ON THE GENERALIZED LEBEDEV INDEX TRANSFORM

S. YAKUBOVICH

ABSTRACT. An essential generalization of the Lebedev index transform with the square of the Macdonald func-
tion is investigated. Namely, we consider a family of integral operators with the positive kernel ‘K(,»Ha)/z (x) |2 ,
a >0, x>0, TeR, where K, (z) is the Macdonald function and i is the imaginary unit. Mapping properties
such as the boundedness, compactness, invertibility are investigated for these operators and their adjoints in the
Lebesgue weighted spaces. Inversion theorems are proved. Important particular cases are exhibited. As an in-
teresting application, a solution of the initial value problem for the second order differential difference equation,
involving the Laplacian, is obtained.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let a > 0. The main goal of this paper is to investigate mapping properties of a family of index transforms
[1] and their adjoints, involving the Macdonald function in the kernel, namely,

Fa(T):/O |Kzr+oc/2 |f dx, teR, (1.1)

Gal¥) = [ |Kieraoo) (007, xe R, (1.2)

where i is the imaginary unit. The Macdonald function K, (z) [3], Vol. Il is the modified Bessel function of
the second kind, which satisfies the differential equation

and near the origin
Ky (z) =2"7"T(p) +o(1), z— 0, (1.5)
Ko(z) = —logz+0O(1), z— 0. (1.6)

The Macdonald function can be represented by the integral

Ky (z) :/0 e N cosh(pu)du, Re 7> 0, u € C. (1.7)
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2 S. Yakubovich

Concerning the product of the Macdonald functions Ky, )2 (2)K(y—a) /2(Z) the key formula, which will be
used in the sequel is relation (2.16.5.4) in [4], Vol. 1T

5] 1 B
Kiuta)2(2)Ku—q)2(2) = /0 Ky (Z <x+ x>>xa 'dx, Rez>0. (1.8)

Letting in (1.1), (1.2) & = 0, we come up with the operator of the Lebedev index transform and its adjoint,
which is associated with the square of the Macdonald function [5], [6]. We note that, indeed, an essential
generalization of the Lebedev transform will be investigated, since it is impossible to reduce (1.1), (1.2) to
the Lebedev operator via any substitution of parameters or functions. Other index transforms related to the
product of Macdonald’s functions of different arguments considered by the author in [7], [8]. Our method
of investigation of the operators (1.1), (1.2) will involve a similar technique, which was employed to study
the boundedness and invertibility properties of the Kontorovich-Lebedev transform [9] and general index
transforms [10].

2. BOUNDEDNESS AND COMPACTNESS IN LEBESGUE’S SPACES

Let us introduce the following Lebesgue functional spaces

L*=1, (R+, a/2( = { / |dx<t><:}. (2.1)

In particular, as we will show below, it contains spaces Ly, p(R+) for some v € R, 1 < p < oo with the norms
o | 1/p

Hf”v.,p: (/0 Pl f(x)/’dx> < oo, (22)

[f1v.00 = es8 sup,glx” f(x)] < .
When v = % we obtain the usual norm in L, denoted by || |,.
Lemmal. Lera >0, v+a<1,1<p<e, g= %. Then the embedding holds

Lyy(R,)C LY (2.3)
and
2
r'agl—-v)) [(1-v a l-v «
a < - - <o :
I f1e l 1 B( T 3 4> fllv,ps 1 <p <o, (2.4)

e < sup [RE o™ | 7l (2:5)

where T'(z), B(z,w) are Euler’s gamma and beta functions, respectively.

Proof. In fact, with the definition of the norm (2.1) and the Holder inequality we obtain
1/q

Il = [ &2 plsolax < (R0 08) Dl a= 25 20)

and the latter integral via asymptotic behavior of the Macdonald function (1.4), (1.5), (1.6) converges for
v+ o < 1. Hence integral (1.7) and the generalized Minkowski inequality yield

1/q oo oo 2
/ K2 (x)x1=V)a1 gy = / x(1=vla—1 / e e cosh(ow/2)du | dx
oc/2 0 0

1/q
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oo o 1/q\*
< (/ cosh(au/2)du (/ x(lv)qlez’f’“‘“h”dx> )
0 Jo

— (Zq)2(vfl)r*2/q (q(l _ V)) (/Ow COSh((Xu/Z) du>2 )

cosh'Vu
Calculating the integral with hyperbolic functions via relation (2.4.4.4) in [4], Vol. I, we come up with the
estimate (2.4). For the case p = 1 we end up immediately with (2.5), using (2.6), where the supremum is
finite via the condition v + & < 1. Thus the embedding (2.3) is established and Lemma 1 is proved.
]

Letting in (1.8) z=x € Ry, u = iT and making a simple substitution, equality (1.8) becomes
|K(,»T+(X)/2(x) |2 = / K;; (2.XCOShl) eo”dt, x> 0. (27)

Moreover, appealing to the representation (1.7) of the Macdonald function, we substitute the corresponding
integral into the right-hand side of (2.7). Changing the order of integration due to the absolute convergence
of the iterated integrals, we find the formula

D (1) = Kz a2 (0)]* = /_ Ka (2xcoshr) e™dt, x> 0. (2.8)

The representation (2.8) is a key identity, which will be involved to establish a differential difference equation
for the kernel @ (x). Precisely, it has
Lemma 2. The kernel ®q ¢ (x) satisfies the following second order differential - difference equation
@y 1 ddg.
dx? + x dx
Proof. In fact, differentiating two times both sides of (2.8) with respect to x, motivating it by the absolute
and uniform convergence of the integral and its derivatives, we obtain (/ means the derivative)

2
T
+ xi2¢(x’r = ¢2+a_]1 + 2@@71 +(b27a7‘:, x> 0. (2.9)

<I>Z,7T(x) = 4/_ K/ (2xcoshr)e'™ cosh?tdt = 4/_ K/ (2xcosht) ™ dt

+4/ K/ (2xcoshz) e'™ sinh? tdr.
Meanwhile, the second derivative of the Macdonald function can be expressed as (cf. [3], Vol. II)
1 1
Kg (Z) = Z [KZ—FOC(Z) + KZ—(X(Z)] + EKOC (Z)

Hence,

d*®g ¢

dx?

On the other hand, integrating twice by parts in the latter integral and eliminating the integrated terms via
asymptotic formula (1.4), we find (7 # 0)

CBge(x) — Py e (x) — 2P 2 (x) = 4 / K! (2xcoshr)e™ sinhtdr.  (2.10)

4/ K (2xcoshr) e'™ sinh®tdt = —
e x

/ K/, (2xcoshr)e'™ sinhzdt

2 pee . T\ 2 2 [ i
ff/ K, (2xcosht)e'™ coshtdt = — (7) Dy o(x)+ —T/ Ky, (2xcosht)e'™ sinhtdt
X J e x ’ ixT J o

4 [ : T\2 1
e / K (2xcosht) e'™ cosht sinhtdt = — (7) D r(x) — = Po,o(¥)
1T J—o X X
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\2d
iTdx

* o T\2 1 d (1
/_ K (2xcoshr) ¢ sinhids = — (;) Pao(1) ~ 5Pt (¥) — - ()CCIDa,T(x))

B T\2 1d®g (x)
== (3) Paci - L0

Hence, the right-hand side of the latter equality substituting in (2.10), we end up with (2.9).

O

Theorem 1. The index transform (1.1) is well-defined as a bounded operator from L% o > 0 into the
space Co(R) of bounded continuous functions vanishing at infinity. Besides, the following composition
representation holds

Fy(7) = (F(Huf)(2cosht)) (1), (2.11)
where N
(FNE = [ _fwea (2.12)
is the operator of Fourier transform and
(Haf) ) = [ Kalst)f (0 (2.13)

is the operator of the Meijer K- transform (cf. [2]).

Proof. In fact, since (see (1.7)) |K{jz4.q)/2(x)| < Kg/2(x) we have

Fa0)] < [ KE ) £ ldx = 11 < o=

which means that the operator (1.1) is well-defined and the integral converges absolutely and uniformly with
respect to T € R. Thus Fy(7) is continuous. On the other hand, recalling (2.8), we derive

IFo(7)] < /Ow /_iKa (2xcosht) | £(x)|dxdt = || ]| < oo.

Hence in view of Fubini’s theorem one can invert the order of integration in the corresponding iterated
integral and arrive at the composition (2.11). Moreover, the previous estimate says that (¢ f)(2cosht) €
Li(R). Consequently, Fy(7) vanishes at infinity owing to the Riemann-Lebesgue lemma. O

Corollary 1. The operator Fy : Ly p,(Ry) = Ly(R), p>2, oo+ Vv < 1 is bounded and

HFoc”L,,(]R) < n%z*Z/qquvfl {F (%(1 _ v))r/q

l-v+a 1-v—-a p
B = —. 2.14
< (P I Ul 0= 2.14)

Proof. Indeed, taking the composition (2.11) via Lemma 1 and appealing to the Hausdorff- Young inequality
for Fourier transform (2.12) (cf. [11], Theorem 74)

12 Flly@ < @011 fllym), 1 < p <2, 9= -2 (2.15)

we find

1 o 1/q
Pl < 22 [ 1) Ceosho)var) (2.16)
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Hence by the generalized Minkowski and Holder inequalities with relation (2.16.2.2) from [4], Vol. II we
obtain similar to the proof of Lemma 1

e gy e - 1
2mr (/0 |(%f)(2cosht)|th> qunﬁ/O |f(x)|(/0 K&(Zxcosht)dt) qu

<omr / / |f(x)| cosh( o) ( / ez‘P‘COSh’C"Sh”dt) dudx
0 0 0

:2717%/ / |f(x)\cosh((xu)Ké/q(qucoshu)dudx
o Jo

l/q

< 27r%||f||v,p/ cosh(owu) (/ x4 g (2gxcoshu dx>
0 0

= w221 [r (L0, [ O,

0 coshVu

= w22 [t (S0 -) e (S 20 i

2
Consequently, combining with (2.16), we get (2.14). O

The next result tells when operator (1.1) is compact.
Theorem 2. The operator Fo : Ly ,(Ry) = L;(R), 1 <p<2,00>0, a+v<1, g=p/(p—1)is
compact.

Proof. The proof is based on approximation of the operator (1.1) by a sequence of compact operators of a
finite rank with continuous kernels of compact support. But to achieve this goal, it is sufficient to verify the
following Hilbert-Schmidt-type condition

/O/_ |Kies002(0) 7209 dedx < oo, (2.17)

Indeed, recalling again integral representation (1.7), (2.8), the Hausdorff-Young inequality (2.14) and the
generalized Minkowski inequality , we deduce

o oo % (Vg 1/q
/0 /,m Kz 2(0) [ x dtdx
* bl 1/(p—1) 1/q
<2xlla (/ K(1=v)g-1 (/ Kg(Zxcosht)dt> dx)
0 0

oo o q 1/q
<2rm'/4 (/ x(1=via=t (/ cosh(au) Ké/p(prcoshu) du) dx)
0 0

oo o 1/q
< 27171/"/ cosh(au) (/ x(1=via—1 Ké/<p71)(2xpcoshu) dx) du
0 0

oo 1 -
—ovl/apv-] (/ <11 g1/0=D) dx) /"/ cosh(au)
JO 0

cosh' ™V u

1/q,,v—1 1— l—v— o0 B 1/q
T 5 B( ;+°‘7 V2 0‘) (/0 1=t g1/ 1>(x)dx>
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1/g,,v—1 _ v
T B 1 v+oc’ l-v—-a
- 2 2 2

0o o p—1 1/p
v (/ du (/ x(lv)qlexcoshu/(pl)dx> >
0 0

7r1/‘1q‘/*‘1"1/’1(q(1—v))F I-v+a) l—v a /°° 1/p
2T(1—v) 2 0 coshP1 I u
P
2

7/a(q/2)"~12-12/p T/a(g(1 - v))
(= v)) e (30-v)

B l-v+a 1-v—« <
2 ’ 2 ’

O

Letting p=¢=2,=0,v =1/2 we get
Corollary 2. The Lebedev operator (l 1) Fo : Ly(Ry) — Ly(R) is the Hilbert - Schmidt operator with
the square of the Macdonald function K> b /2( X) as the Hilbert-Schmidt kernel. Moreover, its norm is equal to

n?/2.

Proof. Employing the Parseval equality for the Fourier transform [11], representation (2.8) and relation
(2.16.33.2) in [4], Vol. II, we derive (see (2.17))

|F0||=</ / K} p(x drdx) :2\/ﬁ< / / K&(Zxcosht)drdx)
0 Jo

2

N Y L ® 5 1/277r
= 2n (/0 Cosht/o Ko(x) dx) —7

Another representation of the transform (1.1) can be given via the Parseval equality for the Mellin trans-
form [11]

1/2

O

oo 1 Voo
| fwsar= [* 9 (1=s)as. 2.18)
where f € Ly ,(R4), 1 < p <2and
s) :/0 Fx)x"tdx (2.19)

is its Mellin transform and integral (2.19) converges in mean with respect to the norm in L, (v — ico, v +
i), g = p/(p —1). The inverse Mellin transform is given accordingly
1 V+ico s
=— “(s)x—°d 2.20
O A (2.20)
where the integral converges in mean with respect to the norm (2.2) in Ly ,(R.). An immediate consequence

of Theorems 86, 87 in [11] is the following result.
Theorem 3. Let f € Ly ,(R4), 1 <p<2,a+Vv <1 Thenforallt€R

1 Viie /1 g4t 1—s—it
Fo(T) = rf———\r(——
«(7) 8in/T Jy—ieo ( 2 ) ( 2 )
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I((1-s+a)/2)I'((1-s—a)/2)
I'((1—s)/2)T(1—s/2)
Proof. In fact, the proof is based on the equality (2.18) and relation (8.4.23.31) in [4], Vol. III, which drives
us to the following representation of the kernel |K{;z-.q)/2(x) ‘2

21 ptie (st s—it\ I'((s+a)/2)I'((s—a)/2)
i =z [T (5 ) (5 M 0
where T € Rand 1 > o. O

f7(s)ds. (2.21)

x%ds, x>0, (2.22)

Finally in this section we investigate the existence and boundedness of the adjoint operator (1.2). In
fact, following the general operator theory it can be established from the boundedness of the operator (1.1).
However, we will prove it directly, getting an explicit estimation of its norm. Assuming g(7) € L,(R), 1 <
p < 2 and recalling (2.8) with the asymptotic formula (1.4) for the Macdonald function, we find that for
each x > 0 the function Ky (2xcoshr) € L,(R), 1 < p < 2. Hence via the Parseval theorem for the Fourier
transform (cf. [11], Theorem 75), operator (1.2) can be written as

Galx) = /_ iKa(Zxcosht) (Fg) (1)dt, x>0, (2.23)

where (Fg) (t) € Ly(R), ¢ = ;7 is the Fourier transform (2.12) of g.

Theorem 4. Lergc L,(R), 1<p<2,0<a <1+ ﬁ. Then operator (1.2) is well-defined and for all
x>0

1+ a 1 11—« 1
1+1 2~7—2—1 —-1/(2 —1-1/(2 2
|Ga(x)|<it( /q)/ 2 /pp /( P)B<2+7 2—))6 /( p)||g”L,,(R)~ ( 24)

Proof. Taking (2.23), we recall the Holder inequality, the Hausdorff-Young inequality (2.15) and the gener-
alized Minkowski inequality to obtain

o0 1/p o0
|Ga(x)§( /_ Kg(Zxcosht)dt) -7 8llL, =) < 77 lgllL, ) /0 cosh(au)K./? (2xpcoshu)du

. - 1/p
< nl/q||gHL,,(R)/ cosh( o) e~ <o (/ e~ 2peoshu ’zdt) du
0 0
_ ~(1+1/9)/25~3/(2p) —1/(2p) ” M —2xcoshu
T 2 (xp) HgHLp(R)/O cosh/ ) ¢ du

- - - * cosh(ou
< /20 13/2p) 1 /20) 11 g /O coshl"'(l/(z’z)udu

o1/ - I+a 1 1—-a 1
1+1/9)/27 21 1/(2p) ,—1-1/(2
= gIT1/9)/2) /pp=1/@r)x /<p)B< ) +T’ ) _1>||g|LP(R)7

which proves (2.24).

Theorem 5. The operator Go : L,(R) = Ly ,(Ry), 1 <p <2, r>1, a <V is bounded and

'/ (vr) v via v—ao
< gl=1/ppv—-2-2/p 2/p (VP .
[[Gallv, <@ /P2 TP (vp) I ( > )B ) l8llz,®)
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Proof. Indeed, recalling (2.23), we apply again the generalized Minkowski, Hélder inequalities and the
Hausdorff-Young inequality (2.15) to find

v oo 1r
||Ga||v7r§1 |(32g)(z)(/0 xV”K;(zxcoshz)dx) dt

oo oo p/r 1/p
<78l ) (/ (/0 XK, (2xcosht)dx> dt)

| 1/p o . 1/r
< (2m)" 927 lgl |, ( COSWI) ( /0 2 K;(x)dx>

1/r
— v v r—1 gr
= 71-1/512 Z/PBl/p (l l) (‘/0 v IK ( )dx> HgHL[,(R)

2 ?
1/gn—2/ppl/p (YP VP * = vl cosh v
q ppl/p r—1 ,—xr u
<m'/927“/PB (— 7)/0 cosh(at (/o x" e dx) dt ||g||Lp(R)
1an—2/p,—vpl/ryglie (Y2 VP /“M

A (2 2) 81z, cosh" ¢ a

r(vr) % via v—a

_ ljaov—2-2/p L TVI) oy (VP y-¢
=x/92 ST (vp) r ( 2 )B< > o > HgHLP(R)

3. INVERSION THEOREMS

The composition representation (2.11) and the properties of the Fourier and Mellin transforms are key
ingredients to prove the inversion theorem for the index transform (1.1). Namely, we have

Theorem 6. Ler0< o<1, v<l—a, 1 <p<2,g=p/(p—1). Letsf*(s) € L,(V —ico,V +ic0), where
f*(s) is the Mellin transform (2.19) of f € L1((1, oo) t%dt), i.e. f(t) is integrable over (1,e0) with respect
to the measure t%dt. If, besides above assumptions, the generalized Lebedev transform (1.1) of f satisfies
the condition 1e™"|Fy(t) € L (R) and its Mellin transform vanishes at the point 1 — a,, i.e. f*(1—a) =0,
then for all x > O the following inversion formula holds

1 (x/2)i7! it 14+t _iT—0 o+iT
f(x)_E[m [F((ir—a)/z)l"((a+ir)/2) 2 (2’ R T ’xz)
2cosh(mt/2)

where yF3(ay, ay; by, by, bs;z) is the generalized hypergeometric function and the integral converges ab-
solutely.

Proof. In fact, since sf*(s) € L,(V —ico,V+ico), 1 < p <2, it means that f*(s) € L,(V —ico, v +ic0). Hence
Theorem 86 in [11] says that f, which is given by formula (2.20), belongs to Ly 4(R). Then by virtue of
Lemma 1 and Theorem 1 we observe that Fy (1) is continuous. Therefore the condition te” *|Fy (1) € L (R)
implies Fy, € L1 (R). Hence (2.11) and the inverse Fourier transform yield the equality

1 o0 ) roo
— / Fo(t)e™dt — / Ka(2xcoshi) f (x)dx,
27 J o 0
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and after simple substitution A = cosh¢ it becomes

1 2_
— / Fo (1) (VA1) g / Ka(2xA) f(x)dx, A > 1. (3.2)
The integral in the left-hand side of (3.2) converges absolutely. Further, recalling the Holder inequality,
asymptotic formulas (1.4), (1.5) for the Macdonald function and the condition f € Ly 4(R. ), it is not difficult
to verify the absolute convergence of the integral in the right-hand side of (3.2). Moreover, it permits a
differentiation with respect to A in (3.2). As a result we obtain

;e eirlog(iur\/ﬁ ) N
o /_ JTFa(t)—==d7=2 /O K}, (2xA)xf (x)dx. (3.3)
Integrating by parts in the right-hand side of (3.3) and eliminating the integrated terms, we get
i e it <A+ A2
E/,m TF“(”T / Ko (2xA) xf( )ldx (3.4)

But since sf*(s) € L, (v —ico, v +ico), one has that f(x) is equivalent to some absolutely continuous function,
4 [5f(2)] € Lyg(R..) and

d 1 v
Sl @)= o [ (=9 s

where the integral converges in mean with respect to the norm in Ly 4(R ). Further, the Parseval equality
(2.18) and relation (2.16.2.2) in [4], Vol. II allow us to write for all A > 1

/ Ka(22) - xf( )]dx1,/vv+i°°(1s)r(l_s;"‘)r(l_sz_“)f*(s) A ds.

8T Jy—_iso

Therefore, combining with (3.4), we have

i/w tF (T)Wdf__lfwriw(l_ )T 1-st+a r 1-s—a
) 221 T 8w 2 2
X f*(s) AS"2ds. (3.5)

Meanwhile, Fy(7) is even. Thus it implies from (3.5)

R S

221 Ari 2 2

—joo

X f*(s) AS72ds. (3.6)

In the meantime, relations (2.16.2.2), (2.16.6.1) in [4], Vol. II and the Parseval equality (2.18) give the
following representations of the kernel in the left-hand side of (3.6)

sin (’L’log (7L + \/ﬁ))
A2 —1

inh U+ico 1— [ 1—s—1i
:w/ 22sr(s)r< ””)r( . ”)Asds, O<pu<l. (3.7)
Tl U—ioo 2 2

1 00
= fsinh(m?)/ e MKip (x)dx
T 0
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Hence, substituting the right-hand side of (3.7) into the left-hand side of (3.6) and changing the order of
integration via Fubini’s theorem due to the estimate

/_ Z |TFy (%) sinh(77) 2-25T(s) T < 1= S; ”) r < 1= Sz_ ”) A~Sds
(01— w)/2)

o U+ico
< gy | _eFe@le T [ irsyas| <o (33)

A-ico
drt

H—ioo

it becomes by virtue of simple changes of variables

1 puetie = 1—s+i 1—s—i
— Z*S*ZF(s)/ Tsinh(nt) Fo(7)I ( St lT) r ( s lT) dt A7%ds
o1 U—ico —oo 2 2

_ é /jfw_iw(s_ 1) r(s_ 12”‘) r (s_ 12_0‘> F(2—s) A~¥ds. (3.9)

In the meantime, we will show that under conditions of the theorem f™*(s) is analytic in the strip v < Re s <
1+ a. Indeed, it follows immediately from the absolute and uniform convergence of the integral (2.19). We
have (s = 4 +i7),

o 1/ 1/
o< [ ot [T s ([ a) (e

+ [ O] < p = flleg+ [ 150 e, (3.10)

and the result follows. Moreover, appealing to the Stirling asymptotic formula for gamma- functions [3],
we observe that the integrand in the right-hand side of (3.9) belongs to Lj (i — ieo, it + ico) for all p €
(1 —a, 2 —v]. Therefore, the Cauchy theorem and the condition f*(1 — ¢¢) = O permits us to shift the
contour (2 — Vv —ioo,2 — v +ieo) to the left, making the integration over the line ([ — ico, i + ico) with
Il —a < u < 1. Hence we arrive at the equality

| pui - 1—s+i 1—s—i
2752 (5) A / rsinh(nr)Fa(r)F< s;”)r( > ”)drds

E H—ioo
1/u+ioo(s1)F<s12+06>r(5120‘)f*(zs) A =5ds. (3.11)

- 4mi U —ioo
Further, taking into account (3.10) and estimating the integrand in the left-hand side of (3.11) as a function

of s similar to (3.8), we observe that both integrands in (3.11) are from the space Li (1 — oo, Ll +io0), U €
(1 —a,1). Consequently, the uniqueness theorem for the Mellin transform (see [11]) immediately drives us

at the equality
27T * l—s+it 1—s—it
ﬂ:z(s) [mrsinh(nr) Fa(r)l"< s2+l ) F( s2 ! ) dt

-1+a —-l-a
=0T ()T () e se mimaitie)
Hence the simple change of variables and the reduction formula for the gamma-function yield

27 (1-s) o C((s—1+it)/2)T((s—1—it)/2)
2 /,w“mh(m)r((1_s+a)/2)r((1—s_a)/z)

f(s)

Fy(1)dT, (3.12)
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where s € (2 — [ —ie0,2 — j1 +ieo), and it is not difficult to verify the condition f*(1 — &) = 0. But the
right-hand side of (3.12) is integrable over the line (2 — L — ic0,2 — U + ioo). Indeed, we have

2 pio - T((s—14i1)/2)T((s— 1—i1)/2)

L P90 msinbtn) = a0
2—putie L(l—s)(s—1)

rie | —s+ )DL (1=5—0)/2)

x /_ " sinh(wT)B ((s— 1 +i7) /2, (s— 1 —i1)/2) Fy(t)dtds

Fy(t)dtds

2— L +ioo

C(1—s)(s—1)
<B(l—upu, 1_“)/2#400 C(1=s+a)/2)T((1-s—a)/2)

via the condition te”/*|Fy (1) € L1 (R) and the estimate
I'(1—s)(s—1)
'((l-s+a)/2)T((1-s—a)/2)
Consequently, applying to both sides of (3.12) the inverse Mellin transform (2.20), we come up with the
equality for all x > 0

ds/ 17 Fy(7)|e™ldT <00 (3.13)

:0(|u|1*ueﬂrlul/2>7 s=2— p+iu, |u| — oo,

Flx) = ﬁ /_ " osinh(77)S (6, 1)Fu (1), x> 0,
where under a simple substitution with the use of the reduction formula for the gamma function
1 R (s— (1401) /2) T (s — (1 —i1) /2)T(3/2 —5)T(1 — )
_277'51'/17“/24«’ Ir'((l+a)/2—)T'((1—a)/2—s5)(1/2—3)
and the change of the corresponding order of integration is allowed owing to the estimate (3.13) and Fu-

bini’s theorem. Our goal now is to calculate the kernel Sy (x, T) in terms of the generalized hypergeometric
functions , F3 via the Slater theorem (cf. in [4], Vol. III). In fact, the integral (3.14) is equal to
= (—1)"x*" (it —n)[(n—it/2)T(n+ (1 —it)/2)

Salx0) = Y ot (@ /Tl — (it @)/2)

Sa(x,7) x2ds, (3.14)

i i (—=1)"x>" T(—it —n)T(n+it/2)T(n+ (1 +it)/2)
= n C(n+(a+it)/2)T(n—(a—it)/2)

27;\/% T

B (x/2>ir—l
xtsinh(n7/2)(o/2)T(—/2)  tsinh(nT) |:F((i‘L'—(X)/2)F(((X+iT)/2)
it 1+it _o+iTt iT—o , (2/x)1+i*
Bl=-, —:1 —_— ;
*2 3(2’ I S x)+F(—(a+ir)/2)F((a—ir)/2)
it l—it . a—it  it+oa 4cosh(nt/2)
F = T A 1- 9 y T A - .
2 3( 2 2 T 2 x) (/2T (—a)2)
Finally, since Fy, is even, we easily arrive at the inversion formula (3.1), completing the proof of the theorem.

]

In order to prove the corresponding inversion theorem for the index transform (1.2), we will need the
value of the integral, involving squares of modules of the gamma functions. Precisely, we have
Lemma 3. Let, € >0, x € R. Then
; . 2
< 5 —t 4 t
/ r( +’(2x )> r( +’(2x+ )> dt = 4m|T(e +ix) > B(e, €). (3.15)
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Proof. The proof is based on the Parseval equality for the Fourier cosine transform [11] and relation (2.5.46.6)
in [4], Vol. I. Thus we obtain

e e+i(x—t) 8—|—i(x—|-t)> 2 4—2¢ 2 [T dt
r r dt=2 w|l(e+ix _—
./700 ( 2 ) ( 2 IT¢ ) 0 cosh®t

=47 |T(e+ix)|* B(e, €).

Definition 1. A function f satisfies the Dini condition at some point x, if

fO+1) - f(0)
o) = =L
is integrable in some neighborhood of the origin.
Now the inversion formula for the index transform (1.2) is given by
Theorem 7. Let a € R, g(t) € Ly(R), 1 < p <2, satisfying the Dini condition at some point x €
R\{0}. Ler also the index transform Gy be such that its Mellin transform G (s) € Li((1 —ico, U +

ioo);|s|'/2ds), > 0. Then

1 T'(2e) [ [(—ix) (¢/2)5 !
Y= I
ev0r T T(€) Jo |T(e— i) ((e+a+ix)/2)T((e+ix—a)/2)
o F, 8+ix’ etivt L+, erotix etix—o o) | I“(ix)(t-/Z)S*ixfl |
2 2 2 2 INe+ix)I'((e+a—ix)/2)T((e—ix—a)/2)
€—ix €—ix+1 . Etoa—ix E—ix—Qa_ ,
><2F3( 5 Ty 1—ix, I 7t )} Gy (t)dt, (3.16)

where the limit is pointwise.

Proof. Recalling formula (2.23), which is valid under conditions of the theorem, we calculate the Mellin
transform (2.19) from its both sides with s belongs to the vertical line with Re s > |¢t|. After the change of
the order of integration via Fubini’s theorem by virtue of the absolute convergence and the use of relation
(2.16.2.2) in [4], Vol. 1I, we find

4Gylo) _ [ @aa, 517)

I'((s+a)/2)T((s—a)/2) —e cosh’t

But the right-hand side of the equality (3.17) is analytic in the right half -plane Re s > 0. This fact follows

form the absolute convergence of the integral for Re s > 0 and the uniform convergence with respect to

s, Re s > x9 > 0. Indeed, since (Fg)(t) € L,(R), g = p/(p— 1) we just apply the Holder inequality to

achieve the goal. Hence, the Euler integral for the gamma function and the Fubini theorem drive us at the
equalities

41(s)Gg ()
T((s+a)/2)T((s - @)/2)

= / yo! / (Fg) (t)e >N drdy. (3.18)
0 oo
In the meantime, the Stirling asymptotic formula for the gamma function yields

I'(s) _ S172) s o
T((s+0)/2)T((s—a)/2) *0(| | ) sl = e

= [ (Fow) [ ety layar
oo 0
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Therefore under the condition |s|'/2G% (s) € Ly (i —ieo, pt+io), u > 0 the left-hand side of the first equality
in (3.18) is integrable. Taking the inverse Mellin transform (2.20), we find

2 pkie [(s)G (s) as= [ eosh
— Sds = Fg)(t)e YN dt. 3.19
i ./Hm T((s+a)/2)T(s—a)/2)’ | Fo) (3.19)
Moreover, the right-hand side of (3.19) can be rewritten owing to the Parseval equality for the Fourier
transform [11] (see (2.12)) and integral representation (1.7) of the Macdonald function. Hence

1 [(s)Gy (s)
i /u—ioo C((s+a)/2)T((s—
The next step is to multiply both sides of (3.20) by
reep'—c
al(e) |T(e +ix)|?

and integrate with respect to y over R, . Then changing the order of integration, recalling the Fubini theorem,
and calculating the inner integrals, appealing to relations (2.16.2.2) and (2.16.33.2) in [4], Vol. II, we obtain

I'(2¢) fitieo I['(s)G%(s) s+ix £—s5— 1y
22 () [F(e 1 ix) Ju i r<<s+a>/2>r<<s—a>/z>r< 2 )F( 2 )2 ¥

R /w p(Etili=1) eti+r) 2
~ 4nB(g,€) J-w 2 ’ 2
The left-hand side of (3.21) can be expressed with the use of the Parseval equality (2.18). In fact, we derive

I'(2¢) fitiee I['(s)G(s) £—s+ix E—s—ix\ :
22 (e) (e i) Jui r<<s+a>/2>r<<s—a>/2>r< 2 >F< 2 )2 ¢

nl(e) |F £+1x| / < )Ga()it

where analogously to the calculation of the kernel Sg (x, 7) (3.14)

a7 = / Kie(y)g()d. (3.20)

Kix(y), €>0,y>0,x€R

g(t)dt, 0< u<e. (3.21)

. 1 p/2tie  T()T(1/2+5) €+ix €—ix L
S = r —s | — ’d
ae (X = i e ToTa 2T \ 2 ° 2 ) E
B 2(2u) T (g 4 ix)T(—ix) e+ix e+ix+1 | +ix e+ o +ix S—Hx a 1
TT(e+a+in/)T((e+ix—a)/2)>°\ "2 * 2 T2 2
2(2u) ET (e — ix)T(ix) e—ix e—ixfl . eta—ix e—ix—a |1
s L—ix, ) s |-
F((e+a—ix)/2)T((e—ix—a)/2) 2 2 2 2 u?
(3.22)

Further, returning to (3.21), we consider its right-hand side

5 , 5 g(t)dr. (3.23)

Since the square of the modulus of the beta function is even with respect to T and x, one can assume without

loss of generality that g(7) is an even function and x > 0. Our goal is to prove the limit equality for some
positive x, where g(x) satisfies the Dini condition, namely,

lim I(g,x) =g(x), x> 0. (3.24)
e—0+




14 S. Yakubovich

In fact, appealing to (3.15), we write for some small positive &

i i(x— i(x 2
Hew) 00 = s [ | (G ST i) ar

2 2
4 +£) 2)(e2 +22) e+i(x—1) . etilx+1)\[ [8(7) —g(¥)]
- e (+ ” )
(
)

drt

27 2 (&+(x+1)°)(e+(x—17)%)

e24+x2) [ [ 8 —x+8 e+i(x—1) e+i(x+7)\ |
(/m s Lx+5+/ +/+5>‘ ( > T )
() —g(x)]
(€2+ (x+71)2)(e2+ (x—1)?)
Starting from integral I5(&, x), we find
4B*(1+¢/2, 1+€/2)((1+e)* +2%)(e2 +47) [~ () —8(»)]
(&%)l < 7B(g,€) /+6 (e2+ (x+1)2)(e2+ (x— 1))

_ 2B (1t e/2, 1 e/2)((1+e) + ) (e + )T (e+1/2) I lg(x+1) — g(x)|
5 (24 (2x+1)%)(

4((1+£) x?)
— s

dt=1 (8,)6) —‘1-12(87)6) +13(8,x) —‘1-14(87)6) —|—15(£,x).

drt

(
/7l (€) (2x £2412)
< citoe [ BEHIR0, < o0 & ey (o) il

— 5 (520

where C;(x), i = 1,2,3 are constants. Clearly, one can make the latter expression arbitrary small, choosing

first some 6 and then €. Thus

lim Is(e 0.
o1 15060 =

In the same manner we establish the equality

lim [ (e 0.
o 118 =

Concerning integral I3(€,x), we presume that § is small and does not exceed x. Hence, analogously,

270 Jg(x—1)| +|g(x)] Co(x)
I < 5 dt <
(e <ecatr) | 2(2e—1)? & [CS( ¥ 511/4
and again
lim I
My e =0
Finally, we estimate integrals I>(&,x), I4(€,x). We have
o |8(7) —g(x)] o lslx+1)—g()]

L(ex)| <eC x/ dt=¢€eC x/ dt
|4( )‘ 7( ) s (82+(X+T)2)(82—|—(x—1)2) 7( ) 5 (32+(2x+t)2)(82+t2)
€ % Jglx+1) —g()] ! 0 |glxt1) —g(x)|
<=5 C —dt < C Yt
— a2 7<x)/4 g2 412 =22 1) ./75 It 7
where the latter integral becomes small when & goes to zero via the absolute continuity of the Lebesgue
integral. Therefore I4(€,x) — 0, € — 0+ and in the same manner we get

EILIE)LIQ(S,X) =0.
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Thus (3.24) holds true, and the inversion formula (3.16) follows immediately after the passage to the limit
in (3.21) by € — 0+.
O

4. PARTICULAR CASES

4.1. The case oo = 0. Letting o = 0, we come up with the Lebedev type index transform, involving a square
of the Macdonald function

/ 2 W f(@)dx, TER. (4.1)

In this form the transform is mentioned by formula (8.59) in [12] as a particular case of the general Wimp-
Yakubovich transform with respect an index of the Meijer G-function (cf. [2], Chapter 7). Despite Theorem
6 is proved for non-zero o, one can adjust its proof for the zero- case too. In fact, the hypergeometric
function in the inversion formula (3.1) is reduced to the | F>- function and can be expressed in terms of the
modified Bessel functions. Precisely, appealing to relation (7.14.1.4) in [4], Vol. III, we find

l+it T 5\ A E x —it x E ‘
1F2( 5 1+ir, E,x ) —ZIIT/Z(X)F(I-F 2) (2) [2 1"<2>I,T/21(x)
it
- (1 +2) Iir/z(x):| .
2 iT—1 14+it
G (1

2 G12) 5 ; 1+it ; x2> =T li)2(x) |:Iir/21(x) - % Iir/Z(x):| ~ (4.2)

Meanwhile calling properties of the modified Bessel functions (see in [3], Vol. II), we obtain

Hence

iT
< lie2(0) = Ligjpa (¥) = ligja 1 (),
d
Iir/Zfl (x) +Iir/2+1 (x) = 2@4’1/2()6)
Substituting these expressions in (4.2), after straightforward simplifications we derive

x/2)iT1 1+it iT . d it d
e i (5 i ) =it () o) = 5 o),

I'2(it/2)
and the inversion formula (3.1) for the index transform (4.1) takes the form
i d
f@W=5_1 Izr/z( ) Fo(t) Tdr. (4.3)

However this is exactly the inversion formula (8.60) in [12] subject to elementary changes of variables and
functions. An analog of Theorem 6 is

Theorem 8. Lerv <1, 1 <p<2, g=p/(p—1). Let sf*(s) € L,(V —ico,V +ico), where f*(s) is the
Mellin transform (2.19) of f € Li((1,0); dt). If, besides above assumptions, the index transform (4.1)
satisfies the condition te™ "1 Fy(t) € L (R) and the Mellin transform f*(s) vanishes at the point s = 1, then
Sor all x > 0 inversion formula (4.3) holds, where the corresponding integral is absolutely convergent.

Proof. The scheme of the proof is the same as in Theorem 6. Nevertheless, to adjust the value oc = 0 and to
have a strip, where one can choose a vertical line for the integration in the right-hand side of (3.11), it can
be rewritten as

1 et o 1—s+i 1—s—i
— 275721 (s) / rsinh(nr)Fo(f)F< S;”)r< Szn)drksds

7T3l U—ioo
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1 phtie o1 s—1Y\ . _
_mA_imF< ! )r( . )f(Z—s))L ds

with 0 < p < 1 owing to the analyticity, integrability conditions and the value f*(1) = 0. Hence one can
proceed all further steps of the proof of Theorem 6. ]

The corresponding adjoint operator to (4.1) has the form (see (1.2))

Go() = /0 K2y (0g(v)d. (4.4)

Hence Theorem 7 becomes

Theorem 9. Let g(7) € L,(R), 1 < p <2, satisfying the Dini condition at some point x € R\{0}. Let also
the index transform (4.4) be such that its Mellin transform Gj(s) € Ly (1 — ioo, p +ioo); |s]'/2ds), u > 0.
Then

1 TQe) | T(—ix)(z/2)s! e+ix+1 . e+ix
gl) = lim = r(e)/o [F(e—ix)l“2((£+ix)/2) ‘F2< y T ’t2>

I(ix) (1/2)5 ™! e—ixtl | . E—ix
; 1—ix, ;
Te+inI2((e—ix)/2) " * 2 2
where the limit is pointwise.

Remark 1. When it is possible to pass to the limit under the integral sign in (4.5), this formula takes the
form

Go(t)dt, (4.5)

60 = oo [ 5 [0~ 12 p0)] Gt

Moreover, with elementary changes of the variables, functions as in the previous example and the integration
by parts we arrive at the pair of Lebedev transforms [5] (see formulas (8.57), (8.58) in [12]).

4.2. The case o = 1. In this case we will consider the following index transforms
“ 2
AE = [ |Kierpe f0dr, ek, (46)

G (x) = [ |Kiern) o () g(0)dz, x€R,. (4.7)

Employing relation (7.14.1.5) in [4], Vol. 111, the corresponding kernel in the inversion formula (3.1) can be
reduced to the product of the modified Bessel functions. Precisely, we find

(x/2)i71 it . it—1 7
T(t—1)/2) (1 +i0)2) 7 (z’ Trit, == x2> = lie-12(x)

x {nzll(n—l)/z(x) + ;I(ir+1)/2(x):| = g Liz—1)2 () (iz—3) /2 (%)

Thus the inversion theorems for operators (4.6), (4.7) are given accordingly,

Theorem 10. Ler v <0, 1 <p <2, g=p/(p—1). Let sf*(s) € L,(vV —ico,V +ic0), where f*(s) is the
Mellin transform (2.19) of f € Li((1,00); tdt). If, besides above assumptions, the index transform (4.6) of f
satisfies the condition Te™ | Fy (t) € L1 (R) and f*(0) = 0, then for all x > 0 the following inversion formula
holds
cosh(mt/2)

Fi(7)dt
p— 1(7) dt,

1 )
flx)= */_w [; Liz—1)/2()(iz—3) /2 (%) +

T
and the integral converges absolutely.
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Theorem 11. Ler g(t) € L,(R), 1 < p < 2, satisfying the Dini condition at some point x € R\{0}. Let
also the index transform Gy be such that its Mellin transform G (s) € Ly (1t — ioo, f +io0);|s|'/2ds), p > .

Then
.. 1 I(2e) [~
st = tlim = T /0

I(—ix) (¢/2)5 7!
C(e—ix)[((e+1+ix)/2)T((e+ix—1)/2)

€+ix . etix—1 , I(ix) (¢/2)5 ™!
F 01 , —— t - - -
*1 2( T ) Tle+ i ((e+1—i0)/2)T((e—ix—1)/2)
7 v ]
x1F <£2UC 1 —ix, 8%; tzﬂ Gi(1)dt, (4.8)

where the limit is pointwise. When the passage to the limit under the integral sign is possible, the inversion
Sformula (4.8) takes the form

g() = -

= H/o Tie—1) 2 (O ix—3) /2 () F 1 (1) 2 (1 (i243) 12(2)] G (2) 2.

5. INITIAL VALUE PROBLEM

The index transform (1.2) can be successfully applied to solve a boundary problem for the following
partial differential difference equation, involving the Laplacian

Auy =ty 2+ 2uy + uy 2, (51)

where A = 5722 + 38722 is the Laplacian in R?, n € Z and u,, = u_,. Concerning properties and solutions of the
ordinary differential difference equations see the survey [13]. Writing equation (5.1) in polar coordinates
(r,0), precisely
0%, 10u, 1 0%u,
a2 "iar T2oer

= Upao+2uy +uy o, (5.2)

we establish the following
Lemmad4. Let g € L (R;e(z’r’ﬁ)md‘c) , B €10,7/2]. Then functions

« 2
n(1,6) = [ % |K iz 2(1) 2 (2)dT, nez, (5.3)
where r > 0, 0 < 0 < 27 satisfy the partial differential difference equation (5.2), vanishing at infinity.

Proof. In fact, this follows from the direct substitution (5.3) into (5.2) and the use of Lemma 2. The neces-
sary differentiation with respect to » under integral sign is allowed via the absolute and uniform convergence,
which can be justified employing the inequality [1] (z = p +i7)
IK.(x)] < e PI7IK, (xcos B), x> 0, B € [0,7/2]
and the asymptotic behavior (1.4) at infinity of the Macdonald function. O
Finally, as a direct consequence of Theorem 7, we will formulate the initial value problem for equation

(5.2) and give its solutions.
Theorem 12. Let n € Z, G,(r) and

gt = g 1 102D [
0

=0+ I'(€)

F(—ix) (t/2)£+ixfl
I'e—ix)I'((e+n+ix)/2)T((e+ix—n)/2)
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op (EHI ERRL et Edix—n o) [(ix) (1/2)5 !
- — LX, ) 5 ; - ;
W\ T2 2 2 2 Te+ix)L'((e+n—ix)/2)T((e—ix—n)/2)
e—ix €—ix+1 . E+n—ix €—ix—n ,
F: — 1 —ix, , ot G,(t)dt
X2 3( 7 ) X 3 3 )] n(t)

satisfy conditions of Theorem 7. Then functions u,(r,0), r >0, 0 < 0 < 1/2 by formula (5.3) will be
solutions of the initial value problem for the partial differential difference equation (5.2) subject to the
initial condition

un (r,0) = Gp(r).
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