# HIGH AMPLITUDE SOLUTIONS FOR SMALL DATA IN SYSTEMS OF TWO CONSERVATION LAWS THAT CHANGE TYPE

## V. MATOS AND D. MARCHESIN

ABSTRACT. We study a quadratic system of conservation laws with an elliptic region. The second order terms in the fluxes correspond to type IV in Shearer and Schaeffer classification. The viscosity matrix is the identity so the DRS point lies on the elliptic boundary. We prove that high amplitude Riemann solutions arise from Riemann data with arbitrarily small amplitude in the hyperbolic region near the DRS point. For such Riemann data there is no small amplitude solution. This behavior is related to the bifurcation of one of the codimension-3 nilpotent singularities studied by Dumortier, Roussarie and Sotomaior.

## 1. INTRODUCTION

A famous theorem of Lax [7] states that systems of n conservation laws with small data have Riemann solution consisting of n small waves, rarefactions or shocks, separated by constant states, under certain hypotheses. What happens if the hypotheses are violated? T.P. Liu [8] showed in 1974 that if the hypothesis of genuine nonlinearity is violated, the rarefactions and shocks can join. Still, they form n groups separated by n-1 constant states.

In this work, we find an example of a system of two equations for which the Riemannn solution consists of two shocks with O(1) amplitude no matter how small the data is, provided it is close to a special point on the locus where the characteristic speeds coincide, i.e, the data is close to a special point on the boundary of the elliptic region.

Though our example occurs in a system with quadratic flux functions, such a point exists generically for systems that change from hyperbolic to elliptic type. This point is associated to a local bifurcation of the traveling wave ODE for the viscous conservation law, studied by Dumortier, Roussarie and Sotomaior in [4]. In their classification, this is called an elliptic bifurcation. Thus the existence of large Riemann solutions for small data is generic.

Dumortier, Roussarie and Sotomaior proved the existence of three types of codimension three bifurcations for planar vector fields: elliptic, saddle and focus. Azevedo, Marchesin, Plohr and Zumbrum in [1] proved that saddle bifurcation are associated to the existence of local Riemann solutions containing three waves for systems of two conservation laws. This solution has more waves than dimensions, and one of these waves is not a Lax wave. In [1] it was also proved that foci bifurcations do not occur for ODE's originating from systems of two diffusive conservation laws.

Therefore, we conjecture that for diffusive systems of two conservation laws the consequences of violations of Lax theorem's hypotheses are understood.

In Sec. 2 we review some results for systems of two conservation laws in one space dimension. In Sec. 3 we present our results. Proofs are in Sec. 4. In the Sec. 5 we present some remarks about our result.

Key words and phrases. Riemann problems, conservation laws, mixed type, non local solution.

#### MATOS AND MARCHESIN

#### 2. Background

In this section we review some results for systems of two conservation laws in one space dimension. These are partial differential equations of the form

$$U_t + F(U)_x = 0, (2.1)$$

where  $U(x,t) = (u,v)^T \in \mathbb{R}^2$  for  $x \in \mathbb{R}$  and  $t \ge 0$ ,  $F \in C^2(\mathbb{R}^2, \mathbb{R}^2)$ .

A Riemann problem is an initial value problem with constant states on the left and right hand sides of the origin, called  $U_L$  and  $U_R$ , that is

$$U(x,0) = \begin{cases} U_L & \text{if } x < 0, \\ U_R & \text{if } x > 0. \end{cases}$$
(2.2)

We are concerned with solutions of (2.1) and (2.2) of the form

$$U(x,t) = \begin{cases} U_L & \text{if } x < s_1 t, \\ U_M & \text{if } s_1 t < x < s_2 t, \\ U_R & \text{if } s_2 t < x, \end{cases}$$
(2.3)

i.e., they are sequences of two discontinuities (shocks) with speed  $s_1$  and  $s_2$ .

Following Gel'fand [5] and Courant-Friedrichs [3] we require that the shocks are traveling waves  $U(x,t) = \overline{U}(\eta), \eta = (x - st)/\epsilon$ , of the equation

$$U_t + F(U)_x = \epsilon U_{xx} \tag{2.4}$$

with  $\lim_{\eta\to\pm\infty} U(\eta) = U_{\pm}$  in the limit as  $\epsilon \searrow 0$ , i.e., we impose that the associated ordinary differential equation

$$\dot{U} = F(U) - F(U_{-}) - s(U - U_{-})$$
(2.5)

has an orbit connecting the equilibria  $U_{-}$  to  $U_{+}$ . In this case we say that the shock is admissible or that it has a viscous profile. Therefore, each shock must satisfy the following two Rankine-Hugoniot conditions

$$F(U_{+}) - F(U_{-}) - s(U_{+} - U_{-}) = 0, \qquad (2.6)$$

where  $U_{-}$  and  $U_{+}$  are, respectively, the left and right states of the shock and s is its speed. We denote the shock by the triplet  $(U_{-}, U_{+}, s)$ ; we may use  $s(U_{-}, U_{+})$  or just s for the shock speed.

Based on Lax [7] and Conley and Smoller [2], we define:

**Definition 2.1.** Generic shocks appearing in Riemann solutions are:

- 1-shocks:  $U_{-}$  is a repeller and  $U_{+}$  is a saddle (1S in the figures);
- 2-shocks:  $U_{-}$  is a saddle and  $U_{+}$  is an attractor (2S in the figures).

**Definition 2.2.** Other connections are important in our problems, namely:

- over-compressive shocks:  $U_{-}$  is a repeller and  $U_{+}$  is an attractor (C in the figures);
- *left characteristic 1-shocks:*  $U_{-}$  is a repeller-saddle and  $U_{+}$  is a saddle;
- left characteristic over-compressive shocks:  $U_{-}$  is a repeller-saddle and  $U_{+}$  is an attractor.

For left characteristic shocks  $U_{-}$  is not a hyperbolic equilibrium because one of its eigenvalues on the linearization vanishes.

**Definition 2.3.** The Rankine-Hugoniot set for a fixed  $U_{-}$  is a one-dimensional set in U-space:

$$\mathcal{H}(U_{-}) = \left\{ U_{+} \in \mathbb{R}^{2} : \exists s \in \mathbb{R} \text{ such that equation (2.6) holds} \right\}.$$
 (2.7)

Each point of the Rankine-Hugoniot set  $\mathcal{H}$  is classified according to Definitions 2.1 and 2.2. Typically, there are sectors in  $\mathcal{H}$  consisting of 1-shocks, of 2-shocks and of over-compressive shocks, i.e.,  $\mathcal{H}$  is divided in connected parts such that every  $U_+$  in the sector is a shock of same kind. Similarly, there are (isolated) points in  $\mathcal{H}$  representing left characteristic shocks.

Smooth solutions of (2.1) satisfy

$$U_t + DF(U) U_x = 0. (2.8)$$

**Definition 2.4.** The set of U in  $\mathbb{R}^2$  where DF(U) has:

- two distinct real eigenvalues is called the *strictly hyperbolic region*;
- two distinct complex conjugate eigenvalues is called the *elliptic region*;
- one double real eigenvalue is called the *coincidence locus*.

In the strictly hyperbolic region the characteristic speeds of DF(U) are ordered so that the lowest is called 1-speed,  $\lambda_1(U)$ , and the highest is called 2-speed,  $\lambda_2(U)$ . The eigenvectors of DF(U) are  $\vec{r}_1(U)$  and  $\vec{r}_2(U)$ .

We now state a version of Lax's classical theorem for systems of two equations in a small neighborhood N with  $\bar{N}$  in the strictly hyperbolic region, such that  $\nabla \lambda_i \cdot \vec{r_i} \neq 0$ , i = 1, 2.

**Theorem 2.5.** Given  $U_L$  and  $U_R$  in N, there exist two transverse foliations, tangent to  $\vec{r_1}$  at  $U_L$  and to  $\vec{r_2}$  at  $U_R$ , and a  $U_M$  such that the curve segment from  $U_L$  to  $U_M$  along the slow speed foliation followed by the curve segment from  $U_M$  to  $U_R$  along the fast speed foliation parametrize the unique solution of the Riemann problem with data  $U_L$ ,  $U_R$ . These curves represent shocks and rarefactions.

**Corollary 2.6.** Let  $U_M$  be the middle point of the solution of the Riemann problem with data  $U_L$ ,  $U_R$ . Then  $|U_M - U_L| \searrow 0$  as  $|U_R - U_L| \searrow 0$ .



FIGURE 2.1. The transverse set of curves near  $U_L$  and the middle point  $U_M$  of the Riemann problem solution with data  $U_L$ ,  $U_R$ .

**Remark 2.7.** Lax's famous shocks inequalities arise from the observation that the eigenvalues of the linearization of the ODE (2.5) at the equilibria  $U_{-}$ ,  $U_{+}$  (in fact, at any equilibrium U) are  $\lambda_{1}(U) - s$ .

#### 3. The Local Riemann Problem with Non Local Solution

We study a model of type IV in Shearer and Schaeffer's classification with the flux function

$$F\left(\begin{array}{c}u\\v\end{array}\right) = \frac{1}{2}\left(\begin{array}{c}3u^2 + v^2\\2uv\end{array}\right) + \left(\begin{array}{c}2v\\0\end{array}\right).$$
(3.1)

We set a = 3 and b = 0 in the classification given in [10]. We expect that other type IV models with nearby parameters lead to similar results.

Since

$$DF\left(\begin{array}{c}u\\v\end{array}\right) = \left[\begin{array}{c}3u&v+2\\v&u\end{array}\right] \tag{3.2}$$

the eigenvalues of DF are

$$\lambda_1 = 2u - \sqrt{u^2 + (v+1)^2 - 1}$$
 and  $\lambda_2 = 2u + \sqrt{u^2 + (v+1)^2 - 1}$ . (3.3)

Notice that  $\lambda_1 = \lambda_2$  along the circle  $u^2 + (v+1)^2 = 1$ , the coincidence locus. The interior of this circle is the elliptic region in this model.

We show that non local solutions arise from Riemann problems with arbitrarily small data. This result is stated in the following theorems.

**Theorem 3.1.** Let  $\mathcal{O}$  be (0,0). There exists an open set B with  $\mathcal{O} \in \partial B$  in the strictly hyperbolic region having the following property. Given a small  $\beta > 0$ , for any  $U_R \in B$  with  $|U_R - \mathcal{O}| < \beta$  the solution of the Riemann problem with data  $U_L = \mathcal{O}$ ,  $U_R$  has amplitude close to 4.

This behavior can be extended for  $U_L$ ,  $U_R$  in open sets near  $\mathcal{O}$  in the hyperbolic region. Let  $T(\beta)$  be the family of open triangles in the hyperbolic region

$$T(\beta) = \{(u, v) \in \mathbb{R}^2 : 0 < v < \beta^2 / 9 \text{ and } -v < u < v\}.$$
(3.4)

The choice  $\beta^2/9$  is explained in the proof of Lemma 4.1.

**Theorem 3.2.** Let be  $\beta \geq 0$ . For every  $U_L \in T(\beta)$  there is a non empty open set  $A(U_L, \beta)$  closer than  $\beta$  from  $U_L$  with the following properties. i) The set  $A(U_L, \beta)$  lie in the hyperbolic region; ii) For all points  $U_R$  in  $A(U_L, \beta)$  the solution of the Riemann problem with data  $U_L$ ,  $U_R$  has amplitude larger than 4.

We remark that both  $T(\beta)$  and  $A(U_L,\beta)$  approach  $\mathcal{O}$  as  $\beta$  vanishes.

### 4. Proof of the theorems

Substituting (3.1) in the Rankine-Hugoniot relation (2.6) yields

$$-s(u_{+} - u_{-}) + 3(u_{+}^{2} - u_{-}^{2})/2 + (v_{+}^{2} - v_{-}^{2})/2 + 2(v_{+} - v_{-}) = 0$$
(4.1a)

$$-s(v_{+} - v_{-}) + u_{+}v_{+} - u_{-}v_{-} = 0.$$
(4.1b)

For  $U_{-} = \mathcal{O} = (0, 0)$ , Eqs. (4.1) reduce to the quadratic curves

$$Q \equiv \frac{3}{2} \left( u_{+} - \frac{s}{3} \right)^{2} + \frac{1}{2} \left( v_{+} + 2 \right)^{2} = 2 + \frac{s^{2}}{6} \quad \text{and} \quad (u_{+} - s) v_{+} = 0.$$
 (4.2)

The Rankine-Hugoniot locus  $\mathcal{H}(\mathcal{O})$  defined in (2.7) consists of the horizontal axis  $v_+ = 0$ and of the circle  $u_+^2 + (v_+ + 2)^2 = 4$ . On the horizontal axis the shock velocity is given by  $s = \frac{3}{2}u_+$ . On the circle,  $s = u_+$ , so that  $s < \lambda_1(U_+)$  if and only if  $u_+ > 0$  and  $-2 < v_+ < 0$ ; also  $s > \lambda_2(U_+)$  if and only if  $u_+ < 0$  and  $-2 < v_+ < 0$ . Now we can classify the points in  $\mathcal{H}(\mathcal{O})$  according to the Definitions 2.1 and 2.2 as shown in Figure 4.1. Notice that the 1-shock  $(\mathcal{O}, \mathcal{O}', 0)$  is left characteristic, i.e.,  $s(\mathcal{O}, \mathcal{O}') = \lambda_1(\mathcal{O}) = 0$ . The points  $D_1$ ,  $D_2$  and  $D_3$  will be used later.



FIGURE 4.1. The curve  $\mathcal{H}(\mathcal{O})$ . The 1-shocks: solid curve; over-compressive shoks (C): dashed.

The intersections of the two curves in (4.2) are the equilibria of the associated ODE (2.5). If s = 0 there are just two equilibria,  $\mathcal{O}$  and  $\mathcal{O}' = (0, -4)$ , see Figure 4.2. The equilibrium  $\mathcal{O}'$  plays an important role.

The phase portrait for the ODE (2.5) associated to the shock  $(\mathcal{O}, \mathcal{O}', s = 0)$  is shown in Figure 4.4. For this EDO the nilpotent singularity  $\mathcal{O}$  is a possibly degenerate elliptic equilibrium in the classification given by Dumortier, Roussarie and Sotomaior, see [4] and [1]. Thus  $\mathcal{O}$  is called the *DRS* point in this phase space. One can verify that the coincidence curve contains an homoclinic orbit of  $\mathcal{O}$ , thus the orbits that connect the equilibria  $\mathcal{O}$  and the saddle  $\mathcal{O}'$  lie in the hyperbolic region.

The phase portrait for  $U_{-} = \mathcal{O}$  with shock speed  $s_1 \leq \lambda_1(\mathcal{O})$  has four equilibria, as it can be easily seen using (4.2), see Figures 4.3 and 4.5. We see that  $\mathcal{O}$  splits into three equilibria,  $\mathcal{O}$ ,  $D_1$  and  $D_2$ , while  $\mathcal{O}'$  moves to  $D_3$ ;  $D_1$  and  $D_3$  lie on the 1-shock sector 1S



FIGURE 4.2. Quadratic curves for  $U_{-} = \mathcal{O}$  and s = 0.



FIGURE 4.3. Quadratic curves for  $U_{-} = \mathcal{O}$  and  $s \leq 0$ .



FIGURE 4.4. Phase portrait,  $U_{-} = \mathcal{O}, s = 0$ . The coincidence curve contains an orbit



FIGURE 4.5. Phase portrait for  $U_{-} = \mathcal{O}, s \leq 0$ .

of  $\mathcal{H}(\mathcal{O})$  while  $D_2$  lies on the over-compressive sector C near  $\mathcal{O}'$ , see again Figure 4.1. The jacobian DF at the equilibrium  $\mathcal{O}$  has only one eigenvector, with eigenvalue  $-s_1$ , so  $\mathcal{O}$  is a non hyperbolic repeller. It is easy to check that  $D_1$  is a saddle and  $D_2$  is an attractor. Since  $\mathcal{O}'$  was a saddle,  $D_3$  is also a saddle. Thus, the four equilibria define several shocks (see Figures 4.5 and 4.6): the 1-shocks  $(\mathcal{O}, D_1, s_1)$  and  $(\mathcal{O}, D_3, s_1)$ , the over-compressive shock  $(\mathcal{O}, D_2, s_1)$  and the 2-shocks  $(D_1, D_2, s_1)$  and  $(D_3, D_2, s_1)$ . Therefore the Riemann problem with  $U_L = \mathcal{O}$  and  $U_R = D_2$  has multiple solutions in phase space that coincide in physical space. Now we remove the degeneracy of the Riemann solution.

We have a family of equilibria  $D_2(s)$  that lies in C. There are two kinds of solutions for the Riemann problem  $U_L = \mathcal{O}$  and  $U_R$  near  $D_2$  but out of C, see Figure 4.7.

If  $U_R$  lies above C (in this case we denote  $U_R$  by  $R_u$ ), the solution is a 1-shock  $(\mathcal{O}, D_1, s_1)$ followed by a faster 2-shock  $(D_1, R_u, s_u > s_1)$ ; the equilibria  $\mathcal{O}$  and  $D_1$  do not change type and  $R_u$  is an attractor like  $D_2$ . We remark that the sequence of a 1-shock  $(\mathcal{O}, D_3, s_1)$  followed by a 2-shock  $(D_3, R_u, s(D_3, R_u))$  has incompatible shock speeds, i.e.,  $s(D_3, R_u) < s_1$ . Therefore, the Riemann problem with data  $\mathcal{O}, R_u$  has a local solution as established in Lax Theorem.

On other hand if  $U_R$  lies below C (in this case we denote  $U_R$  by  $R_d$ ) the solution is a 1-shock  $(\mathcal{O}, D_3, s_1)$  followed by a faster 2-shock  $(D_3, R_d, s_d > s_1)$ ; the equilibria  $\mathcal{O}$  and  $D_3$  do not change type and  $R_d$  is an attractor like  $D_2$ . We remark that the sequence of a 1-shock  $(\mathcal{O}, D_1, s_1)$  followed by a 2-shock  $(D_1, R_d, s(D_1, R_d))$  has incompatible shock speeds, i.e.,  $s(D_1, R_d) < s_1$ . Therefore, the Riemann problem with data  $\mathcal{O}, R_d$  does not have a local solution, i.e., for such Riemann data there is no small amplitude solution.

Because C touches  $\mathcal{O}$  we can choose  $R_d$  as close to  $\mathcal{O}$  as we wish, so there are Riemann problems with data  $U_L = \mathcal{O}$ ,  $U_R$  with non local solutions. The open set B (see Figure 4.8) lies in the gap between C and the part of  $\mathcal{H}(\mathcal{O}')$  given by

$$u = \sqrt{-v(v+12)}(v+4)/(v+12).$$
(4.3)

The proof of theorem 3.1 is complete.



FIGURE 4.6. Phase portrait  $U_L = \mathcal{O}, s_1 \lesssim 0.$ 



FIGURE 4.8. The open set B in Theorem 3.1.



FIGURE 4.7. Solutions of the Riemann problem with  $U_L = \mathcal{O}$  and  $U_R$  out the compressive sector but near  $D_2$ .



FIGURE 4.9.  $\mathcal{H}(U_L)$  for  $U_L \in T(\beta)$ . The 1-shocks: solid curve; overcompressives shocks: dashed; 2-shocks: dotted curve.

We now show that this behavior actually occurs also for  $U_L$  in triangles above  $\mathcal{O}$ . However, in this case the over-compressive sector does not touch  $U_L$  any more. Let  $T(\beta)$  be the family of open triangles defined in (3.4). For  $U_L$  in  $T(\beta)$  the Rankine-Hugoniot curve is shown in Figure 4.9; the points  $M_i$  will be defined later. Because  $U_L$  now lies in the hyperbolic region it has two characteristic speeds, and we set  $s_0 = \lambda_1 (U_L)$ . The Lax theorem guarantees that the over-compressive sector does not touch  $U_L$ .

The phase portrait for  $U_L \in T(\beta)$  with  $s \leq s_0 = \lambda_1(U_L)$  has four equilibria,  $U_L$  is a repeller, see Figure 4.10.a. The equilibria define the following shocks: the 1-shocks  $(U_L, M_1, s)$  and  $(U_L, M_3, s)$ , the over-compressive shock  $(U_L, M_2, s)$ , and the 2-shocks  $(M_1, M_2, s)$  and  $(M_3, M_2, s)$ .

By increasing the speed back to  $s_0$  the equilibria  $M_1$  and  $U_L$  collapse into each other ( $U_L$  is a repeller-saddle) but  $M_2$  stays away, see Figures 4.9 and 4.10.b. In this case we rename



FIGURE 4.10. Phase portraits for  $U_L \in T(\beta)$  with different speeds: a)  $s \leq s_0$ ; b)  $s = s_0$  (the equilibrium  $M_1 = U_L$  is a repeller-saddle); c)  $s \geq s_0$ .



FIGURE 4.11. Solutions of the Riemann problem with  $U_L \in T(\beta)$  and  $U_R$  out of compressive sector but near  $M_2$ .



FIGURE 4.12. Solution for  $U_L \in T(\beta), U_R \in A(U_L, \beta).$ 

 $M_2$  and  $M_3$  as, respectively,  $M_C$  and  $M_S$ . The equilibria define the following shocks: the left characteristic 1-shock  $(U_L, M_S, s_0)$  and the left characteristic over-compressive shock  $(U_L, M_C, s_0)$ .

For  $s \gtrsim s_0$  there is just one shock starting at  $U_L$ , namely the 2-shock from  $U_L$  to  $M_2$ , see Figures 4.9 and 4.10.c.

For right states near the over-compressive sector C of  $\mathcal{H}(U_L)$  there are two kinds of solutions, see Figure 4.11. If  $U_R$  lies above C (in this case we denote  $U_R$  by  $R_u$ ), the solution is a 1-shock from  $U_L$  to  $M_1$  followed by a faster 2-shock from  $M_1$  to  $R_u$  (the equilibria  $U_L$ and  $M_1$  do not change type and  $R_u$  is an attractor as  $M_2$ ). We remark that the sequence of a 1-shock from  $U_L$  to  $M_3$  followed by a 2-shock from  $M_3$  to  $R_u$  has incompatible shock speeds. Therefore, the Riemann problem with data  $U_L$ ,  $R_u$  has a unique local solution with middle state  $M_1$  as established in Lax Theorem. On other hand if  $U_R$  lies below C (in this case we denote  $U_R$  by  $R_d$ ), see again Figure 4.11, the solution is a 1-shock from  $U_L$  to  $M_3$  followed by a faster 2-shock from  $M_3$  to  $R_d$  (the equilibria  $U_L$  and  $M_3$  do not change type and  $R_d$  is an attractor as  $M_2$ ). We will show that  $M_3$  stays away from  $U_L$ , therefore, the Riemann problem with data  $U_L$ ,  $R_d$  has a large amplitude solution, i.e., for such Riemann data there is no small amplitude solution. We remark that the sequence of a 1-shock from  $U_L$  to  $M_1$  followed by a 2-shock from  $M_1$  to  $R_d$  has incompatible shock speeds.

We need to determine where the over-compressive sector ends, i.e., we must locate the point  $M_C$  separating the 2-shock sector from the over-compressive sector.

**Lemma 4.1.** For  $U_L \in T(\beta)$  with small  $\beta$  we have  $|U_L - M_C| < \beta$  and  $|U_L - M_S| > 4$ .

Proof. Let us find the location of  $M_C \equiv (u_C, v_C)$  and  $M_S \equiv (u_S, v_S)$ . If  $U_L = (\alpha v_L, v_L) \in T(\beta)$ , with  $-1 < \alpha < 1$  and  $0 < v_L < \beta^2/9$ , straightforward calculations using (4.1) with  $s = \lambda_1 (U_L)$  lead to

 $v_C = -v_L - 2 + b$ ,  $v_S = -v_L - 2 - b$  and  $u_i = 2\alpha v_L - a - (\alpha v_L^2 + av_L)/v_i$  (4.4) for i = C, S, with

$$a = \sqrt{2v_L + (1 + \alpha^2)v_L^2}$$
 and  $b = \sqrt{4 + (6\alpha a - 2)v_L - 6(\alpha^2 - 2)v_L^2}$ . (4.5)

The quantity *a* is real in the hyperbolic region; *b* is real in part of the hyperbolic region, e.g. where  $v_L < \sqrt{3}u_L + 1$  and  $v_L > -\frac{1}{2}$ , or where  $v_L > -\sqrt{3}u_L + 1$  and  $v_L < -\frac{1}{2}$ . For small positive  $\beta$  both  $M_C$  and  $M_S$  lie in the strictly hyperbolic region.

Expanding the distances from  $U_L$  to  $M_S$  and  $M_C$  in power series in  $v_L$  we have:

$$|U_L, M_C| \simeq (5\sqrt{2v_L} - \alpha v_L)/3$$
 and  $|U_L, M_S| \simeq 4 + 7v_L/4$ , (4.6)

with error  $O\left(v_L^{3/2}\right)$ , so for small positive  $v_L$  we have

$$|U_L, M_C| < 3\sqrt{v_L} < \beta$$
 and  $|U_L, M_S| > 4.$  (4.7)

Lets us examine the Riemann solution for  $U_R$  lying in the region below the part of C to the left of  $M_C$  (see Figure 4.12). The 1-shock from  $U_L$  to  $M_3$  near  $M_S$  has speed  $s_1$  slightly lower than  $\lambda_1(U_L)$ ; the 2-shock from  $M_3$  to  $R_d$  near  $M_2$  and  $M_C$  has speed higher than  $s_1$ . By continuity we have  $|U_L, M_3| > 4$  and  $|U_L, R_d| < \beta$ .

The tangent dU to  $\mathcal{H}(U_L)$  at  $M_C$  is given by  $(DF(M_C) - sI)dU - (M_C - U_L)ds = 0$ and the tangent of  $\mathcal{H}(M_S)$  at  $M_C$  is given by  $(DF(M_C) - sI)dU - (M_C - M_S)ds = 0$ . Therefore  $\mathcal{H}(U_L)$  and  $\mathcal{H}(M_S)$  are transverse at  $M_C$  because either  $U_L$ ,  $M_C$  and  $M_S$  are not collinear neither  $\lambda_1(U_L)$  equals any characteristic speed of  $M_S$ . So we can define an angular open set  $A(U_L, \beta)$ , see Figure 4.12, with vertices on  $M_C$  and angle given by the tangents of  $\mathcal{H}(U_L)$  and  $\mathcal{H}(M_S)$  at  $M_C$  and distance to  $U_L$  that is smaller than  $\beta$ .

The proof of theorem 3.2 is complete.

## 5. Remarks

Dumortier, Roussarie and Sotomaior studied (see [4]) the versal bifurcation for a nilpotent singularity for a planar vector field with three parameters. They classify the codimension-3 bifurcations as saddle, focus and elliptic type. In [1] it is proved that saddle and elliptic bifurcations occur in quadratic models; moreover for a type IV flux with identity viscosity



FIGURE 5.1. Phase portrait for the elliptic singularity DRS. From [4]. (Reproduced by permission.)



FIGURE 5.2. One of the possible perturbations of the phase portrait for the elliptic singularity DRS.

matrix the singularity is elliptic. The phase portrait for this kind of nilpotent singularity is sketched in Figure 5.1. One of the sixteen stable deformation is shown on Figure 5.2. No high amplitude solutions arise directly from the local bifurcation. In fact, looking only for local solutions would lead to nonexistence of Riemann solution. However the phase portraits of the solution for  $U_L \in T(\beta)$  contain an extra equilibrium  $M_3$  near  $\mathcal{O}'$  which is fundamental for defining the non local solution, see again Figure 4.10.a.

So, in this work, we show that the elliptic bifurcation is associated to nonlocal solutions of local Riemann problems, which do not lie in Lax Theorem scope. In [1], it was shown that the saddle bifurcation is associated to Riemann solutions which require three waves separated by constant states (see Figure 5.4). One of the waves is a saddle-to-saddle connection called transitional or undercompressive wave, separating the 1-wave and the 2-wave. Again the necessity of three waves for solving a planar Riemann problem with small data lies outside Lax Theorem scope.

For Riemann problem with a type IV umbilic point, it is shown in [6] that in the high amplitude solutions do not appear. The singularity is not nilpotent any more, since taking for  $U_L$  the umbilic point it contains all the four equilibria points. In other words, the phase portrait for  $U_L$  equal to the umbilic point with speed lower than characteristic is topologically equivalent to the phase portrait for  $\mathcal{O}$  with  $s \leq 0$ , see again Figure 4.5. However for left characteristic speed they are not topologically equivalent any more: there is just one equilibrium in the umbilic case and two equilibria ( $\mathcal{O}$  and  $\mathcal{O}'$ ) in the our case.

In our work we restrict ourself to identity matrix. A natural question is to ask what happens if we allow real viscosity matrices. This is a motivation for future work.

#### 6. Acknowledgments

The authors are grateful to A. Azevedo for pointing out the importance of the double cicles present in our problem. V. Matos had financial support from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through programs POCTI and POSI of Quadro Comunitário de Apoio III (2000–2006) with national and EU (FEDER) funding and from PCI of the MCT, Brazil, under Grant BEV 170207/04-8. This work it was also supported in part by CNPq under Grant 301532/2003-06 and by FAPERJ under Grant E-26/150.163/2002.



FIGURE 5.3. Versal unfolding for a codimension-3 elliptic nilpotent singularity. (Reproduced by permission.)



FIGURE 5.4. Local solution for saddle equilibrium. Waves: 1-shock  $(U_L, M_1, s_1)$ ; transitional  $(M_1, M_2, s_2)$ ; 2-shock  $(M_2, U_R, s_3)$ .

## References

- AZEVEDO, A. V., MARCHESIN, D., PLOHR, B., and ZUMBRUM, K., Bifurcation of Nonclassical Viscous Shock Profiles from the Constant State, Commun. Math. Phys. 202, 267-290 (1999).
- [2] CONLEY, C., and SMOLLER, J., Viscosity matrices for two-dimensional nonlinear hyperbolic systems, Cumm. Pure Appl. Math, XXIII, 867-884 (1970).
- [3] COURANT, R., and FRIEDRICH, K., Supersonic Flow and Shock Wave, John Wiley & Sons, New York, NY, 1948
- [4] DUMORTIER, F., ROUSSARIE, R., and SOTOMAIOR, J., Bifurcation of Planar Vector Fields Nilpotent Singularities, Lecture Notes in Mathematics, Vol. 1480, Springer-Verlag (1991).
- [5] GEL'FAND, I. M., Some Problems in the Theory of Quasilinear Equations, English Transl. in Amer. Soc. Transl, Ser. 2, No. 29, 295–381 (1963).
- [6] ISAACSON, E., MARCHESIN, D., PLOHR, and TEMPLE, B., The Riemann Problem near a Hyperbolic Singularity: the Classification of Solutions of Quadratic Riemann Problems I, SIAM J. Appl. Math., Vol. 48, No. 5, October, 1009–1032 (1988).
- [7] LAX, P., Hyperbolic Systems of Conservation Laws, Commun. Pure Appl. Math., Vol. X, 537-566 (1957).
- [8] LIU, T. P., The Riemann Problem for General 2 × 2 Conservation Laws, J. Trans. Amer. Math. Soc., Vol 199, 89–112, (1974).

- [9] SCHECTER, S., MARCHESIN, D., and PLOHR, B., Structurally Stable Riemann Solutions, Journal of Differential Equations 126, 303-354 (1996).
- [10] SHEARER, M., and SCHAEFFER, D., Riemann Problems for Nonstrictly Hyperbolic 2×2 Systems of Conservation Laws, Trans. Am. Math. Soc. 304, 267–306 (1987).
- [11] SMOLLER, J., Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York (1983).
- [12] SCHECTER, S., PLOHR, B., and MARCHESIN, D., Classification of Codimension-One Riemann Solutions, Journal of Dynamics and Differential Equations, Vol. 13, No. 3, 523-588 (2001).

Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

*E-mail address*: vmatos@fep.up.pt

IMPA, ESTRADA D. CASTORINA, 110, 22460-320 RIO DE JANEIRO, RJ, BRASIL *E-mail address*: marchesi@fluid.impa.br