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JORGE MILHAZES FREITAS AND ANA CRISTINA MOREIRA FREITAS

Abstract. We consider the quadratic family of maps given by fa(x) = 1 − ax2 with
x ∈ [−1, 1], where a is a Misiurewicz parameter. On this set of parameters, there is
an fa-invariant probability measure, µa, that is absolutely continuous with respect to
Lebesgue.

For each of these chaotic dynamical systems we study the extreme value distribu-
tion of the stationary stochastic processes X0, X1, . . ., given by Xn = g ◦ fn

a , for ev-
ery integer n ≥ 0, where g is a certain type of continuous random variable on the
probability space ([−1, 1],B, µa), with B denoting the Borel σ-algebra. Using the tech-
niques developed by Benedicks and Carleson, we show that the limiting distribution
of Mn = max{X0, . . . , Xn−1} is the same as that which would apply if the sequence
X0, X1, . . . was independent and identically distributed. This result allows us to obtain
that the asymptotic distribution of Mn is of Type III (Weibull).

1. Introduction

In broad terms, Dynamical Systems is the study of the long term behavior of typical
trajectories (orbits) governed by the laws of the system. Its applications are innumerable,
range from the microscopic quantum mechanics to the macroscopic evolution of star sys-
tems and touch several different fields of knowledge. The emergence of chaotic dynamics
has switched the analysis from a Geometrical and Topological perspective to a Mesure The-
oretical and Probabilistic view. The statistical properties of evolving orbits have become
a subject of much interest and study. These properties are usually tied in with averages of
observable quantities and their asymptotic distributions given by Central Limit Theorems.

However, in certain circumstances, the mean or central statistics do not enclose the
information pertinent to the case in question. Take for example the study of river floods.
If one wants to evaluate the risk of having a very serious flood, the average level hight of
the river, say in a decade, does not tell us as much as do the maximum water level values
observed in the days that the river hight has exceeded a given threshold causing a flood. In
this type of situation of risk assessment associated with rare events, from the most unlikely
as tsunamis or terrorist attacks to the everyday car accidents or failure of a mechanical
structure, one needs a different statistical analysis.
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This is where Extreme Value Theory comes in. It is mostly concerned with the study of
distributional properties of the higher (lower) order statistics of a sample, like the maxi-
mum (minimum) of the sample. Its major classical result states that there are only three
types of non-degenerate asymptotic distributions for the maximum of an independent and
identically distributed (i.i.d.) sample under linear normalization. This result has been ex-
tended to the dependent context. In fact, it has been shown that, under certain conditions
on the dependence structure, the same limit laws apply for maxima.

The dynamical systems we consider in this work are the quadratic maps given by fa(x) =
1−ax2 on I = [−1, 1], with a ∈M, where M is the Misiurewicz parameter set introduced
in [Mis81]. This set M is contained in a larger set of parameters BC introduced by
Benedicks and Carleson in [BC85]. The set BC has positive Lebesgue measure and is built
in such a way that for every a ∈ BC there is exponential growth of the derivative of fa

along the critical orbit, i.e., there is c > 0 such that
∣∣(fn

a )′ (fa(0))
∣∣ ≥ ecn,

for all n ∈ N. This property is usually referred to as the Collet-Eckmann condition (see
[CE83]) and guarantees not only the non-existence of an attracting periodic orbit but also
assures the existence of an ergodic fa-invariant probability measure µa that is absolutely
continuous with respect to Lebesgue measure on [−1, 1]. The set M has zero Lebesgue
measure but is a dense subset of BC (see [Thu01]) and has the following extra property:
for every a ∈ M the critical orbit is non-recurrent, which means that there is d > 0 such
that

fn
a (0) /∈ (−d, d) for all n ∈ N. (1.1)

Most of the times we simply assume that a ∈ BC and the main features of these parameters
are described together with the Benedicks-Carleson techniques in Section 3. When con-
dition (1.1) is needed, it will always be specifically mentioned. These Benedicks-Carleson
systems are chaotic and highly sensitive on initial conditions. In fact, after some iterates
the behavior of most orbits becomes erratic and distributed on the set [−1, 1] accordingly
to the invariant measure µa, or in other words, the frequency of visits payed by the orbit of
Lebesgue-almost every point x to a Borel measure set A ⊂ [−1, 1] tends to µa(A). Hence,
it is surely interesting to study the statistical properties of the orbits of these systems and,
here, we are particularly concerned with their extreme type behavior.

A natural way to build a stationary stochastic process associated to fa for some a ∈ BC
is to consider the random variable (r.v.) Y0 defined on the probability space ([−1, 1], µa),
taking values in [−1, 1] with distribution function (d.f.) Fa(x) = µa{(−∞, x] ∩ [−1, 1]}.
Then, we iterate Y0 using fa to obtain Y1 = fa(Y0), whose d.f. is also Fa by the fa-invariance
of µa. Next, we just repeat the process to obtain the stationary sequence Y0, Y1, Y2, . . . For
future reference we say that this stochastic process is the natural process associated to fa.

For each a ∈ BC we may also define a stochastic processe X0, X1, X2, . . . in the following
way:

Xn = g ◦ fn
a , for each n ∈ N0, (1.2)
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where g : [−1, 1] → R is a continuous r.v. on the probability space (R,B, µa), with B
denoting the Borel σ-algebra. We will consider two types of r.v. g:

(1) The first type is denoted by g1. We require that g1 is C1 in a an open neighborhood
of 1 and
(a) g1(x) < g1(1) for every x ∈ [−1, 1)

(b) limx→0+
g1(1)−g1(1−x)

x
> 0.

(2) The second type is denoted by g2 and is such that
(a) g2(x) < g2(0) for every x ∈ [−1, 1] \ {0}
(b) There exists r > 0 such that ḡ2 = g2|(−r,0], ĝ2 = g2|[0,r) are invertible and for

x ∈ (−r, r) we have ḡ2(x) = g2(0) − O (|x|q̄) and ĝ2(x) = g2(0) − O (
xq̂

)
, for

some q̄, q̂ ∈ N, which means that g2(0)−ḡ2(x)
|x|q̄ → const > 0, g2(0)−ĝ2(x)

xq̂ → const >
0, as x → 0.
We set q = max{q̄, q̂}.

Observe that the fa-invariance of the probability measure µa implies that every stochastic
process above is stationary (see for example [KT66, Section 15.4]) and the common mar-
ginal d.f. is given by Ga(x) = µa {X0 ≤ x}. We also remark that taking g1(x) = Id(x) = x
then the process X0, X1, X2, . . . corresponds to the natural stochastic process Y0, Y1, Y2, . . .
while if we define g2(x) = 1− ax2 we obtain a process corresponding to Y1, Y2, Y3, . . .

Our goal is to study the asymptotic distribution of the partial maximum

Mn = max {X0, X1, . . . , Xn−1} , (1.3)

when properly normalized. The main results of this work state that the limiting laws of
Mn are the same as if X0, X1, . . . were independent with the same d.f. Ga. In fact, we
verify that under appropriate normalization the asymptotic distribution of Mn is of type
III (Weibull). As usual, we denote by G−1

a the generalized inverse of the d.f. Ga, which is
to say that G−1

a (y) := inf{x : Ga(x) ≥ y}.
Theorem A. For each a ∈ M and every stationary stochastic process (Xi)i∈N0

given by
(1.2) with g = g1 satisfying conditions (1a) and (1b), consider the sequences bn = g1(1)

and an =
(
1−G−1

a

(
1− 1

n

))−1
. Then, we have the following asymptotic behavior:

P{an(Mn − bn) ≤ x} → H1(x) =

{
e−(−x)1/2

, x ≤ 0

1 , x > 0
.

Theorem B. For each a ∈ M and every stationary stochastic process (Xi)i∈N0
given by

(1.2) with g = g2 satisfying conditions (2a) and (2b), consider the sequences bn = g2(0)

and an =
(
1−G−1

a

(
1− 1

n

))−1
. Then, we have the following asymptotic behavior:

P{an(Mn − bn) ≤ x} → H2(x) =

{
e−(−x)1/q

, x ≤ 0

1 , x > 0
.

We mention that Haiman [Hai03] has obtained a similar asymptotic result for the natural
stochastic process associated with the tent map. We are convinced that the same type of
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arguments used here for quadratic maps would allow us to obtain a different proof of
Haiman’s result.

We also refer that a study concerning Extremes for Dynamical Systems, essentially
focusing the finite sample behavior of maxima, has already been done by Balakrishnan,
Nicolis and Nicolis in [BNN95].

2. Motivation and Strategy

The study of the limit behavior for maxima of a stationary process can be reduced,
under adequate conditions on the dependence structure, to the Classical Extreme Value
Theory for independent and identically distributed (i.i.d.) sequences of r.v. Hence, to the
stationary process X0, X1, . . . we associate an independent sequence of r.v. denoted by
Z0, Z1, . . . with common d.f. given by Ga(x) = P {X0 ≤ x}. We also set for each n ∈ N

M̂n = max {Z0, . . . , Zn−1} . (2.1)

Let us focus on the conditions that allow us to relate the asymptotic distribution of Mn

with that of M̂n. Following [LLR83] we refer to these conditions as D(un) and D′(un), where
un is a suitable sequence of thresholds converging to maxx∈[−1,1] g, as n goes to ∞, and
will be defined below. The first condition, D(un), imposes a certain type of distributional
mixing property. Essentially it says that the dependence between some special type of
events fades away as they become more and more apart in the time line. The second one,
D′(un), restricts appearance of clusters, that is, it makes the occurrence of consecutive
‘exceedances’ of the level un an unlikely event.

As we have said, D(un) is a type of mixing requirement specially adapted to extreme
value theory. In this context, the events of interest are those of the form {Xi ≤ u} and
their intersections. Observe that {Mn ≤ u} is just {X0 ≤ u, . . . , Xn−1 ≤ u}. A natural
mixing condition in this context is the following. Let Gi1,...,in(x1, . . . , xn) denote the joint
d.f. of Xi1 , . . . , Xin and set Gi1,...,in(u) = Gi1,...,in(u, . . . , u).

Condition (D(un)). For any integers i1 < . . . < ip and j1 < . . . < jk for which j1−ip > m,
and any large n ∈ N,

∣∣Gi1,...,ip,j1,...,jk
(un)−Gi1,...,ip(un)Gj1,...,jk

(un)
∣∣ ≤ γ(m),

where γ(m) → 0 as m →∞.

We remark that the actual definition of D(un) appearing in [LLR83, Section 3.2] is
a weaker requirement but the one considered here is simpler to formulate and suits our
purposes.

Consider a sequence of stationary random variables Ξ1, Ξ2 . . . with common d.f. F . We
say that an exceedance of the ‘level’ un occurs at time i if Ξi > un. The probability of
such an exceedance is 1− F (un) and hence the mean value of the number of exceedances
occurring up to n is n(1− F (un)).
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Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if

lim
k→∞

lim sup
n→∞

n

[n/k]∑
j=1

P{X0 > un and Xj > un} = 0. (2.2)

The sequences of levels un considered are such that n(1 − Ga(un)) → τ as n → ∞,
for some τ ≥ 0, which means that, in a time period of length n, the expected number of
exceedances is approximately τ and the average number of exceedances in the time interval
{0, . . . , [n/k]} is approximately τ/k, which goes to zero as k →∞. However, it may happen
that the exceedances have a tendency to be concentrated in the time period following the
first exceedance at time 0. Condition 2.2 prevents this from happening, i.e., forbids the
concentration of exceedances by bounding the probability of more than one exceedance
in the time interval {0, . . . , [n/k]}. This guarantees that the exceedances should appear
scattered through the time period {0, . . . , n− 1}.

The special relevance of both these conditions is the following: let an and bn be sequences
such that P{an(M̂n − bn) ≤ x} → H(x) for some non-degenerate d.f. H; if D(un), D′(un)
are satisfied for the stationary sequence X1, X2, . . ., when un = x/an + bn for each x, then
P{an(Mn−bn) ≤ x} → H(x). See [LLR83, Theorem 3.5.2]. This means that if we are able
to show that conditions D(un) and D′(un) hold for the stationary process X0, X1, . . ., then

Mn and M̂n share the same asymptotic distribution with the same normalizing sequences.
Consequently, our strategy to prove Theorems A and B is the following:

• Compute the limiting distribution of M̂n and the respective normalizing sequences
an and bn.

• Show that conditions D(un) and D′(un) are satisfied for the stochastic process
X0, X1, X2, . . . defined in (1.2).

The rest of the paper is dedicated to the proof of these assertions and is structured as
follows. In Section 3 we describe the properties of the dynamical systems fa with a ∈
BC and the Benedicks-Carleson techniques. Then, in Section 4 we study the asymptotic
behavior of the maximum in the i.i.d. case and identify the desired domain of attraction
of M̂n and the respective normalizing sequences an and bn. The validity of condition
D(un) is a consequence of the very good mixing properties of the systems considered here.
Actually, it follows from the fact that these systems possess a weak-Bernoulli generator
(see Section 3.8 and Remark 3.1). Hence, we are left with the burden of proving D′(un).
In Section 5 we use the geometric properties of the systems to show Proposition 5.2 that
paves the way for the proof of D′(un) that is finally established in Section 6. In Section 7,
we present a small simulation study in order to compare the finite sample behavior of the
normalized Mn with the asymptotic one.
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3. Properties of the Benedicks-Carleson parameters

The Benedicks-Carleson Theorem (see [BC85] or Section 2 of [BC91]) states that there
exists a positive Lebesgue measure set of parameters that we denote by BC verifying

there is c > 0 (c ≈ log 2) such that |Dfn
a (fa(0))| ≥ ecn for all n ≥ 0; (EG)

there is a small α > 0 such that |fn
a (0)| ≥ e−αn for all n ≥ 1. (BA)

Before we describe the Benedicks-Carleson strategy we define the critical region which
is the interval (−δ, δ), where δ = e−∆ > 0 is chosen small but much larger than 2−a. This
region is partitioned into the intervals

(−δ, δ) =
⋃

m≥∆

Im,

where Im = (e−(m+1), e−m] for m > 0 and Im = −I−m for m < 0; then each Im is further
subdivided into m2 intervals {Im,j} of equal length inducing the partition P0 of [−1, 1] into

[−1,−δ) ∪
⋃
m,j

Im,j ∪ (−δ, 1]. (3.1)

Given J ∈ P , we let nJ denote the interval n times the length of J centered at J . We also
define Um := (−e−m, e−m), for every m ∈ N.

In order to study the growth of Dfn
a (x) for x ∈ [−1, 1] and a ∈ BC we split the orbit

in free periods and bound periods. During the former we are certain that the orbit never
visits the critical region. The latter begin when the orbit returns to the critical region and
initiates a bound to the critical point, accompanying its early iterates. We describe the
behavior of the derivative during these periods in Subsections 3.1 and 3.2.

3.1. Expansion outside the critical region. There is c0 > 0 and M0 ∈ N such that

(1) If x, . . . , fk−1
a (x) /∈ (−δ, δ) and k ≥ M0, then |Dfk

a (x)| ≥ ec0k;
(2) If x, . . . , fk−1

a (x) /∈ (−δ, δ) and fk
a (x) ∈ (−δ, δ), then |Dfk

a (x)| ≥ ec0k;
(3) If x, . . . , fk−1

a (x) /∈ (−δ, δ), then |Dfk
a (x)| ≥ δec0k.

If we were capable of keeping the orbit of x away from the critical region then it would be
in free period for ever and the estimates above would apply. However, it is inevitable that
almost every x ∈ [−1, 1] makes a return to the critical region. We say that n ∈ N is a return
time of the orbit of x if fn

a (x) ∈ (−δ, δ). Every free period of x ends with a free return to
the critical region. We say that the return had a depth of m ∈ N if m = [− log |fn

a (x)|],
which is equivalent to saying that fn

a (x) ∈ I±m. Once in the critical region the orbit of x
initiates a binding with the critical point.

3.2. Bound period definition and properties. Let β = 14α. For x ∈ (−δ, δ) define
p(x) to be the largest integer p such that

|fk
a (x)− fk

a (0)| < e−βk, ∀k < p. (3.2)

Then

(1) 1
2
|m| ≤ p(x) ≤ 3|m|, for each x ∈ Im;
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(2) |Df p
a (x)| ≥ ec′p, where c′ = 1−4β

3
> 0.

The orbit of x is said to be bound to the critical point during the period 0 ≤ k < p. We
may assume that p is constant on each Im,j. Note that during the bound period the orbit
of x may return to the critical region. We call these instants: bound return times.

Roughly speaking, the idea behind the proof of Benedicks-Carleson Theorem is that
while the orbit of the critical point is outside a critical region we have expansion (see
Subsection 3.1); when it returns we have a serious setback in the expansion but then,
by continuity, the orbit repeats its early history regaining expansion on account of (EG).
To arrange for the exponential growth of the derivative along the critical orbit (EG) one
has to guarantee that the losses at the returns are not too drastic hence, by parameter
elimination, the basic assumption condition (BA) is imposed. The argument is mounted in
a very intricate induction scheme that guarantees both the conditions for the parameters
that survive the exclusions. The condition (EG) is usually known as the Collet-Eckmann
condition and it was introduced in [CE83].

3.3. Bookkeeping, essential and inessential returns. A sequence of partitions P0 ≺
P1 ≺ . . . is built so that points in the same element of the partition Pn have the same
history up to time n. For a detailed description of the construction of this sequence of
partitions in the phase space setting we refer to [Fre05, Section 4]. Here, we highlight some
of the main aspects of its construction.

For Lebesgue almost every x ∈ I, {x} = ∩n≥0ωn(x), where ωn(x) is the element of Pn

containing x. For such x there is a sequence t1, t2, . . . corresponding to the instants when
the orbit of x experiences a free essential return situation, which means Im,k ⊂ f ti

a (ωti(x))
for some |m| ≥ ∆ and 1 ≤ k ≤ m2. We have that ωn(x) = ωti−1

(x), for every ti−1 ≤ n < ti
and ωti(x) = ω0(f

ti(x)), except for the points at the two ends of f ti
a (ωti−1

(x)) for which it
may occur an adjoining to the neighboring interval. If ti is an essential return situation for
x, then it is either an essential return time for x which means that there exists m ≥ ∆ and
1 ≤ k ≤ m2 such that Im,k ⊂ f ti

a (ωti(x)) ⊂ 3Im,k; or an escaping time for x which is to say
that I(∆−1),1 ⊂ f ti

a (ωti(x)) ⊂ (δ, 1] or I−(∆−1),1 ⊂ f ti
a (ωti(x)) ⊂ [−1,−δ), where I±(∆−1),1 is

the subinterval of I±(∆−1) closest to 0.
We remark that every point in ω ∈ Pn has the same history up to n, in the sense that

they have the same free periods, return to the critical region simultaneously, with the same
depth and their bound periods expire at the same time.

We say that v is a free return time for x of inessential type if f v
a (ωv(x)) ⊂ 3Im,k, for

some |m| ≥ ∆ and 1 ≤ k ≤ m2, but f v
a (ωv(x)) is not large enough to contain an interval

Im,k for some |m| ≥ ∆ and 1 ≤ k ≤ m2.

3.4. Distortion of the derivative. The sequence of partitions described above is de-
signed so that we have bounded distortion in each element of the partition Pn−1 up to time
n. To be more precise, consider ω ∈ Pn−1. There exists a constant C independent of ω, n
and the parameter such that for every x, y ∈ ω,

|Dfn
a (x)|

|Dfn
a (y)| ≤ C. (3.3)
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See [Fre05, Lemma 4.2] for a proof.

3.5. Growth of returning and escaping components. Let t be an essential return
time for ω ∈ Pt, with Im,k ⊂ f t

a(ω) ⊂ 3Im,k for some m ≥ ∆ and 1 ≤ k ≤ m2. If n is the
next free return situation for ω (either essential or inessential) then

|fn
a (ω)| ≥ ec0qe−5β|m|, (3.4)

where q = n− (t + p). See [Fre05, Lemma 4.1].
Suppose that ω ∈ Pt is an escape component. Then in the next return situation t1 for

ω we have that ∣∣f t1
a (ω)

∣∣ ≥ e−β∆. (3.5)

See [MS93], [Fre06, Lemma 4.2] or [Mor93, Lemma 5.1] for a proof of a similar statement
in the space of parameters.

3.6. Existence of absolutely continuous invariant measures. For every a ∈ BC, the
quadratic map f = fa has an invariant probability measure µ that is absolutely continuous
with respect to Lebesgue measure on [−1, 1]. The existence of absolutely continuous invari-
ant measures (a.c.i.m) for a positive Lebesgue measure set of parameters was first proved
by Jakobson in [Jak81] and others followed. See for example [CE83], [BC85], [Now85],
[Ryc88], [BY92], [You92], etc.

The a.c.i.m. µ = ρdx has the following properties:

(1) µ is the only a.c.i.m. of f ;
(2) (f, µ) is exact;

(3) ρ = ρ1 + ρ2, where ρ1 has bounded variation and 0 ≤ ρ2(x) ≤ ∑∞
j=1

(1.9)−j√
|x−fj(0)| ;

(4) The support of µ is [f 2(0), f(0)] and infx∈[f2(0),f(0)] ρ(x) > 0;

The proof of these statements can be found in [You92, Theorems 1 and 2].

3.7. Decay of correlations and Central Limit Theorem. The Benedicks-Carleson
quadratic maps have good statistical behavior. In fact, L. S. Young proved that these maps
have exponential decay of correlations and satisfy the Central Limit Theorem ([You92,
Theorems 3 and 4]). This was also obtained by Keller and Nowicki in [KN92]. To be more
precise, for every a ∈ B we have for f = fa that there exists ς ∈ (0, 1) such that for all
ϕ, ψ : [−1, 1] → R with bounded variation, there is C = C(ϕ, ψ) such that∣∣∣∣

∫
ϕ · (ψ ◦ fn)dµ−

∫
ϕdµ

∫
ψdµ

∣∣∣∣ ≤ Cςn, ∀n ≥ 0. (3.6)

Moreover, if
∫

ϕdµ = 0 then for every x ∈ R we have

µ

{
1√
n

n−1∑
i=0

ϕ ◦ f i < x

}
−−−→
n→∞

Φ(x/σ), (3.7)

where we are assuming that σ := limn→∞ 1√
n

[∫ (∑n−1
i=0 ϕ ◦ f i

)2
dµ

]1/2

> 0 and Φ(·) denotes

the N(0, 1) distribution function.
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3.8. Exponential weak-Bernoulli mixing. Keller [Kel94] has obtained a result even
sharper than (3.6). Consider the partition of [−1, 1] given by Q = {[−1, 0), [0, 1]}. Also,

for integers k < l, denote by Ql
k the join of partitions

∨l
i=k f−iQ and by F l

k the σ-algebra
generated by Ql

k. According to [Kel94] the partition Q is a weak-Bernoulli generator for
every f = fa with a ∈ BC. This means that the σ-algebra F∞

0 coincides, up to sets of
Lebesgue measure 0, with the Borel σ-algebra of sets in [−1, 1] and that

βn(f,Q, µ) → 0, as n →∞,

where

βn(f,Q, µ) : = 2 sup
k>0

∫
sup

{∣∣µ(A|Fk
0 )− µ(A)

∣∣ : A ∈ F∞
k+n

}
dµ

= sup
k≥1, L≥1

∑

A∈Qk
0 , B∈Qk+n+L

k+n

|µ(A ∩B)− µ(A)µ(B)| .

In fact, [Kel94, Theorem 1] states that there are constants C > 0 and 0 < r < 1 such that

βn(f,Q, µ) ≤ Crn (3.8)

for all n ∈ N.

Remark 3.1. We observe that if we refine the partition Q by adding one or two points so
that {X0 > un} ∈ F0 for each n ∈ N, where F0 is the σ-algebra generated by Q, then
Keller’s argument still holds with the same type of estimate as in (3.8). As a consequence,
condition D(un) is true for every considered sequence un.

4. Domain of attraction of the associated i.i.d. process

We recall that to every stationary stochastic process X0, X1, X2, . . . defined in (1.2) we
associated an i.i.d. sequence of r.v. Z0, Z1, Z2, . . . with common d.f. given by Ga(x) =
P{X0 ≤ x} = µa{g−1((−∞, x])} (see Section 2). In this Section we will determine the
domain of attraction corresponding to the d.f. Ga, i.e., we will compute the limiting
distribution of M̂n, defined in (2.1), when properly normalized. For that purpose one
must look at the tail behavior of 1 − Ga(x) as x gets closer to supy∈R {Ga(y) < 1} =
maxy∈[−1,1] g(y). We have to divide the study in two cases corresponding to the two types
of r.v. g considered.

Assume g1 satisfies (1a) and (1b) of Section 1. Since g1 is C1 in a neighborhood of 1 and
the left-hand derivative at 1 is positive then g1 is invertible in a neighborhood of 1 and

g−1
1 (g1(1)− s) = 1−O(s), (4.1)

meaning that lims→0+
1−g−1

1 (g1(1)−s)

s
> 0. Attending to Section 3.6 (3) if ω is close to 1 we

may write ρ(ω) = O
(

1√
1−ω

)
, in the sense that ρ(ω)

1√
1−ω

→ c for some c > 0, as ω → 1. As a

consequence we have that µa {(ω, 1]} = O(
√

1− ω). Hence, for s > 0 sufficiently close to
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0 we have:

1−Ga (g1(1)− s) = O
(√

1− g−1
1 (g1(1)− s)

)
= O(

√
s), (4.2)

which means that lims→0+
1−Ga(g1(1)−s)√

s
> 0. We are now in condition of applying [LLR83,

Theorem 1.6.2] to obtain that Ga, in this case, belongs to the domain of attraction of type
III (Weibull) with parameter 1/2, since for every x > 0

lim
h→0+

1−Ga (g1(1)− xh)

1−Ga (g1(1)− h)
= lim

h→0+

√
xh√
h

= x1/2.

Moreover, according to [LLR83, Corollary 1.6.3] if we consider the sequences defined for
each n ∈ N by bn = g1(1) and an = (g1(1)−G−1

a (1− 1/n)), where G−1
a (y) = inf{x :

Ga(x) ≥ y}, then

P
{

an(M̂n − bn) ≤ x
}
→ H1(x) =

{
e−(−x)1/2

, x ≤ 0

1 , x > 0
,

as n →∞.
In the second case, when g2 has the properties (2a) and (2b) of Section 1. It follows that

for a sufficiently small s > 0 we have

ḡ−1
2 (g2(0)− s) = −O(s1/q̄) and ĝ−1

2 (g2(0)− s) = O(s1/q̂), (4.3)

which means that

lim
s→0+

ḡ−1
2 (g2(0)− s)

−s1/q̄
> 0 and lim

s→0+

ĝ−1
2 (g2(0)− s)

s1/q̂
> 0,

respectively. Attending to (3) and (4) of Section 3.6 and the fact that for the Misiurewicz
parameters (1.1) holds then C−1 ≤ ρ(x) ≤ C for every x ∈ (−d, d) and some C > 0.
Hence, for s > 0 sufficiently small we have, for q = max{q̄, q̂},

1−Ga (g2(0)− s) = O (
s1/q̂ + s1/q̄

)
= O (

s1/q
)
, (4.4)

which means that lims→0+
1−Ga(g2(0)−s)

s1/q > 0. We are now in condition of applying [LLR83,
Theorem 1.6.2] to obtain that Ga, in this case, belongs to the domain of attraction of type
III (Weibull) with parameter 1/q since for every x > 0

lim
h→0+

1−Ga (g2(0)− xh)

1−Ga (g2(0)− h)
= lim

h→0+

(xh)1/q

h1/q
= x1/q.

Moreover, according to [LLR83, Corollary 1.6.3] if we consider the sequences defined for
each n ∈ N by bn = g1(1) and an = (g2(0)−G−1

a (1− 1/n)), where G−1
a (y) = inf{x :

Ga(x) ≥ y}, then

P
{

an(M̂n − bn) ≤ x
}
→ H2(x) =

{
e−(−x)1/q

, x ≤ 0

1 , x > 0
,

as n →∞.
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5. Probability of an essential return reaching a certain depth

In the study of Extremes one is mostly interested in the probability of occurrence of
“exceedances” of the level un. In Section 6 we will see how these events are related with
the occurrence of deep returns. Thus, in this section we do some preparatory work by
estimating the probability of the returns hitting a given depth.

For each x ∈ I, let vn(x) denote the number of essential return situations of x between
1 and n, sn(x) be the number of those which are actual essential return times and Sn the
number of the latter that correspond to deep essential returns of the orbit of x, i.e, with
return depths above a threshold Θ ≥ ∆. Observe that vn(x) − sn(x) is the exact number
of escaping situations of the orbit of x, up to n.

Given the integers 0 ≤ s ≤ 2n
Θ

, s ≤ v ≤ n and s integers γ1, . . . , γs, each greater than or
equal to Θ, we define the event:

Av,s
γ1,...,γs

(n) =



x ∈ I : vn(x) = v, Sn(x) = s, and the depth of the i-th deep essen-

tial return is γi ∀i ∈ {1, . . . , s}



 .

Remark 5.1. Observe that the upper bound 2n
Θ

for the number of deep essential returns up
to time n derives from the fact that each deep essential return originates a bound period
of length at least 1

2
Θ (see Section 3.2). Since during the bound periods there cannot be

any essential return, the number of deep essential returns occurring in a period of length
n is at most n

2
3
Θ
.

Proposition 5.2. Given the integers 0 ≤ s ≤ 2n
Θ

and s ≤ v ≤ n, consider s integers
γ1, . . . , γs, each greater than or equal to Θ. If Θ is large enough, then

λ
(
Av,s

γ1,...,γs
(n)

) ≤
(

v

s

)
Exp

{
−(1− 6β)

s∑
i=1

γi

}

Proof. Fix n ∈ N and take ω0 ∈ P0. Note that the functions vn, sn and Sn are constant
in each ω ∈ Pn. Let ω ∈ ω0 ∩ Pn be such that vn(ω) = v. Then, there is a sequence
1 ≤ t1 ≤ . . . ≤ tv ≤ n of essential return situations. Let ωi denote the element of the
partition Pti that contains ω. We have ω0 ⊃ ω1 ⊃ . . . ⊃ ωv = ω. Consider that ωj = ∅
whenever j > v. For each j ∈ {0, . . . , n} we define the set:

Qj =
⋃

ω∈Pn∩ω0

ωj,

and its partition

Qj = {ωj : ω ∈ Pn ∩ ω0}.
Let ω ∈ Pn be such that Sn(ω) = s. Then, we may consider 1 ≤ r1 ≤ . . . ≤ rs ≤ v with ri

indicating that the i-th deep essential return occurs in the ri-th essential return situation.
Now, set V (0) = Q0 = ω0. Fix s integers 1 ≤ r1 ≤ . . . ≤ rs ≤ v. Next, for each j ≤ v we
define recursively the sets V (j). Although the set V (v) will depend on the fixed integers
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1 ≤ r1 ≤ . . . ≤ rs ≤ v, we do not indicate this so that the notation is not overloaded.
Suppose that V (j − 1) is already defined and ri−1 < j < ri. Then, we set

V (j) =
⋃

ω∈Qj

ω
⋂

f−tj
a (I − UΘ)

⋂
V (j − 1).

If j = ri then we define

V (j) =
⋃

ω∈Qj

ω
⋂

f−tj
a (Iγi

∪ I−γi
)
⋂

V (j − 1)

Observe that for every j ∈ {1, . . . , v} we have |V (j)|
|V (j−1)| ≤ 1. Therefore, we concentrate

in finding a better estimate for |V (ri)|
|V (ri−1)| . Consider that ωri

∈ Qri
∩ V (ri − 1) and let

ωri−1 ∈ Qri−1 ∩ V (ri − 1) contain ωri
. We have to consider two situations depending on

whether tri−1 is an escaping situation or an essential return.
Let us suppose first that tri−1 was an essential return with return depth η. Then,

|ωri
|

|ωri−1| ≤
|ωri

|
|ω̂ri−1| , where ω̂ri−1 = ωri−1 ∩ f

−tri
a (U1)

≤ C

∣∣∣f tri
a (ωri

)
∣∣∣

∣∣∣f tri
a (ω̂ri−1)

∣∣∣
, by (3.3)

≤ C
2e−γi

e−5βη
, by (3.4)

Note that when ri−1 = ri − 1 then η = γi−1 ≥ Θ. If, on the other hand, ri−1 > ri − 1 then
tri−1 is an essential return with depth η < Θ ≤ γi−1. Then in both situations we have

|ωri
|

|ωri−1| ≤ 2C
e−γi

e−5βγi−1
.

When tri−1 is an escape situation instead of using (3.4) we can use (3.5) and obtain

|ωri
|

|ωri−1| ≤ 2C
e−γi

e−β∆
≤ 2C

e−γi

e−5βγi−1
.

Observe also that if ω̂ri−1 6= ωri−1 then, because we are assuming that ωri
6= ∅, we have

λ
(
f

tri
a (ω̂ri−1)

)
≥ e−1 − e−Θ ≥ e−5βγi−1 , for large Θ.
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At this point we me have

|V (ri)| =
∑

ωri∈Qri∩V (ri−1)

|ωri
|

|ωri−1| |ωri−1|

≤ 2Ce−γie5βγi−1

∑

ωri∈Qri∩V (ri−1)

|ωri−1|

≤ 2Ce−γie5βγi−1|V (ri − 1)|.
We are now in conditions to obtain that

|V (v)| ≤ (2C)sExp

{
−(1− 5β)

s∑
i=1

γi

}
e5βγ0|V (0)|

where γ0 is given by the interval ω0 ∈ P0. If ω0 = I(η0,k0) with |η0| ≥ ∆ and 1 ≤ k0 ≤ η2
0,

then γ0 = |η0|. If ω0 = (δ, 1] or ω0 = [−1,−δ), then we can take γ0 = 0.
Now, we have to take into account the number of possibilities of having the occurrence

of the event V (v) implying the occurrence of the event Av,s
γ1,...,γs

(n). The number of possible

configurations related with the different values that the integers r1, . . . rs can take is
(

v
s

)
.

Hence, it follows that

λ
(
Av,s

γ1,...,γs
(n)

) ≤ (2C)s

(
v

s

)
Exp

{
−(1− 5β)

s∑
i=1

γi

} ∑
ωo∈P0

e5β|γ0||ω0|

≤ (2C)s

(
v

s

)
Exp

{
−(1− 5β)

s∑
i=1

γi

} 
2(1− δ) +

∑

|η0|≥∆

e5βη0e−|η0|




≤ 3(2C)s

(
v

s

)
Exp

{
−(1− 5β)

s∑
i=1

γi

}
, for ∆ large enough

≤
(

v

s

)
Exp

{
−(1− 6β)

s∑
i=1

γi

}
.

The last inequality results from the fact that sΘ ≤ ∑s
i=1 γi and the freedom to choose a

sufficiently large Θ. ¤

Given the integers 0 ≤ s ≤ 2n
Θ

, s ≤ v ≤ n and the integers γ0, γ1, both greater than or
equal to Θ, we consider the event:

Bv,s
γ0,γ1

(n) =



x ∈ Iγ0 : vn(x) = v, Sn(x) = s and n is a free deep return

with depth γ1



 .
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Corollary 5.3. Given the integers 0 ≤ s ≤ 2n
Θ

, s ≤ v ≤ n, and γ0, γ1 ≥ Θ. If Θ is large
enough, then

λ
(
Bv,s

γ0,γ1
(n)

) ≤
(

v

s

)
Exp {−(1− 6β)(γ0 + γ1)}

The proof of this statement follows easily from Proposition 5.2 by observing that al-
though n may be an inessential deep return time (instead of an essential deep return) the
estimates still prevail and for Θ > ∆ large enough we have

∑
γ≥Θ e−(1−6β)γ ≤ 1.

6. The condition D′(un)

Assume that X0, X1, . . . is the stationary stochastic process defined in (1.2) with common
d.f. Ga. So far, the two types of conditions imposed on g seem rather arbitrary. The
reason for requiring that the maximum of g should be attained in 1 or 0 is that, under
these assumptions, there is a nice way of translating exceedances of the level un into the
occurrence of deep returns.

When g is of type g2 (see (2) of Section 1) then for ω ∈ [−1, 1] the event {Xj(ω) > un}
is simply the set f−j

a ({ω : g2(ω) > un}). If n is sufficiently large then {ω : g2(ω) > un} =(
ḡ−1
2 (un), ĝ−1

2 (un)
) ⊂ U∆. Hence, an exceedance of the level un at time j corresponds to a

return with depth over the threshold

Θ2 = Θ2(n) = min
{[− log

(−ḡ−1
2 (un)

)]
,
[− log

(
ĝ−1
2 (un)

)]}
, (6.1)

where [y] denotes the largest integer not greater than y ∈ R.
In what regards g1 one has that for ω ∈ [−1, 1] the event {Xj(ω) > un} is the set

f−j
a ({ω : g1(ω) > un}). If n is sufficiently large then {ω : g1(ω) > un} = (g−1

1 (un), 1] and

f−1
a (g−1

1 (un), 1] = (−
√

(1− g−1
1 (un))/a,

√
(1− g−1

1 (un))/a) ⊂ U∆. We may define

Θ1 = Θ1(n) =

[
−1

2
log

1− g−1
1 (un)

a

]
. (6.2)

This means that again there is an intimate connection between exceedances and deep
returns. In fact, if an exceedance occurs at time j then a deep return with depth over the
threshold Θ1 must have happened at time j − 1, i.e., if Xj(ω) > un then f j−1

a (ω) ∈ UΘ1 .
In what follows statements about Θ apply to both Θ1 and Θ2.
Observe that we are dealing with very small perturbations of f2 for which f j

2 (0) = −1
for every j ≥ 2. Thus, one expects that after a deep return to the critical region (a tight
vicinity of 0) it should take a considerable amount of time before another deep return
should occur. Since exceedances are related with the occurrence of deep returns then one
may have a fair amount of belief that condition (2.2) holds for the sequence X0, X1, . . .
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Remark 6.1. If the sequence X0, X1, . . . was independent then (2.2) would follow easily
since

n

[n/k]∑
j=1

P{X0 > un and Xj > un} = n

[n/k]∑
j=1

P{X0 > un}P{Xj > un} = n

[n/k]∑
j=1

(1−Ga(un))2

≤ n2

k
(1−Ga(un))2 −−−→

n→∞
τ 2

k
−−−→
k→∞

0

Let us give some insight into the argument we use to prove that (2.2) holds for X0, X1, . . .

(1) We use the exponential decay of correlations (see (3.6)) to compute a turning instant
T = T (n) such that the dependence between X0 and Xj with j > T is negligible.
This suggests the splitting of the time interval {1, . . . , [n/k]} into {1, . . . , T} and
{T + 1, . . . , [n/k]}, when n is sufficiently large.

(2) During the time interval {T + 1, . . . , [n/k]} we use the fact that for j > T the
random variable Xj is almost independent from X0 and argue like in Remark 6.1.

(3) For j ∈ {1, . . . , T} we use Corollary 5.3 to bound P{X0 > un and Xj > un} and
then we use the fact that, for n large, T ¿ [n/k] to finish the proof.

Step (1)

Taking ϕ = ψ = 1(un,max g] ◦ g in (3.6) we get

|µa{X0 > un and Xj > un} − [µa{X0 > un}]2
∣∣ =

=

∣∣∣∣∣
∫

1(un,max g] ◦ g · 1(un,max g] ◦ g ◦ f jdµa −
(∫

1(un,max g] ◦ gdµa

)2
∣∣∣∣∣

≤ Cςj

where we may assume that C is the same for all n ∈ N, because ||1(un,max g] ◦ g||∞ and the
total variation of 1(un,max g] ◦ g are both equal to 1, for every n ∈ N.

We compute T = T (n) such that for every j ≥ T we have

Cςj <
1

n3
.

Since Cςj < 1
n3 ⇔ j > 1

log ς−1 (3 log n + log C), we simply take, for n sufficiently large,

T =
4

log ς−1
log n. (6.3)



16 J. M. FREITAS AND A. C. MOREIRA FREITAS

For fixed k and n sufficiently large, we have that T < [n/k]. Hence, we may write

n

[n/k]∑
j=1

P{X0 > un and Xj > un} =

= n

T∑
j=1

P{X0 > un and Xj > un}+ n

[n/k]∑
j=T+1

P{X0 > un and Xj > un}.

In step (2) below we deal with the second term in the sum, leaving the first term for step
(3).

Step (2)

Let us show that lim supn→∞ n
∑[n/k]

j=T+1 P{X0 > un and Xj > un} → 0, as k → ∞. By
choice of T we have

n

[n/k]∑
j=T+1

P{X0 > un and Xj > un} ≤ n

(
(1−Ga(un))2 +

1

n3

)
[n/k]

≤ n2

k
(1−Ga(un))2 +

n2

kn3

Now n2

k
(1−Ga(un))2 + n2

kn3 −−−→
n→∞

τ2

k
−−−→
k→∞

0 and the result follows.

Step (3)

We are left with the burden of controlling the term n
∑T

j=1 P{X0 > un and Xj > un}.
We begin with the following lemma that will enable us to bound the number of exceedances
occurring during the time period {1, . . . , T}. In what follows we are always assuming that
n is large enough so that Θ > ∆.

Lemma 6.2. If a deep return occurs at time t (with depth over the threshold Θ), then the
next deep return can only occur after t + Θ/2.

Proof. For every x ∈ UΘ, the bound period associated to x is such that p(x) ≥ Θ/2, by
Section 3.2 (1). For all j ≤ [Θ/2] we have

∣∣f j
a(x)

∣∣ ≥
∣∣f j

a(0)
∣∣− e−βj

(BA)

≥ e−αj − e−βj ≥ e−αj
(
1− e(α−β)j

)

≥ e−αj
(
1− e(α−β)

)
, since α− β < 0

≥ e−αΘ/2
(
1− e(α−β)

)
, since j ≤ Θ/2

≥ e−αΘ, if n is large enough so that 1− eα−β ≥ e−αΘ/2

≥ e−Θ, since α < 1.
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¤

As a consequence of Lemma 6.2 we have that the maximum number of exceedances up to
time T is at most 2T/Θ. At this point we use the fact that we are dealing with Misiurewicz
parameters a ∈ M ⊂ BC, for each one of which condition (1.1) holds, which means that
there exists d > 0 such that |f j

a(0)| > d for all j ∈ N. Next lemma shows that, for these
kind of parameters, in the bound period following a deep return over the level Θ, deep
bound returns do not occur.

Lemma 6.3. For every a ∈ M, if Θ is large enough then for every x ∈ UΘ we have that
f j(x) /∈ UΘ for all j ≤ p(x).

Proof. First observe that if j > − 1
β

log(d/2) then e−βj < d/2.

We choose Θ large enough so that e−Θ < d/2; so for all x ∈ UΘ and j ≤ − 1
β

log(d/2) we

have |f j
a(x)− f j

a(0)| < d/2.
Let x ∈ UΘ and consider j ≤ p(x). If j > − 1

β
log(d/2) then, by definition of bound

period, |f j
a(x)− f j

a(0)| < e−βj < d/2. If, on the other hand, j ≤ − 1
β

log(d/2) then, by the

choice of Θ above, |f j
a(x)−f j

a(0)| < d/2. Consequently, since fa is a Misiurewicz quadratic
map,

|f j
a(x)| ≥ |f j

a(0)| − |f j
a(x)− f j

a(0)| ≥ d− d/2 ≥ d/2 > e−Θ.

¤

As a consequence we have that after a deep return, with depth m ≥ Θ, happening at
time t, the next deep return can only occur when the bound period initiated at the previous
one ceases, i.e. after the instant t + p(m). This way, we may use Corollary 5.3 to estimate
|UΘ ∩ f−j

a UΘ|, for j ≤ T .
Observe that in the case of g being of type g1 and for n large enough, we have

P{X0 > un and Xj > un} = µa

{
(g−1

1 (un), 1] ∩ f−j
a (g−1

1 (un), 1]
}

= µa

{
f−1

a

(
(g−1

1 (un), 1] ∩ f−(j+1)
a (g−1

1 (un), 1]
)}

,

and f−1
a (g−1

1 (un), 1] ∩ f−j−1
a (g−1

1 (un), 1] ⊂ UΘ1 ∩ f−j
a UΘ1 . While in the case of g being of

type g2 and for n large enough, we have

P{X0 > un and Xj > un} = µa

{(
ḡ−1
2 (un), ĝ−1

2 (un)
)}

and
(
ḡ−1
2 (un), (ĝ2)

−1 (un)
) ⊂ UΘ2 ∩ f−j

a UΘ2 .
Consequently, since C−1 ≤ ρ(x) ≤ C for some C > 0 and every x ∈ (−d, d), once an

estimate for |UΘ ∩ f−j
a UΘ| is derived, we may use it to estimate P{X0 > un and Xj > un}.

In what follows we will use “const” to denote several positive constants independent of n.
Note that

UΘ ∩ f−j
a UΘ ⊂

2j/Θ⋃
s=0

j⋃
v=s

⋃
γ0≥Θ

⋃
γ1≥Θ

Bv,s
γ0,γ1

(j).
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Hence, by Corollary 5.3 we have

|UΘ ∩ f−j
a UΘ| ≤

2j/Θ∑
s=0

j∑
v=s

∑
γ0≥Θ

∑
γ1≥Θ

(
v

s

)
e−(1−6β)(γ0+γ1) ≤ const

2T/Θ∑
s=0

T∑
v=s

(
v

s

)
e−(1−6β)2Θ

≤ const

2T/Θ∑
s=0

T∑
v=s

(
T

s

)
e−(1−6β)2Θ ≤ const

2T/Θ∑
s=0

T

(
T

s

)
e−(1−6β)2Θ.

Before we continue let us estimate 2T/Θ. Remember that the sequence un is such that
n(1−Ga(un)) → τ , as n →∞, which we rewrite as 1−Ga(un) = O(1/n).

In the case g is of type g1, attending to (4.2), we get un = g1(1) − O(1/n2), which by
(6.2) and (4.1) leads to Θ1 = O(log n), meaning that Θ1

log n
→ c, for some c > 0, as n →∞.

As for the case where g is of type g2, by (4.4), we have un = g2(0) − O(1/nq). Thus,
according to (6.1) and (4.3) we get Θ2 = O(log n), in the sense Θ2

log n
→ c, for some c > 0,

as n →∞.
Recalling (6.3), one easily gets that there exists a constant C1 > 0 such that 2T/Θ ≤ C1,

for n sufficiently large. So, to proceed with the estimation |UΘ ∩ f−j
a UΘ|, assume that n is

sufficiently large so that 2T/Θ ≤ C1 and C1 ¿ T . Then

|UΘ ∩ f−j
a UΘ| ≤ const

2T/Θ∑
s=0

T

(
T

s

)
e−(1−6β)2Θ ≤ const

2T/Θ∑
s=0

T

(
T

C1

)
e−(1−6β)2Θ

≤ const
2T

Θ
T

(
T

C1

)
e−(1−6β)2Θ ≤ constTC1+1e−(1−6β)2Θ.

Now, since e−Θ ≤ const(1−Ga(un)) we finally conclude:

n

T∑
j=1

P{X0 > un and Xj > un} ≤ const · n
T∑

j=1

TC1+1(1−Ga(un))2(1−6β)

≤ const · nTC1+2(1−Ga(un))2(1−6β)

≤ const · n(log n)C1+2(1−Ga(un))2−12β

≤ const · [n(1−Ga(un))]3/2(1−Ga(un))1/2−12β,

for sufficiently large n. The result follows because

lim
n→∞

[n(1−Ga(un))]3/2(1−Ga(un))1/2−12β = τ 3/2 · 0 = 0.

7. Simulation Study

In this section we present a small simulation study illustrating the finite sample behavior
of the normalized Mn, defined in (1.3), for the Misiurewicz quadratic map f2(x) = 1−2x2.
We consider the case g(x) = g1(x) = x for which we have that P{X0 ≤ x} = G2(x) =
1/2 + arcsin(x)/π. According to Theorem A we have that the normalizing sequences are
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given by bn = 1 and an = (1 − cos(π/n))−1, for each n ∈ N and the theoretical limiting

distribution for an(Mn − bn) is H1(x) =

{
e−(−x)1/2

, x ≤ 0

1 , x > 0
.

We performed the following experiment. We picked at random (according to the d.f.
G2) a point ω in the interval [−1, 1], computed its orbit up to time n and calculated
Mn(ω) = max{ω, f2(ω), . . . , fn−1

2 (ω)}. We repeated the process m times to obtain a sample
{Mn(ω1), . . . , Mn(ωm)} and approximated, for certain values of x, P{an(Mn− bn) ≤ x} by

1

m

m∑
i=1

1{an(Mn(ωi)−bn)≤x}, (7.1)

where 1{an(Mn(ωi)−bn)≤x} =

{
1 if an(Mn(ωi)− bn) ≤ x

0 if an(Mn(ωi)− bn) > x
, for each 1 ≤ i ≤ m.

In Table 1 we present the results obtained by realizing the above experiment, considering
different values of x, n and m and compare them with the theoretical limiting ones given
by H1(x).

n = 1000 n = 10000 n = 20000
x H1(x) m = 1000 m = 10000 m = 10000 m = 20000 m = 20000

-0.001 0.9689 0.976 0.9671 0.9719 0.9677 0.9708
-0.01 0.9048 0.894 0.9079 0.9056 0.9076 0.9052
-0.1 0.7289 0.724 0.7263 0.7323 0.7303 0.7335
-0.3 0.5783 0.569 0.5773 0.5823 0.5840 0.5813
-0.5 0.4931 0.491 0.4906 0.5012 0.4984 0.4941
-0.7 0.4332 0.407 0.4272 0.4403 0.4374 0.4338
-1 0.3679 0.388 0.3631 0.3663 0.3729 0.3678
-3 0.1769 0.164 0.1731 0.1748 0.1833 0.1729
-5 0.1069 0.124 0.1024 0.1092 0.1108 0.1056
-8 0.0591 0.059 0.0510 0.0557 0.0617 0.0580
-10 0.0423 0.049 0.0350 0.0435 0.0438 0.0414
-30 0.0042 0.002 0.0031 0.0033 0.0048 0.0041
-50 0.00085 0.001 0.0007 0.0009 0.0007 0.0009

Table 1. Simulation results

As one may verify the results of the experiment are quite close to the asymptotic theoret-
ical ones and there is a general tendency of getting better as n increases which is precisely
the behavior we were expecting. It is also noticeable that there is an improvement when m
increases, which is also predictable since our approximation (7.1) gets to be more accurate.
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