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Abstract. We consider the problem of maximizing the (time) aver-
aged profit of a smooth profit density on a smooth compact one dimen-
sional manifold along a trajectory provided by a stationary strategy of a
polydynamical system. When the problem depends on a k-dimensional
parameter, that optimal averaged profit as a function of the parameter
can present singularities (non smothness points). We present the generic
classification of these singularities for k ≤ 3.

1. Introduction

We consider a polydynamical system on a smooth compact one dimen-
sional manifold M (phase space) given by a finite set of smooth vectorfields
on M (also called admissible velocities of the system):

(1) V (x) = {v1(x), ..., vn(x)}, x ∈M, n ≥ 2

An admissible motion of (1) is an absolutely continuous map x : t 7→ x(t)
from a time interval to the system phase space M for which the velocity
of motion ẋ(t) (at each moment of differentiability of the map) belongs to
V (x).

Remark 1. Because the phase space is compact, any admissible motion of
(1) is defined for all t ∈ IR.

Suppose that additionally there is a smooth profit density f on M , then
an important control problem is stated as follows:

To maximize the averaged profit on the infinite time horizon

lim
T→∞

1
T

∫ T

0
f(x(t))dt

over all the admissible motions of (1).
Such maximum is called optimal averaged profit and a strategy providing

it is called optimal.

Remark 2. If the last limit does not exist one must take its upper limit.
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In this work we look to this control problem through singularity theory.
When the problem depends on parameters, that is when both the polydy-
namical system and the profit density depend additionally on parameters,
then the optimal strategy can vary with the parameters and the optimal av-
eraged profit, as a function of the parameters, can have singularities (points
where it is not smooth). For example, this profit can be discontinuous, even
when the families of control systems and densities are smooth [1]. We are
so led to the problem of classifying such singularities.

This approach was firstly considered in [1] and more recently in [4] and
[5], for the time averaged optimization on the circle (phase space = S1).
Those works focuses on two kinds of admissible motions that are crucial
for determining the optimal averaged profit on the infinite horizon of a
controlled dynamical system, namely

• a level cycle: motion using the maximum and minimum velocities
when the profit density is less or greater, respectively, than a certain
constant, or

• a stationary strategy : motion corresponding to an equilibrium point
of the controlled dynamical system.

It was proved in [5] that a strategy providing the maximal averaged profit
always can be found inside these two kinds of motions. But note that for this
statement to be true it is essential the larger concept of equilibrium point
of a controlled system considered there, namely, such a point is a point
where the convex hull of the admissible velocities of the system contains
the zero velocity. Such a point is stationary in the sense that for a control
system with a one dimensional phase space there exists an admissible motion
circulating close to that point, and converging to it as time goes to infinity.
It is clear that the averaged profit on the infinite horizon provided by such
motion equals the profit density value at this point, that is, the profit value
gained through the permanent staying at the point.

So the classification of the singularities of the optimal averaged profit can
be reduced to three cases, namely the singularities for stationary strategies,
for level cycles and for transitions between stationary strategies and level
cycles.

The generic classification for the one dimensional parameter case is al-
ready complete ([1], [4], [5]). For the control problem stated before (when
the control system is a polydynamical system) the classification of all generic
singularities corresponding to stationary strategies can be found in [11] in
the case of one dimensional parameter. The case of k ≤ 3 dimensional
parameter is treated in this paper.

We will use the same definition of equilibrium point of a control system
as the one given in [5], namely such a point is a point where the convex hull
of the admissible velocities contains the zero velocity. A stationary strategy
is a choice of an admissible motion converging to an equilibrium point and
the stationary domain is the union of all such points.
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Remark 3. This definition of equilibrium point regards only the polydynam-
ical system. When in the forthcoming text we speak about equilibrium point
of a vectorfield or of a parametrized family of vectorfields we mean a point
where the vectorfield or the parametrized family of vectorfields vanishes.

It is easy to see that a stationary strategy provides an averaged profit on
the infinite horizon that equals the value of the profit density at an equi-
librium point (the point to which converges the chosen admissible motion).
Moreover, for every point of the stationary domain, it is possible to define
a stationary strategy for which the averaged profit on the infinite horizon
equals the value of the profit density at the considered point [9].

So for the previous stated problem depending on a k-dimensional param-
eter p, the optimal averaged profit for stationary strategies is defined as

(2) As(p) = max
x∈S(p)

f(x, p),

where S(p) is the set of all phase points x such that (x, p) belongs to the sta-
tionary domain S = {(x, p) : 0 ∈ coV (x, p)}. It is defined for all parameter
values p such that S(p) is not empty.

So the classification of generic singularities of the maximum averaged
profit among stationary strategies can be done in two steps. At first we
classify all generic singularities of the stationary domain and then those of
the solution of problem (2). It is clear that on the first step we should
work with a generic family of polydynamical systems and on the second one
we can treat a generic family of profit densities when a generic family of
polydynamical systems is fixed.

On the space of our objects (families of vectorfields, families of polydy-
namical systems, etc.) we introduce the fine smooth Whitney topology. A
property is generic (or holds generically) if it holds for any object belonging
to some open everywhere dense subset.

2. Singularities of the Stationary Domain

A family of polydynamical systems on a 1-dimensional compact manifold
M is given by a collection of a finite number of smooth families of vector-
fields vi on M parametrized by p ∈ P , where P is a k-dimensional smooth
manifold:

V (x, p) = {v1(x, p), ..., vn(x, p)}, n ≥ 2

The respective stationary domain S = {(x, p) ∈M ×P : 0 ∈ coV (x, p)} is a
closed subset of M × P .

To simplify language we will call the admissible families of vectorfields vi

just admissible velocities.
The product space of the phase space M by the parameter space is natu-

rally fibred over the parameter, that is, with fibres Fp = M ×{p}, for every
parameter value p. Two objects of the same nature defined on a fibred space
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are F−equivalent if one of them can be carried out to the other by a fibered
diffeomorphism, i. e., by a diffeomorphism that sends fibres to fibres.

It is clear that the stationary domain around an interior point is locally
F−equivalent to IR × IRk. It is also easy to see that at a boundary point
of it at least one of the admissible velocities vanishes. So to classify the
stationary domain around its boundary points we just have to look to the
equilibria of the admissible velocities.

We will call an equilibrium point of a family of vectorfields v on M , an
equilibrium point type Ai (i ∈ IN0), if at that point, the germ of the set of
equilibria of v is F−equivalent to the germ at the origin of

xi+1 + p1x
i−1 + · · ·+ pi = 0.

Generically, every equilibrium point of a k-parameter family of vectorfields
on a 1-dimensional manifold is an equilibrium point type Al with 0 ≤ l ≤
k. In fact in a fixed coordinate system we can consider a vectorfield as a
function. F-equivalence acts differently on the field and on the respective
function but preserves their zero levels. But in a generic case the germ of a
k-parametric family of smooth functions on the line at any point of its zero
level is F-equivalent to the germ at the origin of xl+1 + p1x

l−1 + · · · + pl,
0 ≤ l ≤ k [2].

Let now Z be the union of the equilibria of all the admissible velocities
of the family of polydynamical systems. A point of this set is called a point
type AIj with Ij = (i1, · · · , ij), (all j, i1, · · · , ij are nonnegative integers and
0 ≤ i1 ≤ · · · ≤ ij), if it is an equilibrium point of exactly j admissible
velocities w1,..,wj which is of type Ai1 for w1,..., Aij for wj . Denote |Ij | =
j − 1 + i1 + · · ·+ ij .

The proofs of the following results can be found in [10] and are based on
Thom Transversality Theorem and on Mather Division Theorem [7].

Theorem 1. Let Q be a point of the set Z of a k-parameter family of
polydynamical systems on a 1-dimensional manifold. Generically

1. Q is of one of the types AIj with |Ij | ≤ k.
2. The germ of the set Z at a point of type AIj is F-equivalent to the

germ at the origin of the set(
xi1+1 +

i1∑
l=1

plx
i1−l

)
j∏

l=2

xil+1 +
|Il|∑

m=|Il|−il

pmx
|Il|−m

 = 0

where x and p1, p2, . . . are local coordinates along the phase space
and the parameter space, respectively.

Theorem 2. The germ of the stationary domain of a generic k-parameter
family of polydynamical systems on a 1-dimensional manifold, at any point
is, up to F-equivalence, the germ at the origin of one of the sets from the
second column of:
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- Table 1, if k = 1,
- Tables 1 and 2, if k = 2,
- Tables 1, 2 and 3, if k = 3.

Moreover, the germs of the stationary domains of a generic family and of any
other sufficiently close to it can be reduced one to another by F-equivalence
close to the identity.

Table 1.

N. Singularities Type n m

0 IRk+1 Interior point ≥ 2 0
1 x ≤ 0 A0 ≥ 2 1
2± ±(x2 + p1) ≤ 0 A1 ≥ 2 2
3± ±x(x+ p1) ≤ 0 A0,0 2
4± x ≤ 0 ∨ ±(x+ p1) ≤ 0 ≥ 3

Table 2.

N. Singularities Type n m

5 x3 + p1x+ p2 ≤ 0 A2 ≥ 2 3
6 x(x2 + p1x+ p2) ≤ 0 A0,1 2
7± x ≤ 0 ∨ ±(x2 + p1x+ p2) ≤ 0 ≥ 3
8∗ x(x+ p1) ≤ 0 ∨ x(x+ p2) ≤ 0 A0,0,0 3
8± ±x(x+ p1) ≤ 0 ∨ x(x+ p2) ≥ 0
9± x ≤ 0 ∨ x+ p1 ≤ 0 ∨ ±(x+ p2) ≤ 0 ≥ 4

Table 3.

N. Singularities Type n m

10± ±(x4 + p1x
2 + p2x+ p3) ≤ 0 A3 ≥ 2 4

11± ±x(x3 + p1x
2 + p2x+ p3) ≤ 0 A0,2 2

12± x ≤ 0 ∨ ±(x3 + p1x
2 + p2x+ p3) ≤ 0 ≥ 3

13± ±(x2 + p1)(x2 + p2x+ p3) ≤ 0 A1,1 2
14∗ x2 + p1 ≤ 0 ∨ x2 + p2x+ p3 ≤ 0 ≥ 3
14± ±(x2 + p1) ≤ 0 ∨ x2 + p2x+ p3 ≥ 0
15± ±x(x+ p1) ≤ 0 ∨ x(x2 + p2x+ p3) ≤ 0 A0,0,1 3
16±± x ≤ 0 ∨ ±(x+ p1) ≤ 0 ∨ ±(x2 + p2x+ p3) ≤ 0 ≥ 4
17±± x(x+ p1) ≤ 0 ∨ ±x(x+ p2) ≤ 0 ∨ ±x(x+ p3) ≤ 0 A0,0,0,0 4
18∗ x ≤ 0 ∨ x+ p1 ≤ 0 ∨ x+ p2 ≤ 0 ∨ x+ p3 ≤ 0 ≥ 5
18± x ≤ 0 ∨ x+ p1 ≤ 0 ∨ ±(x+ p2) ≤ 0 ∨ x+ p3 ≥ 0

In these tables, the third and the fourth columns show the type of the
point and the restriction on the number of admissible velocities, respectively.
The last column (m) denotes the codimension in M × P of the stratum of
the respective singularity.
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Observe that Tables 2 and 3 correspond to the singularities of the sta-
tionary domain at points type AIj with |Ij | = 2 and 3, respectively.

3. Singularities of the Optimal Averaged Profit

We will consider now the optimal averaged profit for stationary strategies,
that is given by

As(p) = max
x∈S(p)

f(x, p).

To simplify language we will from now on call As(p) just optimal profit.
Denote by S∗ the subset of the stationary domain whose points provide

the optimal profit As.
Let p be a parameter value such that S∩Fp 6= ∅. We call p a value without

competition if the set S∗ ∩ Fp has a unique element; otherwise, p is called a
value with competition and the points of such set are said to be competing
for the profit As.

It is clear that the behavior of the function As at values without compe-
tition requires looking to the family of densities in a neighborhood of the
unique point providing the optimal profit; at values with competition it
requires looking to the same function in a neighborhood of several points.
For this reason, singularities of the optimal averaged profit for stationary
strategies at values without competition are called point singularities and
the other ones, at competition values, are called competition singularities.
The classification of these singularities will be done separetely.

3.1. Point Singularities. Two germs of functions are Γ-equivalent if their
graphs are F-equivalent, considering the product space of the functions
domain by the real axis as a fibred space over the domain. The diffeo-
morphism carrying one graph into the other can be written in the form
(p, a) 7→ (ϕ(p), h(p, a)) where p belongs to the function’s domain and a ∈ IR.
R+-equivalence is the particular case of Γ-equivalence when the second

component h of the diffeomorphism is of the form a + c(p), where c is a
smooth function. It is clear that the germ of a smooth function at a point
is R+-equivalent to the germ of the zero function at the origin.

Theorem 3. For a generic k-parameter family of pairs of polydynamical
systems and profit densities on a one dimensional compact manifold, the
germ of the optimal profit at a parameter value p without competition is, up
to R+-equivalence, the germ at the origin of one of the functions from the
second column of

- Table 4, if k = 1;
- Tables 4 and 5, if k = 2;
- Tables 4, 5 and 6, if k = 3.
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Table 4.

N Singularities Type Conditions c

1 0 Interior fx = 0 6= fxx 0
A0 fx 6= 0

2 p1|p1| A0 fx = 0 6= fxx 1
3

√
p1 A1 fx 6= 0

4 |p1| A0,0

Table 5.

N. Singularities Type Conditions c

5 max{−x4 + p1x
2 + p2x : x ∈ IR} Interior fx = fxx =

fxxx = 0 6=
fxxxx

2

6 max{x3 + p1x
2 + p2x : x ≤ 0} A0 fx = fxx =

0 6= fxxx

7 max{−x2 : x2 + p1x+ p2 ≤ 0} A1 fx = 0 6=
fxx

8
√
p1|p2|

9 max{−x2 : x2 + p1x+ p2 ≥ 0}
10 |p1p2| A0,0

11 max{−x2 : (x+ p1)(x+ p2) ≤ 0}
12 max{−x2 : x ≤ max{p1, p2}}
13 max{x : x3 + p1x+ p2 = 0} A2 fx 6= 0
14 max{√p1, p2} A0,1

15 max{0, p1, p2} A0,0,0

On tables 4, 5 and 6, columns 3, 4 and 5 describe the type of singular-
ity of the stationary domain at the point providing the optimal profit, the
conditions concerning the family of profit densities at that point and the
codimension of the singularities, respectively. The proof of Theorem 3 is
done in section 4.

3.2. Competition Singularities. Let p be a value with competition, that
is, the set S∗ ∩ Fp has at least two points.

We say that two points of S∗ ∩ Fp have the same level if the family of
profit densities has the same value at these points.

For discribing the various situations of competition we will use the follow-
ing notation: C(i1, · · · , iN ) denotes the competition of N points with point
singularities i1, · · · , iN , respectively, from Tables 4, 5 and 6 (1 ≤ ij ≤ 31)
such that for all j < N , the level of the point providing singularity ij is
not higher than the one providing singularity ij+1. Different levels will be
marked replacing commas by semicolons. For example, C(1, 2; 3) denotes
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Table 6.

N Singularities Type Conditions c

16 max{−x4 + p1x
3 + p2x

2 + p3x : x ≤ 0} A0 fx = fxx =
fxxx = 0 6=
fxxxx

3

17 max{x3 + p1x
2 + p2x : |x| ≤ √

p3} A1 fx = fxx =
18 max{x3 + p1x

2 + p2x : |x| ≤ |p3|} A0,0 0 6= fxxx

19 max{x3 + p1x
2 + p2x : x ≤ |p3|}

20 max{−x2 : x3 + p1x
2 + p2x+ p3 ≤ 0} A2 fx = 0 6= fxx

21 max{−x2 : (x+ p1)(x2 + p2x+ p3) ≤ 0} A0,1

22 max{−x2 : x+p1 ≤ 0∨x2+p2x+p3 ≤ 0}
23 max{−x2 : x+p1 ≤ 0∨x2+p2x+p3 ≥ 0}
24 max{p2

1, p
2
2, p

2
3} A0,0,0

25 max{−x2 : (x + p1)(x + p2) ≤ 0 ∨ (x +
p1)(x+ p3) ≤ 0}

26 max{−x2 : x ≤ max{p1, p2, p3}}
27 max{x : x4 + p1x

2 + p2x+ p3 = 0} A3 fx 6= 0
28 max{x : x(x3 + p1x

2 + p2x+ p3) = 0} A0,2

29 max{√p1,
√
p2 + p3} A1,1

30 max{0, p1,
√
p2 + p3} A0,0,1

31 max{0, p1, p2, p3} A0,0,0,0

the competition of three points having two distinct levels and providing
singularities 1, 2 and 3 of Table 4.

Theorem 4. For a generic k-parameter family of pairs of polydynamical
systems and profit densities on a one dimensional compact manifold, the
germ of the optimal profit at a parameter value p with competition is, up to
the equivalence pointed out in the third column, the germ at the origin of
one of the functions from second column of

- Table 7, if k = 1;
- Tables 7 and 8, if k = 2;
- Tables 7, 8 and 9, if k = 3.

Table 7.

N. Singularities Eq. Situation
1 |p1| R+ C(1, 1)
2 max{0,√p1 + 1} Γ C(1; 3)

The proof of Theorem 4 is done in the following section.
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Table 8.

N. Singularities Eq. Situation
3 max{0, p1|p1|+ p2} R+ C(1, 2)
4 max{0,√p1 + p2} R+ C(1, 3)
5 max{0, p1, p2} R+ C(1, 4),

C(1, 1, 1)
6 max{p1|p1|,

√
p2 + 1} Γ C(2; 3)

7 max{√p1,
√
p2 + 1} Γ C(3; 3)

8 max{|p1|,
√
p2 + 1} Γ C(4; 3),

C(1, 1; 3)
9 max{0,−x2 + 1 : x2 + p1x+ p2 ≤ 0} Γ C(1; 7)
10 max{0, √p1|p2|+ 1} Γ C(1; 8)
11 max{0,√p1 + 1,

√
p2 + 2} Γ C(1; 3; 3)

Table 9.

N. Singularities Eq. Situation
12 max{0, −x4 + p1x

2 + p2x+ p3 : x ∈ IR} R+ C(1, 5)
13 max{0, x3 + p1x

2 + p2x+ p3 : x ≤ 0} R+ C(1, 6)
14 max{0,−x2 + p3 : x2 + p1x+ p2 ≤ 0} R+ C(1, 7)
15 max{0, √p1|p2|+ p3} R+ C(1, 8)
16 max{0, −x2 + p3 : x2 + p1x+ p2 ≥ 0} R+ C(1, 9)
17 max{0, |p1p2|+ p3} R+ C(1, 10)
18 max{0, −x2 + p3 : (x+ p1)(x+ p2) ≤ 0} R+ C(1, 11)
19 max{0, −x2 + p3 : x ≤ max{p1, p2}} R+ C(1, 12)
20 max{0, x+ p3 : x3 + p1x+ p2 = 0} R+ C(1, 13)
21 max{|p1|,

√
p2 + p3} R+ C(1, 14),

C(3, 4),
C(1, 1, 3)

22 max{0, p1, p2, p3} R+ C(1, 15),
C(4, 4),
C(1, 1, 4),
C(1, 1, 1, 1)

23 max{p1|p1|, p2|p2|+ p3} R+ C(2, 2)
24 max{p1|p1|,

√
p2 + p3} R+ C(2, 3)

25 max{p1|p1|, |p2|+ p3} R+ C(2, 4),
C(1, 1, 2)

26 max{√p1,
√
p2 + p3} R+ C(3, 3)

27 max{−x4 + p1x
2 + p2x : x ∈ IR,

√
p3 + 1} Γ C(5; 3)

28 max{x3 + p1x
2 + p2x : x ≤ 0,

√
p3 + 1} Γ C(6; 3)

29 max{−x2 : x2 + p1x+ p2 ≤ 0,
√
p3 + 1} Γ C(7; 3)

30 max{√p1|p2|,
√
p3 + 1} Γ C(8; 3)

31 max{−x2 : x2 + p1x+ p2 ≥ 0,
√
p3 + 1} Γ C(9; 3)

32 max{|p1p2|,
√
p3 + 1} Γ C(10; 3)

4. Proofs

In this section we will prove Theorems 3 and 4. As seen before, the optimal
averaged profit for stationary strategies As(p) depends on the behavior of
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Table 9. (continued)

N. Singularities Eq. Situation
33 max{−x2 : (x+ p1)(x+ p2) ≤ 0,

√
p3 + 1} Γ C(11; 3)

34 max{−x2 : x ≤ max{p1, p2},
√
p3 + 1} Γ C(12; 3)

35 max{x : x3 + p1x+ p2 = 0,
√
p3 + 1} Γ C(13; 3)

36 max{0, √p1 + p2,
√
p3 + 1} Γ C(14; 3),

C(1, 3; 3)
37 max{0, p1, p2,

√
p3 + 1} Γ C(15; 3),

C(1, 4; 3),
C(1, 1, 1; 3)

38 max{0, p1|p1|+ p2,
√
p3 + 1} Γ C(1, 2; 3)

39 max{p1|p1|, −x2 + 1 : x2 + p2x+ p3 ≤ 0} Γ C(2; 7)
40 max{√p1, −x2 + 1 : x2 + p2x+ p3 ≤ 0} Γ C(3; 7)
41 max{|p1|, −x2 + 1 : x2 + p2x+ p3 ≤ 0} Γ C(4; 7),

C(1, 1; 7)
42 max{p1|p1|,

√
p2|p3|+ 1} Γ C(2; 8)

43 max{√p1,
√
p2|p3|+ 1} Γ C(3; 8)

44 max{|p1|,
√
p2|p3|+ 1} Γ C(4; 8),

C(1, 1; 8)
45 max{0, x3 + p1x

2 + p2x+ 1 : |x| ≤ √
p3} Γ C(1; 17)

46 max{0, x+ 1 : x4 + p1x
2 + p2x+ p3 = 0} Γ C(1; 27)

47 max{0, √p1 + 1,
√
p2 + p3 + 1} Γ C(1; 29),

C(1; 3, 3)
48 max{p1|p1|,

√
p2 + 1,

√
p3 + 2} Γ C(2; 3; 3)

49 max{√p1,
√
p2 + 1,

√
p3 + 2} Γ C(3; 3; 3)

50 max{|p1|,
√
p2 + 1,

√
p3 + 2} Γ C(4; 3; 3),

C(1, 1; 3; 3)
51 max{0,−x2 + 1 : x2 + p1x+ p2 ≤ 0,

√
p3 + 2} Γ C(1; 7; 3)

52 max{0, √p1|p2|+ 1,
√
p3 + 2} Γ C(1; 8; 3)

53 max{0, √p1 + 1, −x2 + 2 : x2 + p2x+ p3 ≤ 0} Γ C(1; 3; 7)
54 max{0, √p1 + 1,

√
p2|p3|+ 2, } Γ C(1; 3; 8)

55 max{0, √p1 + 1,
√
p2 + 2,

√
p3 + 3} Γ C(1; 3; 3; 3)

the family of densities around each point of S∗ ∩Fp and on the singularities
of the stationary domain around those points. So, before the proof of each
of theorems 3 and 4, we will prove some auxiliary results that will permit
us to identify which situations must be considered in a generic case.

Lemma 1. Consider a k-parameter family of pairs (V, f) of polydynami-
cal systems and profit densities on a one-dimensional manifold M , k ≤ 3.
Suppose that the stationary domain at a point Q has a codimension m sin-
gularity of tables 1-3 and

∂f

∂x
(Q) = · · · = ∂if

∂xi
(Q) = 0 6= ∂i+1f

∂xi+1
(Q) (i ≥ 0)

where x is a local coordinate on M . Then generically i+m− 1 ≤ k.



GENERIC SINGULARITIES OF THE OPTIMAL AVERAGED PROFIT 11

Proof. In the jet space J5(M×P, (TM)n×IR), the set of jets of a pair (V, f)
at points where the stationary domain has a codimension m singularity of
tables 1-3 and where the first i derivatives ∂f

∂x , · · · ,
∂if
∂xi vanish is a closed

submanifold with codimension m+ i. By Thom Transversality Theorem we
conclude that in a generic case m+ i ≤ dim(M × P ) = 1 + k. �

Proof of Theorem 3. Let p0 be a parameter value without competition,
and (x0, p0) the unique point of S∗∩Fp0 providing the optimal profit As(p0).
Because p0 is a value without competition, to determine As(p) for p close
to p0 we just have to look to the family of densities and to the stationary
domain in a neighborhood of (x0, p0). So we can identifyM×P with IR×IRk.
Firstly we look to the germ of the k-parameter family of densities at (x0, p0).
By the general singularity theory we conclude that generically it is a versal
deformation of f(·, p0) and so, up to the sum with a C∞ function depending
only on the parameter p ∈ IRk, it is F-equivalent to the germ at the origin
of one of the following functions:

• F1 = x, F±2 = ±x2, and F3 = x3 + p1x, if k = 1 and else
• F±4 = ±x4 + p1x

2 + p2x, if k = 2 and else
• F5 = x5 + p1x

3 + p2x
2 + p3x, if k = 3.

So we conclude that the germ of As at p0 is R+-equivalent to the germ at
the origin of

max
x∈S(p), (x,p)∈U

g(x, p)

where U is a neighborhood of the origin and g is one of the previous functions
Fα

i (S(p) now written in the new coordinates).
Now Theorem 2, Lemma 1, and the fact that g(·, 0) restricted to S(0)

attains a maximum at the origin, permit us to conclude for each g which
types of singularities for the stationary domain have to be considered in a
generic case. For example for k = 2, if g = x2, Theorem 2 and Lemma 1
permit us to conclude that generically the stationary domain at the origin
can have only a singularity of codimension ≤ 2. So only singularities of Table
1 for the stationary domain must be considered. It is clear that singularities
0, 2−, 3− and 4− do not take place, because in all those cases, the origin
belongs to the interior of S(0) and can not lead to a maximum of x2. Also it
is clear to see that singularities 1 and 4+ for the stationary domain prevent
x2 to attain a maximum at the origin when restricted to S(0). So for k = 2
and g = x2, in a generic case we only have to consider singularities 2+ and
3+ for the stationary domain.

For each possible case the idea of the rest of the proof is the same. Using
Mather Division Theorem and Thom Transversality Theorem, we are able
(in a generic case) to put the stationary domain’s boundary in normal form
without changing g. Comparing then the value of g(·, p) at the boundary
of S(p) and at eventual local maxima in its interior we are able to obtain
a normal form for the optimal profit As(p). To make things clear we will
present two cases for k = 2, namely:
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• g = −x2 and the stationary domain with singularity 1 at the origin;

• g = x2 and the stationary domain with singularity 2+ at the origin.
Consider the first case. If the stationary domain has singularity 1 of Table

1, then its boundary is locally (around the origin) given by v(x, p) = 0, where
v is an admissible velocity satisfying v(0, 0) = 0 6= vx(0, 0). By Mather
Division Theorem the last equation can be written on the form

(3) x+ r(p) = 0,

where r is a smooth function vanishing at the origin. By Thom Transver-
sality Theorem, we conclude that generically the matrix(

gxx gxp

vx vp

)
has maximal rank at the origin. Writing p = (p1, p2) this means that the
matrix (

−2 0 0
0 rp1(0) rp2(0)

)
has maximal rank and so we can always suppose that rp1(0) 6= 0. Hence,
an adequate change of coordinates in the parameter space puts equation (3)
on the form x− p1 = 0. We can always assume that the stationary domain
is given by x − p1 ≤ 0. In fact, if this is not the case we consider firstly
the change of coordinates (x, p1, p2) 7→ (−x,−p1,−p2) that preserves the
normal form g. Because g has a local maximum at x = 0 we conclude that
for p = (p1, p2) close to 0, the function As is R+-equivalent to the function{

−p2
1 p1 < 0

0 p1 ≥ 0

that is clearly R+-equivalent to p1|p1|. So we get singularity 2 of Table 4.
In the second case, the stationary domain has at the origin a 2+ singular-

ity. So its boundary is locally (around the origin) given by v(x, p) = 0, where
v is an admissible velocity satisfying v(0, 0) = 0 = vx(0, 0) 6= vxx(0, 0). By
Mather Division Theorem the last equation can be written on the form

(4) x2 + α(p)x+ β(p) = 0,

with α and β smooth functions vanishing at the origin. By Thom Transver-
sality Theorem, we conclude that generically the matrix gxx gxp

vx vp

vxx vxp


has maximal rank at the origin. Writing p = (p1, p2) this means that the
matrix  2 0 0

0 βp1(0) βp2(0)
0 αp1(0) αp2(0)
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has maximal rank and so an adequate change of coordinates in the parameter
space puts equation (4) on the form x2+p1x+p2 = 0. Because we are dealing
with singularity 2+ of Table 1, we conclude that the stationary domain is
given by x2 + p1x + p2 ≤ 0. To simplify calculations we consider a new
change of coordinates in the parameter space so that the stationary domain
is now given by x2 − 2p1x + p2

1 − p2 ≤ 0. For p2 < 0 the set S(p) is empty
and for p2 ≥ 0 it is given by S(p) = [p1 −

√
p2, p1 +

√
p2]. As g does not

have any local maxima we conclude that the maximum is attained at the
boundary of S(p). So for p = (p1, p2) close to 0 with p2 > 0 the function
As(p) is R+-equivalent to:

max{(p1 −
√
p2)2, (p1 +

√
p2)2} = (|p1|+

√
p2)2,

that is clearly R+-equivalent to |p1|
√
p2. So we get singularity 8 of Table

5. �

Lemma 2. Consider a k-parameter family of pairs (V, f) of polydynamical
systems and profit densities on a one-dimensional compact manifold M ,
k ≤ 3. Suppose that there are exactly N distinct points Qi (i = 1, ..., N)
competing for the optimal profit with exactly l distinct levels (1 ≤ l ≤ N)
such that each point Qi provides a codimension ci singularity of Tables 4-6.
Then, generically

N∑
i=1

ci +N − l ≤ k.

Proof. On the multijet bundle J5
N (M×P, (TM)n×IR), the setW of multijets

of a pair (V, f) at (Q1, · · · , QN ) where Q1, · · · , QN are distinct points of
M × P , satisfying:

• the point Qi provides a codimension ci singularity of Tables 4-6,
• π(Q1) = π(Q2) = · · ·π(QN ), where π is the projection on the pa-

rameter space,

is a closed submanifold with codimension
N∑

i=1

(ci + 1) + (N − 1)k. The sub-

set of W consisting of those multijets at points with exactly l distinct lev-
els is a closed submanifold of J5

N (M × P, (TM)n × IR) with codimension
cod(Q) +N − l.

Due to Multijet Transversality Theorem and compactness of the phase
space M , we conclude that generically this codimension can not be greater

than the dimension N(1 + k) of (M × P )N . So
N∑

i=1

ci +N − l ≤ k. �

Lemma 3. Consider a k-parameter family of pairs (V, f) of polydynamical
systems and profit densities on a one-dimensional compact manifold M ,
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k ≤ 3. Generically, if there are two points competing for the optimal profit
having different levels, then the point having the higher level provides

- singularity 3 of Table 4, if k = 1;
- one of singularities 3, 7 and 8 of Tables 4 and 5, if k = 2;
- one of singularities 3, 7, 8, 17, 27 and 29 of Tables 4, 5 and 6, if
k = 3.

Proof. All singularities listed in this lemma have in common the fact that
any neighborhood of the origin contains values p for which they are not
defined. All remaining singularities of Tables 4, 5 and 6 are well defined
and are continuous in a neighborhood of the origin. Suppose (x1, p) and
(x2, p) are two points competing for the optimal profit As(p). We shift
p to the origin. Let (x2, 0) be the point having the higher level, that is
f(x1, 0) < f(x2, 0) and denote

Gi(p) = max
x∈S(p), (x,p)∈Ui

g(x, p)

where Ui is a neighborhood of (xi, 0) not containing other points of S∗∩F0.
By Theorem 3, in a generic case Gi has a singularity from Tables 4-6. So if
(x2, 0) provides a singularity not stated in this lemma, G2 is continuous in
a neighborhood of the origin and because G2(0) > G1(0) and G1 is upper
semicontinuous, we conclude that the functions As and G2 coincide in a
neighborhood of the origin. But this contradicts the fact that there are two
points competing for the optimal profit. �

Proof of Theorem 4.
Let p0 be a value with competition and let (x1, p0), ..., (xN , p0) (N ≥ 2),

be the points competing for the optimal profit As(p0). By Lemma 2 it is
easy to see that in a generic case N ≤ k + 1. We shift p0 to the origin and
define

Ai
s(p) = max

x ∈ S(p)
(x, p) ∈ Ui

f(x, p)

where Ui is a neighborhood of (xi, 0) not containing other points of S∗ ∩
F0. It is clear that for p close to 0: As(p) = max{A1

s(p), A
2
s(p), ..., A

N
s (p)}.

Theorem 3 permits us to obtain the possible generic singularities for each
Ai

s(p) at the origin.
Now Lemma 2 and Lemma 3 permit us to conclude which situations

C(i1, · · · , iN ) must be considered in a generic case. For example for k = 3

and N = 4, by Lemma 2 we conclude that generically
4∑

i=1

ci + 4− l ≤ 3. So,

if l = 1, then c1 = · · · = c4 = 0, and we get situation C(1, 1, 1, 1). If l = 2,

then
4∑

i=1

ci ≤ 1, and by Lemma 3 we conclude that generically only one



GENERIC SINGULARITIES OF THE OPTIMAL AVERAGED PROFIT 15

situation can take place, namely C(1, 1, 1; 3). If l = 3, then
4∑

i=1

ci ≤ 2 and

by Lemma 3, we conclude that only the situation C(1, 1; 3; 3) can occur in a
generic case. For l = 4 we obtain generically also a unique situation, namely
C(1; 3; 3; 3). For each possible situation the idea of the rest of the proof is the
same. By Multijet Transversality Theorem we conclude that generically it is
possible using the same diffeomorphism in the parameter space to put all the
functions Ai

s(p) in a preliminary normal form, namely: Ai
s(p) = gi(p)+ϕi(p),

where gi(p) has one of the normal forms presented in Tables 4-6, such that
if i 6= j then gi and gj depend on different components p1, p2,..,pk of p, and
ϕi are smooth functions of the parameter. So, near the origin the optimal
profit is R+-equivalent to: max{g1(p), g2(p)+γ2(p), ..., gN (p)+γN (p)}, where
γi(p) = ϕi(p)− ϕ1(p). Using again Multijet Transversality Theorem we are
now able to put As in one of the normal forms of Tables 7-9 through R+-
equivalence if all the points in competition have the same level, and through
Γ-equivalence if the points in competition have at least two distinct levels.

To make things clear we will present three cases, namely C(1, 4), C(1; 3)
and C(1; 3; 3) for k = 2.

Consider firstly situation C(1, 2). Let (x1, 0) and (x2, 0) be two points
competing for the optimal profit, having the same level and providing sin-
gularities 1 and 2 of Table 4, respectively. Around p = 0, the optimal
averaged profit is given by:

As(p) = max{A1
s(p), A

2
s(p)}.

Suppose that (x1, 0) belongs to the interior of the stationary domain (the
other possible case is treated in an analogous manner) and suppose that v
is the admissible velocity vanishing at (x2, 0). It is easy to see that there
exist local coordinates in the parameter space around p = 0 such that:

• f(y, p) = −y2 + φ(p), v(y, p) = (y − p1) · V (y, p) where y is a local
coordinate around x2 depending smoothly on p in which x2 = 0, and
φ and V are smooth functions with V (0, 0) 6= 0;

• fx(x1, 0) = 0 6= fxx(x1, 0).
The stationary domain in a neighbourhood of (x2, 0) is written in the new
coordinates as S = {y ≤ p1} and so:

A2
s(p) = max

y≤p1

−y2 + φ(p).

Because f(·, 0) has a local maximum at x1, we have fxx(x1, 0) < 0. So
A1

s(p) = f(γ(p), p) near the origin, where x = γ(p) is the curve of local
maxima of the profit density, namely, the solution of equation fx = 0 with
respect to x near the point (x1, 0). Because fxx(x1, 0) < 0, the implicit
function theorem guarantees that this solution is unique and smooth.

Then, close to p = 0, the function As is R+-equivalent to the function

max{f(γ(p), p), max
y≤p1

−y2 + φ(p)},
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which is clearly R+-equivalent to the function

max{0, p1|p1| − p2
1

2
+ φ(p)− f(γ(p), p)}.

Now, because this situation of competition is characterized by two points,
(x, p) and (y, p), satisfying the following conditions

fx(x, p) = fy(y, p) = v(y, p) = f(x, p)− f(y, p) = 0,

Multijet Transversality Theorem implies that the matrix
fxx(x, p) 0 fxp1(x, p) fxp2(x, p)

0 fyy(y, p) fyp1(y, p) fyp2(y, p)
0 vy(y, p) vp1(y, p) vp2(y, p)

fx(x, p) −fy(y, p) fp1(x, p)− fp1(y, p) fp2(x, p)− fp2(y, p)


has maximal rank. Hence, applying this result at the considered points
we conclude that fp2(x1, 0) − φp2(0) 6= 0, due to the fact that fx(x1, 0) =
fyp1(x2, 0) = fyp2(x2, 0) = vp2(x2, 0) = 0. So, after the coordinate change

(p1, p2) 7→
(
p1√
2
,−p

2
1

2
+ φ(p)− f(γ(p), p)

)
we obtain singularity 3 of Table 8.

Now let us consider situation C(1; 3). Let (x1, 0) and (x2, 0) be two points
competing for the optimal profit, having distinct levels and providing singu-
larities 1 and 3 of Table 4, respectively. Suppose that (x1, 0) belongs to the
interior of the stationary domain (the other possible case is treated in an
analogous manner) and suppose that v is the admissible velocity vanishing
at (x2, 0). It is easy to see that there exist local coordinates in the parameter
space around p = 0 such that:

• f(y, p) = y + φ(p), v(y, p) = (y2 − p1) · V (y, p) where y is a local
coordinate around x2 depending smoothly on p in which x2 = 0, and
φ and V are smooth functions with V (0, 0) 6= 0;

• fx(x1, 0) = 0 6= fxx(x1, 0).
As in the previous case we conclude that, close to p = 0, the function As is
R+-equivalent to the function

max{f(γ(p), p), max
y2≤p1

y + φ(p)},

with γ smooth satisfying γ(0) = x1, which is clearly R+-equivalent to the
function

max{0, √p1 + φ(p)− f(γ(p), p)}.
Observing that f(x1, 0) < f(x2, 0) = φ(0) we conclude that, close to p = 0,
φ(p)− f(γ(p), p) > 0 and so, after the coordinate change

(p1, p2, a) 7→
(

p1

(φ(p)− f(γ(p), p))2
, p2,

a

φ(p)− f(γ(p), p)

)
we obtain (by Γ-equivalence) singularity 2 of Table 7.
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Finally we consider situation C(1; 3; 3). Let (x1, 0), (x2, 0) and (x3, 0)
be the three points competing for the optimal profit, all them having dif-
ferent levels. Suppose that (x1, 0) provides singularity 1 of Table 4, (x2, 0)
and (x3, 0) both provide singularity 3 of Table 4 and f(x1, 0) < f(x2, 0) <
f(x3, 0). Let v and w be the admissible velocities vanishing at (x2, 0) and
(x3, 0) respectively and suppose as before that (x1, 0) belongs to the interior
of the stationary domain (the other possible case is treated in an analogous
manner). So fx(x1, 0) = 0 6= fxx(x1, 0).

As v(x2, 0) = 0 = vx(x2, 0) and vxx(x2, 0) 6= 0 6= fx(x2, 0) it is easy to
see, using Mather Division Theorem, that there exists a local coordinate y,
around x2, depending smoothly on p in which x2 = 0, f(y, p) = y + ϕ(p)
and v(y, p) = (y2 − α(p)) · V (y, p) with ϕ, α and V smooth functions and
V (0, 0) 6= 0. In fact, writing f on the form f(x, p) = (x− x2)ψ(x, p) + a(p)
and considering the new coordinate x̃ = (x − x2)ψ(x, p), we get f(x̃, p) =
x̃ + a(p). By Mather Theorem, the equation v = 0 can be written on the
form x̃2 + b(p)x̃+ c(p) = 0 with b and c smooth satisfying b(0) = c(0) = 0.
Considering now the new coordinate y = x̃+b(p)/2 we get the desired result.

In the same way we conclude the existence of a local coordinate z, around
x3, depending smoothly on p in which x3 = 0, f(z, p) = z + φ(p) and
w(z, p) = (z2 − β(p)) · W (y, p) with φ, β and W smooth functions and
W (0, 0) 6= 0.

Now, because this situation of competition is characterized by three points,
(x, p), (y, p) and (z, p), satisfying the following conditions

fx(x, p) = v(y, p) = vy(y, p) = w(z, p) = wz(z, p) = 0,

Multijet Transversality Theorem implies that in a generic case the matrix
fxx(x, p) 0 0 fxp1(x, p) fxp2(x, p)

0 vy(y, p) 0 vp1(y, p) vp2(y, p)
0 vyy(y, p) 0 vyp1(y, p) vyp2(y, p)
0 0 wz(z, p) wp1(z, p) wp2(z, p)
0 0 wzz(z, p) wzp1(z, p) wzp2(z, p)


has maximal rank. Hence, applying this result at the considered points
and due to the fact that vy(x2, 0) = wz(x3, 0) = 0 and fxx(x1, 0) 6= 0,
vyy(x2, 0) 6= 0 and wzz(x3, 0) 6= 0, we conclude that generically the matrix(

vp1(x2, 0) vp2(x2, 0)
wp1(x3, 0) wp2(x3, 0)

)
has maximal rank and so an adequate change of coordinates in the parameter
space puts v and w on the forms:

v(y, p) = (y2 − p1) · V (y, p) w(z, p) = (z2 − p2) ·W (y, p).

Notice that after this change of coordinates, the normal forms for f
around (x2, 0) and (x3, 0) are the previous ones but with different func-
tions ϕ and φ. So we conclude that close to p = 0, the function As(p) =
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max{A1
s(p), A

2
s(p), A

3
s(p)} is R+-equivalent to the function

max{f(γ(p), p), max
y2≤p1

y + ϕ(p), max
z2≤p2

z + φ(p)},

with γ smooth satisfying γ(0) = x1 obtained as in the previous cases, and
f(x1, 0) < ϕ(0) < φ(0). This function is clearly R+-equivalent to the func-
tion

max{0, √p1 + ϕ(p)− f(γ(p), p),
√
p2 + φ(p)− f(γ(p), p)}.

Let ψ(p, a) be a smooth function [8] such that

ψ(p, a) = ϕ(p)− f(γ(p), p) if a < ϕ(0)− f(x1, 0) + 1
3(φ− ϕ)(0)

ψ(p, a) = φ(p)−f(γ(p),p)
2 if a > ϕ(0)− f(x1, 0) + 2

3(φ− ϕ)(0).

Observe that ψ(0, a) > 0, for every real value a. Then, after the coordi-
nate change

(p1, p2, a) 7→
(

p1

(ϕ(p)− f(γ(p), p))2
,

4p2

(φ(p)− f(γ(p), p))2
,

a

ψ(p, a)

)
we obtain singularity 11 of Table 8. �

Acknowledgments

We want to thank Alexey Davydov for suggesting the problem and for all
helpful discussions.

References

[1] V.I. Arnold, ”Optimization in Mean and Phase Transitions in Controlled Dynamical
Systems”, Functional Analysis and Its Applications, 36, No. 2, 83-92 (2002).

[2] V.I. Arnold, A.N. Varchenko, S.M. Gusein-Zade, Singularities of differentiable maps,
Volume 1, Birkhauser-Monographs in Mathematics, 82, Boston, ISBN 0-8176-3187-9,
1985.

[3] A.A. Davydov, V.M. Zakalyukin, ”Coincidence of Typical Singularities of Solutions
of Extremal Problems with Contraints”, Gamkrelidze, R. V. (ed.) et al., Proceedings
of the international conference dedicated to the 90th birthday of L. S. Pontryagin,
Moskva, Russia, August 31-September 6, 1998. Vol. 3: Geometric control theory.

[4] A.A. Davydov - Generic profit singularities in Arnold’s model of cyclic processes//
Proceedings of the Steklov Institute of mathematics, V.250 , 70-84, (2005).

[5] A.A Davydov, H. Mena-Matos - Generic phase transition and profit singularities in
Arnold’s model // Math. Sbornik (submitted)

[6] A.A. Davydov, ”Local controllability of typical dynamical inequalities on surfaces”,
Proc. Steklov Inst. Math. 209, 73-106 (1995).

[7] M. Golubitsky, V. Guillemin, Stable Mappings and their Singularities, Third Edition,
Graduate Texts in Mathematics, Vol. 14. Springer-Verlang, New York,1986.

[8] V. Guillemin, A. Pollack Differential Topology, Prentice-Hall, Englewood Cliffs,1974.
[9] C.S. Moreira, Singularidades do proveito médio óptimo para estratégias estacionárias,
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