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Abstract. Never minimal automata, introduced in [4], are strongly con-
nected automata which are not minimal for any choice of their final
states. In [4] the authors raise the question whether recognizing such
automata is a polynomial time task or not. In this paper, we show that
the complement of this problem is equivalent to the problem of checking
whether or not in an edge-colored graph there is a bipartite subgraph
whose edges are colored using all the colors. We prove that this graph
theoretic problem is NP-complete, showing that checking the property
of never-minimality is unlikely a polynomial time task.

1 Introduction

Let A = 〈Q,Σ, δ〉 be a deterministic (not necessarily complete) finite-state
automaton (DFA). The action of the transition function δ can naturally be ex-
tended to the free monoid Σ∗. This extension will still be denoted by δ. For
convenience for each v ∈ Σ∗ and q ∈ Q we will write q . v = δ(q, v) and put
S . v = {q . v | q ∈ S} for any S ⊆ Q. A congruence σ of the automaton A is an
equivalence relation on Q such that if qσq′ then (q . u)σ(q′ . u) for all u ∈ Σ∗. By
M(A ) we denote the set of minimal congruences of A . In [4] the authors intro-
duce some classes of automata with extremal conditions. The class of uniformly
minimal automata is formed by strongly connected automata which are minimal
for any choice of the final states. In this paper they also provide a characteriza-
tion in term of the state-pair graph which leads to a polynomial time algorithm
to decide whether a given DFA is uniformly minimal. This class has also inter-
esting connections with multi-entry automata and symbolic dynamics. The other
interesting case introduced in [4] is the opposite extremal case of never-minimal

automata which is considered in our paper.

Definition 1. Except for the last section, we restrict our attention to strongly

connected automata. We say that a DFA A = 〈Q,Σ, δ〉 is never-minimal if and

only if for any F ⊆ Q and i ∈ Q the automaton Ai,F = 〈Q,Σ, δ, i, F 〉 is not

minimal.

In [4] the authors exhibit an infinite sequence of never-minimal automata and
raise the problem of characterizing such property in order to give a polynomial
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time algorithm for recognizing such automata. Formally NEVER-MINIMAL is the
problem that given in input a strongly connected DFA A checks whether or
not A is never-minimal. In this paper we prove that co-NEVER-MINIMAL is an
NP-complete showing that NEVER-MINIMAL is unlikely in P.
The paper is organized as follows. In Section 2 we introduce the concept of
syntactic graph which is useful in characterizing never-minimal automata. In
Section 3 we introduce some graph theoretic problems which are proved to be
NP-complete. This graph theoretic problems turn out to be equivalent to the
DISJUNCTIVE SET problem already considered in [1] in which the authors show
the NP-completeness. However our reduction gives the NP-completeness for
a smaller class. In Section 4 we prove that co-NEVER-MINIMAL is equivalent to
the DISJUNCTIVE SET problem showing that this problem is also NP-complete.
Finally in Section 5 we explore some connections with the SYNTACTIC MONOID

problem (cf. [1]).

2 The syntactic graphs

In this paper we deal with graphs which are simple undirected and without
loops. Given a symmetric, reflexive relation R ⊆ V ×V , there is a natural way to
associate to R a graph G(R) = (V,E). Namely for each pair of distinct elements
x, y we say that {x, y} ∈ E if (x, y) ∈ R. Conversely a graph G gives rise to a
symmetric reflexive relation R(G) in the obvious way. We say that a family R of
equivalence relations on a set V is orthogonal (or pairwise separating in [1]) if for
any pair R,R′ ∈ R of distinct relations, R ∩ R′ = 1V , where 1V is the identity
relation on V . In [4] the authors introduce the state-pair graphs as a tool to
characterize uniformly minimal automata. We introduce an analogous tool which
is a slight generalization of these graphs. This will be useful to characterize never-
minimal automata. For any pair x, y of distinct states we associate an undirected
graph Gx,y called the syntactic graph generated by the pair x, y.

Definition 2 (syntactic graph of the pair {x, y}). Let x 6= y be two states

of the automaton A = 〈Q,Σ, δ〉. The syntactic graph of the pair {x, y} is the

undirected graph Gx,y = (Q,Ex,y) having as set of vertices Q and the set of

edges Ex,y formed by the pair {α, β} with α 6= β such that there is some u ∈ Σ∗

with {x, y} . u = {α, β}. We denote by Γ i
x,y, for i = 1, . . . , C(x, y), the connected

components of Gx,y.

Given a set F ⊆ Q, the syntactic congruence σF generated by F is the largest
congruence saturating F and it is defined by aσF b if ∀w ∈ Σ∗ a .w ∈ F ⇔
b .w ∈ F . The following proposition characterizes the syntactic congruences σF ,
F ⊆ Q with xσF y in term of the connected components of the syntactic graph
Gx,y. Using the notation of Definition 2 we have the following proposition.

Proposition 1. Let x 6= y be two states of the automaton A and let F ⊆ Q.

Then σF is a syntactic congruence with xσF y if and only if

F =
⋃

i∈I

Γ i
x,y
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for some I ⊆ {1, . . . , C(x, y)}. Moreover the number of sets F ⊆ Q such that

xσF y is 2|C(x,y)| − 1.

Proof. This is a consequence of Definition 2. ⊓⊔

Therefore, given x, y, the connected components of Gx,y describe all the possible
subsets F ⊆ Q such that x, y are identified via the syntactic congruence σF .
We have a first characterization of never-minimal automata given in term of
their syntactic graphs.

Theorem 1. A strongly connected DFA A = 〈Q,Σ, δ〉 is never-minimal if and

only if for all F ⊆ Q there is a pair of distinct elements x, y and a subset

I ⊆ {1, . . . , C(x, y)} such that

F =
⋃

i∈I

Γ i
x,y

Proof. Clearly A is never-minimal if and only if for all F ⊆ Q there is a pair of
distinct elements x, y such that xσF y. By Proposition 1 this is equivalent to say

F =
⋃

i∈I

Γ i
x,y

for some I ⊆ {1, . . . , C(x, y)}. ⊓⊔

We have the following fact.

Proposition 2. The equivalence relation σx,y ⊆ Q × Q defined by ασx,yβ if

α, β ∈ Γ i
x,y for some i ∈ {1, . . . , C(x, y)} is a congruence. Moreover it is the

smallest congruence which identifies x with y.

Proof. Suppose that for some a ∈ Σ, α . a ∈ Γ j
x,y for some j ∈ {1, . . . , C(x, y)}.

Let α1, α2, . . . , αn be a path in Γ i
x,y connecting α = α1 with β = αn. Since

{αi, αi+1} ∈ Ex,y then the image of this path through the action . a is also a
path contained in some connected component which contains also α thus this
path is contained in Γ j

x,y, whence β . a ∈ Γ j
x,y. The last statement is also an easy

consequence of the definition of syntactic graph. ⊓⊔

Definition 3. Let G be the set of all syntactic graphs of the automaton A . We

define a preorder in G by Gx,y � Gx′,y′ if for every i ∈ {1, . . . , C(x, y)} there is

a j ∈ {1, . . . , C(x′, y′)} such that Γ i
x,y ⊆ Γ j

x′,y′ . Equivalently Gx,y � Gx′,y′ if and

only if the partition induced by the connected components of Gx,y is a refinement

of the partition induced by the connected components of Gx′,y′ , i.e. σx,y ⊆ σx′,y′ .

We have the following lemma.

Lemma 1. Let x, y be two distinct states of the automaton A = 〈Q,Σ, δ〉 and

let Γ i
x,y be a connected component of Gx,y. For any pair x′, y′ ∈ Γ i

x,y of distinct

vertices we have Gx′,y′ � Gx,y.



4 E. Rodaro, P. V. Silva

Proof. We remark that the statement of the lemma is equivalent to the following:
if x′, y′ are two distinct pair of states with (x′, y′) ∈ σx,y then σx′,y′ ⊆ σx,y. By
Proposition 2, σx,y is a congruence, moreover by the definition x′σx,yy

′. By the
minimality of σx′,y′ it is clear that σx′,y′ ⊆ σx,y, i.e. Gx′,y′ � Gx,y. ⊓⊔

We remark that the relation ∼ defined on (G ,�) by Gx′,y′ ∼ Gx,y if Gx′,y′ � Gx,y

and Gx,y � Gx′,y′ is an equivalence relation such that G / ∼ is endowed with an
obvious partial order which is isomorphic to the partial order ({σx,y : x 6= y},⊆).
In view of Proposition 2 it is not difficult to see that M(A ) coincides with the
set of minimal elements of ({σx,y : x 6= y},⊆)). We have the following property.

Proposition 3. The family of equivalence relations M(A ) is orthogonal. More-

over the automaton A = 〈Q,Σ, δ〉 is never-minimal if and only if for any subset

F ⊆ Q there is a σ ∈ M(A ) such that F is union of equivalence classes of σ.

Proof. Let σx,y, σx′,y′ ∈ M(A ). Suppose that σx,y ∩ σx′,y′ 6= 1Q and so let
(z, t) ∈ σx,y ∩ σx′,y′ for some pair of distinct states z, t ∈ Q. By Lemma 1 we
get Gz,t � Gx,y and Gz,t � Gx′,y′ , thus σz,t ⊆ σx,y and σz,t ⊆ σx′,y′ . Hence by
the minimality of σx,y, σx′,y′ we have σx,y = σz,t = σx′,y′ . The last statement is
a consequence of Theorem 1 and the definition of M(A ). ⊓⊔

3 The rainbow bipartite subgraph problem

In this section we introduce some graph theoretic problems and we study their
computational complexity class. In this paper a colored graph is a pair (G,ϕ)
where G = (V,E) is a graph and ϕ is a function, called coloring, from the set of
edges E to a set C = {1, . . . , N} of colors. This definition can be extended to the
case of list colored graphs (G,ϕ), where the list coloring is a function ϕ : E → 2C .
For each i ∈ C byG(i) we denote the maximal subgraph ofG formed by the edges
whose lists contain i. We call the subgraphs G(i) = (V,EG(i)), i = 1, . . . , n, the
maximal monochromatic components of (G,ϕ). It is clear that a list coloring ϕ is
completely described by all the maximal monochromatic components {G(i)}i∈C .
Namely ϕ({α, β}) = {i ∈ C : {α, β} ∈ EG(i)}.
We say that a coloring ϕ is splittable if there is a partition of the set of vertices
of V into two sets V1, V2 such that for any i ∈ {1, . . . , n} there is an edge {v1, v2}
with v1 ∈ V1, v2 ∈ V2 such that ϕ({v1, v2}) = i. In this case we say that the
partition V1, V2 splits ϕ. A more graph-theoretic way to see this property is via
the concept of rainbow subgraphs (cf. [2]), i.e. subgraphs (in the weakest sense)
such that all the edges are colored differently. Indeed a coloring ϕ is splittable if
there is a bipartite rainbow subgraph of G colored using all the colors {1, . . . , n}.
Everything extends naturally to the case of the list coloring. Indeed we say that
a list coloring ϕ is list splittable (for short splittable) if there is a partition of V
into two sets V1, V2 such that for any i ∈ {1, . . . , N} there is an edge {v1, v2}
with v1 ∈ V1, v2 ∈ V2 such that i ∈ ϕ({v1, v2}). Also in this case a similar
characterization holds in term of bipartite subgraphs. Indeed a list coloring ϕ
is splittable if there is a bipartite subgraph such that each color is contained in
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some color list of some edge. Extending the definition of n-bounded coloring (cf.
[2]) from colored graphs to list colored graphs, we say that a list coloring ϕ of a
graph G is n-bounded if each color appears at most n times in the lists of colors
associated to the edges.
With the previous definitions it makes sense defining the problem SPLITTABLE.
This is the problem of determining, given a colored graph (G,ϕ), whether ϕ is
splittable. Analogously LIST-SPLITTABLE is the problem of determining, given a
list colored graph (G,ϕ) whether ϕ is list splittable. The n-SPLITTABLE problem
is the sub-problem of checking, given a n-bounded colored graph (G,ϕ), whether
ϕ is splittable. n-LIST-SPLITTABLE is defined analogously. We say that the (list)
coloring ϕ on a graph G = (V,E) is anti-incidence if for all pairs of incident
edges {v, v1}, {v, v2}, ϕ({v, v1}) ∩ ϕ({v, v2}) = ∅. Although LIST-SPLITTABLE

may appear a more difficult problem with respect to SPLITTABLE, the following
proposition shows that this is not the case.

Proposition 4. There is a reduction η from LIST-SPLITTABLE to SPLITTABLE

bringing a n-bounded list colored graph (G,ϕ) into a n-bounded colored graph

(G′, ϕ′). Moreover we can find a reduction η′ which brings a n-bounded col-

ored graph (G,ϕ) into a n-bounded colored graph (G′′, ϕ′′) such that ϕ′′ is anti-

incidence.

Proof. Given an instance (G,ϕ) with G = (V,E) of LIST-SPLITTABLE, where ϕ
is a list coloring on the set of colors C = {1, . . . , N}, we reduce it to an instance
(G′, ϕ′) with G′ = (V ′, E′) of SPLITTABLE. Starting from (G,ϕ) we iteratively
apply the following construction. For each edge {v, v′} of a list colored graph
(H,ψ) with H = (Y, T ) such that ψ({v, v′}) = {i0, . . . , ik} with k ≥ 1, we add
k+1 new vertices v, v1, . . . , vk, 2k+1 new edges and k+1 new colors c0, . . . , ck.
For each j ∈ {1, . . . , k} we add an edge {v′, vj} colored by ψ′({v′, vj}) = ij and
take ψ′({v′, v}) = i0. Putting v0 = v we also add for each j ∈ {0, . . . , k} edges
{vj , v} colored by ψ′({vj , v}) = cj (see Fig. 1).

Fig. 1. One step of the iterated construction.

Leaving ψ = ψ′ for the other edges, we obtain a new list colored graph (H ′, ψ′)
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withH ′ = (Y ′, T ′) such that |T ′|−|T | ≤ 2N−1 and the number of added colors is
upper bounded by N . It is clear that after at most |E| iterations we get a colored
graph (G′, ϕ′) with |E′| ≤ 2N |E| whose number of colors is upper bounded by
N |E| + N . Thus to prove that η is a reduction we have to show that ϕ is list
splittable iff ϕ′ is splittable. To prove it, it is enough to show that the splittability
property is preserved in each step of the previous iteration. Indeed suppose that
ψ′ is list splittable in H ′ and let Y ′

1 , Y
′
2 be the associated partition. We observe

that, since the edges {vj , v} for j ∈ {0, . . . , k} are the only edges in H ′ colored
by c0, . . . , ck, then v ∈ Y ′

l for some l ∈ {1, 2} iff v0, . . . , vk ∈ Y ′
3−l. We claim that

Y ∩ Y ′
1 , Y ∩ Y ′

2 is a partition that splits ψ. Indeed let c ∈ {1, . . . , N}. Since ψ′

is splittable there is and edge {w, z} with c ∈ ψ′({w, z}) and w ∈ Y ′
l , z ∈ Y ′

3−l.
If w, z ∈ Y we are done, hence we may assume without loss of generality that
w = v′ ∈ Y and z belongs to the added vertices {v1, . . . , vk}, say z = vj . Since
w = v′ ∈ Y ′

l ∩ Y and z = vj ∈ Y ′
3−l, it follows from the previous remark that

v ∈ Y ′
l and v ∈ Y ′

3−l ∩ Y . Since c ∈ ψ({v, v′}), we get that Y ∩ Y ′
1 , Y ∩ Y ′

2 splits
ψ.
Conversely suppose that Y1, Y2 splits the list coloring ψ. Suppose that {v, v′} ∈
T with v ∈ Yl, v

′ ∈ Yk for some k, l ∈ {1, 2}. We put all the added vertices
{v1, . . . , vk} in Y ′

l and v in Y ′
3−l. In this way all the added colors are splitted by

Y ′
l , Y

′
3−l. Thus, by the construction of the graph H ′, we get that Y ′

l , Y
′
3−l splits

ψ′.
It is easy to check that if ϕ is a n-bounded coloring then also ϕ′ is n-bounded.
The last statement can be obtained in a similar way. Indeed starting from the
previous colored graph (G′, ϕ′), to obtain (G′′, ϕ′′) it is enough to apply the
following construction iteratively. Suppose that the colored graph (H,ψ) has a
vertex v such that there are two incident edges {v, v1}, {v, v2} with ϕ({v, v1}) =
ϕ({v, v2}) = i. Then build a new colored graph (H ′, ψ′) erasing from H the edge
{v, v2} and adding two new vertices v, v′ and the following three new edges:
{v′, v2}, colored by ψ′({v′, v2}) = i, and the edges {v, v}, {v, v′} colored by two
new colors ψ′({v, v}) = c, ψ′({v, v′}) = c′. Since c, c′ are new colors it is easy
to see that in a splitting, v, v′ belong to the same component of the partition.
Therefore ψ′ is spittable iff ψ is splittable. Since in each iteration we reduce the
number of incident edges having the same colors, the number of iterations is
upper bounded by N(|V ′| − 2) where N is the number of colors of (G′, ϕ′) and
G′ = (V ′, E′). Thus |E′′| ≤ 2N(|V ′| − 2) and so η′′ is a reduction. ⊓⊔

Since SPLITTABLE is a sub-problem of LIST-SPLITTABLE, from Proposition 4 we
have that actually SPLITTABLE and LIST-SPLITTABLE are equivalent problems.
It is easy to see that both 1-LIST-SPLITTABLE and 1-SPLITTABLE coincide with
the problem of checking if a graph is bipartite and so they belong to the com-
putational class P. The following theorem shows that things change radically
when we consider 2-SPLITTABLE, indeed we have the following:

Theorem 2. 2-SPLITTABLE is NP-complete.

Proof. The problem is clearly in NP. To prove the completeness we reduce
NAESAT to 2-SPLITTABLE. NAESAT is the problem of checking, given a boolean
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formula in CNF

F =

m
∧

i=1

Ci

where in each clause Ci there are three literals, whether there is a truth assign-
ment such that in no clause all three literals are equal in truth value (neither all
true nor all false). This is a well know NP-complete problem [3].
Suppose that the boolean formula F is on the set of variables X = {x1, . . . , xn}.
We build a graph G = (V,E) and a 2-bounded list coloring ϕ in the follow-
ing way. The set of vertices is V = X ∪ {¬x : x ∈ X}. The set of colors
C = {1, . . . ,m, t1, . . . , tn} corresponds to the set of clauses and the set of vari-
ables. The set of edges contains all pairs {x,¬x} for x ∈ X and tj ∈ ϕ({xj ,¬xj})
for all j ∈ {1, . . . , n}. Moreover for each color i ∈ {1, . . . ,m} suppose that the
clause Ci = li1∨l

i
2∨l

i
3. Then {li1, l

i
2}, {l

i
2, l

i
3} ∈ E and i ∈ ϕ({li1, l

i
2}), i ∈ ϕ({li2, l

i
3}).

Clearly (G,ϕ) is a 2-bounded list colored graph. Let us prove that ϕ is list split-
table if and only if there is a truth assignment such that in no clause all the
three literals are all equal in truth value.
Suppose that ϕ is list splittable, and consider the corresponding partition of V
into two disjoint sets V1, V2. Since for each i = 1, . . . , n, ti is contained only in
the list coloring of the the edge {xi,¬xi}, it is clear that if a literal l ∈ V1 then
¬l ∈ V2. Therefore there is a truth assignment that makes (for instance) all the
literals of V1 true and all the literals of V2 false. Since ϕ is list splittable, for
each clause Ci = li1 ∨ l

i
2 ∨ l

i
3 there is one edge {α, β} among {li1, l

i
2}, {l

i
2, l

i
3} such

that α ∈ V1, β ∈ V2. Hence in each clause there is a literal which is true and one
which is false.
Conversely suppose that there is a truth assignment such that in no clause all
the three literals are equal in truth value. Let V1 be the set of literals in V
that are true and V2 = V \ V1 be the one that are false. Clearly if l ∈ V1

then ¬l ∈ V2 thus the colors ti, i = 1, . . . , n which are contained only in the
edges {xi,¬xi} are clearly splitted. Moreover in each clause Ci = {li1, l

i
2, l

i
3}

there are two literals say α, β ∈ Ci which are respectively true and false, whence
α ∈ V1, β ∈ V2. Since {li1, l

i
2}, {l

i
2, l

i
3} ∈ E it is not difficult to see that there is

an edge {α′, β′} ∈ {{li1, l
i
2}, {l

i
2, l

i
3}} with α′ ∈ V1, β

′ ∈ V2 and so the color i is
splitted. Since this holds for all the colors i ∈ {1, . . . ,m} we can conclude that
V1, V2 splits ϕ.
By now we have reduced NAESAT to LIST-SPLITTABLEwith a 2-bounded list col-
oring graph. Hence by Proposition 4 we can reduce NAESAT to 2-SPLITTABLE. ⊓⊔

Let (G,ϕ) be a list colored graph with G = (V,E) and ϕ : E → 2C for
some set of colors C. We say that ϕ is chromatic-transitive if for any i ∈ C
the connected components of G(i) are complete subgraphs. Equivalently iff the
associated relation R(G(i)) is an equivalence relation on V . Therefore we can
define the chromatic-transitive closure of (G,ϕ) as the list colored graph (G,ϕ)
with vertex set V and whose maximal monochromatic components are

{

G

(

R(G(i))
tr

)}

i∈C
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where ·tr is the transitive closure operator. The definition of chromatic-transitive
closure is interesting under the following proposition.

Proposition 5. Let (G,ϕ) be a list colored graph. Thus (G,ϕ) is list splittable

if and only if (G,ϕ) is list splittable.

Proof. Since G is a subgraph of G and ϕ is an extension of ϕ, then if (G,ϕ) is
list splittable then also (G,ϕ) is list splittable. Conversely, assume that (G,ϕ)
is list splittable and let V1, V2 be a corresponding partition of V . Given a color
i ∈ C, we have an edge {v0, w} in G(i) with v0 ∈ V1 and w ∈ V2. Thus we have
a sequence of edges {v0, v1}, . . . , {vm−1, vm} in G(i) with vm = w. Since v0 ∈ V1

and w ∈ V2, there is a j ∈ {1, . . . ,m} such that (vj−1, vj) ∈ V1 × V2 ∪ V2 × V1

and so (G,ϕ) is list splittable by considering the partition V1, V2. ⊓⊔

In view of this proposition and the fact that a list coloring is determined by its
maximal monochromatic components we define the problem SEPARATING. Given
a set R of equivalence relations on a set V as input, SEPARATING is the problem
of checking whether or not there is a set F ⊆ V which is not saturated by any
equivalence relation of R, i.e. for any σ ∈ R, F is not union of equivalence classes
of σ. The following lemma is an easy consequence of the definitions.

Lemma 2. Let R = {σ1, . . . , σk} be a family of equivalence relations on a set

V and let (G,ϕ) be the associated list colored graph:

G = G(∪σ∈Rσ), ϕ({x, y}) = {i ∈ {1, . . . , k} : (x, y) ∈ σi}

There is a set F ⊆ V which is not saturated by any σ ∈ R if and only if (G,ϕ)
is splittable.

By Proposition 5 and Lemma 2 it immediately follows that LIST-SPLITTABLE

and SEPARATING are equivalent problems. The problem ORTHOGONAL-SEPARATING

is the analogous problem but with the difference that the input R is a family of
orthogonal equivalence relations. This problem has been introuced in [1] under
the name DISJUNCTIVE SET as a clue of the possible NP-completeness of the
SYNTACTIC MONOID problem. In the same article it is provided a proof of the NP-
completeness of DISJUNCTIVE SET when are considered families of the following
kind:

1. (Corollary 2.5 [1]) Orthogonal families R such that each equivalence relation
σ ∈ R has at most three non-singleton classes and these non-singleton classes
have exactly two elements.

2. (Corollary 2.4 [1]) Orthogonal families R such that each equivalence relation
σ ∈ R has exactly one non-singleton class and this non-singleton class has
at most four elements.

We remark that ORTHOGONAL-SEPARATING restricted to the case (2) with families
R such that each equivalence relation σ ∈ R has exactly one non-singleton class
and this non-singleton class has at most two elements elements is equivalent
to 1-SPLITTABLE, i.e. to check whether or not the associated colored graph as
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in Lemma 2 is bipartite. Therefore in this case ORTHOGONAL-SEPARATING is in
P. The same occurs if we restrict it to the case (1) allowing the equivalence
relations to have at most one non-trivial equivalence class. The following theorem
establishes the exact borderline for which ORTHOGONAL-SEPARATING turns out to
be NP-complete.

Theorem 3. ORTHOGONAL-SEPARATING is still NP-complete if we assume

1. Orthogonal families R such that each equivalence relation σ ∈ R has at most

two non-singleton classes and these non-singleton classes have exactly two

elements.
2. Orthogonal families R such that each equivalence relation σ ∈ R has ex-

actly one non-singleton class and this non-singleton class has at most three

elements.

Proof. We prove the statement (1). Case (2) can be obtained analogously by the
structure of the obtained graph of Theorem 2, Lemma 2 and a similar technique
of Proposition 4 to pass from a list coloring to a coloring.
By Theorem 2, 2-SPLITTABLE is NP-complete. Thus given a 2-bounded color-
ing graph (G,ϕ) with G = (V,E) and ϕ : E → C, by Proposition 4 we can
suppose without loss of generality that ϕ is anti-incidence. Therefore for each

color i ∈ C, R(G(i))
tr

= R(G(i)) and so the transitive closure (G,ϕ) is equal to
(G,ϕ). Moreover since (G,ϕ) is a colored graph, the associated family of equiv-
alence relations R = {R(G(i)) : i ∈ C} is orthogonal. By Lemma 2, R is in
ORTHOGONAL-SEPARATING if and only if ϕ splits. Since ϕ is a 2-bounded coloring
and (G,ϕ) = (G,ϕ), it is also evident that the family R = {R(G(i)) : i ∈ C} is
formed by equivalence classes composed by at most two elements and there are
at most two equivalence classes which are not singletons. ⊓⊔

4 NP-completeness of co-NEVER-MINIMAL

In this section we show that, given an orthogonal family R of equivalence rela-
tions, we can always build a strongly connected DFA A having R as the set of
minimal congruences of A . Indeed we have the following theorem.

Theorem 4. Let R = {σ1, . . . , σm} be an orthogonal family of equivalence re-

lations on a set Q and let G = G(∪σ∈Rσ) with G = (Q,E). There is a strongly

connected DFA AR = 〈Q,Σ, δ〉 with

|Σ| ≤ 3
∑

σ∈R

|Q/σ| +

(

|Q|

2

)

− |E|

such that M(AR) = R.

Proof. For each σ ∈ R suppose that in Q/σ there are [q1]σ, . . . , [qt]σ non sin-
gleton classes and [qt+1]σ, . . . , [qn]σ singleton classes, where n = |Q/σ|. Putting
[qi]σ = {q1i , . . . , q

ni

i } for i = 1, . . . , t, we define an alphabet

Σσ = {a(σ)1, b(σ)1, . . . , a(σ)t, b(σ)t, c(σ)1, . . . c(σ)n}
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The action is defined by the following rules

δ(qj
i , a(σ)i) = qj+1 modni

i ,

δ(q1i , b(σ)i) = q1i , δ(q
ni

i , b(σ)i) = q1i , δ(q
s
i , b(σ)i) = qs+1

i for s = 2, . . . , ni − 1,

δ(q1i , c(σ)i) = q1i+1 mod t, δ(q
2
i , c(σ)i) = q2i+1 mod t,

δ(q1i , c(σ)i) = q1i+1 for t ≤ i < n, δ(q1n, c(σ)n) = q1t

The alphabet Σ = ∪σ∈RΣσ∪Σ′ is the disjoint union of the alphabets Σσ, σ ∈ R

and an alphabet Σ′ used to satisfy the minimality condition M(AR) = R.
The action of Σ′ is defined in the following way. For any pair p, q of distinct
elements such that (p, q) do not belong to ∪σ∈Rσ we have to satisfy the condition
σ ⊆ σp,q for some σ ∈ R. Therefore we define Σ′ = {a(p, q) : {p, q} /∈ E} where
G = G(∪σ∈Rσ). Regarding the action we first fix two states q, q′ such that
(q, q′) ∈ σ for some σ ∈ R and we put

δ(p, a(p, q)) = q, δ(q, a(p, q)) = q′.

It is not difficult to see that A is strongly transitive (in particular it is strongly
transitive even if we restrict the action to Σσ for any σ ∈ R). Moreover the
action δ is transitive on each σ ∈ R in the sense that if (x, y), (x′, y′) ∈ σ are
two distinct pairs with x 6= y and x′ 6= y′, then there is a word w ∈ Σ∗

σ such
that δ({x, y}, w) = {x′, y′}. Moreover since R is orthogonal the action of any
letter in Σ \Σσ brings any pair of distinct elements {x, y} with (x, y) ∈ σ into a
singleton. Thus for each σ ∈ R and for each pair (x, y) ∈ σ with x 6= y, we have
σx,y = σ. The minimality condition is also satisfied since for any {p, q} /∈ E we
have Gq,q′ ≺ Gp,q, i.e. σ ⊆ σp,q. Hence M(AR) = R and a simple computation
gives the bound for |Σ|. ⊓⊔

This theorem gives also a way to build never-minimal automata. Indeed to build
a never-minimal DFA, by Proposition 3, it is enough to consider an orthogonal
family R which is not in ORTHOGONAL-SEPARATING, and then apply the construc-
tion of Theorem 4 to R. A very simple class of orthogonal families which are not
ORTHOGONAL-SEPARATING are the families obtained from graphs which are not
bipartite. Indeed consider a non-bipartite graph G = (V,E), color it using the
identity map 1E : E → E where E is now the set of colors. Therefore the set

RG = {R(G(e)) : e ∈ E}

is clearly an orthogonal family of equivalence relations which saturates all the
subsets of V since, by Lemma 2, (G, 1E) is not splittable. We also remark that
condition C3 defined in [4] is translated to the condition that the colored graph
associated to the DFA which satisfies C3 contains a rainbow triangle and no
other edge is colored using colors of this triangle, whence this graph is clearly
non-splittable and so the automaton is never-minimal.
We conclude the section with the following consequences of Theorem 4.

Theorem 5. co-NEVER-MINIMAL is equivalent to ORTHOGONAL-SEPARATING.
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Proof. By Proposition 3, A = 〈Q,Σ, δ〉 is not never-minimal if and only if
M(A ) is a family of orthogonal relations belonging to ORTHOGONAL-SEPARATING.
It is straightforward to check that computing M(A ) is a polynomial time and
space task since the construction of the syntactic graphs is polynomial and there
are at most

(

|Q|
2

)

such graphs. Thus co-NEVER-MINIMAL is reducible to ORTHOGON

AL-SEPARATING. Conversely given an orthogonal family R = {σ1, . . . , σm} of
equivalence relations on a set Q by Theorem 4 we can build in polynomial space
an automaton AR = 〈Q,Σ, δ〉 with M(AR) = R. By Proposition 3, R is in
ORTHOGONAL-SEPARATING if and only if AR is not never-minimal. ⊓⊔

From Theorems 3, 5 we have also the following consequence.

Corollary 1. co-NEVER-MINIMAL is NP-complete.

5 Connections with the syntactic monoid problem

As already mentioned in [4], NEVER-MINIMAL is related to the SYNTACTIC MONOID

problem (cf. [1]). A finite monoid (M, ·) is called syntactic if there is a P ⊆ M
such that the congruence ∼P on M defined by

x ∼P y ⇔ ∀a, b ∈M(axb ∈M ⇔ ayb ∈M)

is the identity congruence on M . If a monoid M is the transition monoid of a
DFA A , and it is not syntactic, then A is never-minimal. However the problem
of the positioning among the complexity classes of this problem is still open.
To conclude the paper we give a characterization of the monoids which are not
syntactic in term of never-minimal automata. We consider complete automata
here, hence an automaton 〈Q,Σ, δ, i, F 〉 is minimal if and only if every vertex is
accessible from the initial vertex i and the Nerode equivalence defined by pN q
if p−1F = q−1F is the identity relation on Q.
Let (M, ·) be a finite monoid and let A ⊆ M be a set of generators for M .
The two-side Cayley automaton of M is the automaton Γ̂A(M) = 〈M,A∪A′, δ〉
where A′ = {a′ : a ∈ A} is a disjoint copy of A and ◦′ is an involution in (A∪A′)∗

such that (uv)′ = v′u′ for all u, v ∈ (A ∪A′)∗. The action δ is defined by:

∀a ∈ A, δ(u, a) = u · a, ∀a ∈ A′, δ(u, a′) = a · u

We have the following characterization.

Theorem 6. M is not syntactic if and only if Γ̂A(M) is never-minimal.

Proof. Assume first that M is syntactic. Then there exists some P ⊆ M such
that ∼P = 1M . We claim that (Γ̂A(M), 1, P ) is a minimal automaton. Since
every vertex is accessible from 1, it remains to show that the Nerode equivalence
is trivial. Let u, v ∈ M be different. Then (x, y) /∈∼P , hence we may assume
without loss of generality that xuy ∈ P and xvy /∈ P for some x, y ∈ M . It
follows that δ(u, x′y) = xuy ∈ P and δ(v, x′y) = xvy /∈ P , hence (u, v) /∈ N as
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required.
Conversely suppose that (Γ̂A(M), i, P ) is a minimal automaton. We claim that
∼P = 1M . Indeed, take u, v ∈M distinct. Since (u, v) /∈ N , we may assume that
δ(u,w) ∈ P and δ(v, w) /∈ P for some w ∈ (A ∪ A′)∗. Now there exist x, y ∈ M
such that δ(u,w) = xuy and δ(v, w) = xvy, hence u 6∼P v and so ∼P = 1M .
Therefore M is syntactic. ⊓⊔
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