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1 Introduction

Mathematically, a coupled cell network can be idealized as a directed graph representing

schematically a set of dynamical systems (the cells) that are coupled together, and the

couplings among them. The nodes of the graph represent the cells and edges represent

couplings. Here we consider that each cell represents a system of ordinary differential

equations (ODEs).

Networks appear in many areas of science. For example, many biological systems can

be modelled by networks of nonlinear dynamical systems. See Stewart [13] and references

therein.

The dynamics of a network of dynamical systems is constrained by the topology of

the graph. In particular, new phenomena can be typical for a given architecture, see

Golubitsky et al. [9]. It follows then that one important aspect in the study of networks

of dynamical systems is the understanding of the role of the network architecture in the

dynamics.

Following Stewart et al. [14] and Golubitsky et al. [11], we associate to each coupled

cell network a class of ODEs compatible with the structure of the network – the class

of coupled cell systems. More precisely, to each coupled cell we associate a choice of

cell phase space which we assume is a finite dimensional real vector space, the overall

phase space of the coupled cell system being the direct product of the cell phase spaces.

Cells represented by the same symbol have the same phase space and internal dynamics;

different couplings correspond to different edges.

To each cell c we can associate the set of edges with head cell c. Two cells in a network

are said to be isomorphic if there is an edge-type preserving isomorphism between their

sets of edges. The symmetry groupoid of a network is given by all those isomorphisms

between any two isomorphic cells in the network. The structure of a network can thus be

described in terms of the symmetry groupoid associated to the network. A vector field

corresponding to the coupled cell system is called admissible and respects the topology of

the network – it is equivariant by its symmetry groupoid. For a survey of this formalism

see Golubitsky and Stewart [10]. See also an alternative approach of Field [8].
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The number of coupled cell networks grows exponentially with the number of cells

and the number of edges. See Aldosray and Stewart [1] for the enumeration of networks

in which there is a single type of node and a single type of edge and all the cells are

isomorphic.

We follow the definition of coupled cell network introduced by Golubitsky et al. [11]

where self-coupling and multiarrows are permitted. As pointed in [11], it is possible

for two non-isomorphic coupled cell networks to generate the same space of admissible

vector fields, that is to be ODE-equivalent. See Dias and Stewart [7] for the definition of

ODE-equivalent coupled cell networks.

In [7] it is shown that two coupled cell networks are ODE-equivalent if and only if

they are linearly equivalent. Basically, the ODE-equivalence reduces to linear equivalence,

where two networks (with suitably identified phase spaces) are linearly equivalent if they

determine the same space of linear admissible vector fields.

As every coupled cell network in a given ODE-equivalence class determines the same

dynamical behaviour we look for the set of coupled cell networks in the ODE-class that

are more amenable to treat. We aim to find a kind of canonical normal forms – a set

of networks such that the number of edges is minimal among all the networks of the

ODE-equivalence class, which we call the minimal subclass.

Using the results of Dias and Stewart [7] on ODE and linear equivalence of networks

this problem can be posed in terms of the network adjacency matrices. That is, the

problem of finding all the minimal networks in a given ODE-equivalence class corresponds

to find all the minimal bases (with nonnegative integer entries) of the real vector space

generated by the adjacency matrices of the networks in the ODE-class. The minimal

bases define the adjacency matrices of the minimal networks.

For the coupled cell network represented in Figure 1 it is an easy linear algebra exercise

to prove that the coupled cell network in Figure 2 is the unique minimal network in its

ODE-equivalence class.

In general, the problem of finding the minimal subclass gets much more complicated.

For example, the minimal subclass of the coupled cell network in Figure 3 is given by the

minimal networks represented in Figure 4. In this case, the network has more than one
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Figure 1: Coupled cell network G1 with one cell-type and one edge-type.
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Figure 2: Minimal network G2 of the ODE-equivalence class of the coupled cell network

in Figure 1.

edge-type and the cells are all isomorphic. In general, an adjacency matrix of a network

with isomorphic cells is a
�

-linear combination of the adjacency matrices of any network

in its ODE-class. Given a graph with isomorphic cells in an ODE-class, we consider

the lattice consisting of the vectors with nonnegative integer entries in the real subspace

generated by the adjacency matrices of the graph. The minimal networks are obtained by

finding vectors (adjacency matrices) with shortest length in a cone of that lattice (whose

rank grows with the number of edge-types).

In this paper, we describe the minimal subclass of a given coupled cell network and

present an algorithm that computes it. The minimality of coupled cell networks basically

reduces to the minimality of homogeneous networks, that is, networks whose cells are all

isomorphic. We start by addressing the case of homogeneous networks (Theorem 8.7 and
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Figure 3: Coupled cell network with more than one edge type.
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Figure 4: Minimal networks of the ODE-equivalence class of the coupled cell network of

Figure 3.

Algorithm 8.8).

The rest of the paper is organized in the following way: Sections 2, 3 and 4 review

the basic concepts on coupled cell networks. Section 5 relates ODE and linear equiva-

lence of networks. The definition of minimality of networks appears in Section 6. The

minimality of homogeneous networks is addressed in Section 7, answered in Section 8

and illustrated in Section 9. The special case of identical-edge homogeneous networks is

treated in Section 10. Finally, in Section 11 we solve the general case using the results of

Section 8.
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2 Coupled Cell Networks

A coupled cell network can be represented schematically by a directed graph (see for e-

xample Tutte [15]) whose nodes correspond to cells and whose edges represent couplings.

See for example Figure 1 above. We employ the definition, introduced by Golubitsky et

al. [11], which permits multiple arrows and self-coupling.

Definition 2.1 [11] A coupled cell network G consists of:

(a) A finite set C = {1, · · · , n} of nodes or cells.

(b) An equivalence relation ∼C on cells in C.

The type or cell label of cell c is the ∼C-equivalence class [c]C of c.

(c) A finite set E of edges or arrows.

(d) An equivalence relation ∼E on edges in E.

The type or coupling label of egde e is the ∼E-equivalence class [e]E of e.

(e) Two maps H : E → C and T : E → C.

For e ∈ E we call H(e) the head of e and T (e) the tail of e.

(f) Equivalent edges have equivalent tails and heads. That is, if e1, e2 ∈ E and e1 ∼E e2,

then

H(e1) ∼C H(e2) T (e1) ∼C T (e2)

We write G = (C, E ,∼C ,∼E). 3

Remark 2.2 Observe that in this definition of coupled cell network, self-coupling is per-

mitted since H(e) = T (e) for e ∈ E is permitted. Also multiarrows are permitted since

we can have H(e1) = H(e2) and T (e1) = T (e2) for e1 6= e2. This definition of cou-

pled cell network has several technical advantages over the original version introduced by

Stewart et al. [14]. See [11] for details. 3

In a graphical representation of a coupled cell network, identical cells and identical

edges are represented, respectively, by the same symbol. Multiple couplings of the same
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type between two cells are represented by just one arrow with the number of couplings

attached to it. Figures 1 and 2 show examples of coupled cell networks of three identical

cells with self-coupling and multiarrows.

3 Symmetry Groupoid of a Coupled Cell Network

Let G = (C, E,∼C ,∼E) be a coupled cell network as in Definition 2.1. We define now the

‘symmetry groupoid’ BG of G.

Definition 3.1 [11] Given c ∈ C, the input set of c is

I(c) = {e ∈ E : H(e) = c}

An element of I(c) is called an input edge or input arrow of c.

The relation ∼I of input-equivalence on C is defined by c ∼I d if and only if there

exists an arrow type preserving bijection

β : I(c) → I(d)

That is, for every input edge i ∈ I(c)

i ∼E β(i)

Any such bijection β is called an input isomorphism from cell c to cell d. Denote by

B(c, d) the set of all input isomorphisms from cell c to cell d, and define

BG =
˙⋃

c,d ∈ C

B(c, d)

where ∪̇ indicates disjoint union. A natural product operation can be defined on BG in

the following way: β2 ∈ B(c, d) can be multiplied by β1 ∈ B(a, b) only when b = c, and

in this case β2β1 ∈ B(a, d) is the usual composition of functions. It follows that BG is

a groupoid whose objects are the nodes of G, and the BG-morphisms are the elements

of the sets B(c, d) with the product operation between the morphisms as defined above.

Some references on groupoids are Brandt [2], Brown [3] and Higgins [12]. We call BG the

symmetry groupoid of the network G. Note that for any c ∈ C, the subset B(c, c) is always

non-empty. Moreover, it is a group and it is called the vertex group corresponding to c.

3
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Structure of B(c, d)

Let B(c, d) ⊆ BG. We can specify the structure of the set B(c, d) in terms of the structure

of G. We distinguish three cases:

1. If c 6∼I d then B(c, d) = ∅.

2. If c = d we can define an equivalence relation ≡c on T (I(c)) by

T (j1) ≡c T (j2) ⇐⇒ j1 ∼E j2 (3.1)

where j1, j2 ∈ I(c). If K1, K2, . . . , Kr(c) are the ≡c-equivalence classes (on T (I(c))),

then

B(c, c) = SK1 × · · · × SKr(c)
(3.2)

where each SKi
comprises all permutations of the set Ki. If we extend by the identity

on T (I(c)) \Ki, then there is a natural embedding of SK1 × · · · × SKr(c)
, and hence

of B(c, c), in the group Sn(c), where n(c) = |T (I(c)) | denotes the cardinality of the

set T (I(c)).

3. If c 6= d and c ∼I d (so that B(c, d) 6= ∅), then for any β ∈ B(c, d) we have

B(c, d) = βB(c, c) = B(d, d)β

See [14], end of Section 3, for details and proofs of the above facts.

Example 3.2 The symmetry groupoid of the coupled cell network G1 in Figure 1 is given

by BG1 = ∪̇c,d∈{1,2,3}B(c, d) where

B(c, d) = {β : β is a bijection from I(c) to I(d)}

Note that there is only one edge-type. Moreover, we have |T (I(c)) | = |T (I(d)) | and so

B(c, d) 6= ∅ for every pair of cells c, d. This generalizes to any ‘identical-edge homogeneous

network’ (see Definition 7.1). 3
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4 Vector Fields on a Coupled Cell Network

We make now precise the connection between coupled cell systems and coupled cell net-

works. Again we follow Stewart et al. [14]. Let G = (C, E,∼C ,∼E) be a coupled cell

network with symmetry groupoid BG. We now define the class FP
G of admissible vector

fields corresponding to G, given a choice of ‘total phase space’ P . This class consists of

all vector fields that are ‘compatible’ with the labeled graph structure. A coupled cell sys-

tem associated with the coupled cell network G is a set of ordinary differential equations

(ODEs) coupled together where the couplings correspond to the edges of the network and

the nodes correspond to cells. To obtain these ODEs we must associate variables xc with

cells c, that is, we must choose a phase space for each cell.

For each cell c ∈ C define a cell phase space Pc, which for simplicity we assume is

a nonzero finite-dimensional real vector space. If cells c and d are in the same ∼C -

equivalence class, we require that Pc = Pd and we identify the two spaces canonically.

Define the corresponding total phase space to be

P =
∏

c∈C

Pc

and employ the coordinate system

x = (xc)c∈C

on P .

Let D = (d1, . . . , ds) be any finite ordered subset of s cells in C where the same cell

can appear more than once in D. Define

PD = Pd1 × · · · × Pds

and write

xD = (xd1 , . . . , xds
)

where xdj
∈ Pdj

.

Given c ∈ C, denote by T (I(c)) the ordered set of cells (T (i1), . . . , T (is)) where the

arrows ik run through I(c). Suppose that c ∼I d. Note that given any bijection β ∈ B(c, d)
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then for all i ∈ I(c) we have i ∼E β(i), and so T (i) ∼C T (β(i)). Consider now the ordered

sets D1 = T (I(c)) = (T (i1), . . . , T (is)) and D2 = T (I(d)) = (T (β(i1)), . . . , T (β(is))) of

C. We can define the pullback map

β∗ : PD2 → PD1

by
(

β∗(z)
)

T (j)
= zT (β(j))

for all T (j) ∈ D1 and z ∈ PD2. Thus xT (I(c)) =
(

xT (i1), . . . , xT (is)

)

and β∗
(

xT (I(d))

)

=
(

xT (β(i1)), . . . , xT (β(is))

)

.

For a given cell c the internal phase space is Pc and the coupling phase space is

PT (I(c)) = PT (i1) × · · · × PT (is)

where as before T (I(c)) denotes the ordered set of cells (T (i1), · · · , T (is)).

Definition 4.1 [11] A vector field f : P → P is BG-equivariant or G-admissible if:

(a) For all c ∈ C the component fc(x) depends only on the internal phase space variables

xc and the coupling phase space variables xT (I(c)); that is, there exists a smooth

function f̂c : Pc × PT (I(c)) → Pc such that

fc(x) = f̂c(xc, xT (I(c)))

(b) For all c, d ∈ C and β ∈ B(c, d)

f̂d(xd, xT (I(d))) = f̂c(xd, β
∗(xT (I(d))))

for all x ∈ P .

3

Theorem 4.2 Let G = (C, E,∼C ,∼E) be a coupled cell network and BG the corresponding

symmetry groupoid. A vector field f : P → P for a given choice of the Pc is BG-

equivariant if and only if for each ∼I-equivalence class Q of C, given (any) c ∈ Q:

(a) f̂c is B(c, c)-invariant.
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(b) For d ∈ Q such that d 6= c, given (any) β ∈ B(c, d), we have

f̂d

(

xd, xT (I(d))

)

= f̂c

(

xd, β
∗
(

xT (I(d))

) )

Proof This is a generalization of [14, Lemma 4.5] and is proved the same way. 2

Definition 4.3 Let G be a coupled cell network. For a given choice of the Pc, define FP
G

to consist of all smooth G-admissible vector fields on P which is a vector space over
�

.

Let PP
G be the subspace of FP

G consisting of the G-admissible polynomial vector fields on

P , and let LP
G be the subspace of PP

G consisting of the G-admissible linear vector fields

on P . 3

Remark 4.4 Let G be a coupled cell network and P a given choice of the total phase

space consistent with G. By Theorem 4.2, every smooth equivariant vector field f ∈ FP
G

is determined uniquely by its components fc where c runs through a set of representatives

for the ∼I -equivalence classes (that is, the connected components of the groupoid BG).

The only constraints on fc are that it depends only on xc, xT (I(c)) and is invariant under

the vertex group B(c, c). Thus every smooth equivariant vector field f is determined

uniquely by a finite set of B(c, c)-invariant functions, where c runs through a set of

representatives for the connected components of the groupoid. Moreover, if d ∼I c then

fd is related to fc by a pullback map β∗ for β ∈ B(c, d). In particular, if there is only one

∼I-equivalence class for BG then each G-admissible vector field is uniquely determined

by a single mapping fc at some node c, which has to be invariant under the vertex group

B(c, c). 3

5 ODE-equivalence and Linear Equivalence

As pointed by Golubitsky et al. [11], in the class of coupled cell networks that permits

self-coupling and multiarrows, it is possible for two non-isomorphic coupled cell networks

G1 and G2 to generate the same space of admissible vector fields. This comparison of

admissible vector fields for two coupled cell networks involves identifying cells in the two

networks, a step that it is formalised in general in terms of a bijection between the two
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sets of cells. We follow the definition of ODE-equivalent coupled cell networks given by

Dias and Stewart [7].

In what follows, given a coupled cell network Gi and a choice of total phase space Pi

for Gi, we denote by Pi,c the cell phase space corresponding to cell c of C i.

Definition 5.1 [7] Two coupled cell networks G1 and G2 are γ-ODE-equivalent if:

1. There is a bijection γ : C1 → C2 that preserves cell-equivalence and input-equivalence,

such that:

2. If we choose cell phase spaces Pc 6= 0 for G1, and define the corresponding choice of

cell phase spaces for G2 by

P2,γ(c) = P1,c

so that the corresponding total phase spaces are

P1 =
∏

c∈C1

P1,c P2 =
∏

c∈C1

P2,γ(c)

then:

3. The condition

FP1
G1

= FP2
G2

(5.3)

is satisfied.

Two coupled cell networks G1 and G2 are ODE-equivalent if they are γ-ODE-equivalent

for some bijection γ. 3

Remark 5.2 The cells of G2 can be renumbered so that γ = id. In this case, we omit

explicit reference to γ. 3

We define now the notion of ‘linear equivalence’ between two networks. In [7] it is

shown that two coupled cell networks are ODE-equivalent if and only if they are linearly

equivalent. Basically, the ODE-equivalence reduces to ‘linear equivalence’, where two net-

works (with suitably identified phase spaces) are linearly equivalent if they determine the

same space of linear admissible vector fields. Moreover, when deciding linear equivalence,
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it can without loss of generality be assumed that each cell phase space is one-dimensional

since if (5.3) holds for some choice of nonzero cell phase spaces Pc, then it holds for all

such choices (that are consistent with the structure of G).

Definition 5.3 Two coupled cell networks G1 and G2 are γ-linearly equivalent if there is

a bijection γ : C1 → C2 that preserves cell-equivalence and input-equivalence such that if

item 2. of Definiton 5.1 is satisfied then:

3. The condition

LP1
G1

= LP2
G2

(5.4)

is satisfied.

Two coupled cell networks G1 and G2 are linearly equivalent if they are γ-linearly

equivalent for some γ. 3

Note that this definition is independent of the dimensions of the Pc. Also, we may

renumber the cells to make γ the identity.

Throughout, we denote by Mn×n( � +
0 ) the set of the square matrices of order n and

nonnegative entries, and by Idn the identity matrix in this set.

Example 5.4 The coupled cell network G2 of Figure 2 is an example of a network linearly

equivalent to the network G1 of Figure 1. Both graphs have only one cell-equivalence

class and one input-equivalence class. Trivially, the identity function on C1 = {1, 2, 3}

preserves both cell-equivalence and input-equivalence. Moreover, if we take P1 = P2 =
� 3

then LP1
G1

= LP2
G2

since

LP1
G1

=
�
{Id � 3 , h1} = LP2

G2
=

�
{Id � 3, h2} (5.5)

where Id � 3 denotes the identity function on
� 3,

h1(x1, x2, x3) = (2x1 + 9x2 + 9x3, 12x1 + 2x2 + 6x3, 15x1 + 5x3)

h2(x1, x2, x3) = (3x2 + 3x3, 4x1 + 2x3, 5x1 + x3)
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and (x1, x2, x3) ∈
� 3. Note that (5.5) is equivalent as saying

�



















Id3,











2 9 9

12 2 6

15 0 5





























=
�



















Id3,











0 3 3

4 0 2

5 0 1





























(5.6)

3

The next theorem reduces ODE-equivalence to linear equivalence, and says that the

cell phase spaces may be assumed one-dimensional in that context.

Theorem 5.5 [7] Let γ : C1 → C2 be a bijection that preserves cell-equivalence and

input-equivalence. Then the following conditions on two networks G1, G2 are equivalent:

(a) G1 and G2 are γ-ODE-equivalent.

(b) G1 and G2 are γ-linearly equivalent.

(c) With the identification γ : C1 → C2, the spaces LP
G1

and LP
G2

are equal when all cell

phase spaces are taken to be
�

.

Proof See Theorem 7.1 and Corollary 7.9 of [7]. 2

Example 5.6 We return to Example 5.4. Recall (5.5). From the above theorem it follows

that the two coupled cell networks of Figures 1 and 2 are ODE-equivalent. 3

6 Minimality

In this section we compare ODE-equivalent networks in terms of the number of edges.

Definition 6.1 Let G be an n-cell coupled cell network. We denote by [G] the class of

all coupled cell networks that are ODE-equivalent to G. By Theorem 5.5 we have that

[G] coincides with the class of all coupled cell networks that are linearly equivalent to G.

3
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Note that for a given n-cell network G = (C, E,∼C ,∼E), the set

{(C1, E1,∼C1 ,∼E1) ∈ [G] : card(E1) ≤ card(E)} ⊆ [G],

where card(E) denotes the cardinality of the set of edges E, is finite. In particular, it

follows that the set

{card(E1) : (C1, E1,∼C1 ,∼E1) ∈ [G]}

has a minimum. We introduce now some notation:

Definition 6.2 Given an n-cell network G and the corresponding ODE-class [G], let

m[G] = min {card(E1) : (C1, E1,∼C1 ,∼E1) ∈ [G]}

and

Min[G] =
{

(C1, E1,∼C1 ,∼E1) ∈ [G] : card(E1) = m[G]

}

We call Min[G] the minimal subclass of [G]. 3

The minimal subclass Min[G] of [G] is thus the subclass of networks of [G] such that the

number of edges is minimal among all the networks of [G] – the subclass of the canonical

normal forms. In this paper, we describe the minimal subclass Min[G] of [G], given an

n-cell network G. More precisely, we give an algorithm that computes Min[G]. We start

by adressing the question for networks with only one ∼I -equivalence class (Sections 7-10).

It follows then as a corollary an algorithm that computes Min[G] for any ODE-class [G]

(Section 11).

Example 6.3 Consider the graph G1 of Figure 1. For this example we have m[G1] = 18

and Min[G1] = {G2}, where G2 is the coupled cell network of Figure 2. See Section 10

for details. 3

7 Homogeneous Networks

In this section we adress the minimality of networks in terms of the number of edges for

ODE-classes associated with networks that have only one ∼I -equivalence class.
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Definition 7.1 An homogeneous network is a coupled cell network with only one input-

equivalence class. An identical-edge homogeneous cell network is an homogeneous network

in which all edges in E are equivalent. A nonidentical-edge homogeneous cell network is

an homogeneous network with more than one edge-equivalence class. 3

Note that homogeneous networks have only one cell-equivalence class since these have

only one ∼I-equivalence class and by definition the equivalence relation ∼I refines ∼C .

The graphs of Figures 1 and 2 are examples of identical-edge homogeneous coupled

cell networks. Figure 5 shows an example of a nonidentical-edge homogeneous network

with 2 edge-types.
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Figure 5: An example of a nonidentical-edge homogeneous network G1.

Definition 7.2 Let G = (C, E,∼C ,∼E) be an homogeneous network with n cells, say

C = {1, . . . , n}, and m edge-types, with [e1]E, · · · , [em]E, the ∼E-equivalence classes. We

define the adjacency matrix of G with respect to [el]E, for l = 1, · · · , m, to be the n × n

matrix M(G,l) with rows and columns indexed by the cells of G in the following way: the

(i, j)-entry of M(G,l) corresponds to the number of edges of type [el]E from cell j to cell

i. Thus the sum of the jth entries of row i of the matrices M(G,l), for l = 1, · · · , m, gives

the number of input edges of cell i with tail cell j. 3

Example 7.3 The adjacency matrices of the coupled cell network G1 of Figure 5 with
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respect to the two edge-types are

M(G1,1) =











2 9 9

12 2 6

15 0 5











and M(G1 ,2) =











10 25 10

10 20 15

20 10 15











3

7.1 Linear Equivalence of Adjacency Matrices

We start by relating the adjacency matrices corresponding to linearly equivalent homo-

geneous networks. Definition 5.3 of linear equivalence is given by:

Proposition 7.4 Let G1 be an homogeneous network with n cells and m1 edge-types,

where C1 = {1, . . . , n}. Let G2 be an homogeneous network with n cells and m2 edge-

types. Denote by M(G1,l) = [al
ij]1≤i,j≤n for l = 1, · · · , m1, and M(G2 ,k) = [bk

ij]1≤i,j≤n for

k = 1, · · · , m2, the adjacency matrices of G1 and G2 with respect to [el]E1 and [ek]E2,

respectively. We have that G1 and G2 are linearly equivalent if and only if there is a

bijection γ : C1 → C2 such that:

� {
Idn, [a1

ij]1≤i,j≤n, · · · , [am1
ij ]1≤i,j≤n

}

=
� {

Idn, [b1
γ(i)γ(j)]1≤i,j≤n, · · · , [bm2

γ(i)γ(j)]1≤i,j≤n

}

(7.7)

Proof Since both networks are homogeneous, trivially any bijection γ : C1 → C2

preserves cell-equivalence and input-equivalence. Thus Definition 5.3 of linear equivalence

translates to equation (7.7). 2

If necessary, we can relabel the cells of G2 so that C1 = C2 and G2 is γ-linearly

equivalent to G1 where γ is the identity on C1 = {1, . . . , n}. Moreover, since G2 is linearly

equivalent to G1, then by Proposition 7.4 it follows that

� {
Idn, [a1

ij]1≤i,j≤n, · · · , [am1
ij ]1≤i,j≤n

}

=
� {

Idn, [b1
ij]1≤i,j≤n, · · · , [bm2

ij ]1≤i,j≤n

}

(7.8)

Example 7.5 Using Proposition 7.4, the network G1 of Figure 5 is linearly equivalent to

the network G2 of Figure 6, where γ is identity on {1, 2, 3}. 3
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Figure 6: An example of a nonidentical-edge homogeneous network G2 linearly equivalent

to the graph of Figure 5.

Remark 7.6 Let G1 be an homogeneous network with n cells. Let M(G,1), . . . , M(G,m1)

be the corresponding adjacency matrices. Then the set of matrices

L = Mn×n( � ) ∩
� {

Idn, M(G,1), · · · , M(G,m1)

}

with the usual sum of matrices is a lattice [4, Chapter 3]: trivially, the set L is a discrete

subgroup of Mn×n(
�

) ∼=
�

n2
. 3

The next lemma shows that the networks of the ODE-class [G1] have adjacency ma-

trices lying in the cone L ∩ Mn×n( � +
0 ).

Lemma 7.7 Let G1 be an homogeneous network with n cells, say C1 = {1, . . . , n}, and

m1 edge-types. Let M(G1 ,l) = [al
ij]1≤i,j≤n for l = 1, · · · , m1 be the corresponding adjacency

matrices. Then M = [mij]1≤i,j≤n ∈ Mn×n( � +
0 ) is an adjacency matrix of a network G (of

n cells) linearly equivalent to G1 if and only if

M ∈ L ∩ Mn×n( � +
0 ) (7.9)

Proof Note that each M(G1 ,l) has the following properties:

M(G1,l) ∈ Mn×n( � +
0 ); (7.10)

n
∑

j=1

al
ij =

n
∑

j=1

al
kj for all i, k (7.11)
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By Proposition 7.4 we have that if M = [mij]1≤i,j≤n ∈ Mn×n( � +
0 ) is an adjacency

matrix of a network G (of n cells) linearly equivalent to G1 then condition (7.9) follows.

Suppose now that M = [mij]1≤i,j≤n ∈ Mn×n( � +
0 ) satisfies (7.9). In particular, since G

is homogeneous, it follows that

n
∑

j=1

mij =
n
∑

j=1

mkj for all i, k

2

7.2 Minimality

Given an homogeneous network G, we aim to describe the minimal subclass Min[G] of [G].

Recall Definition 6.2. Using the above discussion on ODE-equivalence and linear equiva-

lence, we can describe the graphs of Min[G] by computing the corresponding adjacency

matrices. Moreover, we have:

Lemma 7.8 Let G1 be an homogeneous network with n cells. Let [G1] the corresponding

ODE-class and M(G1 ,l), for l = 1, . . . , m1, the adjacency matrices of G1. Let

m = dim
� {

Idn, M(G1,1), . . . , M(G1,m1)

}

− 1 (7.12)

Then the homogeneous networks of the minimal class Min[G1] have m edge types.

Proof Let G2 ∈ Min[G1] and suppose that G2 has m2 edge types. Trivially, m2 ≥ m

since
� {

Idn, M(G1,1), . . . , M(G1,m1)

}

=
� {

Idn, M(G2 ,1), . . . , M(G2,m2)

}

and so

m2+1 ≥ dim
� {

Idn, M(G2,1), . . . , M(G2,m2)

}

= dim
� {

Idn, M(G1,1), . . . , M(G1,m1)

}

= m+1

If m2 > m then

� {
Idn, M(G2,1), . . . , M(G2,m2)

}

=
� {

Idn, M(G2,i1), . . . , M(G2,ik)

}

for some set {i1, . . . , ik} ⊂ {1, . . . , m2} and G2 6∈ Min[G1], a contradiction. Thus m2 = m.

2
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Remark 7.9 Let m as defined in (7.12). Since dim
� {

Idn, M(G,1), · · · , M(G,m1)

}

equals

m + 1 we have that L is a lattice of rank m + 1. 3

Definition 7.10 Given M = [mij]1≤i,j≤n ∈ Mn×n( � +
0 ) denote by

l(M) =

n
∑

i=1

n
∑

j=1

mij

More generally, for u = (u1, . . . , uk) ∈ ( � +
0 )k we call the length of u the nonnegative

integer l(u) defined by

l(u) =

k
∑

i=1

ui

Note that if w1, . . . , wm ∈ ( � +
0 )k then

l

(

m
∑

i=1

wi

)

=
m
∑

i=1

l(wi)

Given a set of vectors {w1, . . . , wr} ⊂ ( � +
0 )k we denote

l ({w1, . . . , wr}) =
r
∑

j=1

l(wj)

3

We find the minimal subclass Min[G] in the following way:

Proposition 7.11 Let G be an homogeneous network of n cells and [G] the corresponding

ODE-class. Suppose that M(G,1), . . . , M(G,m1) are the adjacency matrices of G. Let

m = dim
� {

Idn, M(G,1), . . . , M(G,m1)

}

− 1

An homogeneous network of the minimal class Min[G] has adjacency matrices M1, . . . , Mm

defined by:

(i) {Idn, M1, . . . , Mm} ⊂ Mn×n( � +
0 );

(ii) {Idn, M1, . . . , Mm} is a basis of the real vector space
� {

Idn, M(G,1), · · · , M(G,m1)

}

;

(iii)
∑m

k=1 l(Mk) = m[G].

20



Proof By Lemma 7.8 any graph G2 ∈ Min[G] has m edge types. Item (i) follows by the

definition of adjacency matrix of a network. Moreover, by Lemma 7.7 and Proposition 7.4

we have (ii). Condition (iii) follows from Definition 6.2 of Min[G]. 2

Remark 7.12 Note that if M ∈ Mn×n( � +
0 ) is an adjacency matrix of an homogeneous

network, then l(M) ≥ n and so l(M) ≥ l(Idn). Denote by M0 = b0 = Idn. Assume

the conditions of Proposition 7.11 and denote S =
� {

Idn, M(G,1), . . . , M(G,m1)

}

. A set

{M1, . . . , Mm} satisfies (i)-(iii) if and only if it satisfies

(i) {M0, M1, . . . , Mm} ⊂ Mn×n( � +
0 );

(ii) {M0, M1, . . . , Mm} is a basis of S;

(iii)
∑m

k=0 l(Mk) = min
{
∑m

k=0 l(bk) : {b0, b1, . . . , bm} ⊂ Mn×n( � +
0 ) is a basis of S

}

.

3

8 Minimal Bases

By Proposition 7.11 and Remark 7.12 we have that the minimal subclass Min[G] of [G]

where G is an homogeneous coupled cell network can be computed by describing the set

of all possible adjacency matrices satisfying a minimality condition in terms of the length

of those matrices. We abstract the problem in the following way.

Given a set of vectors w1, . . . , wp ∈ ( � +
0 )k, denote by

S =
�
{w1, . . . , wp}

the real vector subspace of
�

k generated by the vectors w1, . . . , wp. Suppose that

dim S = r,

with r ≤ p. We choose any r linearly independent vectors from w1, . . . , wp, say w1, . . . , wr.

Thus w1, . . . , wr form a basis of S. Denote by

s = l({w1, . . . , wr})
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Let

B =
{

b : b = {b1, . . . , br} ⊂ ( � +
0 )k is a basis of S

}

Lemma 8.1 The set {l(b) : b ∈ B} has a minimum.

Proof As {w1, . . . , wr} ⊂ ( � +
0 )k is a basis of S and l ({w1, . . . , wr}) = s, it follows that

the minimum of {l(b) : b ∈ B} is at most s. Thus,

r ≤ min {l(b) : b ∈ B} ≤ s.

Moreover,

min {l(b) : b ∈ B} = min {l(b) : b ∈ B, r ≤ l(b) ≤ s} ,

and {b ∈ B : r ≤ l(b) ≤ s} is a finite set. 2

Definition 8.2 We call a basis b ∈ B of S such that

l(b) = min
{

l
(

b
)

: b ∈ B
}

a minimal basis. 3

In this section we describe the set of all minimal bases b ∈ B of S. Moreover, we

present an algorithm that computes this set.

Sketch of the Procedure

The method we follow for finding the minimal bases of S relies mostly in two steps:

1. Find the set C defined by

C =
{

w ∈ S ∩ ( � +
0 )k : 0 < l(w) ≤ s − r + 1

}

2. Find all the minimal bases b ∈ BC of S where

BC = {b ∈ B : b ⊆ C}
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Remarks 8.3 (a) If b = {b1, . . . , br} ⊂ ( � +
0 )k is a basis of S and r ≤ l(b) ≤ s then

b ⊆ C. Moreover, BC ⊆ B and

min {l(b) : b ∈ B} = min {l(b) : b ∈ BC}

Thus the minimal bases b = {b1, . . . , br} of S are contained in C.

(b) Note that the set C depends on the chosen basis {w1, . . . , wr} of S which determines

the length s = l ({w1, . . . , wr}). We show in Theorem 8.7 that the minimal bases

do not depend on the chosen set of the vectors wi that form a basis of S, neither on

other choice of vectors (with nonnegative integers coordinates) generating S.

3

Finding C

Let W be the k × r matrix with nonnegative integer entries with columns given by the

vectors w1, . . . , wr that we assume linearly independent and generating S. In notation

W = (w1| · · · |wr)

Denote by MW the set of all r × r matrices formed by r rows of W and with nonzero

determinant and take

d = gcd {det(M) : M ∈ MW}

Lemma 8.4 If w ∈ S ∩ ( � +
0 )k then there are rational numbers x1, . . . , xr whose denomi-

nators divide d such that

w = x1w1 + · · ·+ xrwr

Proof By hypothesis {w1, . . . , wr} is a basis of S. Thus given w ∈ S ∩ ( � +
0 )k, there are

real numbers x1, . . . , xr ∈
�

such that w = x1w1 + · · ·+ xrwr. Moreover, we have that w

has integer components. Given M ∈ MW , if we consider the linear system in the variables

x1, . . . , xr obtained from x1w1 + · · ·+ xrwr = w by keeping the rows corresponding to M ,

by the Cramer’s Rule we have that the unique x1, . . . , xr are rational whose denominator

divide the (nonzero) determinant of M . 2
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By the above lemma, we have that C is the set of linear combinations of w1, . . . , wr,

say x1w1 + · · · + xrwr ∈ ( � +
0 )k, with rational coefficients x1, . . . , xr whose denominators

divide d and such that

0 < l(x1w1 + · · · + xrwr) ≤ s − r + 1

Thus xi = pi/qi where pi, qi ∈ � , qi 6= 0 and d = niqi for some ni ∈ � . It follows then

that

(n1p1)w1 + · · ·+ (nrpr)wr ≡ 0 (mod d)

We describe C in the following way:

C =































1

d
(y1w1 + · · ·+ yrwr) ∈ ( � +

0 )k :







y1w1 + · · · + yrwr ≡ 0 (mod d)

0 < 1
d
l (y1w1 + · · ·+ yrwr) ≤ s − r + 1































Remarks 8.5 (a) Note that w1, . . . , wr ∈ C since dwi ≡ 0 (mod d) and for i = 1, . . . , r

we have 0 < l(wi) ≤ s − r + 1.

(b) The set C is finite since it is a subset of the finite set formed by the vectors w ∈ ( � +
0 )k

such that 0 < l(w) ≤ s − r + 1.

3

Finding the Minimal Bases

In order to find the bases b = {b1, . . . , br} ⊆ C of S such that

l(b) = min {l(b) : b ∈ BC}

we partition the set C by the length of its vectors:

C = C1 ∪̇ C2 ∪̇ · · · ∪̇ Ct

where given u, v ∈ C






l(u) = l(v) ⇔ u, v ∈ Ci for some i

u ∈ Ci, v ∈ Cj, i < j ⇔ l(u) < l(v)
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As {w1, . . . , wr} is a basis of S and w1, . . . , wr ∈ C, it follows that the real subspace

of
�

k generated by C is S.

Definition 8.6 Let S1, S2 be real subspaces of
�

k. We denote

S1 + S2 = {u + v : u ∈ S1, v ∈ S2}

3

Denote by Si, i = 1, . . . , t, the subspace of S generated by Ci. Thus

S1 + · · · + St = S

Moreover, there is q such that 1 ≤ q ≤ t and

dim(S1 + · · · + Sq) = r, dim(S1 + · · · + Sq−1) < r (8.13)

Thus we have

S1 + · · · + Sq = S

We show below that the minimal bases of S are contained in

C1 ∪̇ · · · ∪̇ Cq

Denote by li the common length of any vector u ∈ Ci, for i = 1, . . . , q. Let

d1 = dim S1

di = dim
(

∑i

j=1 Sj

)

− dim
(

∑i−1
j=1 Sj

)

, 2 ≤ i ≤ q.

Let U1 ⊆ C1 be a set of d1 linearly independent vectors. For i = 2, . . . , q, let Ui ⊆ Ci be

a set of di vectors such that U1 ∪ · · · ∪ Uq is free.

Theorem 8.7 The minimum of the set

{l(b) : b ∈ B}

is

m =

q
∑

j=1

ljdj (8.14)

The minimal bases b ∈ B of S are the bases obtained by taking all the possible unions

U1 ∪ · · · ∪ Uq.
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Proof By Lemma 8.1 the set {l(b) : b ∈ B} has a minimum, say m.

Any set U1 ∪ · · · ∪ Uq = {b1, . . . , br} obtained as above is free and has r vectors by

construction. (Recall that by assumption dim(S1 + · · ·+ Sq) = r.) Thus it is a basis of S

and

l ({b1, . . . , br}) =

q
∑

j=1

ljdj

We prove now that the minimum m of the set {l(b) : b ∈ B} is

q
∑

j=1

ljdj

and that any minimal basis b ∈ B is the union U1 ∪ · · · ∪ Uq of sets Ui constructed as

above. In particular, it follows that b ⊆ C.

Starting with a different set of basis vectors wi of S, the set C varies if the total length

of the chosen basis, say s∗, differs from s. However, in this case, the new set, say C∗,

would contain C if s∗ > s, and would be contained in C if s∗ < s. (Recall that C∗ would

be formed by the nonnull vectors in S ∩ ( � +
0 )k with length lower or equal to s∗ − r + 1.)

In both cases, we have (C1 ∪ · · · ∪ Cq) ⊆ C∗ since (C1 ∪ · · · ∪ Cq) ⊆ S and generates S.

Note that in the second case, where C∗ would be contained in C, if C1 ∪ · · · ∪ Cq 6⊆ C∗,

then we would have C∗ = C1 ∪ · · · ∪ Cs where s < q and so S1 + · · · + Ss = S, which

cannot happen by the definition of q (recall (8.13)).

Suppose by contradiction that there is a basis b = {b1, . . . , br} ∈ BC such that b is not

a union U1 ∪ · · · ∪ Uq of sets Ui constructed as above and that

l(b) = m

We have two cases to consider:

(i) b 6⊆ C1 ∪ · · · ∪ Cq. Then b does not contain r linearly independent vectors of C1 ∪

· · · ∪ Cq. But C1 ∪ · · · ∪ Cq contains r linearly independent vectors since by hypothesis

dim(S1 + · · · + Sq) = r. Thus we can choose a vector u ∈ C1 ∪ · · · ∪ Cq such that u 6∈ b

and such that u and the vectors of b∩ (C1 ∪ · · ·∪Cq) are linearly independent. But u ∈ S

and b is a basis of S. Then we can write u as a linear combination of the vectors bi and

such that at least one of the nonzero coefficients is of a vector in b that do not belong to

26



C1 ∪ · · · ∪Cq. Say bi. It follows then that l(bi) > l(u) and so the basis obtained from b by

substituting bi by u, {b1, . . . , bi−1, u, bi+1, . . . , br} is such that

l ({b1, . . . , bi−1, u, bi+1, . . . , br}) < m

A contradiction.

(ii) b ⊆ C1 ∪ · · · ∪ Cq and there is j between 1 and q such that the number of vectors

of b with length lower or equal to lj is (strictly) lower than dim(S1 + · · · + Sj). Then

there is u ∈ C1 ∪ · · · ∪ Cj such that u and the vectors of b ∩ (C1 ∪ · · · ∪ Cj) are linearly

independent. Again, u is a linear combination of the vectors bi, and at least one nonzero

coefficient corresponds to a vector, say bk, such that l(bk) > lj. The basis obtained from

b by substituting bk by u has total length strictly lower than m. Again a contradiction.

It follows then that any basis b = {b1, . . . , br} ⊆
(

( � +
0 )k ∩ C

)

of the space S such that

l ({b1, . . . , br}) = m is contained in C1∪· · ·∪Cq and the number of vectors of b with length

lower or equal to lj is equal to dim(S1 + · · ·+ Sj), for j = 1, . . . , q. Thus b = U1 ∪ · · · ∪Uq

where the Uj are any sets as constructed above. Moreover, we have the equality (8.14).

2

Algorithm

By Theorem 8.7 the following algorithm finds all the minimal bases of S in ( � +
0 )k, where

S is the real vector subspace of
�

k generated by p vectors w1, . . . , wp of ( � +
0 )k.

If M1 and M2 are matrices of order m × n and m × p, respectively, we denote by

(M1|M2) the matrix of order m × (n + p) whose first n columns are those of M1 and the

last p columns are those of M2.

Algorithm 8.8 Given p vectors w1, . . . , wp of ( � +
0 )k that generate a real vector subspace

S of
�

k, this algorithm finds all the minimal bases of S in ( � +
0 )k.

1 [Initial base] Let r be the rank of the matrix (w1| . . . |wp). For each wi, i = 1, . . . , p

do the following: set si =
∑k

j=1(wi)j and then sort the vectors wi by ascending

order of the si. Let v1, . . . , vr be the ‘first’ r linearly independent vectors. Set

s =
∑k

j=1(vr)j.
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2 [Compute gcd d] Let W be the matrix (v1| . . . |vr). Compute the set MW of all the

r × r matrices formed by r rows of W and with nonzero determinant. Let d be the

greatest common divisor of the determinants of the matrices in MW .

3 [Solve linear system of congruences] Apply HNF Algorithm A.3 to the matrix

(W |dIdk), and let U =





U1 U2

U3 U4



 be a unimodular matrix and H the HNF

matrix such that (W |d Idk)U = (0|H). Here U1 is a r × r square matrix. We can

discard U2, U3 and U4. Let HB be the HNF of the matrix (U1|dIdr) (applying Algo-

rithm A.3). Note that HB is invertible (because HB has rank r since it is the HNF

of the matrix (U1|d Idr) for d 6= 0 that has rank r).

4 [Compute set C] Let W ∗ be a matrix in MW . Determine the set

A =







(W ∗HB)−1(d c1, d c2, . . . , d cr)
t :







c1, c2, . . . , cr ∈ � +
0

0 < c1 + c2 + · · ·+ cr ≤ s







∩ � r

Determine

C =

{

1

d
WHB(x1, . . . , xr)

t : (x1, . . . , xr)
t ∈ A

}

∩
{

w ∈ ( � /(s + 1) � )k : 0 < l(w) ≤ s
}

For i = 1 until s, set Ci = ∅. For each w in C do the following: set Cl(w) =

Cl(w) ∪ {w}.

5 [Compute minimum sum] Let j be the least i such that Ci 6= ∅. Set m = 0, i = j

and d = 0. While i ≤ s and d < r do the following: if Ci 6= ∅, let di be the

dimension of the real subspace generated by Cj ∪ · · · ∪ Ci minus the dimension of

the real subspace generated by Cj ∪ · · · ∪Ci−1 and set d = d + di, m = m + idi, else

set di = 0; set i = i + 1.

6 [All subsets of C with minimum sum] Set E = ∅, q = 0 and Sj−1 = {0}. For n = j

until i− 1 do the following: if dn 6= 0, set In = {w ∈ Cn : w /∈ Sj + · · ·+ Sn−1} and

let En be the set of all the subsets of In with dn linearly independent vectors and

set E = E × En and q = q + 1.
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7 [All minimal bases] Set U = ∅. For each (U1, . . . , Uq) in E do the following: if the

dimension of the subspace generated by U1 ∪ . . .∪Uq is r (that is, U1 ∪ . . .∪Uq is a

minimal base of S in ( � +
0 )k) then set U = U ∪ {{U1 ∪ . . . ∪ Uq}}.

The set U contains all the minimal bases of S in ( � +
0 )k. Output U and m and

terminate algorithm.

3

The item 3 of Algorithm 8.8 for solving homogeneous linear systems of congruences is

based on Cohen [6, Algorithm 4.1.22] .

9 Examples

In this section we apply Algorithm 8.8 to two examples of homogeneous coupled cell

networks G obtaining the adjacency matrices corresponding to the minimal networks of

the subclasses Min[G] of [G].

Example 9.1 Consider the homogeneous network G of three cells of Figure 7. Thus the

1

2

3
54

6

8
2

3

2

4

8

4

8

4

4

10

4

2

Figure 7: Homogeneous coupled cell network of Example 9.1.

adjacency matrices are

M(G,1) =











4 0 6

8 0 2

3 2 5











, M(G,2) =











4 8 4

8 4 4

10 4 2










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Note that

dim
� {

Id3, M(G,1), M(G,2)

}

= 3

and recall that the adjacency matrices of the networks in Min[G] satisfy the three pro-

perties of Remark 7.12. Thus we aim to find all the possible matrices M1, M2 ∈ M3×3( � +
0 )

such that
�
{M0 = Id3, M1, M2} =

�
{Id3, M(G,1), M(G,2)} and

2
∑

k=0

l(Mk) = min

{

2
∑

k=0

l(bk) : {b0 = Id3, b1, b2} ⊂ M3×3( � +
0 ) is a basis of

� {
Id3, M(G,1), M(G,2)

}

}

For that we apply Algorithm 8.8. We consider

w1 = (1, 0, 0, 0, 1, 0, 0, 0, 1)t, w2 = (4, 0, 6, 8, 0, 2, 3, 2, 5)t, w3 = (4, 8, 4, 8, 4, 4, 10, 4, 2)t

in ( � +
0 )9 and S the real subspace of

� 9 generated by these linearly independent vectors:

S =
�

{w1, w2, w3}

Note that

s = max{l(w1), l(w2), l(w3)} = l(w3) = 48

and the matrix

W =















































1 4 4

0 0 8

0 6 4

0 8 8

1 0 4

0 2 4

0 3 10

0 2 4

1 5 2















































has rank 3. The greatest common divisor of the determinants of all 3×3 matrices formed

by 3 rows of W and with nonzero determinant is d = 8. Applying the HNF Algorithm A.3

to the matrix (W |8Id9) we obtain matrices U and the HNF H of (W |8Id9) such that
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(W |8Id9)U = (0|H):

U =





U1 U2

U3 U4



 =

































































−8 44 −16 0 0 0 0 0 0 8 −5 1

0 −10 4 0 0 0 0 0 0 −2 1 0

0 3 −2 0 0 0 0 0 0 1 0 0

1 −2 1 1 0 0 0 0 0 0 1 0

0 −3 2 0 1 0 0 0 0 −1 0 0

0 6 −2 0 0 1 0 0 0 1 0 0

0 7 −2 0 0 0 1 0 0 1 −1 0

1 −7 3 0 0 0 0 1 0 −1 1 0

0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

































































where

U1 =











−8 44 −16

0 −10 4

0 3 −2











and H =















































8 0 0 0 0 0 4 7 1

0 8 0 0 0 0 0 0 0

0 0 8 0 0 0 0 6 0

0 0 0 8 0 0 0 0 0

0 0 0 0 8 0 4 3 1

0 0 0 0 0 8 0 2 0

0 0 0 0 0 0 4 3 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 1















































Computing now HB, the HNF of the matrix (U1|8Id3) (applying Algorithm A.3), we
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obtain

HB =











8 0 4

0 8 2

0 0 1











and WHB =















































8 32 16

0 0 8

0 48 16

0 64 24

8 0 8

0 16 8

0 24 16

0 16 8

8 40 16















































and so

C =









































































































































x1 + 4x2 + 2x3

x3

6x2 + 2x3

8x2 + 3x3

x1 + x3

2x2 + x3

3x2 + 2x3

2x2 + x3

x1 + 5x2 + 2x3















































∈ ( � +
0 )9 : x1, x2, x3 ∈ � , 0 < x1 + 10x2 + 5x3 ≤ 16



























































































In particular, it follows that for

w = (x1+4x2+2x3, x3, 6x2+2x3, 8x2+3x3, x1+x3, 2x2+x3, 3x2+2x3, 2x2+x3, x1+5x2+2x3)
t ∈ C
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we have l(w) ≥ 3x3 and x3 ≥ 0. Easy computations show that

C3 =









































































































































1

0

0

0

1

0

0

0

1









































































































































, C6 =









































































































































2

0

0

0

2

0

0

0

2









































































































































, C9 =









































































































































3

0

0

0

3

0

0

0

3









































































































































, C12 =









































































































































4

0

0

0

4

0

0

0

4















































,















































1

1

2

3

0

1

2

1

1















































,















































1

3

0

1

2

1

3

1

0









































































































































Moreover, if Si denotes the real subspace of S generated by Ci, we have that

dim S3 = dim(S3 + S6) = dim(S3 + S6 + S9) = 1, dim(S3 + S6 + S9 + S12) = dim S = 3

By Theorem 8.7, there is a unique minimal basis of S which is








































































































































1

0

0

0

1

0

0

0

1















































,















































1

1

2

3

0

1

2

1

1















































,















































1

3

0

1

2

1

3

1

0









































































































































Thus, by Proposition 7.11 and Remark 7.12, Min[G] contains only one minimal net-

work with adjacency matrices given by

M1 =











1 1 2

3 0 1

2 1 1











, M2 =











1 3 0

1 2 1

3 1 0











See Figure 8.

3
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Figure 8: Minimal network of the ODE-equivalence class of the homogeneous coupled cell

network of Example 9.1.

Example 9.2 Consider the homogeneous network G of Figure 3 in Section 1. The adja-

cency matrices of G are

M(G,1) =











1 1 2

2 1 1

3 0 1











, M(G,2) =











1 3 0

0 1 3

1 2 1











, and dim
� {

Id3, M(G,1), M(G,2)

}

= 3

We aim to find all the possible matrices M1, M2 ∈ M3×3( � +
0 ) such that

�
{M0 = Id3, M1, M2} =

�
{Id3, M(G,1), M(G,2)} and such that

2
∑

k=0

l(Mk) = min

{

2
∑

k=0

l(bk) : {b0 = Id3, b1, b2} ⊂ M3×3( � +
0 ) is a basis of

� {
Id3, M(G,1), M(G,2)

}

}

Again, we apply Algorithm 8.8 to the vectors

w1 = (1, 0, 0, 0, 1, 0, 0, 0, 1)t, w2 = (1, 1, 2, 2, 1, 1, 3, 0, 1)t, w3 = (1, 3, 0, 0, 1, 3, 1, 2, 1)t
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in ( � +
0 )9. Note that s = l(w3) = 12. Easy computations show that

C =









































































































































x1 + x2 + x3

x2 + 2x3

2x2 + x3

2x2 + x3

x1 + x2 + x3

x2 + 2x3

3x2 + 2x3

x3

x1 + x2 + x3















































∈ ( � +
0 )9 : x1, x2, x3 ∈ � , 0 < x1 + 4x2 + 4x3 ≤ 4



























































































Moreover,

C3 =









































































































































1

0

0

0

1

0

0

0

1









































































































































, C6 =









































































































































2

0

0

0

2

0

0

0

2









































































































































, C9 =









































































































































3

0

0

0

3

0

0

0

3















































,















































0

2

1

1

0

2

2

1

0















































,















































0

1

2

2

0

1

3

0

0















































,















































0

3

0

0

0

3

1

2

0









































































































































If Si denotes the real subspace of S generated by Ci, we have that

dim S3 = dim(S3 + S6) = 1, dim(S3 + S6 + S9) = dim S = 3

Thus, by Proposition 7.11 and Remark 7.12, Min[G] contains three minimal networks

with adjacency matrices given, respectively, by



















M1 =











0 2 1

1 0 2

2 1 0











, M2 =











0 1 2

2 0 1

3 0 0





























,



















M1 =











0 2 1

1 0 2

2 1 0











, M2 =











0 3 0

0 0 3

1 2 0




























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and


















M1 =











0 1 2

2 0 1

3 0 0











, M2 =











0 3 0

0 0 3

1 2 0





























See Figure 4 in Section 1.

3

10 Identical-Edge Homogeneous Networks

In the special class of identical-edge homogeneous cell networks, the application of Algo-

rithm 8.8 simplifies. Recall that an identical-edge homogeneous cell network is an homo-

geneous network in which all edges in E are equivalent. We prove below (Theorem 10.3)

that, if G is an identical-edge homogeneous network with n cells, with adjacency matrix

M(G,1) = [aij]1≤i,j≤n, and [G] the corresponding ODE-class, then Min[G] has a unique

graph with adjacency matrix M defined by

M =
1

d

(

M(G,1) − m Idn

)

where d = gcd{aij : i, j = 1, . . . , n; j 6= i} and m = min{aii : i = 1, . . . , n}. Direct

application of Algorithm 8.8 gives the same result. See Remark 10.5. Here, we consider

only networks G such that there is at least one edge e ∈ E satisfying H(e) 6= T (e), and

so M(G,1) is not a scalar multiple of the identity matrix.

Example 10.1 The graphs G1 and G2 of Figures 1 and 2 in Section 1, respectively,

are examples of identical-edge homogeneous coupled cell networks. The corresponding

adjacency matrices are

M(G1 ,1) =











2 9 9

12 2 6

15 0 5











, M(G2,1) =











0 3 3

4 0 2

5 0 1











We show below that the minimal subclass of [G1] is Min[G1] = {G2}. 3
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Linear Equivalence and Adjacency Matrices

Definition 5.3 of linear equivalence for identical-edge homogeneous networks in terms of

the adjacency matrices is now a special case of Proposition 7.4. More precisely, if G1 and

G2 are two identical-edge homogeneous networks with n cells, where C1 = {1, . . . , n}, and

M(G1,1) = [aij]1≤i,j≤n and M(G2 ,2) = [bij ]1≤i,j≤n are the corresponding adjacency matrices,

then G1 and G2 are linearly equivalent if and only if there is a bijection γ : C1 → C2 such

that:
�
{Idn, [aij]1≤i,j≤n} =

� {
Idn, [bγ(i)γ(j)]1≤i,j≤n

}

(10.15)

Example 10.2 Consider the identical-edge homogeneous networks of Figures 1 and 2 in

Section 1, and recall Example 5.4. Trivially, the identity function on {1, 2, 3} is a bijec-

tion that preserves cell-equivalence and input-equivalence (like any bijection on {1, 2, 3}).

Moreover, equation (5.6) of Example 5.4 on the corresponding adjacency matrices is equi-

valent to the linear equivalence of the networks. 3

Minimality

We prove now that the minimal subclass Min[G] of an ODE-class [G] where G is an

identical-edge homogeneous network contains a unique graph. We then describe an algo-

rithm that computes this minimal graph in Min[G].

Theorem 10.3 Let G be an identical-edge homogeneous network of n cells, say C =

{1, . . . , n}, and [G] the corresponding ODE-class. Let M(G,1) = [aij]1≤i,j≤n be the adjacency

matrix of G and assume that it is not a scalar multiple of the identity matrix. Let

d = gcd {aij : i, j = 1, . . . , n; j 6= i}

m = min {aii : i = 1, . . . , n}

Then

Min[G] = {G2}

where G2 is the network with adjacency matrix

M(G2,1) =
1

d

(

M(G,1) − m Idn

)
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Proof The proof consists in showing that G2 as described above is linearly equivalent

to G, and that if G1 is linearly equivalent to G2 and G1 6= G2 then card(E2) < card(E1).

As M(G2 ,1) = (1/d)(M(G,1) − mIdn) it follows that the identical-edge homogeneous

network with adjacency matrix M(G2,1) is linearly equivalent to G and the entries of

M(G2,1) are nonnegative integers as we show now. Let M(G2,1) = [bij]1≤i,j≤n, then

bii =
aii − m

d
, i = 1, . . . , n (10.16)

bij =
aij

d
, i, j = 1, . . . , n; j 6= i· (10.17)

Since G is an identical-edge homogeneous network it follows that M(G,1) satisfies for any

i, k ∈ {1, . . . , n}
n
∑

j=1

aij =

n
∑

j=1

akj

and thus

aii − akk =
∑

j 6=k

akj −
∑

j 6=i

aij

Let k be such that m = akk. Then akk ≤ aii, ∀i and
∑

j 6=k akj ≥
∑

j 6=i aij. Moreover, d is

a divisor of
∑

j 6=k akj −
∑

j 6=i aij and thus of aii − akk.

Let G1 be a network linearly equivalent to G2 (and so to G) with adjacency matrix

M(G1,1). It follows then that

M(G1,1) =
1

β

(

M(G2 ,1) − αIdn

)

,

for some α ∈ Q and β ∈ Q+. Since there is i such that bii = 0 we have that α ∈ � −
0 . If

card(E1) ≤ card(E2) then β ≥ 1. Since the greatest common divisor of the entries bij is

1, then β = 1. If α = 0 then G1 = G2. Otherwise, card(E1) > card(E2). 2

Example 10.4 Recall the graphs G1 and G2 of Figures 1 and 2 in Section 1. By Theo-

rem 10.3 it follows that MinG1 = {G2}. Note that d = 3 and m = 2. 3

If we denote the rows of a k × r matrix M by M1, . . . , Mk, then M∗ represents the

column vector (M1, . . . , Mk)
t.
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Remark 10.5 Direct application of Algorithm 8.8 gives the result of Theorem 10.3 as we

show now. Suppose G is an identical-edge homogeneous network with adjacency matrix

M(G,1) = [aij]1≤i,j≤n. Assume M(G,1) is not a scalar multiple of the identity matrix. Using

the same procedure as in Section 8 we have the following: we take the n2 × 2 matrix

W = (w1|w2) where w1 = Id∗
n and w2 = M∗

(G,1); the greatest common divisor d of the

set of all 2 × 2 matrices formed by 2 rows of W and with nonzero determinant is the

greatest common divisor of the set {aij : i 6= j} ∪ {aii − akk : i 6= k}. From the proof of

Theorem 10.3, it follows that d is the greatest common divisor of the set {aij : i 6= j}.

We aim to find the finite set C and so to find y1, y2 ∈ � such that

y1w1 + y2w2 = dw

for some w with nonnegative integer entries and such that 0 < l(w) ≤ l(w2). Note that

l(w) =
1

d
(y1n + y2l(w2))

and

dw(k−1)n+k = y1 + y2akk (k = 1, . . . , n)

dw(k−1)n+i = y2aki (i, k = 1, . . . , n; i 6= k)

Thus y2 ≥ 1. Trivially, the minimum l(w) is obtained by taking y2 = 1 and y1 = −m

where

m = min{akk : k = 1, . . . , n}

and so there is a unique minimal basis of
�
{w1, w2} corresponding to the minimal network

with adjacency matrix

M(G2 ,1) =
1

d

(

M(G,1) − mIdn

)

3

Algorithm 10.6 Given the adjacency matrix M(G,1) = [aij]1≤i,j≤n, with M(G,1) 6= αIdn,

of an identical-edge homogeneous network G, this algorithm computes the adjacency

matrix M(G2,1) = [bij]1≤i,j≤n corresponding to the unique network in Min[G].

1 [Compute gcd d and minimum m] Set m = min{aii : i = 1, . . . , n} and

d = gcd{aij : i, j = 1, . . . , n; j 6= i}.
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2 [Compute M(G2 ,1)] For i, j = 1, · · · , n do the following: if j 6= i then set bij = aij/d

else set bii = (aii − m)/d. Output M(G2,1) = [bij]1≤i,j≤n.

3

11 Minimality for coupled cell networks

Let G be a coupled cell network. From Theorem 4.2 (recall also Remark 4.4) the space of

BG-equivariant maps has a natural decomposition according to the connected components

(the ∼I-equivalence classes) of the groupoid BG, and this decomposition is inherited by

the polynomial and linear vector fields:

Definition 11.1 Let Q ⊆ C be an ∼I-equivalence class. Define

FP
G(Q) =

{

f ∈ FP
G : fs(x) = 0, ∀s 6∈ Q

}

PP
G(Q) =

{

f ∈ PP
G : fs(x) = 0, ∀s 6∈ Q

}

LP
G(Q) =

{

f ∈ LP
G : fs(x) = 0, ∀s 6∈ Q

}

We say that vector fields in FP
G(Q), PP

G(Q), and LP
G(Q) are supported on Q. 3

Remark 11.2 From Theorem 4.2, there are direct sum decompositions

FP
G =

⊕

Q

FP
G(Q) PP

G =
⊕

Q

PP
G(Q) LP

G =
⊕

Q

LP
G(Q)

where Q runs over the ∼I -equivalence classes of G. 3

For detailed proofs see [14], end of Section 4, especially Proposition 4.6.

By Theorem 5.5, two coupled cell networks G1 and G2 are ODE-equivalent if and

only if they are linearly equivalent. That is, there exists some bijection γ between the

corresponding sets of cells Ci, preserving cell-equivalence and input-equivalence, such that

with the identification γ : C1 → C2, the vector spaces LP
G1

and LP
G2

are equal. By the above

discussion, this is equivalent to have LP
G1

(Q) = LP
G2

(Q), for each connected component

Q. Moreover, all cell phase spaces may be assumed to be
�

in this context.
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We look now for Min[G] where G is an n-cell network. Suppose that G has connected

components (∼I-equivalence classes) Q1, . . . ,Ql. For i = 1, . . . , l define the subnetworks

Gi in the following way:

Gi = {C, E i,∼C ,∼Ei
)

where

E i = {e ∈ E : H(e) ∈ Qi} and ∀e1, e2 ∈ E i, e1 ∼Ei
e2 ⇔ e1 ∼E e2

We can apply Algorithm 8.8 to the graphs Gi, for i = 1, . . . , l, computing Min[G1], . . . ,

Min[Gl]. The minimal class Min[G] is then obtained by considering all possible graphs

that can be formed by junction of one graph of each class Min[G1], . . . ,Min[Gl].

A Algorithms Appendix

In this section we present an algorithm given by Cohen [5] to calculate the Hermite normal

form of a matrix with integer coefficients. We use the following definition:

Definition A.1 ([5], Definition 2.4.2) We say that an m × n matrix M = [mij] with

integer coefficients is in Hermite normal form (abbreviated HNF) if there exists r ≤ n

and a strictly increasing map f from [r+1, n] to [1, m] satisfying the following properties:

(1) For r + 1 ≤ j ≤ n, mf(j)j ≥ 1, mij = 0 if i > f(j) and 0 ≤ mf(k)j < mf(k)k if k < j.

(2) The first r columns of M are equal to 0. 3

We have the following result:

Theorem A.2 ([5], Theorem 2.4.3) Let A be an m× n matrix with coefficients in � .

Then there exists a unique m × n matrix B = [bij] in HNF of the form B = AU with

U ∈ GLn( � ), where GLn( � ) is the group of matrices with integer coefficients which are

invertible, that is, whose determinant is equal to ±1.

Although B is unique, the matrix U is not unique. The matrix W formed by the

nonzero columns of B is called the Hermite normal form of the matrix A.

Algorithm A.3 ([5], Algorithm 2.4.4) (Hermite Normal Form). Given an m×n ma-

trix A with integer coefficients [aij] this algorithm finds the Hermite normal form H of A
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and a n×n unimodular matrix U such that AU = (0|H). We write hij for the coefficients

of H, Ai (resp. Hi, Ui) for the columns of A (resp. H, U).

1 [Initialize] Set i = m, k = n and U = Idn. If m ≤ n then set l = 1 else set

l = m − n + 1.

2 [Row finished?] If all the aij with j < k are zero, then if aik < 0 replace column Ak

by −Ak, replace column Uk by −Uk and go to step 5.

3 [Choose non-zero entry] Pick among the non-zero aij, with j ≤ k, one with the

smallest absolute value, say aij0 . Then if j0 < k, exchange column Ak with column

Aj0 and exchange column Uk with column Uj0 . In addition, if aik < 0 replace column

Ak by −Ak and replace column Uk by −Uk. Set b = aik.

4 [Reduce] For j = 1, . . . , k − 1 do the following: set q = baik/be, and Aj = Aj − qAk,

Uj = Uj − qUk. Then go to step 2.

5 [Final reductions] Set b = aik. If b = 0, set k = k + 1 and go to step 6. Otherwise,

for j > k do the following: set q = baik/bc, and Aj = Aj − qAk, Uj = Uj − qUk.

6 [Finished?] If i = l then for j = 1, . . . , n− k + 1 set Hj = Aj+k−1 and terminate the

algorithm, else set i = i − 1, k = k − 1 and go to step 2.
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