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Abstract. In this paper we introduce a notion of free energy and large de-

viations rate function for asymptotically additive sequences of potentials via
an approximation method by families of continuous potentials. We provide

estimates for the topological pressure of the set of points whose non-additive

sequences are far from the limit described through Kingman’s sub-additive
ergodic theorem and give some applications in the context of Lyapunov ex-

ponents for diffeomorphisms and cocycles, and Shannon-McMillan-Breiman

theorem for Gibbs measures.

1. Introduction

The study of the thermodynamical formalism for maps with some hyperbolicity
has drawn the attention of many researchers in the last decades. A particular topic
of interest in ergodic theory is to obtain limit theorems, the characterization of level
sets, the velocity of convergence and the set of points that do not converge often
called the irregular set. The study of the topological pressure or dimension of the
level and the irregular sets can be traced back to Besicovitch and this topic had
contributions by many authors in the recent years (see e.g. [6, 14, 3, 12, 16, 18,
23, 24, 27, 26, 25, 29, 19, 1, 20, 13, 10, 8] and the references therein). For additive
sequences, level sets carry all ergodic information. In fact, by Birkhoff’s ergodic
theorem all ergodic measures give full weight to some level set. On the other hand,
the irregular set may have full Hausdorff dimension or full topological pressure
meaning that it is by no means neglectable from the topological or geometrical
point of view (see e.g. [29]). In particular the irregular set associated to Birkhoff
sums for maps with some hyperbolicity has a rich multifractal structure (see e.g.[8]).

One of our purposes here is to provide a multifractal analysis of the irregular
set in the non-additive setting that we now describe. Fix M a compact metric
space and f : M → M a continuous dynamical system. A sequence Φ = {ϕn} ⊂
C(M,R)N is a sub-additive sequence of potentials if ϕm+n ≤ ϕm + ϕn ◦ fm for
every m,n ≥ 1. We say that the sequence Φ = {ϕn} ⊂ C(M,R)N is an almost
additive sequence of potentials, if there exists a uniform constant C > 0 such that
ϕm +ϕn ◦ fm−C ≤ ϕm+n ≤ ϕm +ϕn ◦ fm +C for every m,n ≥ 1. Finally, we say
that Φ = {ϕn} ⊂ C(M,R)N is an asymptotically additive sequence of potentials, if
for any ξ > 0 there exists a continuous function ϕξ such that

lim sup
n→∞

1

n
‖ϕn − Snϕξ‖∞ < ξ (1.1)
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where Snϕξ =
∑n−1
j=0 ϕξ ◦ f j denotes the usual Birkhoff sum, and || · ||∞ is the

sup norm on the Banach space C(M,R). It follows from the definition that if
if Φ = {ϕn} is almost additive then there exists C > 0 such that the sequence
ΦC = {ϕn +C} is sub-additive. Morever, if Φ = {ϕn} is almost additive then it is
asymptotically additive (see e.g. [33]). By Kingman’s subadditive ergodic theorem
it follows that for every sub-additive sequence Φ = {ϕn} and every f -invariant
ergodic probability measure µ so that ϕ1 ∈ L1(µ) it holds

lim
n→∞

1

n
ϕn(x) = inf

n≥1

1

n

∫
ϕn dµ =: F∗(Φ, µ), for µ-a.e. x. (1.2)

The study of the multifractal spectrum associated to non-additive sequences of
potentials arises naturally in the study of Lyapunov exponents for non-conformal
dynamical systems. Feng and Huang [16] used the study of subdiferentials of pres-
sure functions to characterize the topological pressure of the level sets{

x ∈M : lim
n→∞

1

n
ψn(x) = α

}
for asymptotically sub-additive and asymptotically additive families Ψ = {ψn}n.
Zhao, Zhang and Cao [33] proved that if f satisfies the specification property then
either the irregular set the X({ψn}) (which consists of the points x ∈M such that
the limit of 1

nψn(x) does not exists) is empty or carries full topological pressure
for f with respect to any asymptotically additive sequence continuous potentials
Ψ. Taking into account this result we will be most interested in the analysis of the
sets

Xµ,Ψ,c :=
{
x ∈M : lim sup

n→∞

∣∣∣ 1
n
ψn(x)−F∗(µ,Ψ)

∣∣∣ ≥ c}
and

Xµ,Ψ,c :=
{
x ∈M : lim inf

n→∞

∣∣∣ 1
n
ψn(x)−F∗(µ,Ψ)

∣∣∣ ≥ c},
where Ψ = {ψn} is an asymptotically additive or sub-additve sequence of observ-
ables, c > 0 and µ is an equilibrium state. More precisely, what are the prop-
erties and regularity of the topological pressure functions c 7→ PXµ,Ψ,c(f,Φ) and

c 7→ PXµ,Ψ,c(f,Φ)? Such characterization and interesting applications for sequences

Ψ = {ψn} where ψn = Snψ are Birkhoff sums were obtained in [8].
One of our purposes here is to characterize the sets Xµ,Ψ,c and Xµ,Ψ,c thus ex-

tending the results from [8] for almost additive sequences of potentials, in which
case a thermodynamical formalism is available (see e.g [2, 21, 4, 5]). One moti-
vation is the study of Lyapunov exponents since beyond the one-dimensional and
conformal setting the situation is much less understood. The underlying strategy
is to use that almost additive sequence Ψ are asymptotically additive and that
the sequences ψn

n are uniformly approximated by Birkhoff means of sequences of
potentials can be chosen to have further regularity (c.f. Proposition 2.2). In the
case of uniformly expanding dynamics we choose the approximating potentials to
be Hölder continuous. Taking this into account we introduce a free energy function
Ef,Φ,Ψ(·) and a rate function If,Φ,Ψ(·) obtained as limit of Legendre transforms that
does not depend on the family of approximations chosen and it is strictly convex
in a neighborhood of F∗(Ψ, µΦ) if and only if Ψ is not cohomologous to a constant.
This characterization using the Legendre transform and the variational formulation
for the large deviations rate function is enough to obtain a functional analytic ex-
pression for the large deviations rate function obtained in [31], opening the way to
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study its continuous and differentiable dependence. In the case of repellers, when
the irregular set X({ψn}) is nonempty then it carries full topological pressure. We
prove that PXµ,Ψ,c(f,Φ) ≤ PXµ,Ψ,c(f,Φ) < Ptop(f,Φ) for any positive c > 0 mean-

ing that the set X({ψn}) ∩ Xµ,Ψ,c does not have full pressure. This means that
irregular points responsable for the topological pressure are those whose values are
arbitrarily close to the mean. In fact, in the case that Φ = 0 and µo denotes the
maximal entropy measure we give precise a characterization of the topological en-
tropy of these sets in terms of the large deviations rate function and deduce that
R+

0 3 c 7→ hXµ0,Ψ,c
(f) = hXµ0,Ψ,c

(f) is continuous, strictly decreasing and concave

in a neighborhood of zero. (we refer to Section 2 for precise statements).
This paper is organized as follows. In Section 2 we introduce the necessary

definitions and notations and state our main results. Section 3.3 is devoted to the
definition of these generalized notions of free energy and legendre transforms and to
the proof of Theorem A. Section 4 is devoted to the proof of the multifractal analy-
sis of irregular sets. Finally in Section 5 we provide some examples and applications
of our results in the study of Lyapunov exponents for linear cocycles, non-conformal
repellers and sequences arising from Shannon-McMillan-Breiman theorem for en-
tropy.

2. Statement of the main results

This section is devoted to the statement of the main results. Our first results
concern the regularity of the pressure function and the Legendre transform of the
free energy function and its consequences to large deviations.

Topological pressure and equilibrium states. Given an asymptotically additive se-
quence of potentials Φ = {φn} and a arbitrary invariant set Z ⊂ M it can be
defined the topological pressure PZ(f,Φ) of Z with respect the f and Φ by means
of a Charateodory structure. Let us mention that in the case that Φ = {φn} with
φn = Snφ for some continuous potential φ then PZ(f,Φ) is exactly the usual notion
of relative topological pressure for f and φ on Z introduced by Pesin and Pitskel.
We refer the reader to [22] for a complete account on Charateodory structures.
Alternativelly, for asymptotically additive sequence of potentials the topological
pressure can be defined using the variational principle proved in [16]

Ptop(f,Φ) = sup{hµ(f) +F∗(µ,Φ) : µ is a f-invariant probability, F∗(Φ, µ) 6= −∞}

(see Subsection 3.1 for more details.) If an invariant probability measure µΦ attains
the supremum then we say that it is an equilibrium state for f with respect to Φ.
In this sense, equilibrium states are invariant measures that reflect the topological
complexity of the dynamical system. In many cases equilibrium states arise as
(weak) Gibbs measures. Given a sequence of functions Φ = {φn}, we say that a
probability µ is a weak Gibbs measure with respect the Φ on Λ ⊂M if there exists
ε0 > 0 such that for every 0 < ε < ε0 there exists a positive sequence (Kn(ε))n∈N
so that lim 1

n logKn(ε) = 0 such that for every n ≥ 1 and µ-a.e. x ∈ Λ

Kn(ε)−1 ≤ µ(B(x, n, ε))

e−nP+φn(x)
≤ Kn(ε).

If, in addition, Kn(ε) = K(ε) does not depend of n we will say that µ is a Gibbs
measure. Gibbs measures arise naturally in the context of hyperbolic dynamics:
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given a basic set Ω for a diffeomorphism f Axiom A (or Ω repeller to f) it is known
that every almost additive potential Φ satisfying

(bounded variation) ∃A, δ > 0 : sup
n∈N

γn(Φ, δ) ≤ A, (2.1)

where γn(Φ, δ) := sup{|φn(y)− φn(z)| : y, z ∈ B(x, n, δ)}, admits a unique equilib-
rium state µΦ is a Gibbs measure with respect to Φ on Ω (see [2] and [21] for the
proof). This concept in the additive context was introduced by Bowen [9] to prove
uniqueness of equilibrium states for expansive maps with the specification prop-
erty. We will define now a weaker bounded variation condition: we will say that a
sequence of continuous functions Φ = {ϕn} satisfies the weak Bowen condition if

there exists δ > 0 so that limn→+∞
γn(Φ,δ)

n = 0.

Legendre transforms in the non-additive case. In this section we will assume that M
is a Riemannian manifold, f : M →M is a C1 map, and Λ ⊂M is a isolated repeller
such that f |Λ is topologically mixing. In fact the results for the thermodynamical
formalism that we shall use here apply to shifts of finite type and for that reason
hold more generally. Nevertheless we will restrict to the context of repellers for
simplicity. For any almost additive potential Φ satisfying the bounded variation
condition we know by [2] that there is a unique equilibrium state for f with respect
the Φ, and we denote it by µΦ. Later, Barreira proved also the differentiability of
the pressure function.

Proposition 2.1. [5, Theorem 6.3] Let f be a continuous map on a compact metric
space and assume that µ 7→ hµ(f) is upper semicontinuous. Assume that Φ and Ψ
are almost additive sequences satisfying the bounded variation condition and that
there exists a unique equilibrium state for the family Φ + tΨ for every t ∈ R. Then
the function R 3 t 7→ Ptop(f,Φ + tΨ) is C1 and d

dtP (f,Φ + tΨ) = F∗(Ψ, µΦ+tΨ).

For any almost additive sequences of potentials Φ and Ψ we define the free energy
function associated to Φ and Ψ by

Ef,Φ,Ψ(t) := Ptop(f,Φ + tΨ)− Ptop(f,Φ).

for t ∈ R such that the right hand side is well defined. It follows from the previous
proposition that if Φ and Ψ are almost additive sequences satisfying the bounded
variation condition then the free energy function t 7→ Ef,Φ,Ψ is C1.

Proposition 2.2. Let H be a dense subset of the continuous functions C(M,R)
in the usual sup-norm ‖ · ‖∞. If Ψ = {ψn} is an asymptotically additive sequence
of observables then there exists (0, 1) 3 ε 7→ gε ∈ H so that for any ε > 0

lim sup
n→+∞

1

n
||ψn − Sngε||∞ < ε.

Proof. Since Ψ = {ψn} is an asymptotically additive sequence of observables there
exists a family (g̃ε)ε of continuous functions such that for every small ε > 0 we have
that lim supn→+∞

1
n ||ψn − Sng̃ε||∞ < ε/2. Since H ⊂ C(M,R) is dense then there

exists a family (gε)ε of observables in H such that ‖gε − g̃ε‖∞ < ε/2 for all ε. The
later implies that the Birkhoff averages are ε/2 close, thus proving the lemma. �

Since the thermodynamical formalism for expanding maps is well adapted the
space of Hölder continuous potentials we will take H = Cα(M,R) for some α ∈
(0, 1). Given Ψ = {ψn}n almost additive it follows e.g. from [33, Proposition 2.1]
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that this sequence is asymptotically additive and thus we can assume the approx-
imations above are by Hölder continuous functions. We will refer to such families
of functions as an admissible family for Ψ and denote it by {gε}ε. In what follows
let α ∈ (0, 1) be fixed.

Definition 2.3. Let Ψ be an almost additive sequence of observables. We will say
that Ψ is cohomologous to a constant if there exists an admissible family {gε}ε for
Ψ such that gε is cohomologous to a constant for every small ε ∈ (0, 1), that is,
there exists a constant cε and a continuous function uε so that gε = uε ◦f−uε+cε.

A natural question is to understand which families are cohomologous to a con-
stant. Such characterization is assured by the next lemma.

Lemma 2.4. Ψ = {ψn}n is cohomologous to a constant if only if (ψnn )n is uniformly
convergent to a constant.

Proof. On the one hand, if Ψ is cohomologous to a constant then there exists an
admissible family {gε}ε for Ψ such that gε is cohomologous to a constant for every
small ε ∈ (0, 1), that is, there are constants cε ∈ R and continuous functions uε
such that gε = uε ◦ f − uε + cε and, consequently, Sngε = uε ◦ fn − uε + cεn for
every small ε. Using the convergence given by equation (1.1) it follows that for
every small ε

lim sup
n→∞

∥∥∥ψn
n
− cε

∥∥∥
∞

= lim sup
n→∞

1

n

∥∥∥ψn − Sngε + uε ◦ fn − uε
∥∥∥
∞
< ε,

which proves that c = limε→0 cε does exist and that (ψnn )n is uniformly convergent

to the constant c. On the other hand, if (ψnn )n is uniformly convergent to a constant
c then take gε constant to c and notice that since Sngε = cn then clearly

lim sup
n→∞

1

n

∥∥∥ψn − Sngε∥∥∥
∞

= 0.

This finishes the proof of the lemma. �

Remark 2.5. Let us notice that the notion of cohomology for families of observables
is slightly different from the corresponding one for a fixed observable. Indeed,
for instance by the previous lemma the family Ψ = {ψn}n with ψn =

√
nw is

cohomologous to the constant 0 although the observable w : M → R may be
chosen to be not cohomologous to a constant.

Observe that it follows from the definition that if Ψ is not cohomologous to
a constant then there is a admissible family {gε}ε for Ψ and a sequence (εk)k
converging to zero such that gεk is not cohomologous to a constant for every k ≥ 1.
If this is the case, the family ε 7→ g̃ε given by g̃ε = gεk for every εk ≤ ε < εk−1 is
so that g̃ε is not cohomologous to a constant for every small ε (notice that these
“step functions” could be chosen in many different ways). We will say that such
family {g̃ε}ε is not cohomologous to a constant. Then, for simplicity, given any Ψ is
not cohomologous to a constant we shall consider the approximations by admissible
sequences (gε)ε such that gε is not cohomologous to a constant for any small ε.

Assume Φ,Ψ are almost additive sequences of potentials with the bounded vari-
ation condition such that Ψ is not cohomologous to a constant and let (ϕε)ε and
{gε}ε be admissible families for Φ and Ψ respectivelly. Then the well defined free
energy function t 7→ Ef,ϕε,gε is strictly convex and so it makes sense to compute the
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Legendre transform If,ϕε,gε(t) for every small ε ∈ (0, 1) and t ∈ R. Since each gε is
not cohomologous to a constant it is a classical result that the following variational
property holds

If,ϕε,gε(E ′f,ϕε,gε(t)) = tE ′f,ϕε,gε(t)− Ef,ϕε,gε(t) (2.2)

for every small ε ∈ (0, 1) and t ∈ R (see e.g. [7]). Using this variational property
we prove in Section 3.3 that it is possible define the Legendre transform of the
corresponding free energy functions of Ψ as

If,Φ,Ψ(s) := lim
ε→0

If,ϕε,gε(s),

for every s ∈
(

inft∈R F∗(Ψ, µΦ+tΨ) , supt∈R F∗(Ψ, µΦ+tΨ)
)
, since this limit will not

depend of the choices of families {ϕε}ε e {gε}ε. We establish some properties of
this Legendre transform as follows.

Theorem A. Let M be a Riemannian manifold, f : M → M be a C1-map and
Λ ⊂ M be an isolated repeller such that f |Λ is topologically mixing. Let Φ and Ψ
be almost additive sequences satisfying the bounded variation condition and assume
that Ψ is not cohomologous to a constant. The following properties hold:

i. the Legendre transform of Ψ satisfies the variational property

If,Φ,Ψ(E ′f,Φ,Ψ(t)) = tE ′f,Φ,Ψ(t)− Ef,Φ,Ψ(t),

for every t ∈ R;
ii. If,Φ,Ψ(·) is a non-negative convex function and

inf
s∈(a,b)

If,Φ,Ψ(s) = min{If,Φ,Ψ(a), If,Φ,Ψ(b)}

for any interval (a, b) ⊂ R not containing F∗(Ψ, µΦ)
iii. If,Φ,Ψ(s) = infη∈M1(f){Ptop(f,Φ)− hη(f)−F∗(Φ, η) : F∗(Ψ, η) = s}
iv. If,Φ,Ψ(s) = 0 if only if s = F∗(Ψ, µΦ) and s 7→ If,Φ,Ψ(s) is strictly convex

in an open neighborhood of F∗(Ψ, µΦ).

Large deviations results. The variational relation obtained in Theorem A is of par-
ticular interest in the study of large deviations. In [31], the first author and Zhao
proved several large deviations results for sub-additive and asymptotically addi-
tive sequences of potentials. In the case of expanding maps and almost additive
sequences of potentials Theorem A leads to the following immediate consequence:

Corollary A. Let M be a Riemannian manifold, f : M → M be a C1-map and
Λ ⊂ M be an isolated repeller such that f |Λ is topologically mixing. Let Φ =
{ϕn} be an almost additive sequence of potentials satisfying the bounded variation
condition and µΦ be the unique equilibrium state for f |Λ with respect to Φ. If
Ψ = {ψn} is a family of almost additive potentials satisfying the bounded distortion
condition then it satisfies the following large deviations principle: given F ⊂ R
closed it holds that

lim sup
n→∞

1

n
logµΦ

({
x ∈M :

1

n
ψn(x) ∈ F

})
≤ − inf

s∈F
If,Φ,Ψ(s)

and also for every open set E ⊂ R

lim inf
n→∞

1

n
logµΦ

({
x ∈M :

1

n
ψn(x) ∈ E

})
≥ − inf

s∈E
If,Φ,Ψ(s).
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Remark 2.6. Although these quantitative estimates can be expected to hold for
more general asymptotically additive sequences, one should mention that an exten-
sion of limit theorems from almost-additive to asymptotically additive sequences of
potentials is not immediate by no means. In fact, a simple example of an asymptot-
ically additive sequence of potentials can be written as ψn = Snψ + an depending
on the sequence of real numbers (an)n. If ψ is Hölder continuous and an = o(

√
n)

then (ψn)n satisfies the central limit theorem. However, the CLT fails in a simple

way e.g. if an = n
1
2 +ε for any ε > 0.

Multifractal estimates for the irregular set. Given an asymptotically additive se-
quence of observables Ψ = {ψ}n and J ⊂ R we denote

XJ = {x ∈M : lim sup
n→+∞

1

n
ψn(x) ∈ J}

and

XJ = {x ∈M : lim inf
n→+∞

1

n
ψn(x) ∈ J}.

and set X(J) := {x ∈ Λ : limn→+∞
1
nψn(x) ∈ J}. For any δ > 0 we denote by Jδ

the δ−neighborhood of the set J and for a probability measure µ we define

LJ,µ := − lim sup
n→+∞

1

n
logµ

(
{x ∈M :

1

n
ψn(x) ∈ J}

)
.

We are now in a position to state our first main result concerning the multifractal
analysis of the irregular set.

Theorem B. Let M be a compact metric space, f : M → M be continuous,
Φ = {φn} be an almost additive sequence of potentials with Ptop(f,Φ) > −∞.
Assume that µΦ is the unique equilibrium state of f with respect the Φ, that it is
a weak Gibbs measure and that the sequence Ψ = {ψn} satisfies at least one of the
following properties:

(a) Ψ is asymptotically additive, or
(b) Ψ is a sub-additive sequence so that

i. satisfies the weak Bowen condition;

ii. infn≥1
ψn(x)
n > −∞ for every x ∈M ;

iii. the sequence {ψnn } is equicontinuous.

Then, for any closed interval J ⊂ R and any small δ > 0,

PXJ (f,Φ) ≤ PXJ (f,Φ) ≤ Ptop(f,Φ)− LJδ,µΦ
≤ P (f,Φ).

In Remark 4.2 we indicate few modifications which imply that the estimate
PXJ (f,Φ) ≤ Ptop(f,Φ) − LJδ,µΦ

holds under the assumption that µΦ satisfies a
pointwise weak Gibbs property, namely, whenever there exists ε0 > 0 such that for
every 0 < ε < ε0 there exists a positive sequence (Kn(ε))n∈N so that lim 1

n logKn(ε) =
0 such that for µΦ-a.e. x ∈ Λ there exists a subsequence nk(x) → ∞ (depending
on x) satisfying

Knk(x)(ε)
−1 ≤ µΦ(B(x, nk(x), ε))

e−nk(x)P+φnk(x)
≤ Knk(x)(ε). (2.3)

From [31, Theorem B] we know that if F∗(Ψ, µΦ) /∈ Jδ then LJδ,µΦ
> 0 and, con-

sequently, the topological pressure of both sets XJ and XJ is strictly smaller than
Ptop(f,Φ). The bound PXµΦ,Ψ,c

(f,Φ) ≤ Ptop(f,Φ)−LJ,µΦ
holds e.g. if δ 7→ LJδ,µΦ
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is upper semicontinuous. In the additive setting this question is overcomed by
means of the functional analytic approach used to define the Legendre transform
of the free energy function. Despite that one misses the functional analytic ap-
proach our approximation method is still sufficient to obtain finer estimates in the
uniformly hyperbolic setting.

Corollary B. Let M be a Riemannian manifold, f : M → M be a C1-map and
Λ ⊂M be an isolated repeller such that f |Λ is topologically mixing. Assume Φ = 0
and Ψ is almost additive sequence of potentials satisfying the bounded variation
condition, Ψ is not cohomologous to a constant and F∗(Ψ, µ0) = 0, where µ0 is the
unique maximal entropy measure for f . Then for any interval J ⊂ R

hXJ (f) ≤ htop(f)− If,0,Ψ(c∗),

where c∗ belongs to the closure of J is so that If,0,Ψ(c∗) = inf
s∈J

If,0,Ψ(s). Moreover,

if XJ 6= ∅ then c∗ is a point in the boundary of J and

hXJ (f) = hXJ (f) = hX(c∗)(f) = hX(J)(f) = htop(f)− If,0,Ψ(c∗),

In particular R+
0 3 c 7→ hXµ0,Ψ,c

(f) is continuous, strictly decreasing and concave

in a neighborhood of zero.

Let us mention that the previous characterization of the topological entropy
of level sets was available in this setting due to Barreira and Doutor [4], while
we can expect analogous estimates to hold for the topological pressure provided a
generalization of the previous results to the context of the topological pressure.

3. Free energy and Legendre transform

3.1. Non-additive topological pressure for invariant non-compact sets.
In this subsection we describe the notion of topological pressure for asymptotically
additive potentials and not necessarily compact invariant sets. Let M be a compact
metric space, f : M →M be a continuous map and Φ = {φn}n be an asymptotically
additive sequence of continuous potentials. The dynamical ball of center x ∈ M ,
radius δ > 0, and length n ≥ 1 is defined by

B(x, n, δ) := {y ∈M : d(f j(y), f j(x)) ≤ δ, for every 0 ≤ j ≤ n}.

Let Λ ⊂ M be, fix ε > 0. Define In = M × {n} and I = M × N. For every α ∈ R
and N ≥ 1, define

mα(f,Φ,Λ, ε,N) := inf
G

{ ∑
(x,n)∈G

e−αn+φn(x)
}
,

where the infimum is taken over every finite or enumerable families G ⊂ ∪n≥NIn
such that the collection of sets {B(x, n, ε) : (x, n) ∈ G} cover Λ. Since the sequence
is monotone increasing in N there exists the limit

mα(f,Φ,Λ, ε) := lim
N→+∞

mα(f,Φ,Λ, ε,N)

and PΛ(f,Φ, ε) := inf{α : mα(f,Φ,Λ, ε) = 0} = sup{α : mα(f,Φ,Λ, ε) = +∞}. By
Cao, Zhang e Zhao [33], the pressure of Λ is defined by the limit:

PΛ(f,Φ) = lim
ε→0

PΛ(f,Φ, ε).
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If Λ = M we have that PΛ(f,Φ) corresponds to the topological pressure of f with
respect the Φ and is denoted by Ptop(f,Φ). If we take a continuous potential φ

we have that PΛ(f, {φn}n), for φn =
∑n−1
i=0 φ ◦ f i, is equal the usual topological

pressure of Λ with respect the f and φ. It follows of the definition of relative
pressure that if Λ1 ⊂ Λ2 ⊂ M we will have that PΛ1

(f,Φ) ≤ PΛ2
(f,Φ). In the

asymptotically additive context also we have the following variational principle:

Proposition 3.1. [16] Let M be compact metric space, f : M →M be continuous
map and Φ = {φn} a asymptotically additive sequence of potentials. Then

Ptop(f,Φ) = sup{hµ(f)+F∗(Φ, µ) : µ is a f-invariant probability, F∗(Φ, µ) 6= −∞},

where the supremum is taken over all f -invariant probabilities µ and F∗(Φ, µ) =
limn→+∞

1
n

∫
φndµ.

3.2. Space of asymptotically additive sequences. Given a compact metric
space M let us define A := {Ψ = {ψn}n : Ψ is asymptotically additive }. The space
A is clearly a vector space with a sum and product by a scalar defined naturally
by {ψ1,n}n + {ψ2,n}n := {ψ1,n + ψ2,n}n and λ · {ψ1,n}n := {λψ1,n}n for every
{ψ1,n}n, {ψ2,n}n ∈ A and λ ∈ R. On this vector space structure we shall consider
the seminorm: ||{ψn}n||A := lim supn→∞

1
n ||ψn||∞. If necessary to consider a norm

we can consider the space A endowed with ‖{ψn}n‖A,0 := supn∈N
1
n ||ψn||∞ which

clearly satisfies ‖{ψn}n‖A ≤ ‖{ψn}n‖A,0 for every {ψn}n ∈ A. For that reason
we shall consider the continuity results with A endowed with the weaker topology
induced by the semi norm. The balls of the seminorm || · ||A form a basis for a
topology on A that will not be metrizable because it is not Hausdorf. However A
with the aforementioned vector space structure and with this topology is a locally
convex topological vector space. We shall consider A with this topology and the
space of almost additive sequences of observables with the natural induced topology.

Proposition 3.2. Let M be a compact metric space and f : M →M be a contin-
uous map. Then the following functions are continuous:

i. A 3 Φ 7→ Ptop(f,Φ);
ii. M1(f)× A 3 (µ,Ψ) 7→ F∗(Ψ, µ).

Proof. The first claim (i) is clear from the definition of topological pressure and
the one of || · ||A. Hence we are left to prove (ii). Given Ψ1 = {ψ1,n}n ∈ A
and η1 ∈ M1(f) arbitrary we will prove that (µ,Ψ) 7→ F∗(Ψ, µ) is continuous in
(Ψ1, η1). Let ε > 0 be small and fixed.

Since Ψ1 ∈ A there exists a continuous function g ε
6

and n0 ∈ N such that
1
n ||ψ1,n − Sng ε6 ||∞ < ε

6 for all n ≥ n0. Moreover, there exists δ > 0 such that

if d(η1, η2) < δ then |
∫
g ε

6
dη1 −

∫
g ε

6
dη2| < ε

6 . Given Ψ2 = {ψ2,n}n ∈ A and
η2 ∈ M1(f) arbitrary in such a way that ||Ψ1 − Ψ2||A < ε

6 and d(η1, η2) < δ then

there exists n1 = n1(Ψ2, η2) ≥ n0 so that 1
n1
||ψ1,n1

−ψ2,n1
||∞ < ε

6 , |
1
n1

∫
ψ2,n1

dη2−
F∗(Ψ2, η2)| < ε

6 and also | 1
n1

∫
ψ1,n1

dη1 − F∗(Ψ1, η1)| < ε
6 . Thus, given Ψ2 =

{ψ2,n}n ∈ A and η2 ∈M1(f) such that ||Ψ1−Ψ2||A < ε
6 and d(η1, η2) < δ we have
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that

|F∗(Ψ1, η1)−F∗(Ψ2, η2)| ≤ |F∗(Ψ2, η2)−
∫
g ε

6
dη2|+

∣∣∣ ∫ g ε
6
dη2 −F∗(Ψ1, η1)

∣∣∣
≤
∣∣∣ 1

n1

∫
Sn1g ε6 dη2 −

1

n1

∫
ψ1,n1dη2

∣∣∣
+
∣∣∣ 1

n1

∫
ψ1,n1

dη2 −F∗(Ψ2, η2)
∣∣∣+
∣∣∣ ∫ g ε

6
dη2 −

∫
g ε

6
dη1

∣∣∣
+
∣∣∣ ∫ g ε

6
dη1 −F∗(Ψ1, η1)

∣∣∣
and so

|F∗(Ψ1, η1)−F∗(Ψ2, η2)| ≤ ε

3
+
∣∣∣ 1

n1

∫
ψ1,n1

dη2 −
1

n1

∫
ψ2,n1

dη2

∣∣∣
+
∣∣∣ 1

n1

∫
ψ2,n1dη2−F∗(Ψ2, η2)

∣∣∣+
∣∣∣ 1

n1

∫
ψ1,n1dη1−F∗(Ψ1, η1)

∣∣∣
+
∣∣∣ ∫ g ε

6
dη1−

1

n1

∫
ψ1,n1

dη1

∣∣∣
which is smaller than ε. This proves the continuity of (µ,Ψ) 7→ F∗(Ψ, µ). �

Now we study some properties of the topological pressure in the case of repellers.

Proposition 3.3. Let M be a Riemannian manifold, f : M → M be a C1-map
and Λ ⊂M be an isolated repeller such that f |Λ is topologically mixing. Then:

i. If Φ ∈ A then Ptop(f,Φ) = limε→0 Ptop(f, gε) for any (gε)ε admissible
family for Φ.

ii. If (ϕε)ε is an admissible family for Φ and µε is the unique equilibrium
state for f with respect the ϕε then every accumulation point of µε is a
equilibrium state for f with respect the Φ. In particular, if there is a unique
equilibrium state µΦ for f with respect to Φ then µΦ = limε→0 µε.

Proof. Property (i) follows from the corresponding item of Proposition 3.2. Now,
since Λ is a repeller we have that µ→ hµ(f) is upper semicontinuous and using the
continuity of (µ,Φ) 7→ F∗(µ,Φ) we conclude that every accumulation point of µε
is equilibrium state for f with respect to Φ. Using the compactness of the space of
invariant probabilities, if there exists a unique equilibrium µΦ for f with respect to
Φ then the convergence µΦ = limε→0 µε should hold. This finishes the proof of the
proposition. �

3.3. Free energy function and Legendre transforms. We are interested in the
regularity of the rate function in the large deviations principles obtained in [31].
Since there exists no direct functional analytic approach using Perron-Frobenius
operators, in order to inherit some properties from the classical thermodynamical
formalism we will use the approximation by admissible families of Hölder continuous
functions.

The next result allows us to define the Legendre transform of Ψ in terms of
the Legendre transform associated to any approximating admissible family. For
every almost additive sequence of potentials Φ satisfying the bounded variation
condition we denote by µΦ the unique equilibrium state of f with respect to Φ (for

10



the existence of µΦ see [2]). For Φ,Ψ ∈ A consider the free energy function given
by Ef,Φ,Ψ := Ptop(f,Φ + tΨ)− Ptop(f,Φ) for all t ∈ R. Observe that

Ef,Φ,Ψ = lim
ε→0
Ef,ϕε,gε ,

where {ϕε}ε and {gε}ε are any admissible families for Φ and Ψ respectively. In
fact, the pressure function is continuous in the set of all asymptotically additive
sequences and so this limit does not depend on the sequence of approximating
families and we may take Hölder continuous representatives (admissible families).

Assume Φ,Ψ are almost additive sequences of potentials satisfying bounded vari-
ation condition so that Ψ is not cohomologous to a constant and let {gε}ε be an
admissible family for Ψ not cohomologous to a constant and (ϕε)ε be an admissible
family for Φ. Then it makes sense to define for every ε ∈ (0, 1)

If,ϕε,gε(t) = sup
s∈R

(
st− Ef,ϕε,gε(s)

)
as the Legendre transform of Ef,φε,gε . Since each gε is not cohomologous to a
constant then the previous function is defined over the reals and the variational
property yields

If,ϕε,gε(E ′f,ϕε,gε(t)) = tE ′f,ϕε,gε(t)− Ef,ϕε,gε(t) (3.1)

for all ε ∈ (0, 1) and t ∈ R, and Ef,ϕε,gε is strictly convex (see e.g. [7]). Recalling
that

Ef,ϕε,gε = Ptop(f, ϕε + tgε)− Ptop(f, ϕε) and E ′f,ϕε,gε(t) =

∫
gε dµϕε+tgε

it follows from Propositions 3.2 and 3.3 that for every t ∈ R

lim
ε→0
E ′f,ϕε,gε(t) = lim

ε→0

∫
gε dµϕε+tgε = F∗(Ψ, µf,Φ+tΨ),

that limε→0 Ef,ϕε,gε(t) = Ptop(f,Φ + tΨ)− Ptop(f,Φ), and that these convergences
are uniform in compact sets. Observe that the Legendre transform If,ϕε,gε is well
defined in the open interval Jε = (inft E ′f,ϕε,gε(t), supt E ′f,ϕε,gε(t)). Thus, we can
now define the Legendre transform

If,Φ,Ψ(s) := lim
ε→0

If,ϕε,gε(s)

for any s ∈ JΦ,Ψ :=
(

inft∈R F∗(Ψ, µΦ+tΨ) , supt∈R F∗(Ψ, µΦ+tΨ)
)
. Note that the

previous limiting function and interval does not depend of the chosen families {ϕε}ε
and {gε}ε. A priori JΦ,Ψ could be a degenerate interval. However the next lemma
assures that the closure of this interval is exactly the spectrum of Ψ and, in partic-
ular, JΦ,Ψ is a degenerate interval if and only if Ψ is cohomologous to a constant.

Lemma 3.4. Given Ψ,Φ ∈ A we have that[
inf
t∈R
F∗(Ψ, µΦ+tΨ) , sup

t∈R
F∗(Ψ, µΦ+tΨ)

]
= {F∗(Ψ, η) : η ∈M1(f)}

and the interval is degenerate if only if Ψ is cohomologous to a constant.

Proof. Let (ϕε)ε and (gε)ε be any admissible sequences for Φ and Ψ respectively.
We have that inft∈R F∗(Ψ, µΦ+tΨ) = limε→0 inft∈R E ′f,ϕε,gε(t) (analogously for the

supremum) and so⋂
ε0∈(0,1)

⋃
ε≥ε0

(
inf
t∈R
E ′f,ϕε,gε(t) , sup

t∈R
E ′f,ϕε,gε(t)

)
=
(

inf
t∈R
F∗(Ψ, µΦ+tΨ) , sup

t∈R
F∗(Ψ, µΦ+tΨ)

)
11



and⋂
ε0∈(0,1)

⋃
ε≥ε0

(
inf

η∈M1(f)

∫
gεdη , sup

η∈M1(f)

∫
gεdη

)
=
(

inf
η∈M1(f)

F∗(Ψ, η) , sup
η∈M1(f)

F∗(Ψ, η)
)
.

Let us first prove the result in the additive setting, that is, assuming there are
g, φ ∈ C(M,R) such that ϕn = Sn φ and ψn = Sn g. If this is the case, using the
weak* continuity of the equilibrium states with respect to the potential, the image
of the function Tg : R → R given by t 7→

∫
g dµφ+tg is an interval. In addition,

given η ∈M1(f) and t > 0 we have by the variational principle

hη(f) +

∫
(φ+ tg) dη ≤ hµφ+tg

(f) +

∫
(φ+ tg) dµφ+tg

and so, dividing by t in both sides and making t tend to infinity in the expression

1

t
hη(f) +

1

t

∫
φ dη +

∫
g dη ≤ 1

t
hµφ+tg

(f) +
1

t

∫
φ dµφ+tg +

∫
g dµφ+tg,

we get that

∫
gdη ≤ lim sup

t→+∞

∫
g dµφ+tg =

∫
g dµ∗ for an f -invariant proba-

bility µ∗ properly chosen as accumulation point of (µφ+tg)t. This proves that
supη∈M1(f)

∫
g dη = lim supt→+∞

∫
g dµφ+tg. Proceeding analogously with −g

replacing g it follows that infη∈M1(f)

∫
g dη = lim inft→−∞

∫
g dµφ+tg and[

inf
t∈R

∫
g dµφ+tg , sup

t∈R

∫
g dµφ+tg

]
=
{∫

g dη : η ∈M1(f)
}
. (3.2)

Now, to deal with the general non-additive setting, replacing g by gε and also φ
by ϕε in equation (3.2), and taking the limit as ε tends to zero it follows that[

inf
t∈R
F∗(Ψ, µΦ+tΨ) , sup

t∈R
F∗(Ψ, µΦ+tΨ)

]
=
{
F∗(Ψ, η) : η ∈M1(f)

}
.

as claimed. This finishes the first part of the proof of the lemma.
Finally, by [33, Lemma 2.2] we get inft∈R F∗(Ψ, µΦ+tΨ) = supt∈R F∗(Ψ, µΦ+tΨ)

if and only if ψn
n converges uniformly to a constant, that is, Ψ is cohomologous to

a constant. This finishes the proof of the lemma. �

Remark 3.5. It is not hard to check also that there exists a constant C > 0 (de-

pending only on f) so that P (f,Φ+tΨ)
t = F∗(Ψ, µΦ+tΨ) ± C

t and, consequently, the
previous interval is characterized as the interval of limiting slopes for the pressure
function t 7→ P (f,Φ + tΨ).

3.4. Proof of Theorem A. Let Φ,Ψ be almost additive sequences of Hölder con-
tinuous potentials satisfying the bounded variation condition so that Ψ be is not
cohomologous to a constant. In particular t 7→ F∗(Ψ, µΦ+tΨ) is not a constant
function. Moreover, the Legendre transform of the free energy function If,Φ,Ψ (de-
fined in the previous section) is well defined in an open neighborhood of the mean
F∗(Ψ, µΦ).

Let (ϕε)ε and (gε)ε be any admissible families for Φ and Ψ, respectivelly. It
follows from equation (2.2) that If,ϕε,gε(E ′f,ϕε,gε(t)) = tE ′f,ϕε,gε(t) − Ef,ϕε,gε(t) for
every t ∈ R and so, making ε converging to zero, we obtain that

If,Φ,Ψ(E ′f,Φ,Ψ(t)) = tE ′f,Φ,Ψ(t)− Ef,Φ,Ψ(t),
12



which proves (i). Now, since If,ϕε,gε is a non-negative convex function for all
ε ∈ (0, 1) and is pointwise convergent to If,Φ,Ψ this is also a non-negative convex
function. Clearly, given any interval (a, b) ⊂ R not containing F∗(Ψ, µΦ) then we
know that

inf
s∈(a,b)

If,ϕε,gε(s) = min{If,ϕε,gε(a), If,ϕε,gε(b)},

so the same property will be valid for the limit function If,Φ,Ψ, which proves (ii).
Concerning property (iv), since If,Φ,Ψ is convex, if it was not strictly convex in

a neighborhood of F∗(Ψ, µΦ) then it would be constant to zero in a open interval
containing F∗(µΦ,Ψ). We may assume property (iii) for the moment (property (iv)
will not be used in the proof of property (iii) later). Since If,Φ,Ψ(s) = 0 if and only
if s = F∗(Ψ, µΦ) if If,Φ,Ψ was not locally convex this would contradict uniqueness
of the equilibrium state µΦ.

We are now left to prove (iii), that is, to establish the variational formula

If,Φ,Ψ(s) = inf
η∈M1(f)

{Ptop(f,Φ)− hη(f)−F∗(Φ, η) : F∗(Ψ, η) = s}

for the rate function. The equality is clearly satisfied when s = F∗(Ψ, µΦ) by
uniqueness of the equilibrium state and the Proposition 3.3. Hence we are reduced
to the case where s 6= F∗(Ψ, µΦ). From the additive case we already know that for
all s ∈

(
inft∈R F∗(Ψ, µΦ+tΨ) , supt∈R F∗(Ψ, µΦ+tΨ)

)
If,ϕε,gε(s) = inf

η∈M1(f)

{
Ptop(f, ϕε)− hη(f)−

∫
ϕεdη :

∫
gεdη = s

}
and for every small ε. We will use an auxiliary lemma.

Lemma 3.6. For every s in the interior of J := {F∗(Ψ, η) : η ∈M1(f)} it holds:

lim
ε→0

sup
η∈M1(f)

{hη(f)+

∫
ϕεdη :

∫
gεdη=s} = sup

η∈M1(f)

{hη(f)+F∗(Φ, η) : F∗(Ψ, η) = s}.

Proof. We will use the continuity of F∗(Φ, µ) in both coordinates. Let s ∈ J be
fixed and let η ∈ M1(f) with s = F∗(Ψ, η). Consider an admissible family (gε)ε
for Ψ not cohomologous a to constant. We may assume without loss of generality
that

∫
gεdη = s for ε small (otherwise just use the admissible family (g̃ε)ε given by

g̃ε := gε + s−
∫
gε dη which is also not cohomologous to a constant). In particular,

{
η ∈M1(f) :

∫
gε dη = s for all ε small

}
is a closed, non-empty set in M1(f), hence compact. In particular, using the
compactness and upper semi-continuity of the metric entropy function there exists
ηε ∈M1(f) such that

∫
gεdηε = s and

hηε(f) +

∫
ϕεdηε = sup

η∈M1(f)

{hη(f) +

∫
ϕεdη :

∫
gεdη = s}.

Take η̃ ∈ M1(f) be an accumulation point of (ηε)ε and assume for simplicity that
ηε → η̃ as ε tends to zero. Then Proposition 3.2 yields that limε→0

∫
ϕεdηε =

13



F∗(Φ, η̃) and limε→0

∫
gεdηε = F∗(Ψ, η̃) = s. Using once more the upper semicon-

tinuity of the metric entropy function

lim
ε→0

sup
η∈M1(f)

{hη(f) +

∫
ϕεdη :

∫
gεdη = s} = lim

ε→0

{
hηε(f) +

∫
ϕεdηε

}
≤ hη̃(f) + F∗(Φ, η̃)

≤ sup
η∈M1(f)

{hη(f) + F∗(Φ, η) : F∗(Ψ, η) = s}.

To prove the other inequality, let η̃ ∈ M1(f) be that attains the supremum in
the right hand side above, that is, so that s = F∗(Ψ, η̃) and

sup
η∈M1(f)

{hη(f) + F∗(Φ, η) : F∗(Ψ, η) = s} = hη̃(f) + F∗(Φ, η̃)

Let δ > 0 be fixed and arbitrary. By Proposition 3.2 there exists εδ > 0 such that∫
gεdη̃ ∈ (s − δ, s + δ) for all 0 < ε < εδ. In particular, using the characterization

of rate function If,ϕε,gε(·) given by [32]

hη̃(f) +

∫
ϕεdη̃ ≤ sup

η∈M1(f)

{hη(f) +

∫
ϕεdη :

∫
gεdη ∈ (s− δ, s+ δ)}

= − inf
t∈(s−δ,s+δ)

If,ϕε,gε(t) + Ptop(f, ϕε)

for every 0 < ε < εδ. Taking the limit as ε→ 0 in both sides of the inequality and
using the convexity of the Legendre transform

sup
η∈M1(f)

{hη(f) + F∗(Φ, η) : F∗(Ψ, η) = s} = lim
ε→0

(hη̃(f) +

∫
ϕεdη̃)

≤ lim
ε→0

(Ptop(f, ϕε)− inf
t∈(s−δ,s+δ)

If,ϕε,gε(t))

= Ptop(f,Φ)−min{If,Φ,Ψ(c− δ), If,Φ,Ψ(c+ δ)}

Since the rate function is continuous, taking δ tend to zero it follows

sup
η∈M1(f)

{hη(f) + F∗(Φ, η) : F∗(Ψ, η) = s} ≤ −If,Φ,Ψ(c) + Ptop(f,Φ)

= lim
ε→0
{−If,ϕε,gε(s) + Ptop(f, ϕε)}

= lim
ε→0

sup
η∈M1(f)

{hη(f) +

∫
ϕεdη :

∫
gεdη = s}.

This finishes the proof of the lemma. �

Now, item (iii) is just a consequence of the previous lemma together with the
fact that If,Φ,Ψ(s) := limε→0 If,ϕε,gε(s). This finishes the proof of Theorem A.

4. Multifractal analysis of irregular sets

This section is devoted to the proof of our multifractal analysis results.
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4.1. Proof of Theorem B. Let M be a compact metric space, f : M → M be
a continuous map, Φ = {φn} be an almost additive sequence of potentials with
Ptop(f,Φ) > −∞. By assumption, the unique equilibrium state µΦ of f with
respect the Φ is a weak Gibbs measure. Given J ⊂ R and n ≥ 1 set XJ,n = {x ∈
M : 1

nψn(x) ∈ J}.

Lemma 4.1. Assume that Ψ = {ψn} is a sequence of observables that satisfies at
least one of the following properties:

(a) Ψ is asymptotically additive or;
(b) Ψ is a subadditive sequence such that

i. satisfies the weak Bowen condition;

ii. infn≥1
ψn(x)
n > −∞ for every x ∈M ; and

iii. the sequence {ψnn } is equicontinuous.

Then Ψ satisfies the tempered variation condition limε→0 limn→+∞
γn(Ψ,ε)

n = 0. In
particular, given J ⊂ R be a closed set and δ > 0 there exists εδ > 0 such that if
0 < ε < εδ then there exists N = Nδ,ε ∈ N so that B(x, n, ε) ⊂ XJδ,n for all n ≥ N
and every x ∈ XJ,n.

Proof. It is immediate that the tempered variation condition is satisfied for se-
quences of observables satisfying the weak Bowen condition. Moreover, it holds for
asymptotically additive sequences as proved in [33, Lemma 2.1].

Let us prove now the second part of the lemma. Let δ > 0 be given. By
tempered variation condition there is εδ > 0 such that limn→∞ γn(ψ, ε) < δn for
all 0 < ε < εδ. So, given 0 < ε < εδ there exists a large N = Nδ,ε ∈ N such
that if n ≥ N we have γn(ψ, ε) ≤ δn. So, if 0 < ε < εδ, n ≥ N and x ∈ XJ,n,
y ∈ B(x, n, ε) then

ψn(x)

n
− γn(ψ, ε)

n
≤ ψn(y)

n
≤ ψn(x)

n
+
γn(ψ, ε)

n

and, consequently,
ψn(x)

n
− δ ≤ ψn(y)

n
≤ ψn(x)

n
+ δ

meaning that y ∈ XJδ,n. This finishes the proof of the lemma. �

We can now proceed with the proof of Theorem B. Assuming that XJ 6= ∅, we
shall prove that PXJ (f,Φ) ≤ Ptop(f,Φ)− LJδ,µΦ

. If LJδ,µΦ
= 0 there is nothing to

prove so we assume without loss of generality that LJδ,µΦ
> 0. For our purpose it is

enough to prove that for every α > Ptop(f,Φ)−LJδ,µΦ , given ε > 0 and N ∈ N there

exists GN ⊂
⋃
n≥N In satisfying the covering property

⋃
(x,n)∈GN

B(x, n, ε) ⊃ XI and

also
∑

(x,n)∈GN

e−αn+φn(x) ≤ a(ε) < ∞. Let α > Ptop(f,Φ) − LJδ,µΦ
and 0 < ε < εδ

fixed, we take ζ > 0 small so that α > Ptop(f,Φ) − LJδ,µΦ
+ ζ. There exists

N0 ≥ Nδ,ε such that Kn(ε) ≤ e
ζ
4n, Kn( ε2 ) ≤ e

ζ
4n and

µΦ

(
{x ∈M :

1

n
ψn(x) ∈ Jδ}

)
≤ e−(LJδ,µΦ

− ζ2 )n

for all n ≥ N0. There is no loss of generality in supposing that N ≥ N0. Given
N ≥ N0 and x ∈ XJ take m(x) ≥ N so that x ∈ XJ δ

2
,m(x) and consider GN :=
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{(x,m(x)) : x ∈ XJ}. Now, let ĜN ⊂ GN be a maximal (`, ε)-separated set. In

particular if (x, `) and (y, `) belong the ĜN then B(x, `, ε2 )∩B(x, `, ε2 ) = ∅. Hence,
for 0 < ε < εδ given by Lemma 4.1, using the Gibbs property of µΦ we deduce that∑

(x,m(x))∈ĜN

e−αm(x)+φm(x)(x) =
∑

(x,m(x))∈ĜN

e(P−α)m(x)e−Pm(x)+φm(x)(x)

≤
∑

(x,m(x))∈ĜN

e(P−α)m(x)Km(x)(ε)µΦ(B(x,m(x), ε))

Now, we write ĜN = ∪`≥1Ĝ`,N with the level sets Ĝ`,N := {(x, `) ∈ ĜN}. By
Lemma 4.1 each dynamical ball B(x, `, ε) is contained in XIδ,`. Thereby, using
that µΦ(B(x,m(x), ε)) ≤ Km(x)(ε)Km(x)(ε/2)µΦ(B(x,m(x), ε/2) then∑
(x,m(x))∈ĜN

e−αm(x)+φm(x)(x) ≤
∑

(x,m(x))∈ĜN

Km(x)(ε)e
(P−α)(m(x))µΦ(B(x,m(x), ε))

=
∑
`≥N

K`(ε)e
(P−α)`

∑
x∈ĜN,`

µΦ(B(x, `, ε))

≤
∑
`≥N

K`(ε)K`(
ε

2
)e(P−α)`

∑
x∈ĜN,`

µΦ(B(x, `, ε/2))

≤
∑
`≥N

K`(ε)K`(
ε

2
)e(P−α)` µΦ(XJδ,`)

≤
∑
`≥N

e(P−α−LJδ,µΦ
+ζ)`

that is finite and independent of the choose of N . This proves that for any closed
interval J ⊂ R and any small δ > 0 it holds PXJ (f,Φ) ≤ PXJ (f,Φ) ≤ Ptop(f,Φ)−
LJδ,µΦ ≤ P (f,Φ) and proves the theorem.

Remark 4.2. Let us mention that the argument of Theorem B proving that for any
closed interval J ⊂ R and any small δ > 0,

PXJ (f,Φ) ≤ Ptop(f,Φ)− LJδ,µΦ
≤ P (f,Φ) (4.1)

carries under the weaker Gibbs condition (2.3). Taking into account the difficulty
that the moments where the Gibbs property occurs may depend on the point jus-
tifies the fact that the estimate (4.1) holds for set XJ . Since the proof of this fact
is similar to the the one of Theorem B we give only a sketch of proof with main
ingredients. In fact, by (2.3) there is ε0 > 0 such that: for all 0 < ε < ε0 there
exists Kn(ε) > 0 such that for µΦ-a.e. point x there exists a sequence nk(x)→∞
with

Knk(x)(ε)
−1 ≤ µΦ(B(x, nk(x), ε))

e−nk(x)P+Snk(x)φ(x)
≤ Knk(x)(ε).

Using XJ ⊂
⋃
`≥1

⋂
j≥`XJδ,j where XJ,n = {x ∈M : 1

nSnψ(x) ∈ J} it is not diffi-

culty check that for all x ∈ XJ there is a sequence of positive numbers (mj(x))j∈N
converging to infinity such that x ∈ XJ δ

2
,mj(x) and mj(x) is a moment where the

Gibbs property holds. Consider δ, ζ > 0 arbitrary small, α > Ptop(f,Φ)−LJδ,µΦ
+ζ,

ε > 0 small and N ∈ N large. Take m(x) ≥ N so that x ∈ XJ δ
2
,m(x), the constants
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satisfy Km(x)(ε) ≤ e
ζ
4m(x), Km(x)(

ε
2 ) ≤ e

ζ
4m(x), and

µΦ

(
{x ∈M :

1

m(x)
ψm(x)(x) ∈ Jδ}

)
≤ e−(LJδ,µΦ

− ζ2 )m(x).

Setting GN := {(x,m(x)) : x ∈ XJ} we prove the result just follow with the
same estimates used in the proof of Theorem B and obtain that PXJ (f,Φ) ≤
Ptop(f,Φ)− LJδ,µΦ as claimed.

4.2. Proof of Corollary B. By [2] and [21], since Φ = 0 clearly satisfies the
bounded variation condition µ0 is a Gibbs measure. So Theorem B implies that
hXJ (f) ≤ htop(f)− LJδ,µ0 , for all δ > 0 sufficiently small. By the large deviations

estimates from [31] and Theorem A we have that

hXI (f) ≤ htop(f)− inf
s∈Jδ

If,0,Ψ(s)

for all δ > 0 small. The Legendre transform of Ψ is continuous. Hence

hXI (f) ≤ htop(f)− inf
s∈J

If,0,Ψ(s)

For the lower bound we proceed as follows, with an estimate similar to [8, Theorem
B]. It follows from Barreira and Doutor [4] that if X(α) 6= ∅ then hX(α)(f) =

supη∈M1(f){hη(f) : F∗(Ψ, η) = α}. Thus, if XJ 6= ∅ and F∗(Ψ, µ0) /∈ J then

Theorem A (item ii.) yields that the infimum of inf
s∈J

If,0,Ψ(s) is realized in a border

point c∗ of J . Thus:

htop(f,Φ)− If,0,Ψ(c∗) = hX(c∗)(f) ≤ hX(J)(f, )

≤ hX(J)(f) ≤ hXJ (f)

≤ hXJ (f) ≤ htop(f)− If,0,Ψ(c∗).

In particular, we prove we prove that for Jc = R \ (F∗(Ψ, µ0)− c,F∗(Ψ, µ0) + c) we
get XJc = Xµ0,Ψ,c and so

hXµ0,Ψ,c
(f) = htop(f)−min{If,0,Ψ

(
F∗(Ψ, µ0) + c

)
, If,0,Ψ

(
F∗(Ψ, µ0)− c

)
}

whenever the set Xµ0,Ψ,c is not empty. So by Theorem A we deduce that the
function R+

0 3 c 7→ hXµ0,Ψ,c
(f) is strictly decreasing and concave in a neighborhood

of zero.

5. Examples and applications

In this section we provide some applications of the theory concerning the study
of some classes of non additive sequences of potentials related to either Lyapunov
exponents or entropy.

5.1. Linear cocycles. Here we consider cocycles over subshifts of finite type as
considered by Feng, Lau and Käenmäki [15, 17]. Let σ : Σ→ Σ be the shift map on
the space Σ = {1, . . . , `}N endowed with the distance d(x, y) = 2−n where x = (xj)j ,
y = (yj)j and n = min{j ≥ 0 : xj 6= yj}. Consider matrices M1, . . . ,M` ∈
Md×d(C) such that for every n ≥ 1 there exists i1, . . . , in ∈ {1, . . . , `} so that the
product matrix Mi1 . . .Min 6= 0. Then, the topological pressure function is well
defined as P (q) = limn→∞

1
n log

∑
ι∈Σn

‖Mι‖q where Σn = {1, . . . , `}n and for any

ι = (i1, . . . , in) ∈ Σn one considers the matrix Mι = Min . . .Mi2Mi1 . Moreover, for
17



any σ-invariant probability measure µ define also the maximal Lyapunov exponent
of µ by

M∗(µ) = lim
n→∞

1

n

∑
ι∈Σn

µ([ι]) log ‖Mι‖

and it holds that P (q) = sup{hµ(σ) + qM∗(µ) : µ ∈ Mσ}. Notice that this is the
variational principle for the potentials Φ = {ϕn} where ϕn(x) = q log ‖Mιn(x)‖ and
for any x ∈ Σ we set ιn(x) ∈ Σn as the only symbol such that x belongs to the
cylinder [ιn(x)]. From [17, Proposition 1.2], if the set of matrices {M1, . . . ,Md}
is irreducible over Cd, (i.e. there is no non-trivial subspace V ⊂ Cd such that
Mi(V ) ⊂ V for all i = 1, . . . , `) there exists a unique equilibrium state µq for σ
with respect to Φ and it is a Gibbs measure: there exists C > 0 such that

1

C
≤ µq([ιn])

e−nP (q)‖Mιn‖q
≤ C

for all ιn ∈ Σn and n ≥ 1. Since the potentials ϕn = log ‖Mιn(x)‖ are constant
in n-cylinders the family of potentials Φ clearly satisfies the bounded distortion
condition. It follows as a consequence of the large deviations bound in [31] and
Theorem B that taking Ψ = Φ with q = 1 and c > 0, the set

Xc = {x ∈ Σ : lim sup
n→∞

∣∣∣ 1
n

log ‖Mιn(x)‖ −M∗(µΦ)
∣∣∣ > c}

of points whose exponential growth of Mιn(x) is c-far away from the maximal Lya-
punov exponent M∗(µΦ) for infinitely many values of n has topological pressure
strictly smaller than Ptop(f,Φ). Moreover, with respect to the maximal entropy
measure µ0 Corollary B yields that the topological pressure function c 7→ hXc(f)
is strictly decreasing and concave for small positive c.

5.2. Non-conformal repellers. The following class of local diffeomorphisms was
introduced by Barreira and Gelfert [3] in the study of multifractal analysis for
Lyapunov exponents associated to non-conformal repellers. Let f : R2 → R2 be a
C1 local diffeomorphism, and let J ⊂ R2 be a compact f -invariant set. Following
[3], we say that f satisfies the following cone condition on J if there exist a number
b ≤ 1 and for each x ∈ J there is a one-dimensional subspace E(x) ⊂ TxR2 varying
continuous with x such that Df(x)Cb(x) ⊂ {0}∪intCb(fx) where Cb(x) = {(u, v) ∈
E(x)

⊕
E(x)⊥ : ||v|| ≤ b||u||}. It follows from [3, Proposition 4] that the later

condition implies that both families of potentials given by Ψ1 = {log σ1(Dfn(x))}
and Ψ2 = {log σ2(Dfn(x))} are almost additive, where σ1(L) ≥ σ2(L) stands for
the singular values of the linear transformation L : R2 → R2, i.e., the eigenvalues of
(L∗L)1/2 with L∗ denoting the transpose of L. Assume that J is a locally maximal
topological mixing repeller of f such that:

(i) f satisfies the cone condition on J , and
(ii) f has bounded distortion on J , i.e., there exists some δ > 0 such that

sup
n≥1

1

n
log sup

{
||Dfn(y)(Dfn(z))−1|| : x ∈ J and y, z ∈ B(x, n, δ)

}
<∞.

Then it follows from [2, Theorem 9] yields that there exists a unique equilibrium
state µi for (f,Φi) which is a weak Gibbs measure with respect to the family of
potentials Φi, for i = 1, 2. Moreover, from [31, Example 4.6], for any c > 0 the tail
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of the convergence to the largest or smallest Lyapunov exponent (corresponding
respectively to j = 1 or j = 2)

µi

({
x ∈M :

∣∣∣∣ 1n log σj(Df
n(x))− lim

n→∞

1

n

∫
log σj(Df

n(x))dµi

∣∣∣∣ > c

})
decays exponentially fast as n → ∞. Moreover, it follows from Corollary A that
this exponential decay rate varies continuously with c.

One other consequence is that, although the irregular sets associated to Ψj =
{log σj(Df

n(x))} have full topological pressure (using [33] and the fact that f
has the specification property) the set of irregular points whose time-n Lyapunov
exponents remain c-far away from the corresponding mean have topological pressure
strictly smaller than the topological pressure of the system.

5.3. Entropy and Gibbs measures. Let σ : Σ → Σ be the shift map on the
space Σ = {1, . . . , `}N endowed with the distance d(x, y) = 2−n where x = (xj)j ,
y = (yj)j and n = min{j ≥ 0 : xj 6= yj}. Set Σn = {1, . . . , `}n and for any
ι = (i1, . . . , in) ∈ Σn consider the n-cylinders [ι] = {x ∈ Σ : xj = ij , ∀1 ≤ j ≤ n}.

Let Φ = {ϕn} be an almost additive sequence of potentials with the bounded
distortion property and µΦ be the unique equilibrium state for f with respect to Φ
given by [2]. Fix C > 0 so that for every x ∈ Σ

ϕn(x) + ϕm(fn(x))− C ≤ ϕm+n(x) ≤ ϕn(x) + ϕm(fn(x)) + C.

Since µΦ is Gibbs there exists P ∈ R and K > 0 so that

1

K
≤ µΦ([ιn(x)])

e−Pn+ϕn(x)
≤ K

for every n ≥ 1 and every x ∈ Σ. In consequence, if ψn(x) = log µΦ([ιn(x)]) then

expψm+n(x) = µ([ιm+n(x)]) ≤ K e−P (m+n)+ϕm+n(x)

≤ K eC e−Pn+ϕn(x) e−Pm+ϕm(fn(x))

≤ K3 eC expψn(x) expψm(fn(x))

for every n ≥ 1 and x ∈ Σ. Thus, ψm+n(x) ≤ ψn(x) + ψm(fn(x)) + C̃ with

C̃ = C + 3 logK. Since the lower bound is completely analogous we deduce that
Ψ = {ψn} is almost additive and satisfies the bounded distortion condition since ψn
is constant on n-cylinders. In particular these satisfy the hypothesis of Theorem B
in [31] to deduce exponential large deviations. In fact it is a simple computation
to prove that if µΦ is a weak Gibbs measure then the corresponding sequence of
functions Ψ as above are asymptotically additive, but we shall not prove or use this
fact here. By [33] the irregular set has full topological pressure. Since this set is
contained in the set of points for which

lim sup
n→∞

∣∣∣− 1

n
logµΦ([ιn(x)])− hµΦ

(f)
∣∣∣ > 0

this has also full topological pressure. From our Theorem B, for any c > 0 the set
of points so that

lim sup
n→∞

∣∣∣− 1

n
logµΦ([ιn(x)])− hµΦ(f)

∣∣∣ > c

has topological pressure strictly smaller than Ptop(f,Φ).
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