)-Higgs bundle. All these are usually just called
Higgs bundles with fized determinant. These are the “original” Higgs bundles, introduced in
[25].

If G = Sp(2n,R), we can take H = U(n) as a maximal compact subgroup. So H® =
GL(n,C) gives rise to a rank n holomorphic vector bundle V. The Cartan decomposition
is sp(2n,C) = gl(n,C) @ m® where the inclusion gl(n,C) < sp(2n,C) is given by A
diag(A4, —AT). So m® = {(B,C) € gl(n,C)? | B= BT, C = CT}. Hence we have that:

Definition 2.2. An Sp(2n,R)-Higgs bundle is a triple (V, 8,7) where V is a holomorphic
rank n vector bundle, 8 € H°(X,S?V ® K) and v € H(X, S?V* ® K).

In an Sp(2n, R)-Higgs bundle (V, 5, v), we can then think of y asamapv: V - V*@ K
such that v* ® Idg = v and likewise for §: V* -V ® K.

A G-Higgs bundle (Epc, @) is topologically classified by the topological invariant of the
corresponding H®-bundle Eyc, given by an element 7 (H) = 7, (G).

In [14], a general notion of (semi,poly)stability of G-Higgs bundles was developed, allow-
ing for proving a Hitchin—Kobayashi correspondence between polystable G-Higgs bundles
and solutions to certain gauge theoretic equations known as Hitchin equations. On the other
hand, A. Schmitt introduced stability conditions for more general objects, which also ap-
ply for the G-Higgs bundles context, and used these in his general construction of moduli
spaces; cf. [35]. In particular his stability conditions coincide with the ones relevant for the
Hitchin—Kobayashi correspondence. It should be noted that the stability conditions depend
on a parameter o € /—1h N 3, where 3 is the centre of h*. In most cases this parameter is
fixed by the topological type, so it really does not play any relevant role. This happens for
any compact or complex Lie group and most real groups. Indeed, the only case where the
parameter is not fixed by the topology is when G is of hermitian type. This is the case of
Sp(2n,R), so it is important for us to take into account the presence of «.

Denote by MG (G) the moduli space of S-equivalence classes of a-semistable G-Higgs
bundles with topological invariant d € 71 (G). On each S-equivalence class there is a unique
(up to isomorphism) a-polystable representative, so we can consider M§(G) as the moduli
space isomorphism classes of a-polystable G-Higgs bundles.

Remark 2.3. Given any line bundle L — X, of non-negative degree, everything we just
said generalises to L-twisted G-Higgs pairs. The only difference to G-Higgs bundles is that
the Higgs field is a section of Eyc(m®) ® L instead of Eyc(m®) @ K.

2.2 Higgs bundles for Sp(4,R) and quadric bundles

2.2.1 Moduli of Sp(4,R)-Higgs bundles

We already know that an Sp(4, R)-Higgs bundle is a triple (V, 3,~) with rk(V) = 2 and
e H(X,S*V®oK), ~ecH (X, S*V*®K).

The topological type is given by the degree of V: d = deg(V) € Z = 71(Sp(4,R)). In fact,
Sp(4, R) is of hermitian type, and the invariant d is the Toledo invariant mentioned in Section
1.

Given a real parameter «, here is the a-(semi)stability condition for Sp(4, R)-Higgs bun-
dles; see [14, 15] for the deduction of these conditions.
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Definition 2.4. Let (V,8,7) be an Sp(4,R)-Higgs bundle with deg(V) = d. It is a-
semistable if the following hold:

1. if 3 =0 then d — 2a > 0;
2. if v =0 then d — 2a < 0.
3. for any line subbundle L C V, we have:

(a) deg(L) < avif y(L) = 0;
(b) deg(L) <d/2if B(L+) C L® K and (L) C Lt ® K;
(c) deg(L) < d— aif (L) = 0.

Here L’ stands for the kernel of the projection V* — L*, so it is the annihilator of L
under y; note that we are not considering any metric on V' whatsoever. As usual, there are
also the notions of a-stability (by considering strict inequalities) and of a-polystability; cf.
[22].

Remark 2.5. If we view a semistable rank two vector bundle V' of degree d as an Sp(4,R)-
Higgs bundle with 8 =~ = 0, then it is a-semistable if and only if « = d/2.

Our aim is to present an overview on the study of the connected components of the
moduli space of 0-polystable Sp(4,R)-Higgs bundles M 4(Sp(4,R)) for certain values of d.
To keep the notation simpler, we will just write

Ma(Sp(4,R)) = M§(Sp(4,R))

for the case a = 0. In this case we will just say “polystable” instead of O-polystable and
likewise for stable and semistable.

Remark 2.6. (Relation with representations 71 (X) — Sp(4,R)) We consider o = 0
because this is the appropriate value for which non-abelian Hodge theory applies. More
precisely, the non-abelian Hodge Theorem for Sp(4,R) states that an Sp(4,R)-Higgs bundle
is polystable if and only if it corresponds to a reductive representation of 71 (X) in Sp(4, R).
This implies that M (Sp(4,R)) is homeomorphic to the space of reductive representations
of m1(X) in Sp(4,R), with topological invariant d, modulo the action of conjugation by
Sp(4,R), that is to R4(Sp(4,R)) = Hom™ (7, (X),Sp(4,R))/Sp(4,R). This theorem is in
fact valid for any real semisimple Lie group and also for real reductive groups with some
slight modifications. The proof in the classical G = SL(n, C) case follows from [8, 10, 25, 37].
The more general case follows from [8, 14]. See for instance [16, 15] for more information for
the case of Sp(2n,R) and [5] for an overview on the approach for the general group case.

The Milnor-Wood inequality for G = Sp(4,R) states that if an Sp(4, R)-Higgs bundle of
degree d is semistable, then [9, 21, 14, 2]

|d| <2g—2.

(A similar type of inequality was proved for the first time for G = PSL(2,R) by Milnor in
[29], on the representations side; cf. Remark 2.6.)

So M4(Sp(4,R)) is empty if |d| > 29 — 2. If |d| = 2¢g — 2 then we say that we are in
the mazimal Toledo case, which is in fact the case where more interesting phenomena occur.
Indeed, it is known [21] that M (a5_2)(Sp(4,R)) has 3 x 229 4 2g — 4 components and that
it is isomorphic to the moduli space of KZ2-twisted GL(2,R)-Higgs bundles — this is an
example of the Cayley partner phenomena mentioned in the introduction (see also [5, 2]). In
subsection 3.2.2 below we will see this for a subvariety of Ma,_2(Sp(4,R)). It is also known
that Mo(Sp(4,R)) is connected [21]. The corresponding results for these two extreme cases
for |d| in higher rank are also known; cf. [15].

Nevertheless, in this paper we are interested in the components of M ;(Sp(4,R)) for non-
mazimal and non-zero Toledo invariant: 0 < |d| < 2¢g — 2. The duality (V, 8,7) — (V*,v,5)
gives an isomorphism M 4(Sp(4,R)) = M_4(Sp(4,R)), thus we just consider 0 < d < 2g — 2.
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2.2.2 The approach to count components

The general idea, introduced in [25, 27|, to study the connected components of M.(G) is
to use the functional f : M.(G) — R mapping a G-Higgs bundle to the (square of the)
L?-norm of the Higgs field. The fact that f is proper and bounded below implies that it
attains a minimum on each connected component of M (G). Hence the number of connected
components of M,(G) is bounded above by the one of the subvariety NV.(G) C M,.(G) of local
minimum of f. The procedure is thus to identify N.(G), study its connected components
and then draw conclusions about the components of M.(G). Of course if N.(G) turns out
to be connected, then it immediately follows that M.(G) is connected as well.
Explicitly, for Sp(4,R), the Higgs field splits as § and +, so we have

(2.1) FV.5,0) = 181 + ol = [ ety + [ ey,
X X

where h : V — V* is the metric on V which provides the Hitchin-Kobayashi correspondence
and hence we are taking in (2.1) the adjoint with respect to h.

The following result completely identifies the subvariety of local minima in the non-
zero and non-maximal cases. For this identification it is important that, over the smooth
locus of M4(Sp(4,R)), the function f is a moment map of the hamiltonian circle action
(V,B,7) = (V,e?B,e%y). By work of Frankel [11], a smooth point of My4(Sp(4,R)) is a
critical point of f exactly when it is a fixed point of this U(1)-action. Then there is a
cohomological criteria [3, Corollary 4.15] which identifies the local minima among this fixed
point set. Finally one has to perform a subsequent analysis to identify the local minima over
the singular locus of M;(Sp(4,R)).

Proposition 2.7 ([21]). Let (V,3,) represent a point of M4(Sp(4,R)), with0 < d < 2g—2.
Then it is a local minimum of f if and only if B = 0.

Thus, for 0 < d < 2g — 2, the subvariety of local minima Ny(Sp(4, R)) € M4(Sp(4,R)) is
given by pairs (V,v) where V is a rank 2 bundle, of degree d and 7 is a section of S?V* ® K.
This is what we call a quadric bundle. Since d is positive, v must indeed be a non-zero
section, as we saw in Remark 2.5.

Definition 2.8. A quadric bundle on X is a pair (V,~), where V is a holomorphic vector
bundle over X and + is a holomorphic non-zero section of S?2V* ® K.

Quadric bundles are sometimes also called conic bundles or quadratic pairs in the litera-
ture. In particular, this happens in the papers [22, 31] by the author where they were named
quadratic pairs. But the term “quadric bundles” used in [18] is indeed more adequate, since
it is more specific and moreover reveals the fact that these can be seen as bundles of quadrics,
since for each p € X the map + restricted to the fibre V}, defines a bilinear symmetric form,
hence a quadric in P**(V)=1 When rk(V) = 2, the term conic bundle is then perfectly
adequate also.

The rank and degree of a quadric bundle are of course the rank and degree of V. We will
only consider the rank 2 case. The rank n case appears naturally by considering Sp(2n,R)-
Higgs bundles.

Remark 2.9. More generally, one can define U-quadric bundles, for a fixed holomorphic
line bundle U over X. The only difference for the preceding definition is that v is a non-zero
section of S2V*® U. We will mostly be interested in (K-)quadric bundles, but more general
U-quadric bundles will also appear, more precisely when U = LK, for some line bundle L,
in relation with the group SO¢(2,3). All results below can be adapted to this more general
setting [22].

Quadric bundles of rank up to 3 were studied in [19] by Gémez and Sols, where they
introduced an appropriate a-semistability condition, depending on a real parameter «, and
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constructed moduli spaces of S-equivalence classes of a-semistable quadric bundles using
GIT. The construction of the moduli spaces follows from the general methods of [35]. Denote
the moduli space of S-equivalence classes of a-semistable U-quadric bundles on X of rank 2
and degree d by Nx «(2,d) = No(d).

A simplified J-(semi)stability condition for quadric bundles of arbitrary rank has been
obtained in [18]. In rank 2 our a-semistability condition reads as follows (see [22, Proposition
2.15]). It is equivalent to the corresponding one on [18] by taking o = d/2 — 4.

Definition 2.10. Let (V) be a rank 2 quadric bundle of degree d.

e The pair (V,7) is a-semistable if and only if o < d/2 and, for any line bundle L C V,
the following conditions hold:

1. deg(L) < a, if v(L) = 0;
2. deg(L) < d/ if v(L) C Lt K;
3. deg(L) <d—a,ify(L) ¢ L*K.

e The pair (V,~) is a-stable if and only if it is a-semistable for any line bundle L C V,
the conditions (1), (2) and (3) above hold with strict inequalities.

Clearly these conditions are compatible with the ones of Definition 2.4. There is also the
notion of a-polystability, but we omit it (see again Proposition 2.15 of [22]). The important
thing to note is that on each S-equivalence class of a-semistable quadric bundles there is a
unique a-polystable representative. Thus the points of N, (d) parametrize the isomorphism
classes of a-polystable quadric bundles of rank 2 and, furthermore, N, (d) is a subvariety of
M (Sp(4, R)).

The next result follows from Proposition 2.7 and the discussion preceding it.

Proposition 2.11. Let 0 < d < 2g — 2. The number of connected components of the moduli
space My(Sp(4,R)) of semistable Sp(4,R)-Higgs bundles of degree d is bounded above by the
number of connected components of No(d), the moduli space of 0-polystable quadric bundles
of degree d.

3 Moduli of quadric bundles and wall-crossing

3.1 Non-emptiness conditions
The next result gives a Milnor-Wood type of inequality for quadric bundles.
Proposition 3.1. If NV, (d) is non-empty then 2a < d < 2g — 2.

Proof. The first statement is immediate from a-semistability, hence let us look to the second
inequality.

Let (V,~) be quadric bundle of rank 2 and degree d. If rk(y) = 2 (generically), then
det(y) is a non-zero section of A2V "2K? so d < 2g — 2.

Suppose now that there exists an a-semistable quadric bundle (V) of rank 2 and degree
d > 2g—2, with rk(v) < 2. Since v # 0, we must have rk(v) = 1. Let N be the line subbundle
of V' given by the kernel of v and let I C V* be such that I K is the saturation of the image
sheaf of v. Hence 7 induces a non-zero map of line bundles V/N — I K| so

(3.1) —d + deg(N) + deg(I) +2g—2 > 0.

But, from the a-semistability condition, we have deg(N) < a and deg(I) < « — d, because
y(I+) = 0. This implies —d+deg(N)+deg()+2g—2 < 0, contradicting (3.1). We conclude
that there is no such (V,~). O
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In fact, the inequalities of this proposition are equivalent to the non-emptiness of the
moduli. This follows from the results below. So from now on we assume

20 < d<2g—2.

Indeed most of the times we will consider 2a < d < 2g — 2.

Remark 3.2. Recall that our motivation comes from Sp(4, R)-Higgs bundles and there (see
Proposition 2.7) we imposed d > 0. However, the moduli spaces of quadric bundles make
perfect sense and can be non-empty also for d < 0. Hence we will not impose d > 0 for
the quadric bundles moduli spaces, although when d < 0 we lose the relation with Higgs
bundles.

3.2 Moduli for small parameter
3.2.1 Stabilization parameter

For a fixed d < 2g — 2, we know that there are no moduli spaces N, (d) whenever a is
“large”, meaning « > d/2. Here we prove that there is a different kind of phenomena when
a is “small”. Precisely, we show that all the moduli spaces N, (d) are isomorphic for any
o’ < d— g+ 1. Moreover, in all of them, the map 7 is generically non-degenerate. Write
am=d—g+ 1.

Proposition 3.3. If (V,v) is an a-semistable pair with o < «uy, then v is generically
non-degenerate. Moreover, if ag < a1 < Quy, then Ny, (d) and N,,(d) are isomorphic.

Proof. Recall that we always have v # 0. If rk(y) = 1, considering again the line bundles
N = ker(y) € V and I C V* as in the proof of Proposition 3.1, we see that 0 < —d +
deg(N) +deg(I) +29g —2 < 2a—2d+2g — 2, i.e., @ > ;. This settles the first part of the
proposition.

Let (V,v) € Na,(d). The only way that (V,v) may not belong to N,,(d) is from the
existence of an as-destabilizing subbundle which, since as < a3 and looking at Definition
2.10, must be a line subbundle L C V such that v(L) = 0 and deg(L) > ag. This in turn
implies that rk(y) = 1 generically, which is impossible due to the first part of the proposition.

Conversely, if (V,v) € N,,(d), then (V,v) € N, (d) unless there is an «a;-destabilizing
subbundle L of (V,~) such that d — a; < deg(L) < d — s, and v(L) ¢ L+ K. Therefore the
composite L — V 5 V* @ U — L™K is non-zero so —2 deg(L) +2g — 2 > 0. On the other
hand, d — a7 < deg(L) together with a1 < auy,, gives —2deg(L) + 29 — 2 < 0, yielding again
to a contradiction. O

We now aim to study the connectedness of the spaces N, (d), for a < ay,. Although our
main motivation comes from the study of Sp(4, R)-Higgs bundles with non-maximal Toledo
invariant (cf. Proposition 2.7), let us say a few words about N, (2g — 2), which really has a
different behaviour from all the other cases.

3.2.2 Maximal Toledo invariant

Take d = 2g — 2. In this case a;, = g — 1 = d/2, so the stabilisation parameter of the
previous results is really the largest value for which non-emptiness holds. This means that,
whenever non-empty, all the moduli spaces N, (2g — 2) are isomorphic, independently of «.
Accordingly, in this maximal case, we drop the « from the notation and just write N'(2g —2).

The other special feature about this case is that if (V,v) € N (2g—2), theny : V — V*QK
is an isomorphism, since we already know that it must be injective and now the degrees
match. By choosing a square root K/2 of K, ~ gives rise to a symmetric isomorphism
q=7@Idg-1/2: VR K /?2V*® K2 ie. toa nowhere degenerate quadratic form on
V ® K~'/2. In other words, (V ® K~'/2,q) is an orthogonal vector bundle. Now, there is
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a semistability condition for orthogonal bundles (namely that any isotropic subbundle must
have non-positive degree; [33]), and it can be seen that the orthogonal bundle (V @ K~1/2 ¢)
is semistable if and only if (V,~) is a-semistable for any a < a,,,. So:

Proposition 3.4. The moduli space N'(2g — 2) is isomorphic to the moduli space of rank 2
orthogonal vector bundles (without fized topological type).

The existence of this isomorphism justifies the disconnectedness of N'(2g —2). This is an
example of the Cayley correspondence mentioned in the introduction. All this goes through
higher rank, telling us that quadric bundles are the natural generalisation of orthogonal
vector bundles, when we remove the non-degeneracy condition, providing another motivation
for the consideration of these objects.

3.2.3 Quadric bundles, twisted Higgs pairs and the fibres of the Hitchin map

Write «, for any value of « less than a,, = d — g + 1. We shall now deal with the spaces
Na; (d) for any d < 2g — 2. We will do it by relating pairs (V,v) with certain twisted rank
2 Higgs bundles and using the Hitchin map on the corresponding moduli space.

Consider a quadric bundle (V,7) € N - (d). By Proposition 3.3, det(y) is a non-zero
holomorphic section of A2V ~2K?2. Since now d < 2g — 2, the section det(vy) has zeros, so we
consider the corresponding effective divisor div(det(v)) € Sym*~4724(X).

Write Jac? (X) for the “Jacobian variety” of degree d holomorphic line bundles over X.
Let Px be the 229-cover of Sym?~4729(X) obtained by pulling back the cover Jac?~?~¢(X) —
Jac*™*724(X), L + L2, under the Abel-Jacobi map Sym*?~*72¢(X) — Jac**729(X).
The elements of Px are pairs (D, L) in the product Sym*~472¢(X) x Jac?~2~%(X) such
that O(D) = L?.

In order to describe /\/’a; (d), we shall use the following map, which is analogue to the
so-called Hitchin map defined by Hitchin in [25], and which will recall below in (3.3):

. h: N,-(d) — Px
(3.2) (Vi) —  (div(det(y)), A2V 1K).

Our goal is to be able to say something about the fibres of this map.

To relate h with the Hitchin map, recall first that, given any line bundle L of non-negative
degree, an L-twisted Higgs pair of type is a pair (V, ), where V' is a holomorphic vector
bundle over X and ¢ € H°(X,End(V) ® L). So, we are just twisting the Higgs field by L
instead of K.

Definition 3.5. A rank 2 and degree d, L-twisted Higgs pair (V, ) is semistable if deg(F) <
d/2 for any line subbundle F' C V such that ¢(F') C FL.

Let ./\/l/Lx denote the moduli space of L-twisted Higgs pairs of rank 2 and degree d, with
fixed determinant A € Jacd(X ) and with traceless Higgs field. In this particular case, the
Hitchin map in M?% is defined by:

H: MY — HOYX,L?
(3.3)
(Vi) > det(p).

We can naturally associate a &-twisted Higgs pair to a given quadric bundle (V,~), of rank
2, where £ = A2V ~'K. This is done by taking advantage of the fact that for a 2-dimensional
vector space V, there is an isomorphism V ® A2V* = V* given by v ® ¢ — ¢(v A —). Then,
from such quadric bundle, simply associate the ¢-twisted Higgs pair (V, g~17v), where g is
the isomorphism

o~

(3.4) g: VRSV OK
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given by g(v® ¢ ® u) = ¢(v A —) @ u; so indeed g~y : V — V @ £. Choosing appropriate
local frames, g is locally given by ([1) ’01) SO

(3.5) det(g~'y) = det(y) and tr(g~'y) =0,

due to the symmetry of v. Moreover, it is easy to see that (V,~) is a,,-semistable if and
only if the corresponding (V, g~!v) is semistable as in Definition 3.5. So if (V,v) € N,-»

then (V, g~1v) represents a point in /\/lg 'K

Let us now go back to the map h in (3.2). Let (D, &) be any pair in Px. We want to
describe the fibre of h over (D,£), i.e., the space of isomorphism classes of a;, -polystable
quadric bundles (V,7) such that div(det(y)) = D and A?V = ¢-'K. The following result
gives the fibre h=(D, €) in terms of the fibre H~!(s), for a certain section s of £2.

Proposition 3.6 ([22]). Let (D,&) € Px and choose some s € H°(X, &?) such that div(s) =
D. Then h="(D,€) € N (d) is isomorphic to H™(s) € M?lK.

The isomorphism of this proposition is of course given by the above correspondence
between quadric bundles and &-twisted Higgs pairs. Notice that everything makes sense
because of (3.5). A word of caution is however required here since there is a choice of a
section s associated to the divisor D in Proposition 3.6. However, the given description of
h=1(D, &) does not depend of this choice, due to Lemma 4.6 of [22]; see also Remark 4.10 in
loc. cit. for more details.

Using this we can prove the following.

Theorem 3.7 ([22]). Let d < 29 — 2. The moduli space N~ (d) is connected and has
dimension Tg — 7 — 3d.

The basic idea to prove connectedness is to prove that any fibre of h is connected. For
that we use Proposition 3.6 and want to prove that H~1(s) is connected for every 0 # s €
H°(X,£?). This is done using the theory of spectral covers and their Jacobians and Prym
varieties, as developed in [1, 25, 26]. Besides these classical references, the reader may also
check the details of the following definitions for instance in [23].

For every s # 0, there is a naturally associated curve Xy — the spectral curve of s —
inside the total space of 7w : & — X. The projection 7|x, : Xs = X is a 2 : 1 cover of X,
with the branch locus being given by the divisor of s.

For generic s € HY(X, £2) the curve X is smooth. It is well-known that # =1 (s) is indeed
(a torsor for) the Prym wvariety of Xs. This Prym variety is, in particular, a complex torus,
so connected. If deg(€) > 2g — 2 then the connectedness of every fibre of H follows from the
connectedness of the generic fibre (see Proposition 3.7 of [23]). It is nevertheless important
to notice that deg(§) = —d + 29 — 2, so deg(§) can be any positive integer. Moreover, it
is precisely the case deg(§) < 2g — 2 that is of most interest to us, since that is the case
relevant to Sp(4, R)-Higgs bundles. So, for these cases, our knowledge of the generic fibre is
not enough to draw conclusions on the connectedness of the singular fibres, that is, the ones
where the spectral curve X acquires singularities. However, this was achieved by P. Gothen
and the author in [23] as follows.

When the spectral case is irreducible, we use the correspondence between Higgs pairs
on X and rank one torsion free sheaves on X, [1] to show that the fibre of the Hitchin
map is essentially the compactification by rank 1 torsion free sheaves of the Prym of the
double cover Xy — X. In order to prove the connectedness of the fibre, we made use of
the the compactification of the Jacobian of X by the parabolic modules of Cook [6, 7]. One
advantage of this compactification is that it fibres over the Jacobian of the normalisation
of X, as opposed to the compactification by rank one torsion free sheaves. In the case of
reducible spectral curve X, we gave a direct description of the fibre as a stratified space.
All together, the statement of our result, adapted to the situation under consideration in
Proposition 3.6, is the following.
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Theorem 3.8 ([23]). Consider the Hitchin map H : MglK — H°%(X,&%). For any s,
H~1(s) is connected. Moreover, for s # 0, the dimension of the fibre is dim(H~1(s)) =
—d+3g-3.

As Px is connected and of dimension 4g — 4 — 2d, this settles Theorem 3.7.
The following corollary of Theorem 3.7 is immediate.

Corollary 3.9. If g — 1 < d < 2g — 2, then the moduli space Ny(d) is connected.

For the cases 0 < d < g — 1, we must take into account other values of the parameter
and not just a,.

3.3 Critical values and wall-crossing

Having established the connectedness of the space Na; (d) in Theorem 3.7, the purpose of
this section is to study the variation of the moduli spaces N, (d) with the stability parameter
a. Recall that the goal is to be able to say something about the connectedness of Ny(d). As
in several other cases [38, 4], we have critical values for the parameter. These are special
values ay, for which the a-semistability condition changes. One proves that indeed there are
a finite number of these critical values and, more precisely, that « is a critical value if and
only if it is equal to d/2 or to oy, = [d/2] —k, with k = 0,...,—d+g—1+[d/2]. By definition,
on each open interval between consecutive critical values, the a-semistability condition does
not vary, hence the corresponding moduli spaces are isomorphic. If aZ‘ denotes the value
of any parameter between the critical values oy, and a1, we can write without ambiguity
Na;: (d) for the moduli space of a;—semistable quadric bundles of for any « between oy and
agy1. Likewise, define Na; (d), with a; denoting any value between the critical values og_1
and ay. With this notation we have Na,j (d) = Na’;rl (d).

The information obtained so far on the variation of N, (d) with a and d is summarised
in the next graphic.

dA

292 Above the line d = 29 — 2, N, (d)
is empty as well as on the right
of the line & = d/2. For a fixed
d < 2g — 2, the region on the left
7 of the line @« = a, = d— g+ 1,
4 is the region Na; (d) described in
the previous section, where there
are no critical values. The criti-

5 / cal values are represented by the
& / dots between the lines o = «,,, and
a=d/2.

A

Given a critical value o we have the corresponding subvariety S_+(d) C N_+(d) con-
k k

sisting of those pairs which are a:—semistable but o, -unstable. In the same manner, define

the subvariety Sa; (d) C Na; (d). Consequently,
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So the spaces S i(d) encode the difference between the spaces N k( ) and N_+ ( ) o
opposite sides of the critical value ay. This difference is usually known as the wall- crossmg
phenomena through ay. In order to study this wall-crossing we need a description of the
spaces Saki (d).

In Section 3 of [22] we studied these So (d) for any critical value. In particular, it was
enough to conclude that they have high codimension in NV, +(d). For technical reasons, we
had to impose the condition d < g — 1. More precisely, we have the following.

Proposition 3.10. Suppose that d < g—1. Then dim N, (d) = Tg—7—3d, for any a < d/2.
Moreover, for any k, the codimensions of S.+(d) C N_+(d) are strictly positive.
k k

3.4 Connectedness of the moduli spaces of quadric bundles

Since we already know from Theorem 3.7 that N_- ( ) is connected for any d < 2g — 2,
Proposition 3.10 yields the following (cf. [22, Theorem 5. 3]):

Theorem 3.11. The moduli spaces N, (d) are connected for any d < g—1 and any o < d/2.
Corollary 3.12. If0 < d < g — 1, then the moduli space Ny(d) is connected.

Recall that we want to study the connected components of the moduli space Ny(d) of
0-polystable quadric bundles, for any 0 < d < 29 — 2. From Corollaries 3.9 and 3.12 we
see that the only remaining case to understand is when d = g — 1. Notice that the space
No(g — 1) is really N, (g —1). Now, although the codimensions of every S i(d) are only
known under the condition d < g — 1, it follows from Corollaries 3.11 and 3. 15 of [22] that
the codimensions of both S i( ) are known to be positive also when d = g — 1. From
this, arguing as in the last paragraph of the proof of [22, Theorem 5.3], we prove that also
No(g — 1) is connected. So we conclude that:

Theorem 3.13. The moduli space of 0-polystable quadric bundles of degree d is connected
for every 0 < d < 2g — 2.

4 Conclusion and further remarks

4.1 Non-maximal components for Sp(4,R) and SOy(2, 3)

Proposition 2.11 and Theorem 3.13 imply then that we have achieved our objective of calcu-
lating the number of connected components of the moduli space of Sp(4, R)-Higgs bundles
over X, with non-maximal and non-zero Toledo invariant:

Theorem 4.1. If 0 < |d| < 2g — 2 then My4(Sp(4,R)) is connected.

This theorem has in fact been proved before [22], by O. Garcia-Prada and I. Mundet i
Riera in [16], using different techniques. More precisely, they do consider quadric bundles,
but prove the connectedness directly, i.e., fixing & = 0 and not implementing the variation
of the parameter.

Our method easily generalises for U-quadric bundles — see Remark 2.9 — for any line bun-
dle U. In particular, if we consider LK-quadric bundles, with L some line bundle of degree 1,
then these are related with SO¢(2, 3)-Higgs bundles with non-maximal (and non-zero) Toledo
invariant, in the same way K-quadric bundles arise in the Sp(4,R) case. Applying Definition
2.1, it is easy to check that an SO(2, 3)-Higgs bundle is defined by a tuple (L, W, Qw, 3,7)
where L is a line bundle, (W, Qw ) is an orthogonal rank 3 bundle and the Higgs field is
defined by maps 8 : W — LK and v : W — L™'K. These are topologically classified by
the degree d of L (this is the Toledo invariant) and by the second Stiefel-Whitney class wo
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of W. Note that SO¢(2, 3) is isomorphic to PSp(4,R). Moreover, an SO¢(2, 3)-Higgs bundle
lifts to an Sp(4, R)-Higgs bundle if and only if d = wy mod 2.

The precise same methods that we described for Sp(4,R), yield then the following (see
[22, Theorem 6.26]):

Theorem 4.2. If0 < |d| < 2g — 2 and wy € Z/2 then Mg.,(S00(2,3)) is connected.

Recalling that non-abelian Hodge theory implies that the moduli space of G-Higgs bun-
dles over X is homeomorphic to the space of conjugacy classes of reductive representations
of m(X) in G (cf. Remark 2.6), we conclude the both Theorems 4.1 and 4.2 have their
counterparts on the representations side (see [16, 22] for the detailed statements).

4.2 Some different directions
4.2.1 Torelli theorem

Our method to analyse the components of the moduli spaces N, (d) of a-semistable quadric
bundles of degree d was to start with the study in the lowest extreme of «, that is the study of
N - (d). One can ask what happens in the highest possible extreme, namely o = aps = d/2.

Since this is a critical value, take a slight lower value, o, = d/2 —¢, for a small € > 0. Here,
different phenomena arise.

Briefly, it is easy to check that if (V,v) is aj,-semistable, then V is itself semistable as a
rank 2 vector bundle. If M (d) denotes the moduli space of polystable rank 2 degree d vector
bundles on X, this yields a forgetful map  : ./\/'a& (d) = M(d). If d = 2g — 2, this map is an
embedding because N, s (d) is, as we saw, the moduli of orthogonal vector bundles and thus
follows from [36]. If g—1 < d < 2g—2, the determination of the image of 7 is a Brill-Noether
problem. If d < g — 1, « is surjective and if, further, d < 0, the map 7, suitably restricted,
is a projective bundle over the stable locus M*(d) C M(d). This is explained in Proposition
3.13 of [22].

So assume d < 0, and from now on let us just consider quadric bundles (V,~) where the
determinant of V is fixed to be some line bundle A of degree d. Let N,(A) C N,(d) and
M(A) € M(d) denote the corresponding obvious moduli spaces. Using the projective bundle
7 onto the stable locus of M(A) and through a detailed analysis of the the smooth locus
NE™(A) € Ny (A), we were able to obtain some geometric and topological results on N, (d).
This procedure is taken in detail in [31] again in the more general setting of U-quadric
bundles.

For instance we proved that A (A) is irreducible and N:™(A) is simply-connected —
see Corollaries 4.3 and 4.4 of [31]. The irreducibility was already known from [19], using
different methods.

Under some slight conditions on the genus of X, we calculated the torsion-free part of
the first three integral cohomology groups of the smooth locus N5™(A) C N,(A) for any
«. In particular [31, Proposition 5.6] says that H?(N:™(A),Z) is isomorphic to H(X,Z).
This fact, together with the assumption that the genus of X is at least 5, and after properly
defining a polarisation on H3(N:™(A),Z) compatible with the one on H'(X,Z), allowed
us to prove that a Torelli type theorem holds for N, (A). From this it follows that the
same is also true for the non-fixed determinant moduli. To emphasise now the base curve,
write Nx o(A) for the moduli space of a-polystable quadric bundles of rank two with fixed
determinant A on X. Let Nx o(d) be the same thing but just fixing the degree and not the
determinant.

Theorem 4.3 ([31]). Let X and X' be smooth projective curves of genus g,g' > 5, A and A’
line bundles of degree d < 0 and d’ < 0 on X and X', respectively. If Nx,o(A) = Nx/ o(A)
then X = X'. The same holds for Nx o(d) and Nx: (d').

In other words, the isomorphism class of the curve X is determined by the one of the
projective variety Ny o(A).
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4.2.2 Higher ranks

One natural question is to wonder if the procedure we described here can be generalised
to ranks higher than 2. First, Proposition 2.11 is true for any rank (it is even true for
any real reductive Lie group). Proposition 2.7 also generalises in a straightforward way for
Sp(2n,R) for n > 2, so we are again lead to the study of higher rank quadric bundles.
The technical problems start here because the a-semistability condition can be much more
complicated in higher rank, involving not only subbundles but filtrations (see [19] and [18]).
One consequence is that the study of N, - (d) and mainly of Saf (d) should become much
more complicated.
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