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1. Introduction

Hopf bifurcation has been intensively studied in equivariant dynamical
systems in the recent years from both theoretical and applied points of view.
Stability of equilibria, synchronization of periodic solution and in general
oscillation patterns, stability of the limit cycles that arise at the bifurca-
tion point are among the phenomena whose analysis is related to the Hopf
bifurcation in these systems. Periodic solutions arising in systems with di-
hedral group symmetry were studied by Golubitsky et al. [10] and Swift
[8], Dias and Rodrigues [2] dealt with the symmetric group, Sigrist [12] with
the orthogonal group, to cite just a few of them. Dias et al. [1] studied
periodic solutions in coupled cell systems with internal symmetries, while
Dionne extended the analysis to Hopf bifurcation in equivariant dynamical
systems with wreath product [3] and direct product groups [4]. The general
theory of patterns of oscillation arising in systems with abelian symmetry
was developed by Filipsky and Golubitsky [5]. The dynamical behavior of
1-dimensional ordinary differential equations coupled in a square array, of
arbitrary size (2N)?, with the symmetry Dy + (Zy x Zy), was studied by
Gillis and Golubitsky [6].

In this paper we use a similar idea to that of [G] to describe arrays of N?
cells where each cell is represented by a subsystem that is a 2-dimensional
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differential equation of FitzHugh-Nagumo type. We are interested in the pe-
riodic solutions arising at a first Hopf bifurcation from the fully synchronised
equilibrium. To each equation in the array we add a coupling term that
describes how each cell is affected by its neighbours. The coupling may be
associative, when it tends to reduce the difference between consecutive cells,
or dissociative, when differences are increased. For associative coupling we
find, not surprisingly, bifurcation into a stable periodic solution where all the
cells are synchronised with identical behaviour.

When the coupling is dissociative in either one or both directions, the
first Hopf bifurcation gives rise to rings of NV fully synchronised cells. All the
rings oscillate with the same period, with a %—period phase shift between
rings. When there is one direction of associative coupling, the synchrony
rings are organised along it. Dissociative coupling in both directions yields
rings organised along the diagonal. The stability of these periodic solutions
was studied numerically and were found to be unstable for small numbers of
cells, stability starts to appear at N > 11.

For all types of coupling, there are further Hopf bifurcations, but these
necessarily yield unstable solutions.

This paper is organised as follows. The equations are presented in sec-
tion [2] together with their symmetries. Details about the action of the
symmetry group Zy X Zy are summarised in section B we identify the
Zn % Zy—irreducible subspaces of RV *: the isotypic components; isotropy
subgroups and their fixed point subspaces for this action. This allows, in
section ] the study of the Hopf bifurcation with symmetry Zy X Zy, ap-
plying the abelian Hopf bifurcation theorem [5] to identify the symmetries
of the branch of small-amplitude peridic solutions that may bifurcate from
equilibria. In section [§ we derive the explicit expression of the 2N? eigen-
vectors and eigenvalues of the system linearised about the origin. Next, in
section [0l we perform a detailed analysis on the Hopf bifurcation by setting
a parameter ¢ to zero. In this case the FitzHugh-Nagumo equation reduce
to a Van der Pol-like equation. Finally, in section [, we characterise the
bifurcation conditions for ¢ > 0 small.



2. Dynamics of FitzHugh-Nagumo coupled in a torus and its sym-
metries

The building-blocks of our square array are the following 2—dimensional
ordinary differential equations of FitzHugh-Nagumo (FHN) type

t=z(a—x)(r—1)—y = filz,y)
y=br—cy = fa(z,y) .

where a,b,c > 0. Consider a system of N? such equations, coupled as a
discrete torus:

Ta,p = Ta,p (0 — Tap) (Tap — 1) = Yag +V(Tas — Tat1,8) +0(Tas — Ta,p11)
Yo, = bTap — CYap
(2)

where v # d and 1 < a < N, 1 < f < N, with both a and # computed
(mod N). When either v or § is negative, we say that the coupling is asso-
ciative: the coupling term tends to reduce the difference to the neighbouring
cel, otherwise we say the coupling is dissociative. We restrict ourselves to
the case where N > 3 is prime.

The coupling structure in () is similar, but not identical, to the general
case studied by Gillis and Golubitsky [6]. There are two main differences:
first, they consider an arbitrary even number of cells, whereas we study a
prime number of cells. The second difference is that cells in [6] are bidirec-
tionally coupled, and the coupling in (2)) is unidirectional. These differences
will be reflected in the symmetries of (2I).

The first step in our analysis consists in describing the symmetries of (2).
Our phase space is

R2N2 = {(Ia,ﬁvya,ﬁ) | 1 < OK,B < N7 La,Br Yo, 8 € R}

and (2]) is equivariant under the cyclic permutation of the collumns in the
squared array:

Y@, TNBYLE - YNE) = (T2, - s TNG, T1B3 Y2,8, - - YNGs Y1,8)
(3)
as well as under the cyclic permutation of the rows in the squared array:

72(3:&,1’ co s Ta,Ny Ya,1y - - - >yoc,N) = (Ia,% oy Lo, Ny Lol Ya,2y - -+ 5 Yo, N, ya,1)~

(4)



Thus, the symmetry group of (2]) is the group generated by 7, and -y, denoted
Zy x Zy = {71,72). Note that, since the coupling in (2] is unidirectional
and since the coupling constants v and § are not necessarily equal, there is
no addtional symmetry, like the Dy in [6]. Indeed, we will show that the
case 7 = 0 is degenerate. We will use the notation 7] - 75 € Zy X Zy
as (r,s) = 77 - 75. We refer to the system (2) in an abbreviated form as
either 2 = f(2), 2 = (a8, Yap) O 2 = f(z,\) where A € R is a bifurcation
parameter to be specified later. The compact Lie group Zy X Zy acts linearly
on R2Y” and f commutes with it (or is Zy x Zy—equivariant).

We start by recalling some definitions from [10] adapted to our case.

The isotropy subgroup X, of Zy X Zy at a point z € RY” is defined to
be

Y, ={(r,s) €ZN X Zn : (r,s)-z=z}.

Moreover, the fixed point subspace of a subgroup ¥ € Zy X Zy is
Fix (X)) = {z eR™ i (r,s)-z2=2 Y(rs) € E}
and f (Fix (X)) C Fix (2).

Definition 1. Consider a group T' acting linearly on R™. Then

1. A subspace V. C R" is said I'—invariant, ifoc-v € V, Vo € T, Yv € V;
2. A subspace V. C R" is said I'—irreducible if it is I'—invariant and if
the only T'—invariant subspaces of V are {0} and V.

Definition 2. Suppose a group I' acts on two vector spaces V and W. We
say that V is I'-isomorphic to W if there exists a linear isomorphism A :
V — W such that A(ox) = 0 A(z) for allx € V. If V is not I'-isomorphic
to W we say that they are distinct representations of I'.

3. The Zn X Zpn action

The action of I' = Zx X Zy is identical in the z, g and the y, s coordinates,
i.e. T acts diagonally, y(z,y) = (yz,~vy) in R*N" for z,y € RN, Hence,
instead of taking into account the whole set of (4.4, ya3) € RV, we will
partition it into two subspaces, RN” x {0} and {0} x RN", namely z, 3 € RN
and Yo 5 € RN The action of Zn X Zyn on RM has been studied by Gillis
and Golubitsky in [6] for N = 2n, we adapt their results to our case.



Let k = (ki, ko) € 7% and consider the subspace Vi € RN where
(za,3) € Vi if and only if
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xaﬁ:Re<zeXp[W(o"ﬁ)'k})ERN2z€C,1<a,5<N, (5)

Proposition 1. Consider the action of Zy X Zy on RN® given in @) and
@) with N prime and let I be the set of indices k = (kq, ko) listed in Table[1.
Then for k € I we have

1. dimVy = 2 except for k = 0, where dimVg = 1.

2. Fach Vy defined in ([B)) is Zy X Zy—invariant and Zy X Zy —irreducible.
3. The subspaces Vi are all distinct Zy X Zy representations.

4. The group element (r,s) acts on Vi as a rotation:

(r,5) - 2 = exp [2% (r,5)- k] .

5. The subspaces Vi verify @, Vi = RV,

6. The non-trivial isotropy subgroups for Zy x Zx on RN* are Zy (r,s),
the subgroups generated by one element (r,s) # (0,0).
7. If (r,s) # (0,0) then

Fix (ZN (r, 3)> — Y Vi and  dimFix (iN (r, s)> ~N.
k-(r,s)=0
(mod N)

Proof. The arguments given in |6, Lemma 3.1] with suitable adaptations
show that statements [[l-f4l hold and also that the subspaces Vi with k & I
are redundant. Since the Vy are all distinct irreducible representations, a
calculation using [Il shows that >, _; dimVy = N?, establishing [l

For @l note that since /N is prime, the only non trivial subgroups of
Zy x Zy are the cyclic subgroups Zy (r, s) generated by (r,s) # (0,0). Each
(r,s) fixes the elements of Vi, r,y when (ki,ky) = (N —s,r). Using @ it
follows that (r,s) # (0,0) fixes + = (2a) € V(i k) With x # 0 if and
only if exp [Z (r,s) - (ki,k2)] = 1 ie. if and only if (r,s) - (ki,ks) = 0
(mod N). Thus Fix (r,s) is the sum of all the subspaces V , x,) such that
(r,s) - (k1,k2) =0 (mod N), it remains to compute its dimension.



Table 1: Typeszof Zy x Zy—irreducible representations in Vi € RV 2, where Vy is the
subspace of RY" corresponding to k = (k1, k) € I C Z>.

Type dim (Vy) k Restrictions
(1) 1 (0,0)
(2) 2 (0,ky) 1<k <(N—-1)/2
(3) 2 (k1,0) 1<k <(N-1)/2
(4) 2 (k1,k1) 1<k <(N-1)/2
(5) 2 (]{71,]{72) 1<ks<k; <N—-1

Let (ki,k,) = (N —s,7), so that V( C Fix(r,s). Then for any

K.k )

(k1, ko) we have (r,s) - (ki,ky) = det {zi :Z] (mod N). Thus Vg, 4y C
. . . kl ]{32 kl k2
Fix (r,s) if and only if det ol = 0 (mod N), and (r,s) € ker WL
1 R 1 Ry

(mod N). This is equivalent to having (k1, k2) and (k}, k%) linearly dependent
over Zy, i.e. (ki,k,) =m (ki,k2) (mod N). Then Fix (r,s) = Emezy Vin(N—sr)-
Since half of the (ki, k2) = m (N — s,r) have ky > ki, this expression adds
two times the same subspace. Then, since for (ki,ks) # (0,0) we have
dimV 4, k,) = 2 we obtain dimFix(r,s) =1+ 1 (N —1)-2=N. m

3.1. The Zy X Zy—1isotypical components of R2V?

So far we have obtained the distinct Zy x Zy—invariant representations
of RV?, by considering only the subspaces corresponding to the variable z. If
V C RY is an irreducible subspace for the action of Zy x Zy then V x {0}
and {0} x V are Zy x Zy—isomorphic irreducible subspaces of R*N*. We
will use the notation V &V for the subspace V x V C R2V’.

Definition 3. Suppose a group T acts on R™ and let V.C R" be a I'-
wrreducible subspace. The isotypic component of R™ corresponding to V is
the sum of all I'-irreducible subspaces that are I'-isomorphic to V.

Once we have the Zy x Zy—ireducible representations on RV, we can
calculate the isotypic components of the representation of this group on R*V g



Table 2: Isotypic components Zi of the Zy x Zy—action on RV 2, where the Vi are
defined in ().

dim (Zy) Zy Restrictions
2 Voo © Vo
4 Vi) ® Vi 1<k <(V-1)/2
4 V(o ks) D V(OJQ) 1 <k < (N — 1) /2
4 V(khkl) éh V(liﬁ) 1<k < (N — 1) /2
4 Vikiks) @ Vi k) 1< ko < kit <N -1

Lemma 1. The isotypic components for the Zy X Zy—representation in
R2N* are of the form Zn = Vi ® Vi given in Tabled.

Proof. Since I' = Zy X Zy acts diagonally, v(x,y) = (yz,vy) in RV for
2,y € RV’ then the subspaces Vi @ {0} and {0} ® V) are ['—invariant
and irreducible, by Bl of Proposition [l If k # k’ then, by Bl we have
that Vi & {0} and {0} & V) are not I'—isomorphic to either Vi & {0} or
{0} ® V. Therefore, the only isomorphic representations are Vi @ {0} and
{0} & Vi for the same k € I and the result follows. m

4. Symmetries of generic oscillations patterns

The main goal of this section is to characterise the symmetries of periodic
solutions of (), specially those that arise at Hopf bifurcations.

Given a solution z(t) with period P of a Zy X Zy-equivariant differential
equation Z = f(z), a spatio-temporal symmetry of z(t) is a pair (o, 0), with
0 € Zy X Zy and 6 € R (mod P) ~ S* such that o - 2(t) = 2(t + ) for
all t. The group of spatio-temporal symmetries of z(¢) can be identified
with a pair of subgroups H and K of Zy x Zy and a homomorphism © :
H — S! with kernel K, where H represents the spatial parts of the spatio-
temporal symmetries of z(¢), while K comprises the spatial symmetries of
z(t), i.e. the symmetries that fix the solution pointwise. In order to get
all the spatio-temporal symmetries for solutions of (2), we use the following
result of Filipitsky and Golubitsky:



Theorem 1 (abelian Hopf theorem [5]). In systems with abelian sym-
metry, generically, Hopf bifurcation at a point Xo occurs with simple eigen-
values, and there exists a unique branch of small-amplitude periodic solutions
emanating from Xo. Moreover, the spatio-temporal symmetries of the bifur-
cating periodic solutions are H = Yy, and K = kery(H), where V is the
centre subspace of the bifurcation at Xy and H acts H-simply on V.

Recall that a subgroup H of Zy x Zy acts H—simply on a subspace V
if either V is the sum of two isomoprphic H-irreducible subspaces or V is
H-irreducible but not absolutely irreducible.

Proposition 2. Periodic solutions of 2l arising through Hopf bifurcation
with simple eigenvalues at an equilibrium point Xo have the spatio-temporal
symmetries of Table[3.

Table 3: Spatio-temporal (H) and spatial (K) symmetries of (2] that may arise through
Hopf bifurcation at a point Xy, with two-dimensional centre subspace V. Here V.

denotes the subspace Fix (2 N (k)) C RY? as in the proof of [l of Proposition [I1

H set centre K restrictions
containing X subspace V on k

r Vo & Vo V. CVo® Vg H

r Vo @ Vo V;Vk@Vk ZN(kl) k+#0

Zy (k) Vie ®Via\{0} V=V, V, H
k) VeaVa\{o} VIViaV, 1
k) VieaVe\{o} VSViaV, H k40 (- k=
I RM\UVe@ Ve VCVedVy 1

k0

Ly
Ly

k£0 (- -k#0

Proof. The proof is a direct application of Theorem [I] using the informa-
tion of Section[8l From assertions[6l and [l of Proposition[I] the possibilities
for H are 1, Zy (1, s) and Zy X Zy. This yields the first collumn in Table Bl
The second collumn is obtained from the list of corresponding fixed-point
subspaces.

Let V be the centre subspace at Xy. Since the eigenvalues are simple,
V' is two-dimensional and is contained in one of the isotypic components.
Then either H acts on V' by nontrivial rotations and the action is irreducible



but not absolutely irreducible, or H acts trivially on V' C FixH, hence V
is the sum of two H-irreducible components. In any of these cases H acts
H-simply on V. The possibilities, listed in Lemma [Tl yield the third collumn
of Table Bl The spatial symmetries are then obtained by checking whether
V meets Fix(H). =

A useful general tool for identifying periodic solutions whose existence is
not guaranteed by the Equivariant Hopf Theorem, is the H mod K Theorem
[9]. Although it has been shown in [9] that in general there may be peri-
odic solutions with spatio-temporal symmetries predicted by the H mod K
Theorem that cannot be obtained from Hopf bifurcation, this is not the case
here.

Hopf bifurcation with simple eigenvalues is the generic situation for sys-
tems with abelian symmetry [5, Theorem 3.1]. Theorem [Iis a kind of “con-
verse” to the H mod K Theorem in the case of generic vector fields with
abelian symmetry: it states that, generically, the periodic solutions provided
by the H mod K Theorem can be obtained through Hopf bifurcation. In
the next section we will show in Theorem [4] that this is indeed the case for
([2): even though (2]) is not a generic equivariant vector field the conclusion
of the “converse theorem” still holds in this case for generic values of the
parameters and we will obtain explicit genericity conditions.

5. Linear Stability

In this section we study the stability of solutions of (2) lying in the full
synchrony subspace V(g0 & V(o9 C R*N *. For this we choose coordinates
in R by concatenating the transposed collumns of the matrix (245, Ya.5),
i.e. the coordinates are (C4,...,Cx)T where

Cs = (21,8, Y1,8, T2.8, Y2,8, - - - 7IN,57?JN,5)T . (6)

Let p € V(0,00 ® V(0,0) be a point with all coordinates (a3, Ya,8) = (T, ).
In these coordinates, the linearization of () around p is given by the N x N
block circulant matrix M given by

A B 0 ... 0 0

0 A B 0 0
M=10 0 A B 0

_B 0 0O 0 A |




where A is an N x N block circulant matrix and B is an N x N block diagonal
matrix given by

(D E 0 ... 0 0 F 0 0 0 0

0D E 0 ... 0 0 F 0 0 0
A—=|0 O D E ... 0 |gp=|0 0 F 0 ... 0

E 0 ... 0 0 D 0 0 0 0 F |

where the 2 x 2 matrices E and F' are given by

=y Ol ., |0 O
[l e
and D is obtained from the matrix of the derivative D(f1, f2) of ({) at (., yx)
as D = D(fi, fo) — E — F. In particular, if p is the origin we have

D:{d :ﬂ with  d=—-a+d+7.

Given a vector v € CF, we use the N roots of unity w” = exp (27ir /N)
to define the vector Q(r,v) € CkV as

Qr,v) = [v,w’"v,wz’"v, o ,w(N_l)T’v]T, 0<r<N-1

The definition may be used recursively to define the vector Z(r,s,v) =
Q(s,Q(r,v)) € C* as

=(r,s,v) = [Q(r, v), W Qr,v), W Qr,v), . .. ,w(N_l)sQ(r, U)}T i
Theorem 2. If ), is an eigenvalue and v € C* an eigenvector of D+w"E+
w*F, and if M is the linearization of @) around p € V(0)® V(o,0) then A,

is an eigenvalue of M with corresponding eigenvector Z(r, s, v).

Proof. Let us first compute the eigenvalues of the matrix A. We have,
for any v € C?
AQ(r,v) =Q(r, (D 4+ w"E)v)

11



or, in full,

(D E 0 o o ][ v ] [ (D+WE)v

0 D E O 0 w'v W' (D+wE)v

0 0 D FE 0 wr | = | W (D+WwE)v
E 0 ... 0 0 D | |w™ Yyl [w™U(D+wE)v]

so, if (D 4+ w"E)v = \v then AQ(r,v) = A\.Q(r,v).
By applying the same algorithm we can calculate the eigenvalues and
eigenvectors of the matrix M. Given u € C* compute

MQ(s,u) =Q(s,(A+w’B)u)

or, in full
(A B 0 0 0 | [ u ] [ (A+w'B)u
0O A B 0 ... 0 wu w(A+w’B)u
0 0 A B ... 0 w¥u | = | w¥(A+w'B)u
B0 ... 0 0 A | 0™y |0V (A+wB)u

To complete the proof we compute MZ(r, s,v) = MQ (s,Q(r,v)) as
MZ(r,s,v) = Q(s,(A+w’B)Q(r,v)) = Q (s, AQ(r,v)) + Q (s,w* BQ(r, v)) .

Then, since B is a block diagonal matrix, then BQ(r,v) = Q(r, Fv) for any
v € R? and we get:

MZ(r, s,v) Q(s,Q2(r,(D+wE)v))+Q (s, Qr,w Fv))
Q(s,Q(r,(D+w'E 4+ w'F)v))

and thus
MZ=(r,s,v) =Z(r,s,(D+w'E+ w’F)v).

It follows that if (D + w"E 4+ w®F)v = A, v then MZE(r, s,v) = A\, sZ(, 5,0)
as we had claimed. m

12



5.1. Form of the eigenvalues

Theorem 3. If L is the linearisation of () around the origin and D =
L — E — F then the eigenvalues of D + w"E + w*F' are of the form

Ars)+ = % [—(c+a)+v(1—w") + (1 —w)]

(7)

:I:%\/[(c — )+ y(1 —w) +5(1 — w2 — 4b

where \/— stands for the principal square root. Moreover, on the isotypic
component V (i, iy) © V(e k), the eigenvalues of M are Ay, g+ and their
complex conjugates N(N—k, N—kq)+-

Proof. It is straightforward to derive the explicit expression ([7) of the
eigenvalues of D +w"E +w®F’; a direct calculation shows that, unless (r, s) =
(0,0), the complex conjugate of A g4 is not (. s)—, but rather A(y_, n—g)4.

We claim that for any complex number ( the real and imaginary parts
of Z(ky, k2, ¢) lie in Vi, j,); from this it follows that the real and imaginary
parts of the eigenvectors Z(ky, k2, v) lie in the isotypic component Vi, ,) ®
V (k1 ka)- Since Vg, k) = V(N_k; N—ko), this will complete the proof that the
eigenvalues A, ky)+ and Av_p y—s)+ correspond to Vx, k) @ V(ky ks)-

It remains to establish our claim. Using the expression (@) to write the
coordinate x, g of Z(ky, ka2, () we obtain

2mi
Tap = (€Xp W(a—l)k1+(ﬁ—1)k2 =

271 271

= (exp N (—Fk1 — k2)} exp {W (o, B) - k} .

Its real and imaginary parts are of the form (B for z = Cexp [Z (—ky — k»)]
and z = —i( exp [% (—k1 — ]{?2):|, respectively, and therefore lie in Vi, 1,) ®
V(1 ko), @s claimed. m

For the mode (r,s) = (0,0) the expression ([7]) reduces to the eigenvalues

A+ of uncoupled equations (), linearised about the origin,

—c—a+ (c+a)2—4b. (8)

A = .

13



6. Bifurcation for ¢ =0

In this section we look at the Hopf bifurcation in the case ¢ = 0, regarding
a as a bifurcation parameter. The bulk of the section consists of the proof of
Theorem [ below. Since in this case the only equilibrium is the origin, only
the first two rows of Table [3 occur.

Theorem 4. For generic v, and for c =0, b # 0 all the eigenvalues of the
linearization of ([2)) around the origin have multiplicity 1.

Proof. We can write the characteristic polynomial for L + (w" — 1)E +
(w® — 1)F, where L is the linearization of (I]) about the origin, as

fOurs)= X +Aa—vy(1—-w)—0(1—w)]+b 1<r,s<N. (9)

We start by showing that if two of these polynomials have one root in com-
mon, then they are identical.

Indeed, let ¢1(A) and ¢o(A) be two polynomials of the form (@) and sup-
pose they share one root, say A\ = p + iq, while the remaining roots are
A = p1 +iq for ¢ and A = py + iqy for ¢o. Since b # 0, then none of these
roots is zero. Then we can write

o;(N) = (A= (p+iq)) (A= (p; +ig;))
=N =A((p+p;) +ilqg+q))+ (p+iq) (p; +ig;)

and therefore (p +iq) (p1 +iq1) = b = (p +iq) (p2 + iq2), so, as p + iq # 0,
then (p1 +1iq1) = (p2 + ige) and therefore ¢1(\) = ¢2(A). Since this is valid
for any pair of polynomials of the family, it only remains to show that for
generic v, 0 the polynomials do not coincide.
Two polynomials f(\,7,s) and f(\, 7,3) of the form (@) coincide if and
only if
7 (W= w') =6 (W —w). (10)

Thus, for (v, d) outside a finite number of lines defined by (I0) all the eigen-
values of the linearization of (2)) around the origin have multiplicity 1, as we
wanted to show. m

Theorem 5. Forc=0, b > 0 and for any v and § with vé # 0 the origin is
the only equilibrium of ([2)). For each value of v and § there exists a, = 0 such
that for a > a, the origin is asymptotically stable. The stability of the origin

14



changes at a = a,, where it undergoes a Hopf bifurcation with respect to the
bifurcation parameter a, into a periodic solution. The spatial symmetries of
the bifurcating solution and the values of a. are given in Table[f] Moreover,
if the coupling is associative, i.e, if both v < 0 and 6 < 0, the bifurcating
solution is stable and the bifurcation is subcritical.

Table 4: Details of Hopf bifurcation on the parameter a for Theorem[El Solutions bifurcate

at a = ax (where Oy = %) with spatial symmetry K and spatio-temporal symmetry
ZN X ZN.
sign(vy) sign(d) s K
- - 0 ZN X ZN
+ - v (1 — cosfy) Zy (0,1)
- + d (1 —cosfy) Zy (1,0)
+ + (v+0) (1 —cosby) Zy (5L, 22

The first step is to determine the stability of the origin. To do this, we
need estimates for the real part of the eigenvalues (). This is done in the
next Lemma.

Lemma 2. Let A(r,s) = —a+~v(1—w") +0 (1 —w®). Forc=20,b>0,
Y6 # 0 and for all (r,s) we have Re Ap.q— < 3Re A(r,s). If Re A(r,s) >0
then Re Ao+ < Re A(r,s), otherwise Re A g4 < 0.

Proof of Lemma [2. In order to evaluate the real and imaginary parts
of eigenvalues A 5)+, we need to rewrite equation () by getting rid of the
square root. For this purpose, we use a well known result from elementary
algebra; we have that if n = a; + ib;, where a; and b; are real, b; # 0, then
the real and imaginary parts of \/7 = v/a; + ib; are given by

+a —a
Re /n = |77|2 ! Im /n = sgn (by) |77|2 L (11)

A direct application of (7)) in Theorem Bl to the case ¢ = 0 yields, if A*> ¢ R
and for ¢, = +1

1 A2 —4 A2 —4
Re >\(T,8)81 = 5 (Re A+61\/| b| + Re ( b)) (12)

2
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1 A% 45| — Re (A2 — 4
I Ao = 5 <Im A+ 515\/ | | 5‘6 ( >> (13)

with A = A(r, s) and S = sgn (Im (A4?)).
The statement for (. ;) follows immediately from (I2). For A, s+, note
that, for b > 0 and any n € C, we have

[n* — 4b| + Re (n* — 4b) < 2 (Re n)°

with equality holding if and only if Re n = 0, when the expressions are
identically zero. Hence, taking n = A(r, s), we obtain from (I2)):

1
Re A¢rs)+ < 5 (Re A(r,s) + |Re A(r, s)|)

and the result follows. =

The particular case of fully synchronised solutions in Theorem [lis treated
in the next Lemma. This case is simpler since the bifurcation takes place
inside the subspace V(g ) @ V 0,0).

Lemma 3. Forc =0, b > 0 and vd # 0 the origin is the only equilibrium
of @) and at a = 0 it undergoes a Hopf bifurcation, subcritical with respect
to the bifurcation parameter a, to a fully synchronised periodic solution. If
both v < 0 and 6 < 0, the origin is asymptotically stable for a > 0 and the
bifurcating solution is stable. Otherwise, the periodic solution is unstable.

Proof of Lemma [3l Inspection of (2]) when ¢ = 0 shows that the only
equilibrium is the origin.

The restriction of (2) to the plane V(o) @ V(o) obeys the uncoupled
equations () whose linearisation around the origin has eigenvalues given
by ). It follows that, within V(o0 @ V(o), the origin is asymptotically
stable for a > 0, unstable for a < 0. The linearisation has purely imaginary
eigenvalues at a = 0.

Consider the positive function ¢(y) = exp(—2y/b). Then, for the uncou-
pled equations () we get

2 (o) + a% (p(y)9) = (=302 + 2az — a) o(y)

which is always negative if 0 < a < 3. Hence, by Dulac’s criterion, the
system () cannot have any periodic solutions, and thus if there is a Hopf
bifurcation at a = 0 inside the plane V) @ V() it must be subcritical.
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In order to show that indeed there is a Hopf bifurcation we apply the
criterium of [11, Theorem 3.4.2] and evaluate

16s* = fxxx + fxyy + Gray + Gyyy

1
+% [fxy (fxx + fyy) — Gy (gxx + gyy) - fxxg:c:c + fyygyy]a

W};ere f(x,y) = fi(z, Voy)—Vby, g(x,y) = fo(v/br,y)—Vbx and f,, denotes
;I—gy((),()), etc. Since, for a = ¢ = 0, we have f(x,y) = —23 + 2? and
g(z,y) = 0, this yields s* = —%. The Hopf bifurcation is not degenerate
and the bifurcating periodic solution is stable within Vo) @© V(o). Since
ORe A,0)+/0a = —1/2 the bifurcation is indeed subcritical with respect to
the bifurcation parameter a.

It remains to discuss the global stability, with respect to initial conditions
outside Vg 0) ® V(0,0). If v > 0 then from the expression (I2)) in the proof
of Lemma [2 at a = 0 we obtain Re A1)+ > 0 and the bifurcating periodic
solution is unstable. A similar argument holds for § > 0.

If both v < 0 and § < 0, then, for a = 0, we get Re A(r,s) < 0 for
(r,s) # (0,0). Hence, by Lemma [2], all the eigenvalues A5+, (7,5) # (0,0)
have negative real parts and the bifurcating solution is stable. m

Proof of Theorem [B.  The case of associative coupling v < 0 and
0 < 0 having been treated in Lemma [3] it remains to deal with the cases
when either v or ¢ is positive. Let r., = N;’”, g = 1, ¢ =0,b > 0,
Oy = W(A][V_l), with sinfy > 0, cosfy < 0 and cosfy < cos %‘T“ for all a € Z.
Ifvy>0,0<0and a > v(1—cosy)= as, then for all (r,s) # (r.,,0)
we have Re A(r, s) < 0, with equality only if both a = a, and (r, s) = (r.,,0).

Using (I2)) and (I3]) we get

A(re,,0) = iggysin Oy;

1
ImA, 0)e; = 5 <€2”y sinfy + &1 \/72 sin? Oy + 46)

with )\(”70)4_ = )\(L70)_ and )\(r,,0)+ = )\(,«J”O)_. In addition Im>\(”,0)+ >
IIIl)\(TﬂO)_i_ > 0 for b > 0.

The results of Golubitsky and Langford [7] are always applicable to the
Hopf bifurcation for A, )4, since there are no eigenvalues of the form
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kX, 0)+ with & € N. For the smaller imaginary part there may be resonances
when A¢., 0+ = kA_0— with & € N. Otherwise, if the other non-degeneracy
conditions hold, there are two independent Hopf bifurcations at a = a, i.e.
two separate solution branches that bifurcate at this point. The resonance
condition may be rewritten as
(k—1)

k
The bifurcating solutions are stable if and only if the branches are subcritical.
The eigenspace corresponding to these branches lies in Vi, o) @ V{,, 0) C
Fix(Z(0,1)).

In the case v > 0, § > 0, we have a, = (v +0) (1 — cosfy). For a > a,
and for all (r,s) we have Re A(r,s) < 0, and hence Re A, 4+ < 0 with
equality holding only when both a = a, and A, ,,)+. The eigenspace in this

case lies in V., »,) ® V() C Fix (ZN (2, %)) Then

A2sin Oy = b, keN, k=2

A(T627 Tag) = Z.(EQ’Y + 535) sin HN

1
)\(7"5277"53)51 = 5 (A(TE% TEB) + 51\/A2(T52’ T€3) - 4b) )
with g; = +1,i = {1,2, 3}. Hence, ReA(., r.,)s, = 0 and

Im)\(rz~:27r63)51 = % <(€2’}/ + 535) sin 9]\[ + 51\/(82’7 + 535)2 Sin2 9]\[ + 4b)
with )x(hszﬁsg)_ = )\(Ts2 Tegys- In addition Im)\(rs2 rep)er > 0 when ¢, = +1
with Im>\(m,r+)+ > Im>\( )+ for (82,83) 7£ (+1, —|—1) and b > 0.

Hence there is a non-resonant Hopf bifurcation corresponding to Ay, ;. )+
As mentioned before, for the smaller imaginary parts there may be resonances
when Aq., r..)+ = kA@, ry)+ With & € N. Otherwise, there are four indepen-
dent Hopf bifurcations at a = a, if other non-degeneracy conditions hold;
in this case four separate solution branches bifurcate at this point. The
bifurcating solutions are stable if and only if the branches are subcritical. m

We have checked numerically the non-degeneracy condition for bifurcation
of the non-resonant branch using the formulas of Golubitsky and Langford
[7]. The criticality of the bifurcation branch seems to depend on N. For
v > 0,0 >0, N > 11, the bifurcating solution branch seems to be always
subcritical, and hence stable. For N = 3,5, 7 it seems to be supercritical. If
0 <0, and N > 11, the bifurcating branch seems to be subcritical for large
values of v > 0, supercritical otherwise.

Teg ey

7‘53
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7. Bifurcation for ¢ > 0 small

In this section we extend the result of section [6] for bifiurcations at small
positive values of c. We start with the case when both v and § are negative.

Corollary 1. For small values of ¢, if b > 0, v < 0 and 6 < 0 the origin is
an equilibrium of (2l) and there is a neighbourhood of the origin containing
no other equilibria. There exists a near 0 such that for a > a the origin is
asymptotically stable. The stability of the origin changes at a = a, where
it undergoes a Hopf bifurcation, subcritical with respect to the bifurcation
parameter a, into a stable periodic solution with spatial symmetries Ziy X Zy .

Proof. The eigenvalues of Df(0) are all non-zero at ¢ = 0, as shown in
the proof of Lemmaf3l Hence D f(0) is non-singular and the implicit function
theorem ensures that, for small values of ¢, there is a unique equilibrium close
to the origin. From the symmetry it follows that this equilibrium is the origin.

If both v < 0 and § < 0, then it follows from the proof of Lemma [l
that for ¢ = 0 the purely imaginary eigenvalues at a = a, = 0 are simple.
Continuity of the eigenvalues ensures the persistence of the purely imaginary
pair for ¢ # 0 at nearby values of a . Hence the corresponding eigenvectors
depend smoothly on ¢, and the non-degeneracy conditions persist for small
values of c. m

The cases when either v > 0 or § > 0, are treated in the next proposition.

Proposition 3. For small values of ¢ > 0, if b > 0 and v # 0 the origin is
an equilibrium of (2) and there is a neighbourhood of the origin containing no
other equilibria. For a > a,, where a, has the value of Table[]), the origin is
asymptotically stable. For almost all values of v # 0 and 6 # 0, The stability
of the origin changes at a = a < a,, with a, near a., where it undergoes
a non-resonant Hopf bifurcation into a periodic solution having the spatial
symmetries of Table [§]. If the bifurcation is subcritical with respect to the
bifurcation parameter a, then the bifurcating periodic solution is stable.

Proof. For small values of ¢, the origin is locally the only equilibrium,
by the arguments given in the proof of Corollary [Il In Lemma [ below, we
show that for small ¢ > 0 and a > a,, all the eigenvalues of the linearisation
have negative real parts. Hence, the origin is asymptotically stable. When
a decreases from a, the real parts of some eigenvalues change their signs. It
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was shown in the proof of Theorem [G] that for ¢ = 0, there are several pairs
of purely imaginary eigenvalues at a = a,. In Lemmas [Bl and [@ below, we
show that, generically, for small ¢ > 0, when a decreases from the value a,
of Table M the first bifurcation at a = a < a, takes place when a single pair
of eigenvalues crosses the imaginary axis at a non-resonant Hopf bifurcation.
We also identify the pair of eigenvalues for which the first bifurcation takes
place. m

Lemma 4. For small values of ¢ > 0, if b > 0, v0 # 0, let a, have the value
of Table[f If a > a, then, for allr,s, and fore; = £1, we have ReA(, 5., <0,
and the origin is asymptotically stable.

Proof. For e = £1, the eigenvalues A, ), have the form

W = Alr,5) — o+ €11/ (A(r, 5) + 0)? — 4b. (14)
Using (I]) and writing A(r, s) = x + iy, we have
(A+c)? = (c+2)* —y* + 2i(cy + 7). (15)

Then ReA(.s)— < ReAs)4, and Red,. 4 < 0 if and only if

Re\/(A(r, s)+e¢) —4b < (x4 ¢)

This never happens if ¢ —x < 0, and in this case we also have 2Re),. ;- < 0.
Ifc—2>0let

p1 = (c—x)* —dwc+y*+4b and p2:[(c—l—x)2—y2—4b}2+4y2(c+x)2

with p? — py = 16 [—23c + (b + 2¢*)2? — (2¢b + cy® + )z + D).
With this notation, ReA. ¢4+ < 0 if and only if p; > 0 and

[(c+2)” —y2—4b}2+4y2(c+x)2 < [(e—2)? —4xc+y2+4b]2.

We have the following cases:

1. if 2 <0, ¢ > 0 then p; > 0 and p? — p» > 0 and so ReA(, 5+ < 0;

2 _
2. if:)s:O,c>Othenp1:y2+4b+c2>Oandp1 P2 _ 2p > 0 and

therefore Re(, o+ < 0;
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3. at x = ¢ we have p? — py = —16c*y? < 0, so (p? — pa) changes sign for

some z,, 0 < z, < c.

This completes the proof, since for a > a, we have z = ReA(r,s) < 0, as in
the proof of Theorem [ ]

Lemma 5. For small values of ¢ > 0, ifb>0,v> 0,0 <0 andifa—ax <0
is small, then all the eigenvalues of the linearisation of ([2)) around the origin
have real parts smaller than the real part of A o)+

Proof. It was shown in the proof of Theorem [f] that at ¢ = 0, a = a,,
the eigenvalues A, 0)e,, with &1 = £1with e2 = +1, are purely imaginary,
and all other eigenvalues have negative real parts. From the expression (I4))
it follows that

2ReA(r., 00 = ReA(re,,0) —c+ elRe\/(A(rQ, 0) +¢)* — 4b

hence Re)\(rs2 0- < Re)\(rg2 0+ Let a be the value of a for which the pair
Ay 0)+ = A(r_0)4 first crosses the imaginary axis. Since ReA(r.,,0) decreases
with a, then a < a,. The estimates above show that at a = a, the second
pair A, 0- = Ap_,0)— still has negative real part. For small ¢, the other
eigenvalues still have negative real parts at a, by continuity. m

Lemma 6. For small values of ¢ > 0, ifb>0,v> 0,0 >0 andifa—ax <0
is small, then all the eigenvalues of the linearisation of (2)) around the origin
have real parts smaller than the real part of Ap, r.)+

Proof. Asin Lemma[lwe use (I4) to show that ReA(., r.,)- < ReA(, rey)+
at ¢ > 0. It remains to compare the real parts of the two pairs A¢ .4 =
Ar_ry+ and A, 4 = Ag_ )+ To do this, we write A(re,,7.,) = = + iy,
where z,y € R and obtain conditions on x and y ensuring that the eigenvalue
is purely imaginary. Then we evaluate these conditions on the expressions

for x and y to obtain the result.
From (I4]) and (I5) we get that ReA = 0 if and only if

(2(0_95)2—X)2:X2+4(I+C)2y2 for X =(x+4c)?—y*>—4b
and this is equivalent to

2
(C—x)2:X+(g+x) y2:(x+c)2—y2—4b+(+7
T

(c—x)?
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which may be rewritten as:

(c—2)? — (z+c) +4b=y [%—1}.

This may be solved for y? to yield

g (Lot -ve) 19

CT

and note that, for ¢ > 0 and if ¢* < b, then ¥(x) > 0 for 0 < x < ¢, and in
this interval ¢ (x) is monotonically decreasing.

Now consider the expressions of the real and imaginary parts of A(r.,,r.,).
The real part x(r.,,r.,) satisfies

= —a + a

2(rey,725) = —a + (v +6) <1 — cos M)

N

hence, x does not depend on €5 nor on €3, and x > 0 for a < as.
On the other hand, the imaginary part y(re,, r.,) is

(N -1
N
(N-1D)m

thus y does not depend on a, and since sin “—= > 0 then,

y(raza 7"53) - (52’}/ + 535) sin

ly(re,ro)| <w(re,ry) and  y(ry,ry) > 0.

Finally, when a decreases from a,, then x increases from zero, and hence
¥ (x) decreases from +oo. The first value of y to satisfy (I8) will be y(ry,ry)
since it has the largest absolute value. Hence the first pair of eigenvalues to
cross the imaginary axis will be A, ), = A_ r_)e,, as required, while the
real parts of all other eigenvalues, including A, ,_)e; = Ap_ry)e,, are still
negative. m

Note that from Lemmas [ and [0, it follows that the first bifurcating
eigenvalue for ¢ > 0 is precisely the non-resonant eigenvalue for ¢ = 0, that
has the largest imaginary part.

Acknowledgements. The research of both authors at Centro de Matema-
tica da Universidade do Porto (CMUP) had financial support from the Euro-
pean Regional Development Fund through the programme COMPETE and
from the Portuguese Government through the Fundagao para a Ciéncia e
a Tecnologia (FCT) under the project PEst-C/MAT/UI0144/2011. A.C.
Murza was also supported by the grant SFRH/ BD/ 64374/ 2009 of FCT.

22



References

1]

F. ANTONELI, A.P.S. Dias AND R.C. Pa1va, Hopf Bifurcation in
coupled cell networks with interior symmetries, SIAM J. App. Dyn. Syst.

7, (2008), 220-248.

A.P.S. Dias, A. RODRIGUES, Hopf bifurcation with S,, symmetry, Non-
lin. 22, (2009), 627-666.

B. DioNNE, M. GOLUBITSKY AND I. STEWART, Coupled cells with
internal symmetry Part I: wreath products, Nonlin. 9, (1996), 559-574.

B. DioNNE, M. GOLUBITSKY AND I. STEWART, Coupled cells with
internal symmetry Part I1: direct products, Nonlin. 9, (1996), 575-599.

N. FiLipsky, M. GOLUBITSKY, The Abelian Hopf H mod K Theorem,
SIAM J. Appl. Dynam. Sys. 9, (2010), 283-291.

D. GiLris AND M. GOLUBITSKY, Patterns in square arrays of coupled
cells, J. Math. An. Appl. 208, (1997), 487-5009.

M. GoLUBITSKY, W.F. LANGFORD, Classification and unfoldings of
degenerate Hopf bifurcations, J. Diff. Eq. 41, (1981), 375-415.

M. GoruBITSKY, [.N. STEWART Hopf bifurcation with dihedral group
symmetry: coupled nonlinear oscillators, In: Multiparameter Bifurca-
tion Theory, Contemporary Mathematics 56, (1986), 131-173.

M. GOLUBITSKY, I. STEWART, The symmetry perspective: from equi-
librium to chaos in phase space and physical space, Birkhauser, (2003).

M. GOLUBITSKY, I. STEWART, D.G. SCHAEFFER, Singularities and
groups in bifurcation theory II, Applied mathematical sciences 69,
Springer-Verlag, (1988).

J. GUCKENHEIMER, P. HOLMES, Nonlinear oscillations, dynamical sys-
tems, and bifurcation of vector fields, J. Marsden, L. Sirovich, F. John,
eds., Applied mathematical sciences 42, Springer-Verlag, (1983), 152—
156.

R. SIGRIST, Hopf bifurcation on a sphere, Nonlin. 23, (2010), 3199—
3225.

23



	1 Introduction
	2 Dynamics of FitzHugh-Nagumo coupled in a torus and its symmetries
	3 The ZNZN action
	3.1 The ZNZN-isotypical components of R2N2

	4 Symmetries of generic oscillations patterns
	5 Linear Stability
	5.1 Form of the eigenvalues

	6 Bifurcation for c=0
	7 Bifurcation for c>0 small

