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Abstract. We obtain large deviation results for non-uniformly expand-
ing maps with non-flat singularities or criticalities and for partially hy-
perbolic non-uniformly expanding attracting sets. That is, given a con-
tinuous function we consider its space average with respect to a physical
measure and compare this with the time averages along orbits of the
map, showing that the Lebesgue measure of the set of points whose
time averages stay away from the space average decays to zero exponen-
tially fast with the number of iterates involved. As easy by-products we
deduce escape rates from subsets of the basins of physical measures for
these types of maps.
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1. Introduction

Smooth Ergodic Theory provides asymptotic information of the behavior
of a dynamical system, given by a smooth transformation, when times goes
to infinity. This statistical approach to Dynamics has provided valuable
insights into many phenomena: from the remarkable result of Jakobson [24]
(see also [10, 11]) showing the existence of many (positive Lebesgue measure
of) parameters a ∈ (0, 2) for which the corresponding map of the quadratic
family x 7→ a−x2 has positive Lyapunov exponent along almost every orbit;
a different set of ideas in higher dimensions provided the first clue to the
nature of the Hénon attractor [11, 31] or the existence of robust classes of
maps which are not uniformly expanding but exhibit several distinct positive
Lyapunov exponents [43], to the study of the statistical properties of these
and other classes of systems [35, 12, 47, 14, 2, 16, 6].

The basic ideas can be traced back to the Boltzman Ergodic Hypothesis
from Statistical Mechanics which was the main motivation behind the cele-
brated Birkhoff’s Ergodic Theorem ensuring the equality between temporal
and spatial averages with respect to a probability measure µ invariant under
a measurable transformation f : M →M of a compact manifold M , i.e. for
every continuous map ϕ : M → R we have

lim
n→+∞

1

n

n−1
∑

j=0

ϕ
(

f j(x)
)

=

∫

ϕdµ (1)

for µ almost every point x ∈ M . Defining B(µ), the ergodic basin of µ, to
be the set of points for which (1) holds for every continuous function ϕ, the
Ergodic Theorem says that µ

(

B(µ)
)

= 1 for all ergodic f -invariant proba-
bility measures µ. Since ergodic measures can be, for instance, Dirac masses
concentrated on periodic orbits, the Ergodic Theorem in itself does not al-
ways provide information about the asymptotic behavior of “big” subsets of
points. The notion of “big” can arguably be taken as meaning “having posi-
tive Lebesgue measure (or positive volume)”, since such sets are in principle
“observable sets” when interpreting f : M → M as a model of physical,
biological or economic phenomena. Correspondingly invariant probability
measures µ for which B(µ) has positive volume are called physical (or Sinai-
Ruelle-Bowen) measures.

This kind of measures was first constructed for (uniformly) hyperbolic
diffeomorphisms by Sinai, Ruelle and Bowen [42, 39, 17]. Such measures for
non-uniformly hyperbolic maps where obtained more recently [35, 12, 13, 2].

We say that a local diffeomorphism f of a compact manifold is (uniformly)
expanding if there exists n ≥ 1 such that for all x and every non-zero tangent
vector v at x

‖Dfn(x)v‖ ≥ 2‖v‖. (2)
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For diffeomorphisms of compact manifolds, the notion of hyperbolicity re-
quires the existence of two complementary directions given by two (contin-
uous) subbundles E and F of the tangent bundle admitting n ≥ 1 such that
for all points x and non-zero tangent vectors (u, v) ∈ Ex ⊕ Fx

‖Dfn(x)u‖ ≤ 1

2
‖u‖ and ‖Dfn(x)v‖ ≥ 2‖v‖. (3)

The statistical properties of physical measures are an object of intense study,
see e.g. [17, 47, 14, 3, 5, 4, 7, 21]. The leitmotif is that the sequence
{ϕ ◦ fn}n≥0 behaves like an i.i.d. random variable, at least asymptotically.

Here we are concerned with the rate of convergence of the time aver-
ages (1) for non-uniformly expanding maps and partially hyperbolic non-
uniformly expanding diffeomorphisms (where condition (2) and the right
hand side condition of (3) are replaced by an asymptotic one, see the state-
ment of results below), extending some of the large deviation results in [46]
(see also [19, 20] for a different presentation).

This again strenghtens in a definite sense the idea that non-uniformly
hyperbolic systems are chaotic: they satisfy a version of the classical large
deviation results for i.i.d. random variables. More precisely, if we set δ > 0
as an acceptable error margin and consider

Bn =
{

x ∈M :
∣

∣

∣

1

n

n−1
∑

j=0

ϕ
(

f j(x)
)

−
∫

ϕdµ
∣

∣

∣
> δ
}

then we are interested in knowing whether the Lebesgue measure of Bn

decays to zero exponentially fast, i.e. wheather there are constants C, ξ > 0
such that

Leb
(

Bn

)

≤ Ce−ξn for all n ≥ 1. (4)

We are able to obtain such rates for non-uniformly expanding local diffeo-
morphisms and also for endomorphisms and maps with non-flat singulari-
ties and criticalities under a condition on the rate of approximation of most
orbits to the critical/singular set. In particular we are able to obtain an ex-
ponential decay rate as above for piecewise expanding maps with infinitely
many smoothness domains, for quadratic maps corresponding to a positive
Lebesgue measure subset of parameters and for a class of maps with infin-
itely many critical points. Moreover we also obtain the same kind of rates
for partially hyperbolic attracting sets with a non-uniformly expanding di-
rection.

The values of C, ξ > 0 in (4) depend on δ, ϕ and on global invariants for
the map f which are also the object of study of Smooth Ergodic Theory,
such as the metric entropy and the pressure function of f , as detailed below.

1.1. Statement of the results. We denote by ‖ · ‖ a Riemannian norm on
the compact boundaryless manifold M , by d the induced distance and by
Leb a Riemannian volume form, which we call Lebesgue measure or volume
and assume to be normalized: Leb(M) = 1.

We start by describing one of the class of maps that we are going to
consider. Let f : M →M be a map of the compact manifold M which is a
C2 local diffeomorphism outside a set S ⊂ M with zero Lebesgue measure.
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We assume that f behaves like a power of the distance close to S: there are
constants B > 1 and β > 0 for which

(S1)
1

B
d(x, S)β ≤ ‖Df(x)v‖

‖v‖ ≤ Bd(x, S)−β ;

(S2)
∣

∣log ‖Df(x)−1‖ − log ‖Df(y)−1‖
∣

∣ ≤ B
d(x, y)

d(x, S)β
;

(S3)
∣

∣log |detDf(x)−1| − log |detDf(y)−1|
∣

∣ ≤ B
d(x, y)

d(x, S)β
;

for every x, y ∈ M \ S with d(x, y) < d(x, S)/2 and v ∈ TxM \ {0}. The
singular set S may be thought of as containing those points x where Df(x)
is either not defined or else is non-invertible. Note in particular that S

contains the set C of critical points of f , i.e. the set of points (which may be
empty) where Df(x) is not invertible. We reffer to this kind of singular sets
as non-flat since conditions (S1) to (S3) above are natural generalizations
to arbitrary dimensions of the notion of non-flat critical point from one-
dimensional dynamics, see e.g.[18].

In what follows we write Snϕ(x) for
∑n−1

i=0 ϕ(f i(x)) and a function ϕ :
M → R. We say that f as above is non-uniformly expanding if there exists
c > 0 such that

lim sup
n→+∞

1

n
Snψ(x) ≤ −c where ψ(x) = log

∥

∥Df(x)−1
∥

∥, (5)

for Lebesgue almost every x ∈ M . We need to control the rate of approxi-
mation of most orbits to the singular set. We say that f has slow recurrence
to the singular set S if for every ε > 0 there exists δ > 0 such that

lim sup
n→∞

1

n
Sn∆δ(x) < ε with ∆δ(x) =

∣

∣ log dδ(x, S)
∣

∣ (6)

for Lebesgue almost every x ∈ M , where for any given δ > 0 we define the
smooth δ-truncated distance from x ∈M to S by

dδ(x, S) = ξδ
(

d(x, S)
)

· d(x, S) + 1 − ξδ
(

d(x, S)
)

where ξδ : R → [0, 1] is a standard C∞ auxiliary function satisfying

ξδ(x) = 1 if |x| ≤ δ and ξδ(x) = 0 if |x| ≥ 2δ.

Observe that ∆δ is non-negative and continuous away from S and identically
zero 2δ-away from S.

These notions where presented in [6] for higher dimensional maps ab-
stracted from similar notions from one-dimensional maps [18] and previous
work on maps with singularities [25], and in [6, 1] the following result on
existence of finitely many physical measures was obtained.

Theorem 1.1. Let f : M →M be a C2 local diffeomorphism outside a non-
flat singular set S. Assume that f is non-uniformly expanding with slow re-
currence to S. Then there are finitely many physical (or Sinai-Ruelle-Bowen)
measures µ1, . . . , µk whose basins cover the manifold Lebesgue almost every-
where, that is B(µ1) ∪ · · · ∪B(µk) = M, Leb− mod 0.

We say that f is a regular map if f∗ Leb � Leb, that is, if E ⊂M is such
that Leb(E) = 0, then Leb

(

f−1(E)
)

= 0. We denote by Mf the family of
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all invariant probability measures with respect to f , by Me
f the family of all

ergodic f -invariant probability measures, and define

B(x, n, ε) =
{

y ∈M : d
(

f i(x), f i(y)
)

< ε, i = 0, . . . , n− 1
}

the (n, ε)-dynamical ball around x ∈ M . Large deviation statements are
usually related to entropies: for any finite Borel measure m on M we define

hm(f)(x) = lim
ε→0

lim sup
n→∞

− 1

n
logm

(

B(x, n, ε)
)

and for ν ∈ Mf

hm(f, ν) = ν − ess suphm(f).

Theorem A. Let f : M → M be a regular C1+α local diffeomorphism
outside a non-flat singular set S, for some α ∈ (0, 1). Assume that f
is non-uniformly expanding with slow recurrence to S. Then writing J =
log |detDf |, given c ∈ R and a continuous function ϕ : M → R

(1) if htop(f) <∞, then

lim inf
n→+∞

1

n
log Leb

(

{

x ∈M :
1

n
Snϕ(x) > c

}

)

≥ sup

{

hν(f) − hLeb(f, ν) : ν ∈ M
e
f ,

∫

ϕdν > c

}

;

(2) if S = ∅ (f is a local diffeomorphism) then

lim sup
n→+∞

1

n
log Leb

(

{

x ∈M :
1

n
Snϕ(x) ≥ c

}

≤ sup

{

hν(f) −
∫

J dν : ν ∈ Mf ,

∫

ϕdν ≥ c

}

.

(3) in general for any given η > 0 there exists ε, δ > 0 such that

lim sup
n→+∞

1

n
log Leb

(

{

x ∈M :
1

n
Snϕ(x) ≥ c and

1

n
Sn∆δ(x) ≤ ε

}

)

≤ η + sup

{

hν(f) −
∫

J dν : ν ∈ Mf ,

∫

ϕdν ≥ c and ∆δ ∈ L1(ν)

}

.

We say that a measure ν ∈ Mf is an equilibrium state for f with respect
to J (or just an equilibrium state in what follows) if

hν(f) = ν(J) =

∫

J dν.

As the above statement shows, equilibrium states are involved in the de-
termination of the asymptotic rates of deviation. Given ε, δ > 0 we write
E = Eε,δ for the family of all equilibrium states µ of f with respect to
J such that µ(∆δ) ≤ ε and, given a continuous ϕ : M → R, we define
E(ϕ) = {ν(ϕ) : ν ∈ E}.

From Theorem A we are able to deduce that the supremum above is
strictly negative for non-uniformly expanding maps with slow recurrence to
the singular set.
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Theorem B. Let f : M →M be a local diffeomorphism outside a non-flat
singular set S which is non-uniformly expanding and has slow recurrence to
S. For ω > 0 and a continuous function ϕ : M → R there exists ε, δ > 0
arbitrarily close to 0 such that, writing

An = {x ∈M :
1

n
Sn∆δ(x) ≤ ε}

and

Bn =

{

x ∈M : inf
{∣

∣

1

n
Snϕ(x) − η(ϕ)

∣

∣ : η ∈ E
}

> ω

}

(7)

we get

lim sup
n→+∞

1

n
log Leb

(

An ∩Bn

)

< 0. (8)

Clearly if S = ∅ (f is a local diffeomorphism) then An = M and we obtain
an asymptotic large deviation rate for the sets Bn. Otherwise to get a similar
upper bound for Leb(Bn) we need an extra assumption on the decay of the
measure of the tail sets M \ An.

Corollary C. In the setting of Theorem B with S 6= ∅, if f also satisfies

lim sup
n→∞

1

n
log Leb(M \ An) < 0 (9)

then we have also

lim sup
n→∞

1

n
log Leb(Bn) < 0.

Remark 1.2. Observe that if µ is a f -ergodic absolutely continuous proba-
bility measure, then the slow recurrence condition (6) is the same as saying
that log d(x, S) is µ-integrable.

Note that for any C2 endomorphism f (i.e. the singular set S of f co-
incides with the critical set C of f) we have | log d(x,C)| ≥ ∆δ(x) and, as
shown in [27], the function log d(x,C) is µ-integrable for every f -invariant
probability measure. However we need to deal with families of invariant
probability measures for which log d(x,C) is uniformly integrable so that the
proofs of Theorems A and B can be carried out with our arguments. This
is why we need the sets An in the previous statements. To the best of our
knowledge no such general integrability result for log d(x, S) exists with re-
spect to invariant probability measures for maps with non-flat singularities.

1.2. Partially hyperbolic diffeomorphisms. Let now f : M → M be a
C2 diffeomorphism. We say that a compact f -invariant set Λ is an attracting
set if it admits a trapping region, that is, an open neighborhood U ⊂ Λ such
that f(U) ⊂ U and Λ = ∩n≥0f

n(U). Note that we may have Λ = U = M
(where M is connected).

As shown in [46], for every attracting set Λ and every physical probability
measure ν supported in Λ, given δ > 0 and a continuous ϕ : U → R we have

lim inf
n→∞

1

n
log Leb

{

∣

∣

∣

1

n
Snϕ−

∫

ϕdµ
∣

∣

∣
> δ

}

≥

sup

{

hν(f) −
∫

Σ+ dν : ν ∈ Me,
∣

∣

∣

∫

ϕdν −
∫

ϕdµ
∣

∣

∣
≥ δ

}

.
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Here Σ+ denotes the sum of the positive Lyapunov exponents at a given
point of M . Recall that Ruelle’s Inequality hµ(f) ≤

∫

Σ+ dµ is true of every
C1-diffeomorphism [40].

An attracting set Λ is partially hyperbolic (see e.g. [35, 15]) if there exists
a continuous splitting E ⊕ F of the tangent bundle of M over Λ along two
complementary vector subbundles satisfying

• Df -invariance: Df(Ex) = Ef(x) and Df(Fx) = Ff(x) for all x ∈ Λ;
• domination: there exists n ≥ 1 such that

‖Dfn | Ex‖ · ‖(Dfn | Fx)−1‖ ≤ 1

2
for all x ∈ Λ;

• E is uniformly contracting: there is n ≥ 1 such that ‖Df n | Ex‖ ≤ 1
2

for all x ∈ Λ.

In this setting we denote by J the Jacobian along the centre-unstable
direction J(x) =

∣

∣detDf | Fx

∣

∣ and by E the family of all equilibrium states
with respect to J , i.e. the set of all f -invariant probability measures ν such
that hν(f) = ν(J).

We will assume further that the F direction only has positive Lyapunov
exponents in the following sense, introduced in [6]. We say that a partially
hyperbolic attractor with trapping region U is non-uniformly expanding if
there exists c > 0 such that

lim sup
n→∞

1

n

n−1
∑

j=0

log
∥

∥(Df | Ffj(x))
−1
∥

∥ ≤ −c

for Lebesgue almost every point x ∈ U . In [6] the following was obtained.

Theorem 1.3. Let Λ be a partially hyperbolic non-uniformly expanding at-
tracting set for a C2 diffeomorphism f with trapping region U . Then there
are finitely many equilibrium states which are physical measures supported
in Λ, and whose basins cover U except for a subset of zero Lebesgue measure.

We are able to obtain an upper bound entirely analogous to item 2 of The-
orem A replacing M by the points in the trapping region U of a partially
hyperbolic non-uniformly expanding attracting set Λ for a C 2 diffeomor-
phism. Then for the same kind of attracting sets we obtain an upper bound
for the subset corresponding to (7).

Theorem D. Let f : M →M be a C2 diffeomorphism exhibiting a partially
hyperbolic non-uniformly expanding attracting set Λ with isolating neighbor-
hood U ⊃ Λ. Given ω > 0 and a continuous ϕ : U → R, define

Bn =

{

x ∈ U : inf
{∣

∣

1

n
Snϕ(x) − η(ϕ)

∣

∣ : η ∈ E
}

> ω

}

.

Then

lim sup
n→∞

1

n
log Leb(Bn) < 0.
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1.3. Escape rates. Using the estimates obtained above and the observation
that for any compact subset K and a given ε > 0 we can find an open set
W ⊃ K and a continuous function ϕ : M → R such that

• Leb(W \K) < ε;
• 0 ≤ ϕ ≤ 1, ϕ | K ≡ 1 and ϕ | (M \W ) ≡ 0,

we see that for n ≥ 1

{

x ∈ K : f(x) ∈ K, . . . , fn−1(x) ∈ K
}

⊂
{

x ∈M :
1

n
Snϕ(x) ≥ 1

}

(10)

and so we get the following (recall the definition of An in the statement of
Theorem B).

Corollary E. Let f : M →M be a local diffeomorphism outside a non-flat
singular set S which is non-uniformly expanding and has slow recurrence to
S. Let K be a compact subset such that µ(K) < 1 for all µ in the weak∗-
closure E of E. Then for a pair ε, δ > 0 close to 0

lim sup
n→+∞

1

n
log Leb

(

{

x ∈ K ∩An : f j(x) ∈ K, j = 1, . . . , n− 1
}

)

< 0.

Moreover if lim supn→∞
1
n log Leb(M \ An) < 0 then

lim sup
n→+∞

1

n
log Leb

(

{

x ∈ K, f(x) ∈ K, . . . , fn−1(x) ∈ K
}

)

< 0.

In the setting of a partially hyperbolic non-uniformly expanding attract-
ing set we get, using the same reazoning as above

Corollary F. Let f : M → M be a diffeomorphism and Λ a partially hy-
perbolic non-uniformly expanding attracting set with isolating neighborhood
U . Let K ⊂ U be a compact subset such that µ(K) < 1 for all µ in the
weak∗-closure E of E. Then

lim sup
n→+∞

1

n
log Leb

(

{

x ∈ K, f(x) ∈ K, . . . , fn−1(x) ∈ K
}

)

< 0.

Remark 1.4. All the arguments use in fact that f is C 1 and that its deriv-
ative Df is α-Hölder continuous with respect to the fixed Riemannian norm
on M , so that all we need is f to be a C1+α local diffeomorphism outside
the singular set, for some α ∈ (0, 1).

Remark 1.5. Recently Pinheiro [36] has extended the statement of The-
orem 1.1 replacing the limsup in condition (5) by liminf, keeping the same
conclusions involving the existence of finitely many physical measures and of
a positive density of hyperbolic times Lebesgue almost everywhere. Hence
our statements are automatically valid in this more general setting.

1.4. Organization of the paper. We start by presenting some non-trivial
classes of maps to which our results are applicable, in Section 2. In Section 3
we present preliminary technical results to be used in the following sections.
Theorem A is then proved in Subsection 4.1 for local diffeomorphisms, in
Subsection 4.2 for partially hyperbolic non-uniformly expanding diffeomor-
phisms and in Subsection 4.3 for maps with singularities or criticalities. In
Section 5 we deduce Theorem B from Theorem A, first for local diffeomor-
phisms and for the partially hyperbolic case in Subsection 5.1, and then with
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singularities or criticalities in Subsection 5.2, together with an extension of
Ruelle’s Inequality to maps with non-flat singularities in Subsection 5.3.

2. Examples of application

Here we show that there are many examples of maps in the conditions of
Theorem B, Corollary C or Theorem D.

2.1. Quadratic maps and infinite-modal maps. In [8] the following
C∞ family of maps of I = [−1, 1] with infinitely many critical points was
considered:

fµ(z) =

{

f(z) + µ for z ∈ (0, ε]
f(z) − µ for z ∈ [−ε, 0)

where f : I → I is an expanding extension of

f̂ : [−ε, ε] → [−1, 1], f̂(z) =

{

azα sin(β log(1/z))) if z > 0
−a|z|α sin(β log(1/|z|))) if z < 0,

to I (i.e. |f ′| � 1 on I \ [−ε, ε]), with a > 0, 0 < α < 1, β > 0 and
ε > 0. It was shown that there exists a positive Lebesgue measure subset P
of parameters in (−ε, ε) such that for µ ∈ P the map fµ is non-uniformly
expanding and has slow recurrence to the non-flat infinte and denumerable
singular set. Moreover for the same parameters de decay rate of the tail set
is exponential, i.e. (9) is true and hence fµ for µ ∈ P is in the setting of
Corollaries C and E.

Analogous results hold for the quadratic family Qa(x) = a− x2 (and also
for general C2 unimodal families), so that Corollaries C and E apply to
quadratic maps for a positive Lebesgue measure subset of parameters.

2.2. Piecewise smooth one-dimensional expanding maps. Let f :
I → I be a map admitting a sequence S = {an, n ≥ 1} ⊂ I = [−1, 1]
such that for every connected component G of I \ S we have that f | G is
C1 diffeomorphism with its image. Assume that S is a non-flat singular set
for f and that f admits a absolutely continuous ergodic invariant probabil-
ity measure µ with positive Lyapunov exponent and such that log d(x, S) is
µ-integrable and suppµ = I. Then f is in the setting of Theorem B.

Examples of this kind of maps are the Gauss map [44], and transitive
piecewise one dimensional maps satisfying the conditions in [41] (see also
[44]), that is there exists κ > 0 such that for every connected component G
of I \ S we also have

varG
1

|f ′| ≤ κ · sup
G

1

|f ′| and
∑

G

sup
G

1

|f ′| ≤ κ.

More concrete examples are Lorenz-like maps [26, 44] (even with criticalities
[28]) and the maps introduced by Rovella [38, 30].

A proof of the exponential decay of the tail set for this class of maps is
not available in the literature to the best of our knowledge but can be done
as an application of the technique of exclusion of parameters introduced in
[10] (the details will appear in forthcoming work), so that Corollaries C and
E also hold for this type of maps.
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2.3. Non-uniformly expanding local diffeomorphisms. Consider a lo-
cal diffeomorphism f : M →M , so that S = ∅, which satisfies

• ‖(Df)−1‖ ≤ 1 and
• K1 = {x ∈M : ‖Df(x)−1‖ = 1} is finite.

Then by the results in [9] we have that such f has a finite set E of equilibrium
states for φ. Hence in this case Theorem B holds for every continuous
function ϕ : M → R.

2.4. Viana maps. The following family of endomorphisms of the cylinder
was introduced by Viana in [43]. Let a0 ∈ (1, 2) be such that the critical
point x = 0 is pre-periodic for the quadratic map Q(x) = a0 − x2. Let
S

1 = R/Z and b : S
1 → R be a Morse function, for instance b(s) = sin(2πs).

For fixed small α > 0, consider

f̂ : S
1 × R −→ S

1 × R

(s, x) 7−→
(

ĝ(s), q̂(s, x)
)

where ĝ is the uniformly expanding map of the circle defined by ĝ(s) = d · s
(mod Z) for some d ≥ 16, and q̂(s, x) = a(s)−x2 with a(s) = a0+αb(s). For

α > 0 small enough there exists an interval I ⊂ (−2, 2) such that f̂(S1 × I)
is contained in the interior of S1 × I. Hence any map f sufficiently C0 close
to f̂ has S1 × I as a forward invariant region. We consider from here on
these maps f close to f̂ restricted to S

1 × I.
In [43, 2, 3] a C3 neighborhood U of f̂ was studied and it was proved

that every f ∈ U is non-uniformly expanding and has slow recurrence to the
non-flat critical set C. Hence every f ∈ U is in the setting of Theorem B.
Results in [7, 21] show that the tail set decays at least sub-exponentially
fast, which is not enough to ensure that Corollaries C and E are true for the
maps in U. It is conjectured that the tail set indeed decays exponentially
fast and with a uniform rate for all maps in U.

2.5. Partially hyperbolic non-uniformly expanding diffeomorphisms.
We sketch the construction of a robust class of partially hyperbolic non-
uniformly expanding diffeomorphisms, taking U equal to M , following [6].
This construction is closely related to the C1 open classes of transitive non-
Anosov diffeomorphisms presented in [16, Section 6], as well as other robust
examples from [29].

Start with a linear Anosov diffeomorphism f̂ on the d-dimensional torus
M = T

d, d ≥ 2. Write TM = E ⊕ F the corresponding hyperbolic decom-
position of the tangent bundle. Let V be a small closed domain in M for
which there exist unit open cubes K0 and K1 in R

d such that V ⊂ π(K0)

and f̂(V ) ⊂ π(K1), where π : R
d → T

d is the canonical projection. Let now
f be a diffeomorphism on T

d such that

(A) f admits invariant cone fields CE and CF , with small width a > 0
and containing, respectively, the stable bundle E and the unstable
bundle F of f̂ ;

(B) f is partially hyperbolic and volume expanding along the center-
unstable direction: there is σ1 > 1 so that

|det(Df | TxDF )| > σ1 and ‖Df | TxDE‖ < σ−1
1
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for any x ∈ M and any disks DF , DE tangent to CF , CE, respec-
tively (see Subsection 3.2 for more on invariant cone fields and disks
tangent to cone fields in this setting).

(C) f is C1-close to f̂ in the complement of V , so that there exists σ2 < 1
satisfying

‖(Df | TxDF )−1‖ < σ2 and ‖Df | TxDE‖ < σ2

for any x ∈ (M \ V ) and any disks DF , DE tangent to CF , CE,
respectively. Moreover f(V ) is also contained in the projection of a
unit open cube.

(D) there exist some small δ0 > 0 satisfying

‖(Df | TxDF )−1‖ < 1 + δ0

for any x ∈ V and any disk DF tangent to CF .

If f̃ is a torus diffeomorphism satisfying (A), (B), (D), and coinciding

with f̂ outside V , then any map f in a C1 neighborhood of f̃ satisfies
all the previous conditions. Results in [6, Appendix] show in particular
that for any f satisfying (A)–(D) there exist cu > 0 such that f is partially
hyperbolic and non-uniformly expanding along its center-unstable direction,
as defined in Subsection 1.2. Hence on a small C2 neighborhood U of f̃ every
diffeomorphism f ∈ U satisfies all the conditions of Theorem D.

3. Hyperbolic times

The main technical tool used in the study of non-uniformly expanding
maps is the notion of hyperbolic times, introduced in [37, 2]. We say that n
is a (σ, δ, b)-hyperbolic time of f for a point x if the following two conditions
hold with 0 < σ < 1 and b, δ > 0

n−1
∏

j=n−k

∥

∥Df
(

f j(x)
)−1∥
∥ ≤ σk and dδ

(

fk(x), S
)

≥ e−bk (11)

for all k = 0, . . . , n− 1.
We now outline the properties of these special times. For detailed proofs

see [6, Proposition 2.8] and [3, Proposition 2.6, Corollary 2.7, Proposition
5.2].

Proposition 3.1. There are constants C1, δ1 > 0 depending on (σ, δ, b) and
f only such that, if n is (σ, δ, b)-hyperbolic time of f for x, then there are
hyperbolic pre-balls Vk(x) which are neighborhoods of fn−k(x), k = 1, . . . , n,
such that

(1) fk | Vk(x) maps Vk(x) diffeomorphically to the ball of radius δ1
around fn(x);

(2) for every 1 ≤ k ≤ n and y, z ∈ Vk(x)

d
(

fn−k(y), fn−k(z)
)

≤ σk/2 · d
(

fn(y), fn(z)
)

;

(3) for y, z ∈ Vk(x)

1

C1
≤
∣

∣detDfn−k(y)
∣

∣

∣

∣detDfn−k(z)
∣

∣

≤ C1.



12 V. ARAÚJO AND M. J. PACIFICO

The following ensures existence of infinitely many hiperbolic times for
Lebesgue almost every point for non-uniformly expanding maps with slow
recurrence to the singular set. A complete proof can be found in [6, Section
5].

Theorem 3.2. Let f : M →M be a C1+α local diffeomorphism away from
a non-flat singular set S, for some α ∈ (0, 1), non-uniformly expanding and
with slow recurrence to S. Then there are σ ∈ (0, 1), δ, b > 0 and there exists
θ = θ(σ, δ, b) > 0 such that Leb-a.e. x ∈ M has infinitely many (σ, δ, b)-
hyperbolic times. Moreover if we write 0 < n1 < n2 < n2 < . . . for the
hyperbolic times of x then their asymptotic frequency satisfies

lim inf
N→∞

#{k ≥ 1 : nk ≤ N}
N

≥ θ for Leb -a.e. x ∈M.

3.1. Coverings by hyperbolic pre-balls.

Lemma 3.3. Let B ⊂M , θ > 0 and g : M →M be a local diffeomorphisms
outside a non-flat exceptional set S such that g has density > θ of hyperbolic
times for every x ∈ B. Then, given any probability measure ν on B and any
m ≥ 1, there exists n > m such that

ν
(

{x ∈ B : n is a hyperbolic time of g for x}
)

>
θ

2
.

This is [33, Lemma 4.4] easily adapted to our setting. For completion we
include its very short proof. This lemma shows that we can translate the
density of hyperbolic times into the Lebesgue measure of the set of points
which have a specific (large) hyperbolic time.

Proof. Let H be the set of pairs (x, n) ∈ B × N for which n is a hyperbolic
time of g for x. For each k ≥ 1, let #k be the normalized counting measure
on {m + 1,m + 2, . . . ,m + k}. Our assumption implies that for any given
x ∈ B we have for big enough k ≥ 1

#k

(

H ∩ ({x} × N)
)

> 2θ.

Given any probability measure ν on B, fix k ≥ 1 large enough so that the
above holds for C ⊂ B with ν(C) > 1/2. By Fubini’s Theorem

(ν × #k)(H) > θ and thus ν
(

H ∩ (B × {n})
)

>
θ

2

for some m < n ≤ m+ k. This proves the lemma. �

Let f be a regular map in the setting of the Main Theorem with positive
density of (σ, δ)-hyperbolic times for Lebesgue almost everywhere. Let E =
{B(xi, δ1/8), i = 1, . . . , l} be a finite open cover of M by δ1/8-balls. From
this we define a finite partition P of M as follows. We start by setting
P1 = B(x1, δ1/8) as the first element of the partition. Then, assuming that
P1, . . . , Pk are already defined we set Pk+1 = B(xk+1, δ1/8) \ (P1 ∪ · · · ∪Pk)
for k = 1, . . . , l − 1. Note that if Pk 6= ∅ then Pk has non-empty interior,
diameter smaller than δ1/4 and the boundary ∂Pk is a (finite) union of pieces
of boundaries of balls in a Riemannian manifold, thus has zero Lebesgue
measure. We define P by the elements Pk constructed above which are
non-empty.
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Note that since f is regular the boundary of g(P ) still has zero Lebesgue
measure for every atom P ∈ P and every inverse branch g of f n, for any
n ≥ 1.

Let us choose one interior point in each atom P ∈ P and form the set C0

of representatives of the atoms of P. Let d0 = min{d(w, ∂P), w ∈ C0} > 0
where ∂P = ∪P∈P∂P is the boundary of P.

Lemma 3.4. Let (µn)n≥1 be a family of Borel probability measures on M
and µ some weak∗ accumulation point of the sequence (µn). Then given
0 < ε < d0 there exists a partition Pε with the same number of atoms of
P, whose atoms have non-empty interior, diameter smaller than δ1/2 and
whose boundaries have zero Lebesgue measure, such that

(1) µ(∂Pε) = 0 and µn(∂Pε) = 0 for all n ≥ 1;
(2) each P ∈ Pε contains one, and only one, element of C0;
(3) given δ > 0 there is ε > 0 small enough such that for each P ∈ Pε

there is Q ∈ P such that Leb(P4Q) < ε < δ · Leb(Q).

Proof. Let us take 0 < γ < min{ε, δ1/8} such that for all i = 1, . . . , l

Leb

(

B
(

xi,
δ1
8

+ γ
)

\ B
(

xi,
δ1
8

)

)

<
ε

l
(12)

and also for all n ≥ 1

µ
(

∂B(xi,
δ1
8

+ γ)
)

= 0 = µn

(

∂B(xi,
δ1
8

+ γ)
)

. (13)

Such value of γ exists since the set of values of γ > 0 such that some of
the expressions in (13) is positive for some i ∈ {1, . . . , l} and some n ≥ 1 is
denumerable. Thus we may take γ > 0 satisfying (13) arbitrarily close to
zero, and so inequality (12) can also be obtained.

We consider now the finite open cover Eγ = {B(xi, δ1/8+γ), i = 1, . . . , l}
of M and construct the partition Pγ induced by Eγ by the same procedure as
before. Since γ < ε < d0 we obtain d

(

w, ∂B(xi, δ1/8 + γ)
)

≥ d0 − γ > 0 for
all i = 1, . . . , l and every w ∈ C0. This shows that each w ∈ C0 is contained
in some atom Pw of Pγ . Moreover there cannot be distinct w1, w2 ∈ C0 such
that w2 ∈ Pw1

, because this would mean that for some i ∈ {1, . . . , l} we
have w2 ∈ B(xi, δ1/8), w1 6∈ B(xi, δ1/8) and w1, w2 ∈ B(xi, δ1/8+γ), which
contradicts the choice of γ < d0.

Let us consider {Pw, w ∈ C0}. There might be other (finitely many)
atoms P in Pγ and, if so, we join them to some adjacent atom Pw (meaning

P ∩Pw 6= ∅) obtaining a new atom P ∪Pw. In this way we obtain a partition
Pε with as many atoms as the elements of C0 and satisfying items (1) and
(2) of the statement of the lemma.

Clearly for any w ∈ C0 the corresponding atoms Pw ∈ Pε and Qw ∈ P

satisfy

Leb
(

Pw4Qw

)

≤
l
∑

i=1

Leb

(

B
(

xi,
δ1
8

+ γ
)

)

< l · ε
l

= ε

and diam(Pw) ≤ 2(δ1/8 + γ) < δ1/2. Since P is a finite partition with
Leb(∂P) = 0 we have ι = min{Leb(P ) : P ∈ P} > 0 and so given δ > 0 and



14 V. ARAÚJO AND M. J. PACIFICO

taking ε < min{ι · δ, d0} we get

Leb
(

Pw4Qw

)

< ε = ι · ε
ι
< ι · δ ≤ δ · Leb(Qw).

The proof is complete. �

Having this we can now obtain the following flexible covering lemma with
hyperbolic pre-balls which will enable us to approximate the Lebesgue mea-
sure of a given set through the measure of families of hyperbolic pre-balls.

Lemma 3.5. Let a measurable set E ⊂M , m ≥ 1 and ε > 0 be given. Let
θ > 0 be a lower bound for the densitity of hyperbolic times for Lebesgue
almost every point. Then there are integers m < n1 < · · · < nk for k =
k(ε) ≥ 1 and families Ei of subsets of M , i = 1, . . . , k such that

(1) E1 ∪ · · · ∪ Ek is a finite pairwise disjoint family of subsets of M ;
(2) ni is a (σ/2, δ/2)-hyperbolic time for every point in P , for every

element P ∈ Ei, i = 1, . . . , k;
(3) every P ∈ Ei is the pre-image of some element Q ∈ P under an

inverse branch of fni, i = 1, . . . , k;
(4) there is an open set U1 ⊃ E containing the elements of E1 ∪ · · · ∪ Ek

with Leb(U1 \ E) < ε;

(5) Leb
(

E4⋃i Ei

)

≤
(

1 − θ
4

)k
< ε.

The proof follows [33, Lemma 8.2] closely. We write Cm the set of pairs
(z, ni) where fni(z) = w ∈ C0 and z ∈ P for all P ∈ Ei and i = 1, . . . , k
(such z exist by item (3) of Lemma 3.5).

Remark 3.6. Note that k depends on ε only and not on the set E.

Proof. By the non-uniformly expanding assumption on f we know that there
exists θ > 0 such that Lebesgue almost every point has density > θ of
hyperbolic times of f .

Let U1 be an open set and K1 a compact set such that K1 ⊂ E ⊂ U1 and
Leb(U1 \ K1) < ε and Leb(K1) > (1/2) Leb(U1). Using Lemma 3.3 with
B = K1 and ν = Leb /Leb(K1) we can find n1 > m such that e−cn1 <
d(K1,M \U1) and the subset L1 of points of K1 for which n1 is a hyperbolic
time satisfies Leb(L1) ≥ θ

2 Leb(K1) ≥ θ
4 Leb(E).

Given x ∈ L1 let g : B(fn1(x), δ1) → Vn1
(x) be the inverse branch of

fn1 | Vn1
(x), recall that n1 is a hyperbolic time for x and see Proposition 3.1.

By the choice of P there exists a unique P ∈ P such that f n1(x) ∈ P . Let
us consider g(P ) and let E1 be the family of all such sets obtained as g(P )
which intersect L1, where g is an inverse branch of fn1 corresponding to a
hyperbolic time and P is an element of P.

Note that the elements of E1 are pairwise disjoint because P is a parti-
tion. Moreover by the properties of hyperbolic times (Proposition 3.1) the
diameter of P ∈ E1 is smaller than e−cn1 . Hence the union E1 of all the
elements of E1 is contained in U1 and by construction

Leb(E1 ∩E) ≥ Leb(L1) ≥
θ

4
Leb(E).

Now consider the open set U2 = U1 \ E1 and set K2 ⊂ E \ E1 a compact
set such that Leb(K2) ≥ (1/2) Leb(E \E1). Observe that Leb(E1 \E1) = 0
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since ∂P has zero Lebesgue measure and this property is preserved under
backward iteration by the regularity assumption on f . Reasoning as before,
we can find n2 > n1 such that e−cn2 < d(K2,M \U2) and a set L2 ⊂ K2 such
that Leb(L2) ≥ ( θ

2 ) Leb(K2) and n2 is a hyperbolic time for every x ∈ L2.
Let E2 be the family of elements g(P ) which intersect L2, where P ∈ P and
g is an inverse branch of fn1 corresponding to a hyperbolic time.

Again E2 is a pairwise disjoint family of sets whose diameters are smaller
than e−cn2 . Thus their union E2 is contained in U2. Hence E1 ∪ E2 is also a
pairwise disjoint family and, in addition

Leb
(

E2 ∩ (E \E1)
)

≥ Leb(L2) ≥
θ

2
Leb(K2) ≥

θ

4
Leb(E \ E1).

Repeating this procedure we obtain families Ei, i = 1, . . . , k of elements of
Pni

which are pairwise disjoint and contained in U1, and

Leb
(

Ei+1 ∩
(

E \ (E1 ∪ · · · ∪Ei)
)

)

≥ θ

4
Leb

(

E \ (E1 ∪ · · · ∪Ei)
)

(14)

for all i = 1, . . . , k − 1, for some k ≥ 1, where Ej = ∪Ej. Hence

Leb
(

k
⋃

i=1

Ei \ E
)

≤ Leb(U1 \E) < ε

and (14) ensures that

Leb
(

E \
k
⋃

i=1

Ei

)

≤
(

1 − θ

4

)k

Leb(E).

Therefore we can find k ≥ 1 such that Leb
(

E4∪k
i=1 Ei

)

< ε, as stated. �

Remark 3.7. Note that the construction proving Lemma 3.5 gives a fi-
nite sequence of hyperbolic times, open sets U1, . . . , Uk and closed sets
E1, . . . , Ek. Having these we can find small enough δ > ε > 0, replace P in
the proof of Lemma 3.5 by any partition Pε obtained as in Lemma 3.4 (by
slightly modifying P), and use the same inverse branches to obtain families
E′

i of pre-balls such that

Leb

(

(

⋃

i

Ei

)

4
(

⋃

i

E
′
i

)

)

≤
∑

i

C1δ Leb(Ei) < C1δ Leb
(

⋃

i

Ei

)

≤ C1δ

where C1 is the volume distortion constant (see Proposition 3.1). Hence
after the modification of the initial partition we get

Leb
(

E4
⋃

i

E
′
i

)

< ε+ C1δ < (1 + C1)δ

since ε < δ. Moreover the set Cm is unaffected since C0 is fixed and the
inverse branches are kept.

3.2. The partially hyperbolic setting. Here we state the main results
needed to obtain an extension of the covering Lemma 3.5 to the setting of
partially hyperbolic non-uniformly expanding attracting sets. As we indicate
along the way, the proofs of most of them can be found in [6].
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3.2.1. Stable/Unstable cone fields. Let Λ be a partially hyperbolic and non-
uniformly expanding attracting set for a C2 diffeomorphism f : M → M
with a trapping region U ⊂ M . The existence of the dominated splitting
E ⊕ F of TΛM ensures the existence of a continuous extension Ẽ ⊕ F̃ of
E ⊕ F to a neighborhood of Λ, which we assume without loss to be U , and
of the following cone fields:

stable cones: E
a
x = {(u, v) ∈ Ẽ(x) ⊕ F̃ (x) : ‖v‖ ≤ a · ‖u‖};

unstable cones: F
b
x = {(u, v) ∈ Ẽ(x) ⊕ F̃ (x) : ‖u‖ ≤ b · ‖v‖};

for all x ∈ U and a, b ∈ (0, 1), which are Df -invariant in the following sense
(see e.g. [15, Appendix C])

• if x, f−1(x) ∈ U , then Df−1(Ea
x) ⊂ E

λa
f−1(x);

• if x, f(x) ∈ U , then Df(Fb
x) ⊂ F

λb
f(x);

for some λ ∈ (0, 1). Continuity enables us to unambiguously denote dE =

dim(Ẽ) and dF = dim(F̃ ), so that d = dE + dF = dim(M), and domination

guarantees that the angles between the Ẽ and F̃ directions are bounded
from below away from zero at every point.

3.2.2. Hyperbolic times. In this setting, given σ > 1 we say that n is a
σ-hyperbolic time for x ∈ U if

n
∏

j=n−k+1

∥

∥(Df | Ffj(x))
−1
∥

∥ ≤ σk for all 1 ≤ k ≤ n.

Remark 3.8. This definition of hyperbolic time is entirely analogous to the
one given in the local diffeomorphisms setting except that we restrict the
derivatives to the F -direction. Hence the statement and proof of Lemma 3.3
carry over without change.

3.2.3. E-disks and F -disks. Let us fix the unit balls of dimensions dE , dF

BE = {w ∈ R
dE : ‖w‖2 ≤ 1} and BF = {w ∈ R

dF : ‖w‖2 ≤ 1}
where ‖ · ‖2 is the standard Euclidean norm on the corresponding Euclidean
space. We say that a C1+α embedding ∆ : BE →M (respectively ∆ : BF →
M) is a E-disk (resp. F -disk) if the image of D∆(w) is contained in E

a
∆(w)

for all w ∈ BE (resp. D∆(w)(RdF ) ⊂ F
b
∆(w) for every w ∈ BF ), where

α ∈ (0, 1) if fixed.

3.2.4. Curvature of E- and F -disks at hyperbolic times. Let r0 > 0 be an
injectivity radius of the exponential map on M , that is expx : B(x, r0) →
M is a diffeomorphism onto its image G(x, r0) = expx

(

B(x, r0)
)

, where
B(x, r0) = {v ∈ TXM : ‖v‖ < r0} is the r0-neighborhood of 0 in TxM .
By the continuity of the splitting E ⊕ F and the cone fields we can choose
0 < r < min{r0, δ1/4} such that for every x ∈ Λ the subspace Ex is contained
in all the images of the cone field E

a
x under the exponential map expx and

analogously for the complementary direction, that is for every y ∈ G(x, r)∩Λ
we have

Ex ⊂ D(exp−1
x )
(

E
a
y

)

and Fx ⊂ D(exp−1
x )
(

F
b
y

)

. (15)
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This ensures that every F -disk (respectively every E-disk) ∆ is such that its
image on B(x, r) given by exp−1

x

(

∆∩G(x, r)
)

is transversal to the direction
of Ex (resp. Fx).

The “curvature” of E- and F -disks can be determined by the notion of
Hölder variation of the tangent bundle as follows.

We write ∆ also for the image of the respective embedding for every E-
or F -disk. Hence if ∆ is a E-disk and y = ∆(w) for some w ∈ BE , then the
tangent space of ∆ at y is the graph of a linear map Ax(y) : Tx∆ → F (x)
for w ∈ ∆−1(Vx) (here Tx∆ = D∆(x)(RdE )). The same happens locally for
a F -disk exchanging the roles of the bundles E and F above.

The domination condition on the splitting E⊕F ensures the existence of
ζ ∈ (0, 1) such that for some n ≥ 1 and all x ∈ Λ

‖Dfn | Ex‖ · ‖(Dfn | Fx)−1‖1+ζ ≤ 3

4
.

Given C > 0 we say that the tangent bundle of ∆ is (C, ζ)-Hölder if

‖Ax(y)‖ ≤ C dist∆(x, y)ζ for all y ∈ G(x, r) ∩ ∆ and x ∈ U, (16)

where dist∆(x, y) is the distance along ∆ defined by the length of the shortest
smooth curve from x to y inside ∆ calculated with respect to the Riemannian
norm ‖ · ‖ induced on TM .

For a E- or F -disk ∆ ⊂ U we define

κ(∆) = inf{C > 0 : T∆ is (C, ζ)-Hölder}. (17)

The proof of the following result can be found in [6, Subsection 2.1]. The
basic ingredients are the cone invariance and dominated decomposition prop-
erties for f .

Proposition 3.9. There is C2 > 0 such that given a F -disk ∆ ⊂ U

(1) there exists n1 ∈ N such that κ(fn(∆)) ≤ C2 for all n ≥ n1;
(2) if κ(∆) ≤ C2 then κ(fn(∆)) ≤ C2 for all n ≥ 0;
(3) in particular, if ∆ is as in the previous item, then

Jn : fn(∆) 3 x 7→ log |det(Df | Tx(fn(∆))|
is (L1, ζ)-Hölder continuous with L1 > 0 depending only on C2 and
f , for every n ≥ 1.

3.2.5. Distortion bounds. The following uniform backward contraction and
distortion bounds are proved in [6, Lemma 2.7, Proposition 2.8].

Proposition 3.10. There exist C3, δ1 > 0 depending only on f, σ such that,
given any F -disk ∆ ⊂ U , x ∈ ∆, and n ≥ 1 a σ-hyperbolic time for x,

(1) distfn−k(D)(f
n−k(y), fn−k(x)) ≤ σk/2 distfn(D)(f

n(y), fn(x)), for all

y ∈ ∆ with dist(fn(x), fn(y)) ≤ δ1;
(2) if κ(∆) ≤ C2 then

1

C3
≤ |detDfn | Ty∆|

|detDfn | Tx∆| ≤ C3

for every y ∈ ∆ such that dist(fn(y), fn(x)) ≤ δ1.
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3.2.6. The initial partition and the covering lemma. Now we consider the
following rectangle

R̂(x, s) = {(u, v) ∈ TxM : ‖u‖ < s, ‖v‖ < s, u ∈ Ex, v ∈ Fx}

where s is chosen so that R̂(x, s) ⊂ Bx(r) for all x ∈ Λ. This defines an open

cover {expx

(

R̂(x, s)
)

}x∈Λ of Λ which admits a finite subcover denoted by
{R1 = R(x1, s), . . . , Rh = R(xh, s)}. This finite cover will define the initial
partition P given as before by

P = {R1,M \ R1} ∨ · · · ∨ {Rh,M \ Rh}.
We may assume without loss that Leb(∂P) = 0 by slightly changing the
initial cover. We choose an interior point in each element of P which together
define the set C0.

Now we adapt the covering Lemma 3.5 to the setting of partially hyper-
bolic non-uniformly expanding attracting sets as follows.

Lemma 3.11. Let a measurable set E ⊂ U , m ≥ 1 and ε > 0 be given.
Let θ > 0 be a lower bound for the densitity of hyperbolic times for Lebesgue
almost every point on U . Then there are integers m < n1 < · · · < nk for
k = k(ε) ≥ 1, and families Ei of subsets of M , i = 1, . . . , k such that

(1) E1 ∪ · · · ∪ Ek is a finite family of subsets of M and each Ei is a
pairwise disjoint family;

(2) ni is a (σ/2, δ/2)-hyperbolic time for every point in P , for every
element P ∈ Ei, i = 1, . . . , k;

(3) every P ∈ Ei is the pre-image of some element Q ∈ P under f−ni,
i = 1, . . . , k;

(4) Leb
(

E \⋃i Ei

)

≤
(

1 − θ
4

)k
< ε.

Proof. Let E ⊂ U , ε > 0 and m ≥ 1 be given. Set ν = Leb /Leb(E) and
apply Lemma 3.3 with B = E to obtain n1 > m and L1 ⊂ E such that n1

is a hyperbolic time for every point x ∈ L1 and Leb(L1) ≥ θ
2 Leb(E).

Given x ∈ L1 let Px be the unique element of the partition f−n1P which
contains x (recall that f is a diffeomorphism). Define E1 = {Px : x ∈ L1}.
Then E1 is a finite pairwise disjoint family of preimages of elements of P

corresponding to a hyperbolic time n1. If E1 is the union of the elements of
E1, then

Leb(E1 ∩E) ≥ Leb(L1) ≥
θ

2
Leb(E).

Now consider Ê2 = E \ E1. If Leb(Ê2) < ε then we are done, since then
Leb(E \ E1) < ε because Leb(∂E1) = 0 as f is regular map. Otherwise use

again Lemma 3.3 to find n2 > n1 and L2 ⊂ Ê2 such that n2 is a hyperbolic
time for all points of L2 and Leb(L2) ≥ θ

2 Leb(Ê2).
Let E2 be the family of all elements of the partition f−n2P which intersect

Ê2. Then E2 is a pairwise disjoint family and the union E2 of its elements
satisfies

Leb
(

E2 ∩ (E \E1)
)

≥ Leb(L2) ≥
θ

2
Leb(Ê2) ≥

θ

4
Leb(E \ E1).
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Repeating this procedure we get families Ei, i = 1, . . . , k of elements of f−niP

with m < n1 < · · · < nk satisfying the inequality (14). These families satisfy
items (1)-(3) by construction and item (4) follows by (14) as in the proof of
Lemma 3.5. This concludes the proof. �

Observe that we may apply Lemma 3.4 to P to ensure that, for a given
denumerable family of f -invariant probability measures, there is a partition
Pε arbitrarily close to P, with the same number of elements, such that the
measure of the boundary of the elements of Pε is zero with respect to all
measures of the family. Moreover as in the previous subsection, we write
Cm the set of pairs (z, ni) where fni(z) = w ∈ C0 and z ∈ P for all P ∈ Ei

and i = 1, . . . , k. In addition, we can build the new partition Pε in such a
way that the sets Cn are unchanged.

3.3. The volume of dynamical balls. Here we show that the volume of
dynamical balls on hyperbolic times is well controlled by SnJ , either in the
local diffeomorphism case with or without singularities, or in the partially
hyperbolic case.

3.3.1. The local diffeomorphism case with singularities. Note that by the
properties of bounded distortion of volumes during hyperbolic times (item
3 of Proposition 3.1) we can write, if n is a hyperbolic time of f for x ∈M

Leb
(

B(fk(x), n− k, δ1)
)

=

∫

B(fk(x),n−k,δ1)

dz
∣

∣ detDfn−k(z)
∣

∣

≤ C1
Leb

(

B(fn(x), δ1)
)

∣

∣ detDfn−k(x)
∣

∣

,

then recalling that J = log |detDf | we get

Leb
(

B(fk(x), n− k, δ1)
)

≤ C1e
−Sn−kJ(fk(x)) Leb

(

B(fn(x), δ1)

≤ C1e
−Sn−kJ(fk(x)).

Observe that by Proposition 3.1 if n is a hyperbolic time of f for x we get
due to uniform backward contraction

Sn−kJ(fk(x)) = log
∣

∣detDfn−k(x)
∣

∣ ≥ (n− k) · dim(M) log σ/2 > 0

which will be used several times in what follows.

3.3.2. The partially hyperbolic case with non-uniform expansion. In the par-
tially hyperbolic and non-uniformly expanding setting we recall the con-
struction of the cover R1, . . . , Rh and the initial partition P from Subsec-
tion 3.2. Observe that if we take δ0 to be the Lebesgue number of the
covering R1, . . . , Rh (see e.g. [32]), then for all 0 < δ < δ0 we have for all
x ∈ U and n ≥ 1 a hyperbolic time for x

B(x, n, δ) ⊂ f−n
P(x),

where f−nP(x) denotes de element of f−nP which contains x. To find an
upper bound for the volume of this dynamical ball it is enough to estimate
the volume of f−nP(x) when n is a hyperbolic time for x.

Let P ∈ P be such that f−n(P ) has a positive Lebesgue measure subset

P̃ of points for which n is a hyperbolic time and choose h such that Rh ⊃ P .
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Let Q̃ ∈ P be such that Q = Q̃ ∩ P̃ has positive Lebesgue measure and
choose l such that Rl ⊃ Q.

We consider the projection of P̂ = exp−1
xl

(P̃ ) on Exl
parallel to Fxl

. Its
diameter will be bounded a constant which is a function of f and s only,
since the number of different Rl is finite. Projecting Q̂ on the complemen-
tary direction Fxl

parallel to Exl
we may use the backward contraction and

bounded area distortion for hyperbolic times along F -disks to estimate the
area along F -disks and integrate to deduce a volume estimate.

Indeed, observe that since the E direction is uniformly contracted by
Df , if we fix a point x0 ∈ Q, the corresponding point xn = fn(x0) ∈
P ∩ fn(Q) and a E-disk γ which crosses Rh, then the connected component
γ̂ of f−n(γ) ∩Rl containing x0 is a E-disk which also crosses Rl. Moreover
distances along γ are uniformly expanded by f−1. Thus every point w0 ∈ γ̂
is such that wk = fk(w0) and xk = fk(x0) satisfy

C
δ1
4
> Cs ≥ dist(w0, x0) ≥ Cλ−k dist(wk, xk), (18)

for some constant C > 0 depending on f only. Hence if we take s small
enough then we can ensure that wk is close enough to xk for k = 1, . . . , n
so that n is also an hyperbolic time for all w0 ∈ γ̂. Thus we can consider
F -disks βq through the points q of Q paralell to F , which are transversal to
γ̂. Then the images fn(βq) will be F -disks crossing Rl which together cover
P ∩ fn(Q), see Figure 1.

αq

αqf(    )

xn
x

E

F

E

F

fn
P

RR

x

j

j

0

γ̂

γ

Q

x

l

l

Figure 1. The diameter of the elements of En through the
use of E-disks and images of F -disks on a hyperbolic time.

The preimages f−n(P ∩fn(Q)∩fn(βq)) then form a cover of Q and these
predisks are F -disks whose diameter is smaller than e−cn.

Using Tonelli’s Theorem, the Change of Variables Formula and the bounded
area distortion along hyperbolic times in the partially hyperbolic setting
given by Proposition 3.10, together with the bounded curvature of the im-
ages of F -disks given by Proposition 3.9, we arrive at

Leb
(

Q
)

=

∫

γ̂
m
(

Q ∩ βq

)

dq

≤
∫

γ̂
C3e

−SnJ(q)m
(

fn(Q) ∩ fn(βq)
)

dq,
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where m denotes the dF -dimensional Lebesgue measure induced by Leb on
F -disks. But by (18) we see that every q ∈ γ̂ ∩Q satisfies for k = 0, . . . , n

d(fk(q), fk(x)) ≤ Cλk δ1
4
.

Hence because J is at least C1+α for some α ∈ (0, 1) with Hölder constant
C > 0 (in fact we can take α = 1 if f is C2) the usual bounded distortion
argument provides a constant C0 > 0 such that

log
|detDfn | Fq|
|detDfn | Fx|

=
n−1
∑

j=0

log
|detDf(f j(q))|
|detDf(f j(x))| ≤

n−1
∑

j=0

Cd
(

f j(q), f j(x)
)α ≤ C0.

Thus |SnJ(q)−SnJ(x)| ≤ C0 and by the above integration estimates we get

Leb
(

Q
)

≤
∫

γ̂
C3e

C0e−SnJ(x)m
(

fn(Q) ∩ fn(βq)
)

dq ≤ C ′e−SnJ(x),

where C ′ is bounded by the dE-dimensional area AE of γ̂ (which is a function
of s < δ1/4) times a uniform boundAF for the dF -dimensional area of fn(βq)
(which is a function of the curvature bound C2 and of δ1) multiplied by the
bounded distortion constants, that is C ′ ≤ C3e

C0AEAF .
This shows that we have the same kind of estimate for the volume of a

dynamical ball as in the local diffeomorphism case, except for a different
distortion constant and the fact that the Jacobian is calculated along the F
direction.

4. Hyperbolic times and large deviations

The statements of the main theorems and corollaries are consequences of
the following more abstract result.

Theorem 4.1. Let f : M →M be a local diffeomorphism outside a non-flat
singular set S admitting σ ∈ (0, 1) and b, δ > 0 such that Lebesgue almost
every point has positive density of (σ, δ, b)-hyperbolic times. Then given
c ∈ R and a continuous function ϕ : M → R items (1)-(3) of Theorem A
hold.

Clearly Theorem A follows from Theorem 3.2 together with Theorem 4.1.
Moreover item (1) in the statement of Theorem A is just item (1) of [46,
Theorem 1] so it will not be proved here.

4.1. Upper bound for large deviations. Here we prove the upper bound
in item 2 of Theorem 4.1.

Let ϕ : M → R be a fixed continuous function. Consider for n ≥ 1 and
some fixed ε, δ, c > 0

An = An(δ, ε) =

{

x :
1

n
Sn∆δ(x) ≤ ε

}

and Bn =

{

x :
1

n
Snϕ(x) ≥ c

}

.

Since we want to bound a limit superior from above, we can assume without
loss that Leb(An ∩ Bn) > 0 in what follows. We fix a partition P of M as
in Subsection 3.1 (whose diameter is smaller than δ1/4) and use Lemma 3.5
with m = n, E ⊂ U1 ⊂ An ∩Bn such that U1 is open and

Leb
(

(Bn ∩An) \ E
)

<
1

2n
Leb(Bn ∩An),
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which can be done since Snϕ is continuous and Sn∆δ is upper-semicontinuous.
Then we can find a family Un = E1∪· · ·∪Ek of hyperbolic pre-balls contained
in U1 satisfying

Leb
(

E4
⋃

Un

)

≤
(

1 − θ

4

)k

<
1

2n
Leb(An ∩Bn).

Note that Leb
(

(An ∩ Bn) \ Un

)

≤ Leb
(

(An ∩ Bn) \ E
)

+ Leb(E \ Un) <
1
n Leb(An ∩Bn) and so

Leb(An ∩Bn) <
n

n− 1
Leb(Un). (19)

Observe also that for any element P ∈ Ei there exists x ∈ M and a hyper-
bolic time hi of f for x such that P ⊂ B(x, hi, δ1), by construction, where
i = 1, . . . , kn and n < h1 < · · · < hkn

. Let Cn be the set of all such pairs
(x, hi), one for each element of Un and to simplify the notation we write hn

for hkn
.

Following the arguments in the proof of [46, Thm.1(2)] we consider the
measure

σn =
1

Zn

∑

(x,l)∈Cn

e−SlJ(x) · δx where Zn =
∑

(x,l)∈Cn

e−SlJ(x).

Note that by definition each element of the partition
∨hn−1

i=0 f−iP contains
at most the first coordinate of one element of Cn. Thus using [45, Lemma
9.9] we have

Hσn

(

hn−1
∨

i=0

f−i
P

)

−
∫

Sl(x)J(x) dσn(x) = log
∑

(x,l)∈Cn

e−SlJ(x),

where we write l(x) for the unique integer l such that (x, l) ∈ Cn. Since
Sl(x)−nJ(fn(x)) > 0 (see Subsection 3.3) and l(x) > n we get

Hσn

(

hn−1
∨

i=0

f−i
P

)

−
∫

SnJ dσn ≥ log
∑

(x,l)∈Cn

e−SlJ(x). (20)

Setting µn = 1
n

∑n
i=0 f

i
∗σn and µ a weak∗ accumulation point of µn, we may

modify the initial partition P according to Lemma 3.4 and Remark 3.7 so
that its diameter is smaller than δ1/2 and µ(∂P) = 0 without loss, keeping
Cn unchanged. As in [45, pag. 220] from the above we can deduce that for
every q ≥ 1

lim sup
n→+∞

1

n
logZn ≤ 1

q
lim sup
n→+∞

Hµn

(

q−1
∨

i=0

f−i
P

)

+ lim sup
n→+∞

∫

−J dµn (21)

≤ hµ(f,P) −
∫

J dµ ≤ hµ(f) −
∫

J dµ (22)

if f is a local diffeomorphism, ensuring that µ is f -invariant and that J is
a continuous function (in this case S = ∅ and ∆δ plays no role, we may
take ∆δ ≡ 0 and An = M). Observe that since the points in Cn are con-
tained in Bn and µn is a linear convex combination of measures of the form
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1
n

∑n−1
i=0 δf i(x), we get for all n ≥ 1

∫

ϕµn =
1

n

n−1
∑

j=0

σn(ϕ ◦ f j) =
1

Zn

∑

(x,l)∈Cn

e−SlJ(x) · 1

n

n−1
∑

j=0

ϕ
(

f j(x)
)

≥ c · 1

Zn

∑

(x,l)∈Cn

e−SlJ(x) = c (23)

and hence
∫

ϕdµ ≥ c also because ϕ is a continuous function.
Note that from (19) and by Subsection 3.3 we get for some constant C > 0

Leb(Bn) ≤ n

n− 1
Leb(Un) ≤ n

n− 1

∑

(x,l)∈Cn

Leb
(

B(x, l, δ1)
)

≤ n

n− 1

∑

(x,l)∈Cn

Ce−SlJ(x) =
Cn

n− 1
Zn. (24)

Therefore we have shown that there exists µ ∈ Mf such that
∫

ϕdµ ≥ c and

lim sup
n→+∞

1

n
log Leb(Bn) ≤ lim sup

n→+∞

1

n
logZn ≤ hµ(f) −

∫

J dµ,

which completes the proof of item 2 in the statement of Theorem 4.1 and
Theorem A.

4.2. Upper bound for partially hyperbolic diffeomorphisms. Here
we show that a bound similar to the one in item 2 of Theorem A also holds
in the case of a partially hyperbolic non-uniformly expanding attracting set.

Let f : M → M be a diffeomorphism satisfying the conditions of Theo-
rem D, let ϕ : M → R be a continuous function, fix a real number c and
set J = log |detDf | F |. Observe that since we have Lemma 3.11 we may
argue exactly as in the previous subsection to arrive at an inequality just
like (20).

Again as in the previous subsection we consider µn = 1
n

∑n
i=0 f

i
∗σn and µ

a weak∗ accumulation point of µn. We also modify the partition P in such
a way that the boundaries of each atom have zero measure with respect to
all measures µ and µn, n ≥ 1.

The inequality (20) enables us to obtain inequalities (21) and (22) exactly
as before. Together with the volume estimates obtained in Subsection 3.3.2
we can then arrive also at inequality (24) just by using a different distortion
constant and replacing the Jacobian of f by the Jacobian of f along the F
direction. Hence we obtain the upper bound given by item 2 of Theorem A
also in the setting of partially hyperbolic non-uniformly expanding attract-
ing sets. This will be very useful to deduce Theorem D in Subsection 5.1.

4.3. Upper bound with singular/critical set. To obtain an analogous
result to (22) in the limit with a transformation f with non-flat singularities,
thus proving item 3 from Theorem A and Theorem 4.1, we need some extra
work. Note that the same argumens lead us to (21) as before and, since the
points in Cn are contained in An ∩Bn, by the same calculations (23) above
we also get

∫

∆δ dµn ≤ ε for every n ≥ 1.

Lemma 4.2. The singular set S has null µ-measure.
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Proof. Arguing by contradiction, assume that µ(S) > 0. Then there exists
a > 0 such that µ

(

B(S, η)
)

≥ a for all η > 0. Let η > 0 be chosen so that

µ(∂B(S, η)
)

= 0 and infB(S,η) ∆δ ≥ 4ε/a.
On the one hand, since µ is a weak∗ limit point of µn, there exists n0

such that for n > n0 we have µn

(

B(S, η)
)

≥ a/2. On the other hand, since
∆δ ≥ 0 we get by the choice of η

4ε

a
µn

(

B(S, η)
)

≤ µn

(

∆δ · χB(S,η)

)

≤ µn(∆δ) ≤ ε,

where χB(S,η) is the characteristic function of B(S, η), from which we de-

duce that µn

(

B(S, η)
)

≤ a/4. This contradiction shows that µ(S) = 0 and
concludes the proof. �

Lemma 4.3. The functions ∆δ, J and ψ are µ-integrable.

Proof. Let us define the sequence of functions

∆k
δ = ξk ◦ ∆δ where ξk(x) =

{

k if |x| ≥ k
x if |x| < k

, k ≥ 1.

For k > k0 with k0 > | log(δ/2)| and fixing η > 0, since ∆k
δ is continuous

and ∆δ ≥ ∆k
δ there is an integer n0 such that for all n > n0 we have

µ(∆k
δ ) ≤ µn(∆k

δ ) + η ≤ µn(∆δ) + η ≤ ε+ η.

Since this holds for all k ≥ k0 and ∆δ(x) → ∞ when x→ S, we have proved
∫

M\S
∆δ dµ <∞.

Thus we get ∆δ ∈ L1(µ) since µ(S) = 0 by Lemma 4.2.
For the other functions, note that by conditions (S2) and (S3) on the

singular set S we see that there exists a constant ζ > β such that on a small
neighborhood V of S we have

∣

∣ log ‖Df(x)−1‖
∣

∣+
∣

∣ log |detDf(x)−1|
∣

∣ ≤ ζ
∣

∣ log d(x, S)
∣

∣ (25)

and since f is a local diffeomorphism on M \ S, the µ-integrability of ∆δ

implies that of ψ and J . This concludes the proof of the lemma. �

Lemma 4.4. The measure µ is f -invariant.

Proof. Since by Lemma 4.2 µ(S) = 0 we can find a sequence ηn → 0 of posi-
tive numbers such that µ

(

∂B(S, ηn)
)

= 0 for all n ≥ 1 and µ
(

B(S, ηn)
)

→ 0
when n→ ∞.

Let us fix η > 0 and a continuous function h : M → R. Take n0 such that

µ
(

B(S, ηn)
)

· sup |h| < η

2
for all n > n0 and fix n1 > n0 such that

1

2
µ
(

B(S, ηn)
)

≤ µn

(

B(S, ηn)
)

≤ 2µ
(

B(S, ηn)
)

for all n ≥ n1. Then if f̃ is any continuous extension of f |M \ B(S, ηn) to
M (which always exists by Tietze Extension Theorem, see e.g. [32]) we get

∫

∣

∣h ◦ f − h ◦ f̃
∣

∣ dµn ≤ sup |h| · µn

(

B(S, ηn)
)

< η (26)
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for all n > n1. Also note that (26) holds with µ in the place of µn. Since

h ◦ f̃ is continuous there exists n2 > n1 such that
∣

∣

∣

∣

∫

h ◦ f̃ dµn −
∫

h ◦ f̃ dµ
∣

∣

∣

∣

< η for every n > n2.

Hence for n > n2 we get
∣

∣

∣

∫

h ◦ f̃ dµn −
∫

h ◦ f̃ dµ
∣

∣

∣
≤ |µ(h ◦ f) − µ(h ◦ f̃)| + |µ(h ◦ f̃) − µn(h ◦ f̃)|

+ |µn(h ◦ f̃) − µn(h ◦ f)| ≤ 3η.

Since h was an arbitrary continuous function and η was any positive number,
we have shown that f∗µn → f∗µ in the weak∗ topology when n→ ∞. This
is exactly what is needed to show that µ is f -invariant:

f∗µ = lim
n
f∗µn = lim

n

( 1

n

n−1
∑

j=0

f j
∗σn +

fn
∗ σn − σn

n

)

= lim
n
µn = µ,

concluding the proof. �

Now we consider J̃ a continuous extension of JχM\B(S,ρ) to M with the
same range (this is Tietze’s Extension Theorem) for 0 < ρ < δ and write

lim sup
n→∞

µn(−J) = lim sup
n→∞

[µn

(

(−J + J̃)χB(S,ρ)

)

+ µn(−J̃)]

≤ 2 lim sup
n→∞

µn(ζ∆δ) + µ(−J̃) ≤ 2ζε− µ(J̃)

since J̃ is continuous and | − J + J̃ |χB(S,ρ) ≤ 2|J |χB(S,δ) ≤ 2ζ∆δ by (25).

Taking ρ → 0 we get µ(J̃) → µ(J) because J ∈ L1(µ) and together with
(21) we arrive at

lim sup
n→+∞

1

n
logZn ≤ hµ(f,P) −

∫

J dµ+ 2ζε

for some µ ∈ Mf with µ(ϕ) ≥ c and ∆δ ∈ L1(µ), which is enough to prove
item (3) of Theorem 4.1 and Theorem A.

5. Strictly negative upper bound

Here we prove Theorem B and Theorem D. For a C1 endomorphism f it is
known [40] that the following inequality (also known as Ruelle’s inequality)
holds for every f -invariant probability measure µ

hµ(f) ≤
∫

Σ+ dµ. (27)

where Σ+ denotes the sum of the positive Lyapunov exponents at µ-a.e.
point. In Subsection 5.3 we present a proof of this inequality in the setting
of maps which are local diffeomorphisms away from a non-flat singular set S

with zero Lebesgue measure, for invariant probability measures µ such that
log d(x, S) is µ-integrable.

We note that in [25] a similar result was proved under more general geo-
metric assumptions but stricter analytic hypothesis, mostly due to the fact
that in [25] the authors considered M to be a compact metric space admit-
ting a finite dimensional manifold V as an open dense subset and S = M \V ,
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which demands technical conditions on how the Riemannian metric on V
and f behave (including the first and second derivatives on local charts)
near S for the proof to work. Our conditions are similar except that we only
need the transformation f to be C1 but assume that log d(x, S) is integrable,
which is natural in our setting.

5.1. The local diffeomorphism and partially hyperbolic case. From
Ruelle’s Inequality (27) and from Subsection 3.3 it follows that we get a
non-positive upper bound in item (2) of Theorem A since

∫

J dµ equals the
sum of the Lyapunov exponents of µ [34]. Moreover let µ ∈ E be given.
Then we have

∫

J dµ = hµ(f) ≤
∫

Σ+ dµ ≤
∫

J dµ.

Hence if µ ∈ Mf is not in E then the inequality (27) is strict.
To prove Theorem B we fix a continuous ϕ : M → R and replace Bn in

Subsection 4.1 with

Bn =

{

x ∈M : inf
{∣

∣

1

n
Snϕ(x) − η(ϕ)

∣

∣ : η ∈ E
}

> ω

}

(28)

for some ω > 0. Then Bn is an open subset of M and we can assume without
loss that Leb(An ∩Bn) > 0 in what follows, for otherwise the limit superior
in (8) is smaller than any given real number and there is nothing to prove.
Hence arguing as in Subsection 4.1 we obtain a measure ν ∈ Mf satisfying
inf
{

|ν(ϕ) − η(ϕ)| : η ∈ E
}

> ω, the bound of item (3) of Theorem A and

∆δ ∈ L1(ν) with ν(∆δ) ≤ ε.
If f is a local diffeomorphism, i.e. S = ∅, then we can use the bound given

by item (2) of Theorem A and it is enough to show that hν(f) − ν(J) is
strictly negative. But we cannot have hν(f)−ν(J) = 0 since by construction
ν is not in E, thus hν(f)− ν(J) < 0, completing the proof of Theorem B in
the case of a local diffeomorphism.

For a partially hyperbolic non-uniformly expanding attracting set we ob-
tain a negative upper bound following the same reazoning as above since we
can use the same bound from item (2) of Theorem A, as shown in Subsec-
tion 4.2, and we can also apply Ruelle’s Inquality. This completes the proof
of Theorem D.

5.2. The case with singular/critical set. In the case S 6= ∅ we now show
that the upper bound in item (3) of Theorem A must be strictly negative
for some values of η, ε, δ > 0 and for some ν ∈ Mf . For that we argue
by contradiction and take decreasing sequences εn, δn → 0 such that the
corresponding measures νk obtained according to the proof of Theorem A
with Bn as in (28) and

Ak
n = {x ∈M :

1

n
Sn∆δi

≤ εi, i = 1, . . . , k}
in the place of An, for each k ≥ 1, satisfy

• νk ∈ Mf , ∆δi
∈ L1(νk) and νk(∆δi

) ≤ εi for i = 1, . . . , k;

• lim supn→∞
1
n log Leb(Ak

n ∩Bn) ≤ hνk
(f,P) −

∫

J dνk + 2ζεk;
• hνk

(f,P) −
∫

J dνk + 2ζεk ≥ 0; and

• inf
{

|νk(ϕ) − η(ϕ)| : η ∈ E
}

> ω;
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where P is a partition obtained using Lemma 3.4 with the sequence µk = νk

and µ some weak∗ accumulation point of the νk.
Thus on the one hand we have for any fixed N ≥ 1

hνk
(f,P) = inf

j≥1

1

j
Hνk

(

j−1
∨

i=0

f−i
P

)

≤ 1

N
Hνk

(

N−1
∨

i=0

f−i
P

)

and since µ(∂P) = 0 we get

lim sup
k→∞

hνk
(f,P) ≤ 1

N
Hµ

(

N−1
∨

i=0

f−i
P

)

.

But N ≥ 1 was arbitrarily fixed, so

lim sup
k→∞

hνk
(f,P) ≤ inf

N≥1

1

N
Hµ

(

N−1
∨

i=0

f−i
P

)

= hµ(f,P).

On the other hand, choosing Ji to be a continuous extension of JχB(S,δi) to
M with the same range, i ≥ 1, we have

lim sup
k→∞

νk(−J) = lim sup
k→∞

[νk

(

(−J + Ji)χB(S,δi)

)

+ νk(−Ji)]

≤ 2 lim sup
k→∞

νk(ζ∆δi
) + µ(−Ji) ≤ 2ζεi − µ(Ji)

since Ji is continuous and | − J + Ji|χB(S,δi) ≤ 2|J |χB(S,δi) ≤ 2ζ∆δi
by

definition of ∆δi
and by (25). Similar arguments to the ones proving Lem-

mas 4.2, 4.3 and 4.4 show that J, ψ,∆δ are µ-integrable and that µ is f -
invariant. Because i ≥ 1 can be arbitrarily chosen above and both εi → 0
and µ(Ji) → µ(J), we conclude that lim supk→∞ νk(−J) ≤ −µ(J). Hence
we deduce

0 ≤ lim sup
k→∞

(hνk
(f,P) + νk(−J) + 2ζεk) ≤ hµ(f,P) − µ(J) ≤ hµ(f) − µ(J)

and also that inf
{

|µ(ϕ) − η(ϕ)| : η ∈ E
}

≥ ω > 0 by construction. By
Ruelle’s Inequality we also get hµ(f)−µ(J) ≤ 0, which yields a contradition
since this means µ ∈ E. This contradiction shows that for some k ≥ 1

hνk
(f,P) −

∫

J dνk + 2ζεk < 0

which proves Theorem B, except for the Ruelle Inequality for maps with
non-flat singularities, which is the content of the next subsection.

5.3. Ruelle’s Inequality for maps with non-flat singularities.

Theorem 5.1. Let f : M \S →M be a C1 local diffeomorphism away from
a non-flat singular set S and µ a f -invariant probability measure such that
| log d(x, S)| is µ-integrable. Then

hµ(f) ≤
∫

Σ+ dµ,

where Σ+ denotes the sum of the positive Lyapunov exponents at a regular
point, counting multiplicities.
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Observe that the µ-integrability of | log d(x, S)| implies the µ-integrability
of log+ ‖Df‖, where log+ x = max{0, log x}, and thus the Lyapunov expo-
nents of f are well defined µ-almost everywhere by Oseledec’s Theorem [34].
The proof we present here follows Mañé [29, Chap. IV] closely.

We start by taking the M as a compact submanifold of R
N with the

usual Euclidean norm and induced Riemannian structure, and considering
W0 an open normal tubular neighborhood of M in R

N , that is, there exists
Φ : W0 → W, (x, u) 7→ x + u a (C∞) diffeomorphism from a neighborhood
W0 of the zero section of the normal bundle TM⊥ of M to W . Let also
π : W → M be the associated projection: π(w) is the closest point to w in
M for w ∈W , so that the line through the pair of points w, π(w) is normal
to M at π(w), see e.g. [23] or [22]. Now we define for ρ ∈ (0, 1)

F0 : W0 \ (TSM) →W0, (x, u) 7→ (f(x), ρ · u)
and also

F : W \ Φ(TSM) → W, w 7→ (Φ ◦ F0 ◦ Φ−1)(w).

Then clearly F is a local diffeomorphism outside Φ(TSM), F (W ) ⊂W and
M = ∩n≥0F

n(W ).
For each n ≥ 1 consider the partition of RN into dyadic cubes

Pn =

{

N
∏

i=1

[ ai

2n
,
ai + 1

2n

)

: ai ∈ Z, i = 1, . . . , N

}

.

Up to a slight translation of the partitions Pn we can assume that the
probability measure µ on M satisfies µ(M∩∂P) = 0, where ∂P = ∪n≥1∂Pn∪
S. For x ∈M \ ∂P we define

vn(x) = vF
n (x) = #{P ∈ Pn : F (Pn(x)) ∩ P 6= ∅}

and
v(x) = vF (x) = lim sup

n→∞
vn(x)

where Pn(x) denotes the atom of the partition Pn containing x.

Lemma 5.2. Let Q = [−1, 1]N and x ∈M \ ∂P. Then

v(x) ≤ sup
z∈Rn

#{P ∈ P1 :
(

z +Dg(x)Q
)

∩ P 6= ∅}

Proof. For x ∈ M \ ∂P and n ≥ 1 define ϕn(y) = x + y/n on R
N and

Wn = ϕ−1
n (W ). Let Fn : Wn → Fn(Wn) ⊂Wn be such that

Wn
Fn−→ Wn

ϕn ↓ ↓ ϕn

W
F−→ W

commutes. We have F (w) = F (x) + DF (x)(w − x) + px(w) where px :
W \ Φ(TSM) → R

N is C1 and limw→x ‖px(w)‖/‖w − x‖ = 0, where ‖ · ‖ is
the Euclidean norm on R

N . Then we write Fn(y) = DF (x)(y)+qx
n(y)+αn(x)

where

αn(x) = n · F (x) − x and qx
n(y) = n · px

(

y/n+ x). (29)

Note that for x ∈ M \ ∂P we have qx
n → 0 uniformly on compacta. Indeed

if ‖y‖ < r for some r > 0 there is, for each given δ > 0, a n0 ∈ N such
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that ‖y/n‖ < δ,∀n ≥ n0 and then, by definition of px, for all ε > 0 there
is n1 ∈ N so that ∀n ≥ n1, ‖px(y/n + x)‖ < ε‖y/n‖ which is the same as
‖n · px(y/n+ x)‖ < εr, or ‖qx

n(y)‖ < εr for all sufficient large n.
Commutativity of the diagram implies

F (Pn(x)) ∩ P 6= ∅ ⇔ Fn(ϕ−1
n (Pn(x))) ∩ ϕ−1

n (P ) 6= ∅.
But ϕ−1

n (P ) is an element of P1 translated by some vector y0 ∈ R
N . More-

over ϕ−1
n (Pn(x)) ⊂ Q and so vn(x) ≤ #{P ∈ P1 : Fn(Q) ∩ (P + y0) 6= ∅}.

Because αn depends on x only

vn(x) ≤ #

{

P ∈ P1 :
(

n ·DF (x)(
1

n
Q) + qx

n(Q) + αn(x) − y0

)

∩ P 6= ∅
}

≤ sup
z∈RN

#
{

P ∈ P1 :
(

DF (x)Q+ qx
n(Q) + z

)

∩ P 6= ∅
}

(30)

Since qx
n → 0 on compact subsets we get

lim sup
n→∞

vn(x) ≤ sup
z∈RN

#
{

P ∈ P1 :
(

DF (x)Q+ z
)

∩ P 6= ∅
}

concluding the proof of the lemma. �

For the arguments which use the convergence properties of the sequence
log vn we need the following result.

Lemma 5.3. There exists a µ-integrable function g such that 0 ≤ log vn ≤ g
for µ-almost every point in M and for all n ≥ 1.

Proof. Fix n ≥ 1 and consider x ∈ M \ ∂P. On the one hand since Pn is a
partition we must have vn(x) ≥ 1. On the other hand, by the bound (30)
since the size of the edge of the cubes of P1 is 1/2 in R

N we get

vn(x) ≤
(

2
(

diamDF (x)(Q) + diam qx
n(Q)

)

)N
(31)

diamDF (x)(Q) ≤ 2
√
N · ‖DF (x)‖

≤ 2
√
N max{‖Df(x)‖, ‖DF |

(

TxM)⊥‖}. (32)

Note that for x far away from S we always get bounded expressions above
since F is a local diffeomorphism outside of Φ(TSM). To bound diam qx

n(Q)
we use (29) and consider two cases.

First assume that d(x, S) ≥ 2/n and take y ∈ Q. Then for some θ ∈ [0, 1]

qx
n(y) = n · px(y/n+ x) = n ·

(

F (x+ y/n) − F (x) −DF (x)(y/n)
)

= DF (x+ θ · y/n)(y) −DF (x)(y)

so we get by condition (S1) on S

‖qx
n(y)‖ ≤

√
N ·

(

‖DF (x)‖ + ‖DF (x+ θ · y/n)‖
)

≤ B
√
N
(

d(x, S)−β +
(

d(x, S) − 1/n
)−β

)

≤ B
√
N · d(x, S)−β · (1 + 2β) (33)

since 1 − 1/(nd(x, S)) ≥ 1/2 and ‖DF |
(

TxM)⊥‖ ≤ ρ < 1 � d(x, S)−β for
x close to S, because β > 0.
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Now assume that d(x, S) < 2/n. Then we bound as follows

‖qx
n(y)‖ ≤ n · ‖F (x+ y/n) − F (x)‖ + ‖DF (x)‖ · ‖y‖

≤ n · diamW +B
√
N · d(x, S)−β (34)

Hence putting (31), (32), (33) and (34) together we see that there exists a

constant C̃ > 0 such that

log vn(x) ≤
{

N log
(

C̃d(x, S)−β
)

if d(x, S) ≥ 2/n,

N log
(

C̃d(x, S)−β + 2n · diamW
)

if d(x, S) < 2/n.

But d(x, S)−β > 0 and we may assume without loss that 2n · diamW ≥ 2,
so

log
(

C̃d(x, S)−β + 2n · diamW
)

≤ log
(

C̃d(x, S)−β
)

+ log
(

2n · diamW
)

and if d(x, S) < 2/n we also get

log d(x, S)−β = −β log d(x, S) ≥ −β log(2/n) = β log(n/2)

= β log
(

2n · diamW
)

− β log(4 diamW ) or

log
(

2n · diamW
)

≤ log(4 diamW ) − log d(x, S)

Hence in all cases we arrive at

log vn(x) ≤ N log
(

Cd(x, S)−β +D
)

for some positive constants C and D. This concludes the proof. �

Lemma 5.4. The following bound on the entropy holds

hµ(f,Pn ∩M) = hµ

(

F |M,Pn ∩M
)

≤
∫

M
log vF

n dµ.

Proof. This is [29, Lemma 12.2] without change. �

Corollary 5.5. hµ(f) = hµ(F |M) ≤
∫

M log vF dµ.

Proof. Since
∨

n≥1(Pn ∩M) is the Borel σ-algebra µ mod 0 we get

hµ(F |M) = lim
n→∞

hµ

(

F |M,Pn ∩M
)

≤ lim sup
n→∞

∫

M
log vF

n dµ.

By Lemma 5.3 we can use the Dominated Convergence Theorem to obtain

lim sup
n→∞

∫

M
log vF

n dµ ≤
∫

M
lim sup

n→∞
log vF

n dµ =

∫

M
log vF dµ

since log is monotonous increasing. This concludes the proof. �

In what follows write vn(x) = vF n

(x) for the analogous to vF (x) with F n

in the place of F .

Lemma 5.6. We have

hµ(f) = hµ(F |M) ≤
∫

lim sup
n→∞

1

n
log vn(x) dµ(x).
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Proof. Using [45, Thm. 4.13] and Corollary 5.5 we get for all n ≥ 1

hµ(F |M) =
1

n
hµ(F n |M) ≤

∫

1

n
log vn(x) dµ(x). (35)

Consider the sequence gn(x) = n−1 log vn(x) and observe that by Lemma 5.2
and by (32)

gn(x) ≤ 1

n
log
(

2 diam(DF n(x)Q)
)N

≤ N

n
log(2

√
N) +

N

n
log ‖DF n(x)‖ = Gn(x). (36)

Again by (32) and by definition of F since x ∈ M we get log ‖DF (x)‖ ≤
log+ ‖Df(x)‖. Hence by the f -invariance of µ and the Sub-additive Ergodic
Theorem [45, Thm. 10.1], the sequence Gn(x) tends to a finite limit G(x)
for µ-a.e. x when n→ ∞.

Now by (36) and by Fatou’s Lemma [45, Thm. 0.9]
∫

lim inf
n→∞

(Gn − gn) dµ ≤ lim inf
n→∞

∫

(Gn − gn) dµ. (37)

On the one hand since limn→∞Gn(x) exists µ-a.e.
∫

lim inf
n→∞

(Gn − gn) dµ =

∫

(G− lim sup
n→∞

gn) dµ (38)

and, on the other hand, since limn→∞

∫

Gn(x) dµ exists µ-a.e. we also get

lim inf
n→∞

∫

(Gn − gn) dµ =

∫

Gdµ− lim sup
n→∞

∫

gn dµ. (39)

Altogether (37), (38) and (39) imply

lim sup
n→∞

∫

1

n
log vn(x) dµ(x) ≤

∫

lim sup
n→∞

1

n
log vn(x) dµ(x)

which together with (35) conclude the proof of the Lemma. �

To finish we need to relate lim supn→∞
1
n log vn(x) with the sum of the

positive Lyapunov exponents at x. This is done just as in [29, Chap. IV,
Sec. 12] where it is proved that

lim sup
n→∞

1

n
log vn(x) ≤ Σ+(x)

for µ-almost all x ∈ M . This together with Lemma 5.6 implies Ruelle’s
Inequality. The proof of Theorem 5.1 is complete.
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133:73–169, 1991.
[12] M. Benedicks and L.-S. Young. Absolutely continuous invariant measures and random

perturbations for certain one-dimensional maps. Ergod. Th. & Dynam. Sys., 12:13–37,
1992.

[13] M. Benedicks and L.-S. Young. SBR-measures for certain Hénon maps. Invent. Math.,
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