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Abstract Quantile regression is a well established statistical methodology for esti-

mating conditional quantile functions in a regression setting. In comparison to clas-

sical regression, quantile regression is a more robust procedure and allows a more

complete characterization of a set of distributions. This work applies classical and

quantile regression to the estimation of baroreflex sensitivity (BRS), which is a clin-

ically accepted method for the assessment of the integrity of the autonomic nervous

system. The BRS estimation approaches are compared using experimental data of

the EuroBaVar dataset.
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1 Introduction

Many methods in applied statistics can be regarded as a regression model leading

to least squares estimation methods. In the classical methodology of least squares

regression, the relationship between a response variableY and a set of regressors

X is described solely by the conditional mean function. However, as Mosteller and

Tukey [10] remark: “just as the mean gives an incomplete picture of a single dis-

tribution, so the regression curve gives a correspondingly incomplete picture for a

set of distributions”. In fact, when analyzing a single sample, measures of spread,

skewness and kurtosis are employed to characterize the databeyond the mean. The

quantile regression introduced by Koenker and Bassett in the seminal paper of 1978

[7] extends this notion to regression by estimating conditional quantile functions

and, thus allowing the estimation of the entire distribution of the response variable

conditionally on a set of regressors. The quantiles are linked to ordering and sorting

the sample observations. However, just as the sample mean can be defined as the

solution of the problem of minimizing a sum of squared residuals, the quantiles can

be defined as the solution of the problem of minimizing a weighted sum of residu-

als, the solution being that of a linear programming problem. These methods were

introduced in the seventies, and since then a practical statistical methodology for

estimating and doing inference about conditional quantilefunctions has been devel-

oped. It has been used by econometricians after the ninetiesand is now also being

used in the analysis of geophysical and climatologic data [1].

In this paper, the problem of estimating spontaneous baroreflex sensitivity (BRS)

is considered. This index has been shown useful in the study of cardiac-pathological

states, with lower BRS values being associated with increased morbidity and mor-

tality [8]. It is accepted that the BRS can be quantified from the joint analysis of

systolic blood pressure (SBP) and RR intervals and, using time domain methods,
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the BRS is estimated by the slope between SBP and RR values using least squares

approach [5]. Here, the aim is to investigate whether quantile regression is able to

provide new insights into BRS characterization. This paperis organized as follows:

section 2 presents the basic principles of quantile regression and inferential proce-

dures; BRS estimation steps are described in section 3, followed by the comparison

between BRS estimated from classical and quantile regressions, in section 4. Finally,

section 5 presents the conclusions of the study.

2 Quantile Regression

Let X be a real-valued random variable with distribution function F(x) = P(X ≤ x),

thenF−1(τ) = inf{x : F(x) ≥ τ} is said theτth quantile ofX , 0< τ < 1. Just as

the mean may be seen as the solution of the problem of minimizing the expected

quadratic loss function, the quantiles may be seen as the problem of minimizing

the expected loss for the asymmetric linear loss functionρτ(u) = u(τ − I(u < 0))

whereI(A) is the indicator function of the setA. In other words, the solution of the

minimization problem

min
k

E(ρτ (X − k)) = (τ −1)
∫ k

−∞
(x− k)dF(x)+ τ

∫ +∞

k
(x− k)dF(x), (1)

is k = F−1(τ), the τth quantile (or an interval ofτth quantiles from which the

smallest element must be chosen), [6]. Functionρτ(.) is represented in figure 1.

For τ = 0.5, ρτ(.) is the absolute value, a symmetric linear function, and it iswell

known that then (1) produces the median.

Now, given a sampleX1, . . . ,Xn, define the empirical distribution function as

Fn(x) = n−1 ∑n
i=1 I(Xi ≤ x). The empirical quantiles may be obtained by replacing

F(x) by Fn(x) and minimizing the lossn−1 ∑n
i=1 ρτ(xi − k), thus replacingsorting
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Fig. 1 Quantile regressionρ
function. Figure reproduced
from [6].

τ

τ −1

ρτ(u)

u

by optimizing. The optimization procedure for determining sample quantiles has the

advantage of allowing the estimation of models of conditional quantile functions.

In the classical (simple linear) regression setting, the conditional mean ofY (the

dependent variable) givenX (the independent variable or regressor) is expressed as

E[Y |X = x] = β x. Then, given a sample(xi,yi), i = 1, . . . ,n, β is estimated as the

solution of the least squares problem minβ∈R ∑n
i=1(yi − xiβ )2. It is well known that

inference on the estimators is dependent on the assumptionsof homoscedasticity,

Gaussianity and independence. Suppose now, that instead ofspecifying the condi-

tional mean ofY , one specifies theτth conditional quantile function ofY givenX ,

Qy(τ|x) = xβτ . Thenβτ may be estimated by solving

min∑
i

ρτ(yi − xiβτ). (2)

The quantile regression (2) may be formulated as a linear programming problem as

min
(β ,u,v)∈R×R2

{τ1
′

n u+(1− τ)1
′

n v|Xβ + u− v= y}, (3)

where1n represents a vector of ones andX represents the usual regression design

matrix (n×2 in the simple regression case). The solution of this linearfunction on

a polyhedral constraint set yieldŝβτ , which is called theτth regression quantile,

with properties that follow from well-know properties of linear programming. For a

detailed account of quantile regression refer to [6].
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There is an extensive literature and several approaches to statistical inference

(estimation and testing) for quantile regression. The mostusual test regards the

location-shift hypothesis of equality of slopes across quantiles. In this work, a Wald

approach is used to compare different slopes, based on the joint asymptotic covari-

ance matrix estimated by bootstrapping the(xi,yi) pairs [6].

3 Estimation of baroreflex sensitivity (BRS)

The first step for BRS quantification is the acquisition of theABP and ECG signals

and the extraction of the SBP and RR time series from the acquired signals (Sec-

tion 3.1). Then, a BRS estimate is obtained as a slope computed from SBP and RR

series, only considering the pairs of values identified in baroreflex related segments,

here referred to as baroreflex events – BEs (Section 3.2).

3.1 Experimental protocol and data: EuroBaVar dataset

The EuroBaVar dataset is available for the comparison of BRSestimation proce-

dures [9]. It consists of 46 paired records of spontaneous ECG and ABP recordings,

acquired from 21 subjects inLying (L) andStanding (S) positions. For each subject

and position, the ABP and ECG signals were recorded non invasively, respectively

with the use of skin electrodes and a FinapresTM finger/arm cuff device [9]. The sig-

nals were acquired in stationary conditions during 10 minutes and at a sampling

frequency of 500 Hz. Each subject was first recorded inS position and the recording

started after 5 min standing. Afterwards, followed theL position and the recording

started after 5 min supine. In between conditions, there wasa 10 minutes rest pe-

riod, when the ABP finger cuff was removed and patients could speak. This dataset



6 S Gouveia, C Rocha, AP Rocha, and ME Silva

is also provided in beat-to-beat series, namely RR (sec) andSBP (mmHg) series

extracted, respectively, from the acquired ECG and ABP signals (see figure 2). The

length of these series ranges from 553 to 1218 beats and, to set comparable results

for all recordings, BRS analysis was based on the first 512 beats of each file.

Fig. 2 Setup for ECG and ABP acquisition, showing anatomical position of the ECG electrodes
and ABP finger/arm cuff for ABP acquisition. The figure also illustrates how the SBP and RR time
series, used for BRS estimation, can be extracted from the acquired signals.

The EuroBaVar dataset is composed of pairedL and S recordings from non-

homogenous subjects. This dataset includes two subjects with autonomic dysfunc-

tion, which are expected to exhibit lower BRS estimates in comparison with those

of the remaining subjects.

3.2 Identification of baroreflex events (BEs) and slope estimation

The methods for BRS estimation have been previously detailed [5]. BRS estimation

is performed over SBP and RR series, here denotedxSBP(n) andxRR(n), respectively,

with n = 1,2, ...,Nmax indicating the beat number. In concordance with previous
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studies, these series are considered with one beat delay, i.e., xSBP(n− 1) is paired

with xRR(n) [2].

Each baroreflex event BEk, k = 1,2, . . . ,K is identified as a segment withNk pairs

of values(xk
SBP,x

k
RR) beginning at indexnk, i.e.,

xk
SBP=

[

xSBP(nk −1) xSBP(nk) · · · xSBP(nk +Nk −2)

]

xk
RR =

[

xRR(nk) xRR(nk +1) · · · xRR(nk +Nk −1)

]

,

that exhibit a minimum beat length (Nk ≥ 3) and a minimum correlation between

thexSBP andxRR values in that segment (rk ≥ 0.8).

After the segments identification, the mean is removed fromxSBP andxRR values

at each segment, by performing the operationdk
ϑ = xk

ϑ − x̄k
ϑ 1Nk , ϑ ∈ {SBP,RR},

where ¯xk
ϑ represents the mean of thexk

ϑ values. The detrended values from all seg-

ments are then concatenated indϑ =
[

d1
ϑ d2

ϑ ... dK
ϑ
]

, ϑ ∈ {SBP,RR} vectors, re-

spectively. Finally, the BRS estimate is the slopeβ̂ obtained from the regression

analysis

dRR = β dSBP+ c1N + ε, (4)

wherec is an unknown constant andε is a noise vector. In this work, the usual esti-

mate forβ (obtained by ordinary least squares minimization [5]) is compared with

that estimated from quantile regression (see section 2). Figure 3 illustrates the BRS

estimation in two EuroBaVar records showing that, due to thedata characteristics,

there are cases in which the estimatesβ̂OLS andβ̂0.5 seem to differ.

Quantile regression provides a more complete characterization of the data than

OLS regression, by simply considering other quantile values besides the median.

Therefore, the baroreflex estimation was further explored in this work, concerning



8 S Gouveia, C Rocha, AP Rocha, and ME Silva

120 130 140 150 160 170 180 190 200

(a)

xRR(n)

xSBP(n−1)

n (beat number)
−10 0 10

−0.05

0

0.05
(b) 448 beats

d R
R

dSBP

120 130 140 150 160 170 180 190 200

(c)

xRR(n)

xSBP(n−1)

n (beat number)
−10 0 10

−0.05

0

0.05
(d) 265 beats

d R
R

dSBP

Fig. 3 BRS estimation in two EuroBaVar files “A001LB” (a,b) and “B012SB” (c,d). After the
identification of BEs in thexSBP(n−1) andxRR(n) series (a,c), the dispersion diagrams are obtained
for slope computation (b,d). Solid line has OLS slopeβ̂OLS, dashed line has slope estimated by
quantile regression̂β0.5 and dotted lines have slopêβτ for τ ∈ {0.25,0.75}.

the behavior of the tails of the data distribution. Figures 3(b,d) also show the lines

with slopes obtained for other quantiles besides the median.

4 Results

For each record, the comparison between different slopes was performed by means

of Wald test, whereσβ̂ was estimated via Bootstrap simulation [4]. For each record,

1000 bootstrap replicas of the same length as the original set were generated by re-

sampling with replacement the originaldSBP anddRR pairs of values. This procedure

allowed to keep the heteroscedasticity pattern in the data (see figures 3(b,d)) and,

consequently, to obtain an adequateσ̂β̂ . The slopes comparisons indicate that only

7 out of the 46 records exhibit significant differences betweenβOLS andβ0.50. More-
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over, significant differences between pairs (β0.25,β0.75) and (β0.05,β0.95) were found in 3

and 2 records out of 46, respectively. These results indicate that, although the data

exhibits a heteroscedasticity pattern, its dispersion around the OLS/median line is

fairly symmetric (see figures 3(b,d)). As a consequence, in only 4 and 6 records out

of the 46, the equalitiesβ0.25=β0.50=β0.75 andβ0.05=β0.25=β0.50=β0.75=β0.95 were rejected, at

5% significance level.

The β̂ obtained for all records are represented in figure 4(a), and illustrates the

similarity between the distributions of the different slopes and the high inter-subject

dispersion between thêβ . The latter is in accordance with the fact that the Eu-

roBaVar records were collected from heterogeneous subjects and, therefore, it was

expected to include a wide range ofβ̂ values. Because of this, the intra-subject dis-

persion was quantified from the coefficient of variationδβ̂ , which measures the

dispersionσ̂β̂ as a percentage of̂β . In 36/46 records it was found the relation

δβ̂0.50
> δβ̂OLS

. Nevertheless, as illustrated in figure 4(b),δβ̂OLS
andδβ̂0.5

exhibit similar

distributions, with around 75% of the records presenting both δβ̂OLS
andδβ̂0.5

below

10% of the correspondinĝβ values. Finally, theδβ̂τ
evaluated forτ ∈ {0.05,0.95}

are higher than those evaluated forτ ∈ {0.25,0.5,0.75}.

Subjects with autonomic dysfunction are expected to present lower BRS esti-

mates in comparison to those of normal subjects [9]. For the EuroBaVar subjects

with autonomic dysfunction (open circles in figure 4), theβ̂ values are lower than

the 5th percentile of thêβ distribution for the remaining subjects. The records with

the lowestβ̂ exhibit similarδ values in comparison with that of the remaining.

For the discrimination betweenL andS positions, it is expected that theL to S

ratio of β̂ (R̂LS) is above 1 [9]. As shown in figure 5, there is strong evidence that

both mean and median of̂RLS are above 1 for all approaches, being approximately

twice greater inL than inS. Theβ̂0.05 andβ̂0.95 values are also able to distinguish the
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Fig. 4 Boxplots of (a)β̂ and (b)δβ̂ values evaluated for all 46 EuroBaVar files. Median and mean
95% confidence intervals represented by the notch and by the interval displayed at the left of each
boxplot. The circles localize the 4 paired files from the 2 subjects with autonomic dysfunction.

different positions for almost all subjects, although exhibiting the largest dispersions

when comparing the different slope approaches (see figure 4(b)).

Figure 5 also highlights that it is not possible to differentiate the dysfunction

cases from the remaining. The location ofR̂LS for these files in separate tails of

the overall distribution could be explained by the fact thatthe ratio of two smallβ̂

values is more sensitive to a small variation in one of the values. Another explanation

could be the different origins of the baroreflex failure (onediabetic with cardiac

neuropathy and another after heart transplantation). Thiswork suggests that clinical

interpretation studies facing pathological/control cases should be carried out in order

to further investigate this behavior.

Fig. 5 Boxplots of the ratio
between theβ̂ obtained in
L andS positions (̂RLS), for
the 46 paired recordings
of the EuroBaVar dataset.
Same graphical display as in
figure 4.

0

1

2

4

R̂
L

S
va

lu
es

β̂OLS β̂0.50 β̂0.25 β̂0.75β̂0.05 β̂0.95



Quantile regression analysis and the estimation of baroreflex sensitivity 11

5 Conclusions

In this work, quantile regression (QR) is considered for estimating baroreflex sen-

sitivity (BRS). The results from experimental data indicate that OLS slope and QR

slope at quantile 0.5 do not exhibit significant differences. In spite of QR having the

advantage over OLS to provide a slope for any quantile, the EuroBaVar slopes at

other quantiles besides 0.5 do not provide different information.

In BRS analysis, occasional very large errors can occur (e.g., in nonstationary

records). Because QR estimation is based on robust measuresof location (quantiles)

[6], it is expected to outperform OLS estimation in BRS assessment.
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