MULTIFRACTAL ANALYSIS OF THE IRREGULAR SET FOR
ALMOST-ADDITIVE SEQUENCES VIA LARGE DEVIATIONS

THIAGO BOMFIM AND PAULO VARANDAS

ABSTRACT. In this paper we introduce a notion of free energy and large de-
viations rate function for asymptotically additive sequences of potentials via
an approximation method by families of continuous potentials. We provide
estimates for the topological pressure of the set of points whose non-additive
sequences are far from the limit described through Kingman’s sub-additive
ergodic theorem and give some applications in the context of Lyapunov ex-
ponents for diffeomorphisms and cocycles, and Shannon-McMillan-Breiman
theorem for Gibbs measures.

1. INTRODUCTION

The study of the thermodynamical formalism for maps with some hyperbolicity
has drawn the attention of many researchers in the last decades. A particular topic
of interest in ergodic theory is to obtain limit theorems, the characterization of level
sets, the velocity of convergence and the set of points that do not converge often
called the irregular set. The study of the topological pressure or dimension of the
level and the irregular sets can be traced back to Besicovitch and this topic had
contributions by many authors in the recent years (see e.g. [6, 14, 3, 12, 16, 18,
23, 24, 27, 26, 25, 29, 19, 1, 20, 13, 10, 8] and the references therein). For additive
sequences, level sets carry all ergodic information. In fact, by Birkhoff’s ergodic
theorem all ergodic measures give full weight to some level set. On the other hand,
the irregular set may have full Hausdorff dimension or full topological pressure
meaning that it is by no means neglectable from the topological or geometrical
point of view (see e.g. [29]). In particular the irregular set associated to Birkhoff
sums for maps with some hyperbolicity has a rich multifractal structure (see e.g.[8]).

One of our purposes here is to provide a multifractal analysis of the irregular
set in the non-additive setting that we now describe. Fix M a compact metric
space and f : M — M a continuous dynamical system. A sequence ® = {¢,} C
C(M,R)Y is a sub-additive sequence of potentials if ©,ipn < @m + @n o f™ for
every m,n > 1. We say that the sequence ® = {¢,} € C(M,R)" is an almost
additive sequence of potentials, if there exists a uniform constant C' > 0 such that
OmF+Enofm—C < Omin < Om+@no f 4 C for every m,n > 1. Finally, we say
that ® = {¢,} € C(M,R)N is an asymptotically additive sequence of potentials, if
for any £ > 0 there exists a continuous function ¢, such that

. 1
limsup — [[¢n — Sneell, <& (1.1)
n—oo T
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where S, = Z?:_Ol @e o f7 denotes the usual Birkhoff sum, and || - ||o is the
sup norm on the Banach space C'(M,R). It follows from the definition that if
it ® = {p,} is almost additive then there exists C' > 0 such that the sequence
bo = {¢n, + C} is sub-additive. Morever, if ® = {(,,} is almost additive then it is
asymptotically additive (see e.g. [33]). By Kingman’s subadditive ergodic theorem
it follows that for every sub-additive sequence ® = {p,} and every f-invariant
ergodic probability measure u so that ¢ € L' () it holds

lim l<,0n(ar) = ir;f; 1 /(pn dp =: Fo (P, ), for p-ae. x. (1.2)

n—oo N n

The study of the multifractal spectrum associated to non-additive sequences of
potentials arises naturally in the study of Lyapunov exponents for non-conformal
dynamical systems. Feng and Huang [16] used the study of subdiferentials of pres-
sure functions to characterize the topological pressure of the level sets

{x € M: lim lwn(a:) = a}

n—oo N
for asymptotically sub-additive and asymptotically additive families ¥ = {4y, },,.
Zhao, Zhang and Cao [33] proved that if f satisfies the specification property then
either the irregular set the X ({t,,}) (which consists of the points « € M such that
the limit of %wn(m) does not exists) is empty or carries full topological pressure
for f with respect to any asymptotically additive sequence continuous potentials
V. Taking into account this result we will be most interested in the analysis of the
sets 1

Xw,e = {x € M : limsup | — ¢y, (x) — Fu(ps, \I/)’ > c}
n—oo M

and

o]
X, v.ei= {x € M : lim inf ‘Ewn(x) - ]-'*(,u,\l')‘ > c},

where ¥ = {4, } is an asymptotically additive or sub-additve sequence of observ-
ables, ¢ > 0 and p is an equilibrium state. More precisely, what are the prop-
erties and regularity of the topological pressure functions ¢ P&m,c( f,®) and
cr wap,c (f,®)? Such characterization and interesting applications for sequences
¥ = {4, } where ¢, = Sp3 are Birkhoff sums were obtained in [8].

One of our purposes here is to characterize the sets X, ¢ . and X ,0,c thus ex-
tending the results from [8] for almost additive sequences of potentials, in which
case a thermodynamical formalism is available (see e.g [2, 21, 4, 5]). One moti-
vation is the study of Lyapunov exponents since beyond the one-dimensional and
conformal setting the situation is much less understood. The underlying strategy
is to use that almost additive sequence ¥ are asymptotically additive and that
the sequences % are uniformly approximated by Birkhoff means of sequences of
potentials can be chosen to have further regularity (c.f. Proposition 2.2). In the
case of uniformly expanding dynamics we choose the approximating potentials to
be Hoélder continuous. Taking this into account we introduce a free energy function
Er.0,0(-) and a rate function If ¢ ¢ (-) obtained as limit of Legendre transforms that
does not depend on the family of approximations chosen and it is strictly convex
in a neighborhood of F, (¥, ug) if and only if ¥ is not cohomologous to a constant.
This characterization using the Legendre transform and the variational formulation
for the large deviations rate function is enough to obtain a functional analytic ex-
pression for the large deviations rate function obtained in [31], opening the way to
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study its continuous and differentiable dependence. In the case of repellers, when
the irregular set X ({¢,,}) is nonempty then it carries full topological pressure. We
prove that Px (f,®) < PYM o (fs @) < Piop(f, @) for any positive ¢ > 0 mean-

ing that the set X ({¢,,}) N X, v does not have full pressure. This means that
irregular points responsable for the topological pressure are those whose values are
arbitrarily close to the mean. In fact, in the case that ® = 0 and p, denotes the
maximal entropy measure we give precise a characterization of the topological en-
tropy of these sets in terms of the large deviations rate function and deduce that
R 3¢ hﬁuo,\p,u(f) = hf,io,\p,c(f) is continuous, strictly decreasing and concave
in a neighborhood of zero. (we refer to Section 2 for precise statements).

This paper is organized as follows. In Section 2 we introduce the necessary
definitions and notations and state our main results. Section 3.3 is devoted to the
definition of these generalized notions of free energy and legendre transforms and to
the proof of Theorem A. Section 4 is devoted to the proof of the multifractal analy-
sis of irregular sets. Finally in Section 5 we provide some examples and applications
of our results in the study of Lyapunov exponents for linear cocycles, non-conformal
repellers and sequences arising from Shannon-McMillan-Breiman theorem for en-

tropy.

2. STATEMENT OF THE MAIN RESULTS

This section is devoted to the statement of the main results. Our first results
concern the regularity of the pressure function and the Legendre transform of the
free energy function and its consequences to large deviations.

Topological pressure and equilibrium states. Given an asymptotically additive se-
quence of potentials & = {¢,,} and a arbitrary invariant set Z C M it can be
defined the topological pressure Pz(f, ®) of Z with respect the f and ® by means
of a Charateodory structure. Let us mention that in the case that ® = {¢,} with
¢n = Sp¢ for some continuous potential ¢ then Pz (f, ®) is exactly the usual notion
of relative topological pressure for f and ¢ on Z introduced by Pesin and Pitskel.
We refer the reader to [22] for a complete account on Charateodory structures.
Alternativelly, for asymptotically additive sequence of potentials the topological
pressure can be defined using the variational principle proved in [16]

Piop(f, ®) = sup{h,(f) + Fu(p, ®) : pis a f-invariant probability, F, (®, ) # —oo}

(see Subsection 3.1 for more details.) If an invariant probability measure pg attains
the supremum then we say that it is an equilibrium state for f with respect to ®.
In this sense, equilibrium states are invariant measures that reflect the topological
complexity of the dynamical system. In many cases equilibrium states arise as
(weak) Gibbs measures. Given a sequence of functions ® = {¢,}, we say that a
probability u is a weak Gibbs measure with respect the ® on A C M if there exists
g0 > 0 such that for every 0 < £ < g there exists a positive sequence (K, (€))nen
so that lim 1 log K, (¢) = 0 such that for every n > 1 and p-a.e. z € A

_ w(B(x,n, e
Ku(e)' < % < Ky (o).

If, in addition, K, (¢) = K(e) does not depend of n we will say that p is a Gibbs
measure. Gibbs measures arise naturally in the context of hyperbolic dynamics:
3



given a basic set 2 for a diffeomorphism f Axiom A (or Q repeller to f) it is known
that every almost additive potential ® satisfying

(bounded variation) 34,8 > 0 : sup v, (®,0) < A, (2.1)

neN

where v, (®,0) := sup{|én(y) — ¢n(2)| : y, 2z € B(x,n,d)}, admits a unique equilib-
rium state pg is a Gibbs measure with respect to ® on Q (see [2] and [21] for the
proof). This concept in the additive context was introduced by Bowen [9] to prove
uniqueness of equilibrium states for expansive maps with the specification prop-
erty. We will define now a weaker bounded variation condition: we will say that a

sequence of continuous functions ® = {¢,,} satisfies the weak Bowen condition if
In(2,9) =0

there exists > 0 so that lim,, , o ™

Legendre transforms in the non-additive case. In this section we will assume that M
is a Riemannian manifold, f : M — M is a C' map, and A C M is a isolated repeller
such that f |4 is topologically mixing. In fact the results for the thermodynamical
formalism that we shall use here apply to shifts of finite type and for that reason
hold more generally. Nevertheless we will restrict to the context of repellers for
simplicity. For any almost additive potential ® satisfying the bounded variation
condition we know by [2] that there is a unique equilibrium state for f with respect
the ®, and we denote it by ue. Later, Barreira proved also the differentiability of
the pressure function.

Proposition 2.1. [5, Theorem 6.3] Let f be a continuous map on a compact metric
space and assume that pn — h,(f) is upper semicontinuous. Assume that ® and U
are almost additive sequences satisfying the bounded variation condition and that
there exists a unique equilibrium state for the family ® +tV for everyt € R. Then
the function R 3t — Piop(f, @ +tW¥) is C* and L P(f, @ +tV) = Fu(V, poyew).

For any almost additive sequences of potentials ® and ¥ we define the free energy
function associated to ® and ¥ by

Sf,@,q/(t) = Ptop(fa b + t\Ij) - Ptop(fa (@)

for t € R such that the right hand side is well defined. It follows from the previous
proposition that if ® and ¥ are almost additive sequences satisfying the bounded
variation condition then the free energy function t — Ef ¢,y is C.

Proposition 2.2. Let H be a dense subset of the continuous functions C(M,R)
in the usual sup-norm || - ||loo. If ¥ = {tn} is an asymptotically additive sequence
of observables then there exists (0,1) > € — g. € H so that for any e > 0

hmsup l”wn - SnQEHoo <e.

n—+oco N
Proof. Since ¥ = {¢,,} is an asymptotically additive sequence of observables there
exists a family (g. ). of continuous functions such that for every small € > 0 we have
that limsup,,_, ;oo = |[¢n — Snielloc < &/2. Since H C C(M,R) is dense then there
exists a family (g.). of observables in H such that ||g: — §c||cc < &/2 for all €. The
later implies that the Birkhoff averages are £/2 close, thus proving the lemma. O

Since the thermodynamical formalism for expanding maps is well adapted the
space of Holder continuous potentials we will take H = C*(M,R) for some « €
(0,1). Given ¥ = {3, }, almost additive it follows e.g. from [33, Proposition 2.1]
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that this sequence is asymptotically additive and thus we can assume the approx-
imations above are by Holder continuous functions. We will refer to such families
of functions as an admissible family for ¥ and denote it by {g. }.. In what follows
let o € (0,1) be fixed.

Definition 2.3. Let ¥ be an almost additive sequence of observables. We will say
that ¥ is cohomologous to a constant if there exists an admissible family {g.}. for
U such that g. is cohomologous to a constant for every small € € (0,1), that is,
there exists a constant c. and a continuous function . so that g. = u.o f —u. +ce.

A natural question is to understand which families are cohomologous to a con-
stant. Such characterization is assured by the next lemma.

Lemma 2.4. U = {4, },, is cohomologous to a constant if only zf(wT")n is uniformly
convergent to a constant.

Proof. On the one hand, if ¥ is cohomologous to a constant then there exists an
admissible family {g. }. for ¥ such that g. is cohomologous to a constant for every
small € € (0,1), that is, there are constants ¢ € R and continuous functions u,
such that g. = u. o f — u. + ¢ and, consequently, S,g. = u. o f™ — u. + c.n for
every small €. Using the convergence given by equation (1.1) it follows that for
every small ¢

<eg,

oo

1
= lim sup EHW — Snge Fuco f" —ue

oo n—oo

: Yn
lim sup H— —Ce
n—oo n

which proves that ¢ = lim._,g ¢, does exist and that (1/;;1) is uniformly convergent

to the constant ¢. On the other hand, if (%)n is uniformly convergent to a constant
¢ then take g. constant to ¢ and notice that since S,,g. = cn then clearly

=0.

1
lim sup — Hwn — Sn9e
n

n—o0 oo

This finishes the proof of the lemma. U

Remark 2.5. Let us notice that the notion of cohomology for families of observables
is slightly different from the corresponding one for a fixed observable. Indeed,
for instance by the previous lemma the family ¥ = {4}, with ¥, = /nw is
cohomologous to the constant 0 although the observable w : M — R may be
chosen to be not cohomologous to a constant.

Observe that it follows from the definition that if ¥ is not cohomologous to
a constant then there is a admissible family {g.}. for ¥ and a sequence (ej)x
converging to zero such that g., is not cohomologous to a constant for every k > 1.
If this is the case, the family € — §. given by g. = g., for every e, < e < e_1 is
so that g. is not cohomologous to a constant for every small € (notice that these
“step functions” could be chosen in many different ways). We will say that such
family {gc}. is not cohomologous to a constant. Then, for simplicity, given any W is
not cohomologous to a constant we shall consider the approximations by admissible
sequences (g ). such that g. is not cohomologous to a constant for any small .

Assume ®, ¥ are almost additive sequences of potentials with the bounded vari-
ation condition such that ¥ is not cohomologous to a constant and let (p.). and
{ge}e be admissible families for ® and ¥ respectivelly. Then the well defined free
energy function ¢ — & ,_ 4. is strictly convex and so it makes sense to compute the
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Legendre transform Iy ,_ 4. (t) for every small € € (0,1) and ¢t € R. Since each g, is
not cohomologous to a constant it is a classical result that the following variational
property holds

o9 (Efpeg. (1) =1E7 4 4. (1) = Epipu g (1) (2.2)

for every small € € (0,1) and ¢ € R (see e.g. [7]). Using this variational property
we prove in Section 3.3 that it is possible define the Legendre transform of the
corresponding free energy functions of ¥ as

If,{>7\11(5) = 6h~I>I(1) Ifﬁasvgs (8)?

for every s € (infteR Fi(¥, totiw) , supiep F« (¥, u<b+tq,)), since this limit will not
depend of the choices of families {p.}. € {ge}.. We establish some properties of
this Legendre transform as follows.

Theorem A. Let M be a Riemannian manifold, f : M — M be a C'-map and
A C M be an isolated repeller such that f |5 is topologically mizing. Let ® and ¥
be almost additive sequences satisfying the bounded variation condition and assume
that ¥ is not cohomologous to a constant. The following properties hold:

i. the Legendre transform of U satisfies the variational property

Ir09(Eraw(t) =tE oy (t) — Erau(t),
for every t € R;
ii. Irew(-) is a non-negative convez function and
dnf Irew(s) = min{lyew(a), I.e.w(b)}
for any interval (a,b) C R not containing F.(V, ue)
i, Trew(s) = infye g, (1) {Prop(f, @) = hy(f) = Fu(®,m) : FulW,m) = s}
iv. Irew(s) =0 if only if s = Fo(¥, na) and s — I5 o w(s) is strictly convex
in an open neighborhood of F..(V, ua).

Large deviations results. The variational relation obtained in Theorem A is of par-
ticular interest in the study of large deviations. In [31], the first author and Zhao
proved several large deviations results for sub-additive and asymptotically addi-
tive sequences of potentials. In the case of expanding maps and almost additive
sequences of potentials Theorem A leads to the following immediate consequence:

Corollary A. Let M be a Riemannian manifold, f : M — M be a C'-map and
A C M be an isolated repeller such that f |p is topologically mizing. Let ® =
{en} be an almost additive sequence of potentials satisfying the bounded variation
condition and pe be the unique equilibrium state for f |n with respect to ®. If
U = {¢Yn} is a family of almost additive potentials satisfying the bounded distortion
condition then it satisfies the following large deviations principle: given F C R
closed it holds that

1 1
. 1 1L <
lim sup - log e ({x eM nwn(x) S F}) igf If,<1>7\1;(5)

n—oo

and also for every open set E C R

1 1
liminf — log ue ({x EM: =(x) € E}) > —inf It o w(s).
n—o00 nN n seE
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Remark 2.6. Although these quantitative estimates can be expected to hold for
more general asymptotically additive sequences, one should mention that an exten-
sion of limit theorems from almost-additive to asymptotically additive sequences of
potentials is not immediate by no means. In fact, a simple example of an asymptot-
ically additive sequence of potentials can be written as ¥, = S, + a,, depending
on the sequence of real numbers (a,),. If ¥ is Holder continuous and a,, = o(y/n)
then (1), satisfies the central limit theorem. However, the CLT fails in a simple
way e.g. if a, = n2*< for any & > 0.

Multifractal estimates for the irreqular set. Given an asymptotically additive se-
quence of observables ¥ = {¢},, and J C R we denote

_ 1
X;={zeM: limsupﬁwn(x) e J}

n—-+oo
and 1
X, ={xeM: Eﬂrgﬁwn(x) € J}.

and set X(J) :={x € A : lim,, 4 %wn(x) € J}. For any § > 0 we denote by Js
the —neighborhood of the set J and for a probability measure p we define

1 1
Ly, = —limsupflogu({x eEM: Ewn(x) € J})

n—+oo T

We are now in a position to state our first main result concerning the multifractal
analysis of the irregular set.

Theorem B. Let M be a compact metric space, f : M — M be continuous,
O = {¢,} be an almost additive sequence of potentials with Pyp(f, ®) > —oo.
Assume that pg is the unique equilibrium state of f with respect the ®, that it is
a weak Gibbs measure and that the sequence ¥ = {4, } satisfies at least one of the
following properties:
(a) U is asymptotically additive, or
(b) U is a sub-additive sequence so that
i. satisfies the weak Bowen condition;
ii. inf,>q w"%z) > —oo for every x € M;
iii. the sequence {%} is equicontinuous.

Then, for any closed interval J C R and any small 6 > 0,
PKJ(f7(b) S PYJ(fa(I)) S Ptop(faq)) 7LJ5,M¢> S P(fa(b)

In Remark 4.2 we indicate few modifications which imply that the estimate
Px (f,®) < Piop(f, ®) — Lys g holds under the assumption that pge satisfies a
pointwise weak Gibbs property, namely, whenever there exists €y > 0 such that for
every 0 < € < g there exists a positive sequence (K, (€))nen so that lim 2 log K, () =
0 such that for pg-a.e. © € A there exists a subsequence ny(x) — oo (depending
on ) satisfying

_1 _ Ho(B(z,nk(2),€))
Knk(m)(g) < e—nk(I)P+¢nk(z) SKnk(m)(E) (23)

From [31, Theorem B]| we know that if 7, (¥, us) ¢ Js then Ly, ,, > 0 and, con-

sequently, the topological pressure of both sets X ; and X ; is strictly smaller than

Piop(f, ®). The bound Py (f,®) < Poop(f,®) — Ly, holds e.g. if § — Ly, 11
7
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is upper semicontinuous. In the additive setting this question is overcomed by
means of the functional analytic approach used to define the Legendre transform
of the free energy function. Despite that one misses the functional analytic ap-
proach our approximation method is still sufficient to obtain finer estimates in the
uniformly hyperbolic setting.

Corollary B. Let M be a Riemannian manifold, f : M — M be a C'-map and
A C M be an isolated repeller such that f | is topologically mizing. Assume ® =0
and VU is almost additive sequence of potentials satisfying the bounded variation
condition, ¥ is not cohomologous to a constant and F. (U, ug) = 0, where pg is the
unique maximal entropy measure for f. Then for any interval J C R

b (f) < heop(f) — If,0,0(cx),

where ¢, belongs to the closure of J is so that Irow(c.) = ing It o,w(s). Moreover,
s€

if X7 # 0 then c, is a point in the boundary of J and
hx,(f) = hx,(f) = hx(c)(f) = hx () (f) = beop(f) = If,0,0(cx),

In particular RS‘ Sc— hyu v (f) is continuous, strictly decreasing and concave
0,¥,c
in a neighborhood of zero.

Let us mention that the previous characterization of the topological entropy
of level sets was available in this setting due to Barreira and Doutor [4], while
we can expect analogous estimates to hold for the topological pressure provided a
generalization of the previous results to the context of the topological pressure.

3. FREE ENERGY AND LEGENDRE TRANSFORM

3.1. Non-additive topological pressure for invariant non-compact sets.
In this subsection we describe the notion of topological pressure for asymptotically
additive potentials and not necessarily compact invariant sets. Let M be a compact
metric space, f : M — M be a continuous map and & = {¢, },, be an asymptotically
additive sequence of continuous potentials. The dynamical ball of center x € M,
radius 6 > 0, and length n > 1 is defined by

B(z,n,8) :={y € M :d(f(y), f’(x)) <4, for every 0 < j < n}.
Let A C M be, fix e > 0. Define Z,, = M x {n} and Z = M x N. For every a € R
and N > 1, define

s —an+o¢,(z)
ma(f,®,A,e,N): uglf{(z):ege },

where the infimum is taken over every finite or enumerable families G C U,>nZ,
such that the collection of sets {B(x,n,¢) : (z,n) € G} cover A. Since the sequence
is monotone increasing in IV there exists the limit

mo(f, ®,A,e) ;= lim m,(f,®,A e, N)
N——+oco
and Pr(f, ®@,¢) := inf{a : mo(f, ®,A, &) = 0} = sup{a : mo(f, P, A, &) = +00}. By
Cao, Zhang e Zhao [33], the pressure of A is defined by the limit:

PA(fa(I)) :gi_l'}(l)PA(f,(b7€)~
8



If A = M we have that Py(f, ®) corresponds to the topological pressure of f with
respect the ® and is denoted by Piop(f, ®). If we take a continuous potential ¢
we have that Py (f,{dn}n), for ¢, = Z?;ol ¢ o fi, is equal the usual topological
pressure of A with respect the f and ¢. It follows of the definition of relative
pressure that if Ay C As € M we will have that Py, (f,®) < Pa,(f,®). In the
asymptotically additive context also we have the following variational principle:

Proposition 3.1. [16] Let M be compact metric space, f : M — M be continuous
map and ® = {p,} a asymptotically additive sequence of potentials. Then

Piop(f, ®) = sup{h,(f)+F.(®, 1) : p is a f-invariant probability, F.(®, u) # —oo},

where the supremum is taken over all f-invariant probabilities p and F.(P,p) =
limy, 4 oo %f Gndp.

3.2. Space of asymptotically additive sequences. Given a compact metric
space M let us define A := {¥ = {4, },, : ¥ is asymptotically additive }. The space
A is clearly a vector space with a sum and product by a scalar defined naturally
by {¢1,n}n + {'¢2,n}n = {¢1,n + wQ,n}n and A - {wl,n}n = {/\wl,n}n for every
{V1.n}n, {t2,n}n € A and X € R. On this vector space structure we shall consider
the seminorm: |[{tn }n|la := limsup,,_, %||1/)n| |oo- If necessary to consider a norm
we can consider the space A endowed with [[{t),}nlla,0 := sup,en 2 |[¢n|[oc Which
clearly satisfies |[{tn}nlla < [{¥n}nlla,0 for every {¢n}, € A. For that reason
we shall consider the continuity results with A endowed with the weaker topology
induced by the semi norm. The balls of the seminorm || - ||4 form a basis for a
topology on A that will not be metrizable because it is not Hausdorf. However A
with the aforementioned vector space structure and with this topology is a locally
convex topological vector space. We shall consider A with this topology and the
space of almost additive sequences of observables with the natural induced topology.

Proposition 3.2. Let M be a compact metric space and f : M — M be a contin-
uous map. Then the following functions are continuous:

i A3 @ Poy(f,®);
il. My(f) x A> (1, ¥) = Fu(T, ).

Proof. The first claim (i) is clear from the definition of topological pressure and
the one of || - |la. Hence we are left to prove (ii). Given ¥; = {¢1,}n € A
and 71 € M;(f) arbitrary we will prove that (u, ¥) — F. (¥, y) is continuous in
(¥1,m1). Let € > 0 be small and fixed.

Since ¥, € A there exists a continuous function g and ng € N such that
%le,n — Sng%”oo < g for all n > ng. Moreover, there exists § > 0 such that
if d(ni,m2) < 9 then | [gedm — [gednp| < §. Given Uy = {¢p,}, € A and
N2 € My (f) arbitrary in such a way that |[¥y — W[4 < § and d(n1,72) < ¢ then
there exists n; = n1(Va,72) > ng so that n%Hi/JLnl —V2.m; |0 < &, |n% [ b2, dna—
Fe(Wa,m2)| < & and also |- [¢1n,dm — Fu(¥1,m)| < & Thus, given Wy =
{¥2,n}n € A and 1o € My (f) such that |[¥; — s[4 < § and d(n1,72) < 6 we have
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that

FeWam) = F(Baim)| < 1FoWam) — [ ggdnal + | [ gsdm = Fo(@1,m)

1 1
< ‘*/Smggdm - */wl,nldm’
ny ny

1
+ ’nfl/%,mdnz—]i(%,nz)‘ +‘/ggdn2—/ggdm’
+’/g§d771 *]:*(‘1/1,771)‘
and so

€ 1 1
|Fe(W1,m) — Fu(Wa,m2)| < 3t ‘* /wl,mdﬂz - */%ﬁz,nldﬁz‘
ni ni

1 1
o [vn = (2, m)| | = [y i —Fo(¥1,m)

1
+‘/ggdn1—a/¢1,mdm‘

which is smaller than €. This proves the continuity of (u, ¥) — F. (P, p). O

Now we study some properties of the topological pressure in the case of repellers.

Proposition 3.3. Let M be a Riemannian manifold, f : M — M be a C'-map
and A C M be an isolated repeller such that f | is topologically mixing. Then:

i If ® € A then Pyop(f,®) = lime Piop(f,9:) for any (ge). admissible
family for ®.

il. If (pe)e s an admissible family for ® and pe is the unique equilibrium
state for f with respect the e then every accumulation point of u. is a
equilibrium state for f with respect the ®. In particular, if there is a unique
equilibrium state pg for f with respect to ® then pe = lime_,g pi-

Proof. Property (i) follows from the corresponding item of Proposition 3.2. Now,
since A is a repeller we have that u — h,(f) is upper semicontinuous and using the
continuity of (u, ®) — Fi(u, ®) we conclude that every accumulation point of .
is equilibrium state for f with respect to ®. Using the compactness of the space of
invariant probabilities, if there exists a unique equilibrium pg for f with respect to
® then the convergence e = lim._o . should hold. This finishes the proof of the
proposition. O

3.3. Free energy function and Legendre transforms. We are interested in the
regularity of the rate function in the large deviations principles obtained in [31].
Since there exists no direct functional analytic approach using Perron-Frobenius
operators, in order to inherit some properties from the classical thermodynamical
formalism we will use the approximation by admissible families of Hélder continuous
functions.

The next result allows us to define the Legendre transform of ¥ in terms of
the Legendre transform associated to any approximating admissible family. For
every almost additive sequence of potentials ® satisfying the bounded variation
condition we denote by pe the unique equilibrium state of f with respect to @ (for

10



the existence of ug see [2]). For @, ¥ € A consider the free energy function given
by 5w := Piop(f, ® +t¥) — Pop(f, @) for all £ € R. Observe that

Erew =lmErp .,

where {¢.}. and {g.}. are any admissible families for ® and ¥ respectively. In
fact, the pressure function is continuous in the set of all asymptotically additive
sequences and so this limit does not depend on the sequence of approximating
families and we may take Holder continuous representatives (admissible families).

Assume @, ¥ are almost additive sequences of potentials satisfying bounded vari-
ation condition so that ¥ is not cohomologous to a constant and let {g.}. be an
admissible family for ¥ not cohomologous to a constant and (¢¢). be an admissible
family for ®. Then it makes sense to define for every ¢ € (0,1)

It 9. (t) = sup (St =& 000 (5))
seR

as the Legendre transform of £f4_,.. Since each g. is not cohomologous to a
constant then the previous function is defined over the reals and the variational
property yields

Ifipeg:Efpurg. (1) =1Ef . g.(t) = Efipug. () (3.1)

for all e € (0,1) and t € R, and & ,_ 4. is strictly convex (see e.g. [7]). Recalling
that

gf,gas,gs = Ptop(fa e +tg:) — Ptop(fa ¢e) and g]/‘,gag,gs (t) = /ga dﬂwe-&-tgs

it follows from Propositions 3.2 and 3.3 that for every t € R

;i_{% 5},905,95 (t)= Eh_%/ge dpp+tg. = Fu (¥, poy,04w),

that lim. 0 &5, . (t) = Piop(f, @ +t¥) — Pyop(f, @), and that these convergences
are uniform in compact sets. Observe that the Legendre transform Iy, 4. is well
defined in the open interval J. = (inf; &, (¢),sup, &, . (¢)). Thus, we can
now define the Legendre transform

Itow(s) = gg% Ifp..9.(5)

for any s € Jo,w = (infteR Fi(V, hottw) , SUPer f*(\P,ﬂ¢+t\p)). Note that the
previous limiting function and interval does not depend of the chosen families {¢. }.
and {ge}e. A priori Jgp v could be a degenerate interval. However the next lemma
assures that the closure of this interval is exactly the spectrum of ¥ and, in partic-
ular, Jo v is a degenerate interval if and only if ¥ is cohomologous to a constant.

Lemma 3.4. Given ¥V, ® € A we have that
[inf -7:*(‘1’7M<I>+t\1i) ) Sup]:*(\ljy,u<1>+t\11)} = {-7:*(‘1’777) ine Ml(f)}
teR teR

and the interval is degenerate if only if ¥ is cohomologous to a constant.
Proof. Let (p:)e and (ge)e be any admissible sequences for ® and ¥ respectively.

We have that infier Fi (¥, potrw) = limeoinfrer &, (¢) (analogously for the
supremum) and so

m U (inf Er g ) Supg},%’ga(t)) = (tinﬂgf*(‘lhumm) , Supf*(‘l/,/iqwt\p))
c0€(0,1) e3¢0 teR € teER
1



and

inf /g dn, sup /g dn) = ( inf  F.(¥,n), sup .7-"*(\1',77)).
EOQJ)EQO (TleMl(f) ) neMu(f) ) neMi(f) neEMi(f)

Let us first prove the result in the additive setting, that is, assuming there are
g,¢ € C(M,R) such that ¢, = S, ¢ and ¥, = S,, ¢g. If this is the case, using the
weak® continuity of the equilibrium states with respect to the potential, the image
of the function T, : R — R given by t — [ gdugtty is an interval. In addition,
given n € M1(f) and ¢ > 0 we have by the variational principle

ha() + / (6+1tg) dny < hy, . (F) + / (64 t9) ditosey

and so, dividing by ¢ in both sides and making ¢ tend to infinity in the expression

1

1 1 1
;hn(f)+g/¢dﬂ+/g dn < ;hu¢+tg(f)+z/¢d,u¢+tg+/g dprgtig,

t—
bility . properly chosen as accumulation point of (p¢4tg):. This proves that

SUP, ey () J 9 dn = limsup, o [ g dpgyig. Proceeding analogously with —g
replacing g it follows that inf, c v, (f) [ gdn=liminf, , o [ gdugsig and

[ggﬂg/g dpgttg » igﬂg/g d.“(b-&-tg} = {/g dn:neMl(f)}- (3.2)

Now, to deal with the general non-additive setting, replacing g by g. and also ¢
by . in equation (3.2), and taking the limit as € tends to zero it follows that

[ inf P (W, psew)  Sup F( W, pasen)| = {Fu(Wm) im € Mi(D)].
teR teR

we get that /gdn < limsup/g Aptptrig = /g dus for an f-invariant proba-
+oo

as claimed. This finishes the first part of the proof of the lemma.
Finally, by [33, Lemma 2.2] we get inficp Fi (¥, pottw) = supyep F« (¥, fotiw)
if and only if £= converges uniformly to a constant, that is, ¥ is cohomologous to

n
a constant. This finishes the proof of the lemma. (I

Remark 3.5. Tt is not hard to check also that there exists a constant C' > 0 (de-
pending only on f) so that w = Fu(¥, potrw) £ % and, consequently, the
previous interval is characterized as the interval of limiting slopes for the pressure

function ¢t — P(f, ® 4 tV).

3.4. Proof of Theorem A. Let &, ¥ be almost additive sequences of Holder con-
tinuous potentials satisfying the bounded variation condition so that ¥ be is not
cohomologous to a constant. In particular ¢ — Fu(¥, uersw) is not a constant
function. Moreover, the Legendre transform of the free energy function Iy ¢ v (de-
fined in the previous section) is well defined in an open neighborhood of the mean
Fi (\IJ7 N¢)'

Let (¢c)e and (g:). be any admissible families for ® and ¥, respectivelly. It
follows from equation (2.2) that Ir . 4. (&}, , (1) = t& ., (1) = Efp.q. (1) for
every t € R and so, making £ converging to zero, we obtain that

Irow(Eowt) =t ¢ o(t) — Eraw(t),
12



which proves (i). Now, since If,_,. is a non-negative convex function for all
e € (0,1) and is pointwise convergent to Iy ¢ ¢ this is also a non-negative convex
function. Clearly, given any interval (a,b) C R not containing F.(V, ue) then we
know that
selngb) Ifpeg.(s) =min{ly g (a),I1e. 4. ()},

so the same property will be valid for the limit function Iy ¢ ¢, which proves (ii).

Concerning property (iv), since I ¢ v is convex, if it was not strictly convex in
a neighborhood of F, (¥, ug) then it would be constant to zero in a open interval
containing F (e, ¥). We may assume property (iii) for the moment (property (iv)
will not be used in the proof of property (iii) later). Since If ¢ v (s) = 0 if and only
if s = Fu(V, pa) if Ir.o v was not locally convex this would contradict uniqueness
of the equilibrium state pg.

We are now left to prove (iii), that is, to establish the variational formula

Ipow(s)= it {Piop(f, ®) = hy(f) = Fe(®,m) : Fu(¥,m) = s}

for the rate function. The equality is clearly satisfied when s = F, (¥, ug) by
uniqueness of the equilibrium state and the Proposition 3.3. Hence we are reduced
to the case where s # F, (¥, ugp). From the additive case we already know that for
all s € (infteR Fo(¥, po1+w) , SUDier .F*(\I/,u<1,+tq,))

Ifp.g.(s)= inf {PtOP frpe) = /wsdn /gedn—s}

neMu(f)
and for every small e. We will use an auxiliary lemma.

Lemma 3.6. For every s in the interior of J := {F.(¥,n) : n € M1(f)} it holds:

lim sup {hy(F)+ [ pedns [gudn=s} = s {ho(H)+F. (@) F (V) =)
e neMi(f) neMu(f)

Proof. We will use the continuity of F,(®,u) in both coordinates. Let s € J be
fixed and let n € My (f) with s = F.(¥,n). Consider an admissible family (ge)e
for ¥ not cohomologous a to constant. We may assume without loss of generality
that [ g.dn = s for € small (otherwise just use the admissible family (g.). given by
Ge := g= + s — [ g dn which is also not cohomologous to a constant). In particular,

{neMy(f): /ggdn—sforallesmall}

is a closed, non-empty set in M;(f), hence compact. In particular, using the
compactness and upper semi-continuity of the metric entropy function there exists
ne € Mi(f) such that [ g.dn. = s and

b (f) +/<P6d775 = sup {h /%dn /gedn = s}.

neMi(f

Take 77 € M1 (f) be an accumulation point of (7.). and assume for simplicity that
Ne — 1N as € tends to zero. Then Proposition 3.2 yields that limg_mfgosdng =
13



Fo(®,7) and lim. ¢ [ g.dn. = F.(¥,7) = s. Using once more the upper semicon-
tinuity of the metric entropy function

lim sup {h,(f /gogdn /gsdn— st = hm {h /cpgdna}

=0 neMi(f)
< hi(f) + Fu(@,7)
< sup A{hy(f) + Fu(@,m) : Fu(¥,n) = s}.
neMi(f)

To prove the other inequality, let 7 € M;(f) be that attains the supremum in
the right hand side above, that is, so that s = F, (¥, 7) and

sup  {hy(f) + Ful(@,m) : Fu(¥,n) = s} = hy(f) + Fu(®,7)
neEMi(f)

Let 6 > 0 be fixed and arbitrary. By Proposition 3.2 there exists €5 > 0 such that
fgsdﬁ € (s—0,s+06) for all 0 < € < €5. In particular, using the characterization
of rate function Iy ,_,. (-) given by [32]

hﬁ(f)‘f'/sﬁadﬁﬁ sup {h,(f /npgdn /ggdne (s —0,5+9)}

neM1(f)

t€(s£%,s+6) Foperge () + Prop(f, 02)

for every 0 < € < g5. Taking the limit as ¢ — 0 in both sides of the inequality and
using the convexity of the Legendre transform

sup  {hy(F) + Ful®,1)  Fu(W, ) = 5} = lim (s () + / ool
neMu(f) =0
< limy (Pop(frpe) = I0f o Trese (8)
= Piop(f, @) —min{Ily e w(c—9),Irow(c+9)}

Since the rate function is continuous, taking ¢ tend to zero it follows

sup {hy(f) + Fu(@,n) : Fu(¥,1) = s} < —I10,0(¢) + Pop(f, D)

neMi(f)
= gg%{ Ifsas,gs( )+Pt0p fa@s
=lim sup {h,(f /@sdﬂ /gedn— s}.
0 neru(s)

This finishes the proof of the lemma.

Now, item (iii) is just a consequence of the previous lemma together with the
fact that I¢ e w(s) :=lim. 0 If 4. 4. (s). This finishes the proof of Theorem A.

4. MULTIFRACTAL ANALYSIS OF IRREGULAR SETS

This section is devoted to the proof of our multifractal analysis results.
14



4.1. Proof of Theorem B. Let M be a compact metric space, f : M — M be
a continuous map, & = {¢,} be an almost additive sequence of potentials with
Pop(f,®) > —oo. By assumption, the unique equilibrium state pe of f with
respect the @ is a weak Gibbs measure. Given J C Rand n > 1 set X;,, = {z €
M : Lo, (z) € J}.

Lemma 4.1. Assume that ¥ = {¢,,} is a sequence of observables that satisfies at
least one of the following properties:
(a) U is asymptotically additive or;
(b) ¥ is a subadditive sequence such that
i. satisfies the weak Bowen condition;
ii. inf,,>q d’”T(m > —oo for every x € M; and
iii. the sequence {%} is equicontinuous.

Then U satisfies the tempered variation condition lim_o lim, 4o w =0.In
particular, given J C R be a closed set and § > 0 there exists s > 0 such that if
0 < e < &5 then there exists N = Ns. € N so that B(z,n,c) C Xy, for alln > N
and every x € X .

Proof. Tt is immediate that the tempered variation condition is satisfied for se-
quences of observables satisfying the weak Bowen condition. Moreover, it holds for
asymptotically additive sequences as proved in [33, Lemma 2.1].

Let us prove now the second part of the lemma. Let § > 0 be given. By
tempered variation condition there is 5 > 0 such that lim, . 1, (%, &) < dn for
all 0 < € < g5. So, given 0 < € < &5 there exists a large N = Ns. € N such
that if n > N we have 7, (¢,e) < dn. So,if 0 < e < &5, n > N and x € X,
y € B(z,n,¢e) then

Yn(x)  m(,e) < Un(y) < Yn(x) + M (¥,¢)

n n n n n
and, consequently,
Uul@) s Ualy) _ ul@) |
n n n
meaning that y € Xy, ,,. This finishes the proof of the lemma. ([

We can now proceed with the proof of Theorem B. Assuming that X ; # (), we
shall prove that Pg (f,®) < Poop(fs ®) — Ly po- If Lys e = 0 there is nothing to
prove so we assume without loss of generality that L j; ,, > 0. For our purpose it is
enough to prove that for every o > Piop(f, ®)— L, 1g, given € > 0 and N € N there
exists Gy C |J,,> v Zn satisfying the covering property U B(x,n,¢) D X and

(z,n)EGN
also Z e—onton(@) < a(e) < oo. Let a > Piop(f, @) — Lysu, and 0 < € < &5

(z,n)EGN
fixed, we take ¢ > 0 small so that a > Piop(f,®) — Ly ue + (. There exists

No > N, such that K,(s) < ei”, K,() < ei” and
1

pa (o € M: (@) € Jp}) < e Fosman
n

for all n > Np. There is no loss of generality in supposing that N > Np. Given
N > Ny and z € X ; take m(xz) > N so that = € X5 .m(z) and consider Gy :=
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{(z,m(z)) : 2 € Xs}. Now, let Gy C Gy be a maximal (/,e)-separated set. In
particular if (z,£) and (y, £) belong the G then B(z,/, 5) N B(x,£,5) = (). Hence,
for 0 < € < g4 given by Lemma 4.1, using the Gibbs property of ;1.4 we deduce that
Z efo‘m(z)“’"ﬁm(z) (z) — Z e(Pfoz)m(m)efpm(:L‘)+¢m(m)(x)
(z,m(z))€GN (z,m(z))€GN
< > PR, G () pa (B, m(x),€))

(z,m(z))€GN

Now, we write Gy = U421§’;LN with the level sets QAZ’N = {(z,0) € QN} By
Lemma 4.1 each dynamical ball B(x,¢,¢) is contained in Xy, . Thereby, using
that M@(B(m? m(iU), E)) < Km(x) (E)Km(z) (5/2>/~L‘1>(B(‘T7 m(m), 8/2) then

Z e om(@)+om) (@) < Z Km(z)(s)e(P_a)(m(I))ucp(B(m, m(z),e))

(z,m(z))eCN (z,m(z))EGN
= Z Ky(e)elP=)* Z po(B(x,L,€))
2N zEQN,z
€ -
<> KZ(E)KZ(E)e(P N pe(B(x,4,2/2))
2N $E§N,e
€ —«
<> Ke(ﬁ)Ke(g)e(P Y (X g5,0)
(>N
< Z e(P=a—=Lis ug+0)E
(>N

that is finite and independent of the choose of N. This proves that for any closed
interval J C R and any small § > 0 it holds Px (f,®) < Pg (f,®) < Piop(f, @) —
Ly, no < P(f,®) and proves the theorem.

Remark 4.2. Let us mention that the argument of Theorem B proving that for any
closed interval J C R and any small § > 0,

P&J(f’(b)SPtOp(f7®)7LJ57,U‘CI> SP(f,@) (4'1)

carries under the weaker Gibbs condition (2.3). Taking into account the difficulty
that the moments where the Gibbs property occurs may depend on the point jus-
tifies the fact that the estimate (4.1) holds for set X ;. Since the proof of this fact
is similar to the the one of Theorem B we give only a sketch of proof with main
ingredients. In fact, by (2.3) there is g9 > 0 such that: for all 0 < € < ¢ there
exists K, (¢) > 0 such that for ug-a.e. point x there exists a sequence ng(x) — oo
with

-1 H@(B(x7nk($)’5))
K@) (&) < @ pr8n, et = K (€):

Using X ; C Ups1 Njse X, where X, = {2z € M : LSu(z) € J} it is not diffi-

culty check that for all z € X ; there is a sequence of positive numbers (m;(z));en

converging to infinity such that » € X ., (») and m;(x) is a moment where the
2

Gibbs property holds. Consider 6, > 0 arbitrary small, & > Piop(f, ®)—L 5,10 +C,
€ > 0 small and N € N large. Take m(x) > N so that x € X, (), the constants
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satisfy K, (z)(c) <e

Jirs ({$ eM: 1/)m($)(x) S J5}> < e*(Lu,uq)*%)m(I).

1
m(x)
Setting Gy := {(xz,m(x)) : * € X ;} we prove the result just follow with the

same estimates used in the proof of Theorem B and obtain that P&,( £,®) <
Piop(f, ®) — Ly, e as claimed.

4.2. Proof of Corollary B. By [2] and [21], since ® = 0 clearly satisfies the
bounded variation condition ug is a Gibbs measure. So Theorem B implies that
b, (f) < htop(f) = Lus, e, for all 6 > 0 sufficiently small. By the large deviations
estimates from [31] and Theorem A we have that

h, (f) < hiop(f) — inf Iy0w(s)
s€Js
for all 6 > 0 small. The Legendre transform of ¥ is continuous. Hence

bz, (f) < hiop(f) — 811615 It o.w(s)

For the lower bound we proceed as follows, with an estimate similar to [8, Theorem
B]. It follows from Barreira and Doutor [4] that if X(a) # 0 then hx()(f) =
SUP, ety ()L (f) © Fu(®,n) = a}. Thus, if X; # 0 and Fu(¥, o) ¢ J then
Theorem A (item ii.) yields that the infimum of ;1615 If0.w(s) is realized in a border

point ¢, of J. Thus:
hiop(f, @) = Ifo0w(cs) = hx(e(f) < hxn(f,)
h

th(j)(f) h J(f)
< hx,(f) < hiop(f) = Ly0,w(cs)-

<
< op
In particular, we prove we prove that for J. = R\ (F.(¥, uo) — ¢, Fi (¥, po) +¢) we
get X5, = X ,v,c and so

hyuo)w,n(f) = hyop(f) — min{Zs 0w (Fu(¥, o) +¢) , I50,0 (F(¥, o) — )}

whenever the set Yﬂqu,yc is not empty. So by Theorem A we deduce that the

function Rg Sc— hy” v (f) is strictly decreasing and concave in a neighborhood
0:¥,c

of zero.

5. EXAMPLES AND APPLICATIONS

In this section we provide some applications of the theory concerning the study
of some classes of non additive sequences of potentials related to either Lyapunov
exponents or entropy.

5.1. Linear cocycles. Here we consider cocycles over subshifts of finite type as
considered by Feng, Lau and Kédenmaéki [15, 17]. Let 0 : ¥ — X be the shift map on
the space & = {1,..., ¢} endowed with the distance d(z,y) = 27" where z = (z;);,
y = (y;); and n = min{j > 0 : z; # y;}. Consider matrices M,..., M, €
Mxq(C) such that for every n > 1 there exists i1,...,i, € {1,...,£} so that the
product matrix M;, ... M; # 0. Then, the topological pressure function is well
defined as P(q) = lim, o  log Y ies, IML]|9 where X, = {1,...,£}" and for any
t=(i1,...,in) € X, one considers the matrix M, = M; ... M,;, M; . Moreover, for
17



any o-invariant probability measure p define also the maximal Lyapunov exponent
of u by

and it holds that P(q) = sup{h,(o) + ¢ M,(u) : p € My }. Notice that this is the
variational principle for the potentials ® = {¢,} where p,(z) = qlog||M,, ()| and
for any z € ¥ we set 1,(z) € X, as the only symbol such that z belongs to the
cylinder [t,(z)]. From [17, Proposition 1.2], if the set of matrices {Mj,..., My}
is irreducible over C%, (i.e. there is no non-trivial subspace V C C¢ such that
M;(V) C V for all i = 1,...,£) there exists a unique equilibrium state pq for o
with respect to ® and it is a Gibbs measure: there exists C' > 0 such that

U ()
< Halnl) o
¢ = enra, a =€

for all ¢, € ¥,, and n > 1. Since the potentials ¢,, = log | M, ()|l are constant
in m-cylinders the family of potentials ® clearly satisfies the bounded distortion
condition. It follows as a consequence of the large deviations bound in [31] and
Theorem B that taking ¥ = ® with ¢ = 1 and ¢ > 0, the set

— 1
X.={x €X:limsup - log [|M,, (|| — M. (pa)| > c}
n—oo

of points whose exponential growth of M, (. is c-far away from the maximal Lya-
punov exponent M, (ue) for infinitely many values of n has topological pressure
strictly smaller than Piop(f, ®). Moreover, with respect to the maximal entropy
measure jo Corollary B yields that the topological pressure function ¢ — hx (f)
is strictly decreasing and concave for small positive c. ‘

5.2. Non-conformal repellers. The following class of local diffeomorphisms was
introduced by Barreira and Gelfert [3] in the study of multifractal analysis for
Lyapunov exponents associated to non-conformal repellers. Let f : R?> = R2? be a
C! local diffeomorphism, and let J C R? be a compact f-invariant set. Following
[3], we say that f satisfies the following cone condition on J if there exist a number
b < 1 and for each = € J there is a one-dimensional subspace E(x) C T,R? varying
continuous with x such that D f(z)Cy(z) C {0}Uint Cy(fz) where Cp(z) = {(u,v) €
E(@)@ E(x)* : ||v|| < bl|ul|}. Tt follows from [3, Proposition 4] that the later
condition implies that both families of potentials given by ¥; = {logo1(Df"(z))}
and Uy = {logoa(Df"(x))} are almost additive, where o1(L) > o02(L) stands for
the singular values of the linear transformation L : R? — R2, i.e., the eigenvalues of
(L*L)l/2 with L* denoting the transpose of L. Assume that J is a locally maximal
topological mixing repeller of f such that:

(i) f satisfies the cone condition on J, and
(ii) f has bounded distortion on J, i.e., there exists some § > 0 such that

1
sup ﬁlogsup{||Df”(y)(Df"(z))_1H rzrxeJandy,z€ B(m,n,é)} < 0.
n>1

Then it follows from [2, Theorem 9] yields that there exists a unique equilibrium

state p; for (f, ®;) which is a weak Gibbs measure with respect to the family of

potentials ®;, for i = 1,2. Moreover, from [31, Example 4.6], for any ¢ > 0 the tail
18



of the convergence to the largest or smallest Lyapunov exponent (corresponding
respectively to j =1 or j = 2)
> c})

i ({x eM: ‘:L logo;(Df"(x)) — nl;rr;o % /logaj(Df"(x))dui
decays exponentially fast as n — oco. Moreover, it follows from Corollary A that
this exponential decay rate varies continuously with c.

One other consequence is that, although the irregular sets associated to ¥; =
{logo;j(Df™(x))} have full topological pressure (using [33] and the fact that f
has the specification property) the set of irregular points whose time-n Lyapunov

exponents remain c-far away from the corresponding mean have topological pressure
strictly smaller than the topological pressure of the system.

5.3. Entropy and Gibbs measures. Let o : ¥ — X be the shift map on the
space ¥ = {1,..., £} endowed with the distance d(z,y) = 27" where x = (x;);,
y = (y;); and n = min{j > 0 : z; # y;}. Set ¥, = {1,...,£}" and for any
t=(i1,...,4,) € Xy, consider the n-cylinders [t] = {x € ¥ :2; =14, V1 < j < n}.

Let ® = {p,} be an almost additive sequence of potentials with the bounded
distortion property and uge be the unique equilibrium state for f with respect to ®
given by [2]. Fix C' > 0 so that for every x € &

on(2) + om(f" (7)) = C < Pmn(2) < 0n(2) + @m(f"(2)) + C.
Since pg is Gibbs there exists P € R and K > 0 so that
1 (@) _

K - e*P’an»Lpn(I) -

for every n > 1 and every x € ¥. In consequence, if ¥, (z) = log pa ([tn(2)]) then

XP Yrntn () = f[bmpn (2)]) < K e~ PO+ omen(@)
< K € = Prten(@) o= Pmtom(f" ()

< K3 e expin(x) expom(f™(z))

for every n > 1 and # € ¥. Thus, ¥min(z) < ¥n(z) + ¥m(f*(z)) + C with
C = C +3log K. Since the lower bound is completely analogous we deduce that
U = {4, } is almost additive and satisfies the bounded distortion condition since v,
is constant on n-cylinders. In particular these satisfy the hypothesis of Theorem B
in [31] to deduce exponential large deviations. In fact it is a simple computation
to prove that if ug is a weak Gibbs measure then the corresponding sequence of
functions ¥ as above are asymptotically additive, but we shall not prove or use this
fact here. By [33] the irregular set has full topological pressure. Since this set is
contained in the set of points for which

tisup | = 108 i (1 ()]) = Iy ()] > 0

this has also full topological pressure. From our Theorem B, for any ¢ > 0 the set
of points so that

i sup | = - 1og s (on () — s ()] > €

has topological pressure strictly smaller than Piop(f, ®).
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