
ENGEL ELEMENTS IN GROUPS AND DYNAMICAL
SYSTEMS DEFINING NILPOTENCY IN FINITE GROUPS

JORGE ALMEIDA

Abstract. A relationship between two natural dynamical systems on
groups is established thereby giving a new characterization of Engel
elements. Using this connection, various closure properties for the sets
of left and right Engel elements are established. Some other dynamical
systems and their relationship with Engel elements and nilpotency for
finite groups are also considered.

1. Introduction

Engel groups and left and right Engel elements in groups have been ex-
tensively studied since the 1950’s and even justify a subsection in the AMS
classification scheme. Investigations have explored connections between En-
gel properties and nilpotency properties but also structural properties of
groups in which every element has an Engel property of small index. See
[10, 11] for the earlier theory and Subsection 20F45 of review journals for
more recent work.

Recall the standard notation in group theory for iterated commutators:
[x, 1y] = [x, y] = x−1y−1xy and [x, n+1y] = [[x, ny], y]. For a group G,
consider the set R(G) of all elements x of G such that, for every y ∈ G, there
exists r ≥ 1 such that [x, ry] = 1. The elements of R(G) are known as right
Engel elements of G [11, Section 12.3]. Also let L(G) denote the set of all
left Engel elements of G consisting of those x ∈ G such that, for every y ∈ G,
there exists r ≥ 1 such that [y, rx] = 1. Note that both L(G) and R(G) are
stable under automorphisms of G. While it is known that R(G)−1 ⊆ L(G),
it seems to remain an open problem the precise relationship between these
two subsets of G and whether they are subgroups of G. A negative result in
this direction, but which falls short of solving any of those problems, is an
example that shows that no power of a right r-Engel element (x such that,
for every y, [x, ry] = 1) need be a left r-Engel element (similarly defined),
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even in a nilpotent group [9]. On the other hand, obviously G = L(G) if
and only if G = R(G), in which case G is said to be an Engel group.

Denote by Z(G) the center of a group G. Another useful subgroup of G is
its hypercenter which is defined as the union ζG of the transfinite sequence of
characteristic subgroups given recursively as follows: ζ0G = 1, ζα+1G/ζαG =
Z(G/ζαG), and ζλG =

⋃
α<λ ζαG for a limit ordinal λ. Once two consecutive

terms in this transfinite sequence are equal, the sequence is constant from
that point on. Hence the hypercenter of G is ζαG, where α is the cardinal
of G. In particular, the hypercenter of a finite group G is ζωG. Recall that
a finite group G is nilpotent if and only if ζωG = G. More generally, a group
is said to be hypercentral if ζG = G.

The Fitting subgroup of a group G is the subgroup Fit(G) generated by
all normal nilpotent subgroups of G. The Hirsch-Plotkin radical of G is
the unique maximal locally nilpotent normal subgroup HP(G) of G. It is
easy to show that HP(G) ⊆ L(G) and ζG ⊆ R(G) [11]. By a Theorem
of Zorn [14], for a locally finite group G, R(G) is a normal subgroup of G
and, therefore, a subgroup of HP(G), which in turn coincides with L(G)
(cf. [11, Section 12.3]). More generally, by a Theorem of Gruenberg [7], in
a solvable group G, L(G) = HP(G). By a Theorem of Baer [5], the same
relationship holds for a group satisfying the maximal condition on subgroups
in which, moreover, R(G) = ζG. In case G is finite, the Hirsch-Plotkin
radical coincides with Fit(G).

This note results from work which the author has been developing con-
cerning the dynamics of implicit operators on finite semigroups [3, 2]. The
starting point is a close relationship between the iterated commutator, as
defined above, and a certain form of iterated conjugation. This leads to
various new characterizations of nilpotency in finite groups as well as to
alternative characterizations of Engel elements in arbitrary groups. The lat-
ter is explored in Section 4 of the paper to establish what appear to be new
closure properties for the sets L(G) and R(G), including closure by product
by the hypercenter in both cases and by the Fitting subgroup in the case
of L(G). In Section 3, we also make some elementary observations between
our discrete dynamical systems in a group and the associated topological
dynamical systems in the profinite completion of the group.

2. Recursive conjugation

We start by relating two different dynamical systems on a group G. The
iterated commutator defines one of the dynamical systems: iteratively apply
the operator x 7→ [x, y] to obtain the successive [x, ny]. This can also be seen
as the action of the operator (a, b) 7→ ([a, b], b). The other dynamical system
consists in taking a pair (a, b) of elements of G and iteratively applying the
operator (a, b) 7→ (b−1ab, a).

Lemma 1. Let a and b be two elements of an arbitrary group G. Define
recursively the sequence (un)n by

(1) u−1 = a, u0 = b−1ab, un+1 = u−1
n−1unun−1 (n ≥ 0).

Then, for every n ≥ 0, un−1 = un if and only if [b−1, n+1a] = 1.
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Proof. Consider the sequence defined recursively by

(2) z0 = b, zn+1 = znun−1 (n ≥ 0).

Then an easy induction shows that

(3) un = z−1
n azn (n ≥ 0).

Hence

un−1 = un ⇔ u−1
n−1z

−1
n azn = 1

⇔ znz
−1
n−1a

−1zn−1z
−1
n a = 1

⇔ a−nznz
−1
n−1a

n−1 · a−1 · a1−nzn−1z
−1
n an · a = 1

⇔ [a1−nzn−1z
−1
n an, a] = 1

Thus to prove the lemma it suffices to show that the following equality holds
for every n ≥ 0:

(4) [b−1, na] = a1−nzn−1z
−1
n an.

For n = 1, plugging in the values of z0 = b and z1 = ba, one easily verifies
that both sides of (4) are equal to ba−1b−1a. Proceeding by induction,
assume that (4) holds for a certain value of n. Then, using (2) and (3), we
obtain

[b−1, n+1a] = [[b−1, na], a] = a−nznz
−1
n−1a

n−1 · a−1 · a1−nzn−1z
−1
n an · a

= a−nzn · z−1
n−1a

−1zn−1 · z−1
n an+1

= a−nzn · u−1
n−1z

−1
n · an+1

= a1−(n+1)znz
−1
n+1a

n+1

which shows that (4) holds for every n ≥ 0 and proves the lemma. �

Let ψ(a, b) = (v1, v2) be an operator which makes sense on a group G.
For a group G, denote by ∆ = ∆G the diagonal {(g, g) : g ∈ G} of G × G.
Suppose that ψ(∆) ⊆ ∆ and consider the following two subsets of G:

• Lψ(G) is the set of all a ∈ G such that, for every b ∈ G, there exists
r ≥ 1 such that ψr(a, b) ∈ ∆;

• Rψ(G) is the set of all b ∈ G such that, for every a ∈ G, there exists
r ≥ 1 such that ψr(a, b) ∈ ∆.

Let ϕ(a, b) = (b−1ab, a). By Lemma 1, L(G) = Lϕ(G) and R(G) =
Rϕ(G)−1. Note that ϕn+1(b, c) = ϕn(c−1bc, b). This implies immediately
that Rϕ(G) ⊆ Lϕ(G), which gives another proof that R(G)−1 ⊆ L(G).

As a direct application of Zorn’s Theorem and Lemma 1, we obtain the
following result.

Corollary 2. A finite group G is nilpotent if and only if Lϕ(G) = G. �

While, by an example of Golod [6], not every Engel group is even lo-
cally nilpotent, Wilson and Zel’manov [13] showed that a profinite Engel
group must be locally nilpotent and Medvedev [8] further proved that every
compact Engel group is locally nilpotent.
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3. Other dynamical systems

One may ask which dynamical systems share the property of defining
nilpotent finite groups in the above sense. In [2], we consider the dynamical
systems ψ(a, b) = (v1, v2) whose components are defined by binary implicit
operations1 and we show that, if the equation v1 = v2 is trivial for finite
Abelian groups then, for every finite nilpotent group G, every point of G×G
is eventually transformed by the iterate operator into a diagonal point, that
is all periodic points lie in the diagonal ∆G = {(g, g) : g ∈ G}. For a binary
operator ψ acting on G×G, denote by Pψ(G) the set of periodic points of
G×G under the action of the transformation ψ. Note that the property

(5) Pψ(G) ⊆ ∆G

of a group G with respect to an operator ψ defined by implicit operations
is preserved under taking homomorphic images, subgroups and finite direct
products. In particular, the finite groups which satisfy it form a pseudova-
riety. In fact, the property (5) is expressed precisely by a pseudoidentity.

If π is the set of primes which divide the trace of the frequency matrix
of the pair (v1, v2) (whose (i, j)-entry is obtained by counting, in the free
profinite group on one generator, which is also a profinite ring, the number of
times the jth generator occurs in vi), then one can show that every extension
of a finite nilpotent group by a finite solvable π-group satisfies property (5)
for the operator ψ(a, b) = (v1, v2). Thus, if one seeks operators for which
property (5) characterizes finite nilpotent groups, one should consider only
those operators for which the trace of the frequency matrix is invertible. Of
course, if v1 = v2 then every finite group will satisfy property (5). So, we
should also assume the restriction v1 6= v2. Further restrictions are needed
since, for instance, the symmetric group S3 satisfies property (5) for the
operator ψ(a, b) = (b−1ab, bab−1). For this same operator, the set Lψ(G) is
not necessarily a subgroup of a given finite group G as the calculation of
this set in S4 shows that it has 16 elements.

For a group G, denote by Ĝ its profinite completion. To construct it, one
may take all homomorphisms G→ G/N , where N is a normal subgroup of
finite index, and consider the induced homomorphism ι : G → H into the
product H of all such quotients. The group H is a profinite group under the
product topology and Ĝ may be defined to be the closure of the subgroup

1Briefly, an implicit operation is an operation which commutes with homomorphisms.
In particular, terms in an algebraic language define implicit operations on the corre-
sponding finite algebras. An important example of a unary implicit operation on finite
semigroups associates with each element s of a finite semigroup its unique idempotent
power, denoted sω. Implicit operations on the algebras of a pseudovariety V also have
natural interpretations on pro-V algebras, that is on compact algebras which are residu-
ally V as topological algebras. See [1, 4] for an introduction to the theory of implicit
operations and its role in finite semigroup theory and its applications. An operator
ψ(a1, . . . , an) = (v1, . . . , vn) on profinite groups G whose components are of the form
vi = (πi)G(a1, . . . , an) for an implicit operation πi is called an n-ary implicit operator.
By abuse of notation which should not lead to confusion, we often use the same notation
πi and vi. More formally, we should consider an operator ψ = (π1, . . . , πn) and write
ψG(a1, . . . , an) = (v1, . . . , vn) for its interpretation in a given profinite group G, but this
distinction is not relevant for the present paper.
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ι(G). Note that ι : G → Ĝ is an embedding if and only if G is residually
finite.

Now, the monoid EndM of continuous endomorphisms of a finitely gen-
erated profinite monoid M is itself a profinite monoid under the pointwise
convergence topology and the evaluation mapping (ψ,m) 7→ ψ(m) is contin-
uous [4]. Let Fn be the free profinite group on the free generators x1, . . . , xn.
A continuous endomorphism Ψ of Fn defines an n-ary implicit operator
ψ =

(
Ψ(x1), . . . ,Ψ(xn)

)
on profinite groups and Ψ is in turn completely

determined by ψ. Moreover, the correspondence Ψ 7→ ψ defines a homomor-
phism from EndFn onto the monoid of n-ary implicit operators on profinite
groups and hence the latter is also a profinite monoid under a suitable topol-
ogy. It is easy to check that this topology has the following property: if the
sequence (ψr)r converges to ψ in the monoid of n-ary implicit operators
and the sequence (ār)r converges to ā in Gn, for a profinite group G, then(
ψr(ār)

)
r

converges to ψ(ā).

Proposition 3. Let ψ be a binary operator on groups defined by group
words such that ψ(∆) ⊆ ∆. A group G is such that, for every a, b ∈ Ĝ,
ψω(a, b) ∈ ∆Ĝ if and only if every finite quotient of G satisfies property (5).

Proof. Suppose first that, for every a, b ∈ Ĝ, ψω(a, b) ∈ ∆Ĝ. In a finite
group, ψω(a, b) = ψn!(a, b) for all sufficiently large n. Hence, in every finite
quotient G/N of G, ψn!(a, b) ∈ ∆G/N for all sufficiently large n. Since ψ
maps ∆G/N into itself, it follows that G/N satisfies property (5). Conversely,
assume that every finite quotient of G satisfies property (5) and let a, b ∈ Ĝ.
Given a normal subgroup N of G of finite index, the closure N of N in Ĝ
is a normal subgroup such that Ĝ/N ' G/N . Then ψω(a, b)N ∈ ∆Ĝ/N by
hypothesis and, since this holds for all such N , it follows that ψω(a, b) ∈
∆Ĝ. �

The following proposition provides an extension of well-known results in
Engel theory.

Proposition 4. Let ψ(a, b) = (v1, v2) be a binary implicit operator such that
the pseudoidentity v1 = v2 is valid in all finite Abelian groups and v1(1, b) =
1. Then, for every finite group G, Fit(G) ⊆ Lψ(G) and ζG ⊆ Rψ(G).

Proof. Let ψω(x, y) = (w1, w2), where x, y are free generators of a free profi-
nite group. Then we have already observed that, by a result from [2], the
pseudoidentity w1 = w2 holds in every finite nilpotent group. Moreover, in
the given finite group G, from v1(1, b) = 1 it follows that ψn(1, b) ∈ 1×G for
all b ∈ G. Hence, since the subgroup generated by b is certainly nilpotent,
we conclude that w2(1, b) = w1(1, b) = 1.

Let N be a nilpotent normal subgroup of G and let a ∈ N and b ∈ G.
Then wi(a, b)N = wi(1, b)N = N by the above, which shows that wi(a, b) ∈
N and so

ψω(a, b) = ψω
(
ψω(a, b)

)
= ψω

(
w1(a, b), w2(a, b)

)
∈ ∆G

since N is nilpotent. Hence N ⊆ Lψ(G) and so also Fit(G) ⊆ Lψ(G).
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Consider next the hypercenter ζωG. We prove inductively that the fol-
lowing property holds for every integer r ≥ 0:

(6) ψω(a, az) ∈ ∆ for all a ∈ G and z ∈ ζrG.

Indeed, (6) is trivial for r = 0. Assuming it is true for r = k, let z ∈ ζk+1G
and let a ∈ G. Then wi(a, az)ζkG = wi(a, a)wi(1, z)ζkG = wi(a, a)ζkG
since zζkG is central in G/ζkG and wi(1, z) = 1. Hence the element t =(
w1(a, az)

)−1
w2(a, az) belongs to ζkG. Applying the induction hypothesis,

we deduce that

ψω(a, az) = ψω
(
ψω(a, az)

)
= ψω(a′, a′t) ∈ ∆

where a′ = w1(a, az). This shows that (6) holds for every r ≥ 0.
Suppose next that b ∈ ζnG and let a ∈ G. Let N = ζn−1G. Then, since

bN is central in G/N , we have wi(a, b)N = wi(a, 1)wi(1, b)N = wi(a, 1)N =
w1(a, 1)N , taking also into account that the pseudoidentity w1 = w2 is valid
in all finite Abelian groups. Hence z =

(
w1(a, b)

)−1
w2(a, b) ∈ N and so

ψω(a, b) = ψω
(
ψω(a, b)

)
= ψω(w1(a, b), w1(a, b)z) ∈ ∆G

by (6), which completes the proof. �

The above result fails without the assumption v1(1, b) = 1. For example,
this is the case for the group S4 and the (Prouhet-Thuë-Morse) operator
(ab, ba), whose trace is 2, but also for the same group and the operator
(ab−1a, b−1a2), whose trace is 1.

Calculations with GAP [12] suggest that θ(a, b) = (a [b, a], a) might be
another operator for which, in every finite group G, Lθ(G) = Fit(G). But
the simple argument of taking (cyclic) conjugates which underlies the proof
of Lemma 1 does not work for this operator. Nevertheless, we are able to
prove the analog of Theorem 2 for the operator θ by a direct argument which
is an adaptation of the proof of Zorn’s Theorem presented in [11]. Although
the argument is given for a somewhat more general situation, this seems to
be again a rather special case. For instance, just to indicate a few examples
which were found with the help of GAP, S3 satisfies property (5) for the
operators (a [a, b2], a) and (a [b, a2], a), while A4 satisfies that property for
the operator (a [a, b]2, a). Note that the operator ϕ considered earlier in this
paper is given by (a [a, b], a).

We say that a binary implicit operation w behaves like a commutator if,
in every finite group, the following equivalence holds:

(7) w(a, b) = 1 if and only if ab = ba.

Say that a dynamical system is aperiodic if all its periodic points are fixed
points.

Theorem 5. Let w be a binary implicit operation which behaves like a com-
mutator and let θ be the binary operator defined by θ(a, b) = (aw, a). Then
a finite group G is nilpotent if and only if the dynamical system (G×G, θ)
is aperiodic.

Proof. Note that the property that all periodic points of the dynamical
system are fixed points is equivalent to Pθ(G) ⊆ ∆G. Indeed, the first
property is equivalent θ(a, b) = (a, b) whenever (a, b) is in the image Im θω.
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By (7) and the definition of θ, the condition θ(a, b) = (a, b) is equivalent to
a = b. Hence all periodic points are fixed points if and only if they all lie in
the diagonal, that is Pθ(G) ⊆ ∆G.

We already observed that since the equation of the components of θ is
trivial on Abelian groups, every finite nilpotent group G satisfies the prop-
erty Pθ(G) ⊆ ∆G. Conversely, suppose there exists some finite non-nilpotent
group which satisfies that property and consider such a group G of minimum
order. By a theorem of O. J. Schmidt [11, Statement 9.1.9], G = QP for a
normal Sylow p-subgroup P and a cyclic Sylow q-subgroup Q, where p and q
are distinct primes. On the other hand, by P. Hall’s criterion for nilpotency
[11, Statement 5.2.10], since P is a nilpotent normal subgroup of G, if G/P ′

were also nilpotent, where P ′ denotes the commutator subgroup of P , then
G would be nilpotent, in contradiction with the initial assumption. But, by
the minimality assumption on G, since G/P ′ still satisfies property (5) for
the operator θ, the minimality of G implies that the subgroup P ′ must be
trivial, that is P must be Abelian.

Let a be a generator of the cyclic group Q. We claim that the centralizer
CP (a) is nontrivial. Since P is Abelian, the subgroup CP (a) is contained
in the center Z of G. Once the claim is established, we obtain Z 6= 1 and
we may then deduce that G/Z is nilpotent by the minimality of G. But
then, by considering the upper central series of the group G and taking into
account the minimality of G, we immediately conclude that G is nilpotent,
in contradiction with the initial assumption. This shows that it suffices to
establish the claim to complete the proof.

Let b ∈ P \{1}. Define, recursively, a sequence of elements of G as follows:

u−1 = b, u0 = a, un+1 = unw(un−1, un).

Note that if un = un+1 then un = um for every m ≥ n. Now, since the
equation of the components of θ holds in G by hypothesis, there is some n
such that un = un+1. Let n be the smallest integer for which un = un+1. If
n = −1 or n = 0, then b ∈ CP (a) and the claim is verified. Suppose next
that n > 0 for a given b ∈ P \ {1}.

From un+1 = un, we deduce that [un−1, un] = 1. Substituting in this
equation un = un−1w(un−2, un−1), we obtain

(8) [un−1, w(un−2, un−1)] = 1.

Now, for k ≥ 0, since P P G, an easy induction argument shows that
uk ∈ aP . If n = 1 then (8) says that w(b, a) ∈ CP (a)\{1} by the minimality
of n. If n > 1, then g = a−1un−1 and h = w(un−2, un−1) are both elements
of P and (8) gives g−1a−1h−1agh = 1 so that a = h−1aghg−1 = h−1ah since
P is Abelian. Hence h ∈ CP (a) \ {1} again by the minimality of n. �

Say that an implicit operator ψ is aperiodic on a profinite group G if,
in G, ψω = ψω+1. Note that, if G is finite, this condition is equivalent to
the dynamical system (Gn, ψ) being aperiodic, where n is the arity of ψ.

Corollary 6. Let w be a binary implicit operation which behaves like a
commutator and let θ be the binary operator defined by θ(a, b) = (aw, a).
Then a profinite group G is pro-nilpotent if and only if θ is aperiodic in G.

�
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4. Back to recursive conjugation

The results of Section 2 and the examples of Section 3 show that the
operator ϕ is in a sense very special. Section 3 also provides an example of
another operator which shares the property of defining nilpotency for finite
groups through the triviality of the cycles in its orbits. But we do not know
which other operators share that property. So it is perhaps worth to further
study the operator ϕ.

Throughout this section, G denotes an arbitrary group. The following
technical lemma explores the structure of the iterates of the operator ϕ in
some special cases.

Lemma 7. Suppose that a, b ∈ G are such that ϕn(a, b) ∈ ∆ for some n ≥ 0.
If b belongs to a normal subgroup A such that c ∈ CG(A), then ϕm(ac, b) ∈ ∆
for some m ≥ 0.

Proof. Define two sequences (uk)k≥−1 and (vk)k≥−1 recursively as follows:

u−1 = a, u0 = b−1ab, uk+2 = u−1
k uk+1uk,

v−1 = ac, v0 = b−1acb, vk+2 = v−1
k vk+1vk.

We claim that, for every n ≥ 0,

(9) vn = unc.

This is obvious for n = 0 and v1 = b−1acb = b−1abc = u1c since b and
c commute. Suppose that (9) holds for n ∈ {k, k + 1}. Then vk+2 =
c−1u−1

k uk+1cukc and so (9) holds for n = k+2 if we can show that u−1
n un+1 ∈

A for every n ≥ 0. For n = 0, we have u−1
n un+1 = a−1b−1a · b ∈ A since A

is a normal subgroup of G. Suppose that u−1
n un+1 ∈ A. Then

u−1
n+1un+2 = u−1

n (un+1u
−1
n )−1u−1

n un+1un

= u−1
n · (un · u−1

n un+1 · u−1
n )−1 · u−1

n un+1 · un
belongs to A since A is normal subgroup of G. This completes the proof of
the claim that (9) holds for every n ≥ 0.

Using (9), from the hypothesis that un = un+1 for some n ≥ −1 we
deduce that vn = vn+1 for some n ≥ 0, which proves the lemma. �

This leads to the following closure properties for L(G).

Theorem 8. The set L(G) is closed under multiplication by Fit(G).

Proof. Since Fit(G) is generated by all nilpotent normal subgroups of G, it
suffices to show that L(G)N ⊆ L(G) for every nilpotent normal subgroup N
of G. We proceed by induction on the nilpotent class of N . So, assume the
result holds whenever we have a group with a normal subgroup which is of
nilpotent class smaller than that of N . If N = 1, then the desired conclusion
is trivial. We assume therefore that N 6= 1. Then the center A = Z(N) is
a characteristic subgroup of N and so it is a normal subgroup of G. In the
quotient group G/A, the normal subgroup N/A is nilpotent of class smaller
than that of N . Hence we may apply the induction hypothesis to G/A and
the subgroup N/A.

Consider next c ∈ N and a ∈ L(G). Given any element b ∈ G, there
exists r ≥ 0 such that ϕr(a, b) ∈ ∆G. In the quotient group G/A, we have
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aA ∈ L(G/A) and cA ∈ N/A. By the induction hypothesis, there exists
m ≥ 0 such that ϕm(acA, bA) ∈ ∆G/A. Let (u, v) = ϕm(ac, b). Then we
have v = ug for some g ∈ A. Note that ϕk(u, ug) = ϕk(u, g) for every k ≥ 1.
Moreover, since u is a conjugate of ac, it is of the form u = a′c′ where a′

is a conjugate of a and c′ is a conjugate of c. Hence a′ ∈ L(G), c′ ∈ N ,
g ∈ A, and c′ centralizes A since A = Z(N). By Lemma 7, it follows that
ϕn(u, g) = ϕn(a′c′, g) ∈ ∆G for some n ≥ 1. Hence ϕm+n(ac, b) ∈ ∆G and,
since b ∈ G is arbitrary, this shows that ac ∈ L(G). �

The same argument may be used to establish the following result.

Theorem 9. For a nilpotent normal subgroup N of G which is contained
in R(G), we have R(G)N ⊆ R(G). �

An adequate transfinite induction scheme also allows us to show that
L(G) and R(G) are unions of cosets of the hypercenter.

Theorem 10. Each of the subsets L(G) and R(G) is closed by multiplication
by the hypercenter.

Proof. We show, by induction on an ordinal α, that L(G) ζαG ⊆ L(G). Since
the inclusion is trivial in case α = 0, it suffices to consider the case where
α = β + 1 is a successor ordinal. Let N = ζβG and consider a ∈ L(G) and
c ∈ ζαG. Given b ∈ G, there exists r ≥ 0 such that ϕr(a, b) ∈ ∆G. Since,
in the quotient group G/N , the element cN is central, by Lemma 7 there
exists m ≥ 0 such that ϕm(acN, bN) ∈ ∆G/N . Let (u, v) = ϕm(ac, b). Then
we have v = ug for some g ∈ N . Since ϕk(u, ug) = ϕk(u, g) for every k ≥ 1
and g ∈ N ⊆ ζG ⊆ R(G)−1 = Rϕ(G), it follows that there exists n ≥ 1 such
that ϕn(u, g) ∈ ∆G. Hence ϕm+n(ac, b) ∈ ∆G, which shows that ac ∈ L(G).

The proof for the case of R(G) is similar but simpler since, for a central
element cN of G/N , ϕ(a, bc)N = ϕ(a, b)N , thereby replacing the reference
to Lemma 7 in this case. �

We can also prove the following technical result.

Proposition 11. Suppose that a, b ∈ G are such that ϕn(a, b) ∈ ∆ for some
n ≥ 0. Further let c be an element of an Abelian normal subgroup A of G.
If a ∈ L(G) or c ∈ R(G), then ϕm(ac, b) ∈ ∆ for some m ≥ 0.

Proof. As in the proof of Lemma 1, define two sequences (uk)k≥−1 and
(zk)k≥0 recursively as follows:

u−1 = a, u0 = b−1ab, uk+2 = u−1
k uk+1uk,

z0 = b, zk+1 = zkuk−1 (k ≥ 0).

Define a new sequence (vk)k≥−1 by

v−1 = ac, v0 = b−1acb, vk+2 = v−1
k vk+1vk.

Let tk = z−1
k czk so that u−1

k−1tkuk−1 = tk+1 and

(10) tk+1 = tk [tk, uk−1]

Let (wk)k≥0 be defined recursively by

(11) w0 = c, wk+1 = [wk, uk] tk
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and let

s0 = 1, sk+1 = skwk = w0w1 · · ·wk.

Since A is a normal subgroup of G and c ∈ A, each tk, wk, sk belongs to A.
We claim that

(12) vk = s−1
k uksk · tk

for every k ≥ 0. For k = 0, we have v0 = b−1acb = b−1abb−1cb = s−1
0 u0s0t0.

For k = 1, we have

v1 = v−1
−1v0v−1

= c−1u−1
−1u0u−1c · c−1u−1

−1t0u−1c

= c−1u1c · t1 since u−1
−1t0u−1 = t1 and c, t1 ∈ A

= s−1
1 u1s1 · t1.

Assume next that the formula (12) holds for k ∈ {r, r + 1}. Then we have

vr+2 = v−1
r vr+1vr

= v−1
r · (w−1

r · s−1
r ur+1sr · wr · tr+1) · vr

by (12) with k = r+1 and the definition of sr+1. We split the last conjugate
under vr into four conjugates which we compute separately using (12) with
k = r for the value of vr:

v−1
r wrvr = t−1

r s−1
r · u−1

r srwrs
−1
r ur · srtr

= u−1
r wrur since wr, u−1

r wrur, tr, sr ∈ A
= wr [wr, ur],

v−1
r s−1

r ur+1srvr = t−1
r s−1

r u−1
r sr · s−1

r ur+1sr · s−1
r ursrtr

= t−1
r s−1

r · u−1
r ur+1srs

−1
r ur · srtr

= t−1
r s−1

r ur+2srtr,

v−1
r tr+1vr = t−1

r s−1
r u−1

r sr · tr+1 · s−1
r ursrtr

= u−1
r tr+1ur since u−1

r srtr+1s
−1
r ur, sr, tr, tr+1 ∈ A

= tr+2.

Putting it all together and once again taking into account that A is Abelian,
we obtain

vr+2 = (wr [wr, ur])−1 · t−1
r s−1

r ur+2srtr · [wr, ur]wr · tr+2

= ([wr, ur] tr)−1 · w−1
r s−1

r ur+2srwr · [wr, ur] tr · tr+2

= w−1
r+1 · s

−1
r+1ur+2sr+1 · wr+1 · tr+2

= s−1
r+2ur+2sr+2 · tr+2,

which establishes the claim.
Assume that un+1 = un. Then, um = un for all m ≥ n and so, in view

of formula (12), s−1
m sm+1 = wm, formula (10), and since wm, sm, tm, [tm, un]
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belong to the Abelian subgroup A, we have, for m ≥ n,

vm+1 = vm ⇔ s−1
m+1unsm+1tm+1 = s−1

m unsmtm

⇔ w−1
m unwm[tm, un] = un

⇔ [wm, un] = [tm, un].

Hence, to complete the proof of the proposition, it suffices to establish the
equality

(13) [wm, un] = [tm, un]

for some m ≥ n. In order to prove this equality, we claim next that, for
k ≥ 0,

(14) [wn+k, un] = [tn+k, un] ⇔ [wn, kun] = [tn, kun].

To prove (14), it suffices to apply inductively the following equalities for
integers k, r ≥ 0:

[wn+k+1, run] =
[
[wn+k, un]tn+k, run

]
= [wn+k, r+1un] [tn+k, run]

[tn+k+1, run] =
[
[tn+k, un]tn+k, run

]
= [tn+k, r+1un] [tn+k, run]

where we use the observation that, since the normal subgroup A is Abelian,
the transformation

(15) x ∈ A 7→ [x, y]

is an endomorphism of A for every y ∈ G (in particular for y = un) and
formulas (10) and (11). This proves the claim that the equivalence (14)
holds for all k ≥ 1.

Finally, we show that

(16) [wn, kun] = [tn, kun] = 1 for all sufficiently large k,

from which it follows that (13) holds for all sufficiently largem. Suppose first
that a ∈ L(G). Then un ∈ L(G) since L(G) is closed under automorphisms
of G and un is a conjugate of a. Hence (16) holds by definition of L(G).

Suppose next that c ∈ R(G). Since (15) is an endomorphism of A, the
product of two elements of A (respectively the inverse) which lie in R(G)
also lies in R(G). In particular, since R(G) is closed under conjugation in G,
we conclude that wn ∈ R(G). Also, tn ∈ R(G) since tn is a conjugate of c.
This shows that (16) holds and finishes the proof of the proposition. �

Dually, we obtain the following result.

Proposition 12. Suppose that a, b ∈ G are such that ϕn(a, b) ∈ ∆ for some
n ≥ 0. Further let c be an element of an Abelian normal subgroup A of G.
If a ∈ L(G) or c ∈ R(G), then ϕm(ca, b) ∈ ∆ for some m ≥ 0.

Proof. We deduce Proposition 12 from Proposition 11 by a duality argument.
LetH be the group which is obtained from G by reversing the multiplication:
x · y = yx. Inversion defines an isomorphism η : G→ H. Let η2 : G×G→
H × H be the isomorphism which is η component-wise. Given a binary
operator ψ defined by group terms, denote by ψK its interpretation in a
group K. Then we have the equality

(17) η2 ◦ ψG = ψH ◦ η2.
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From Lemma 1, we deduce that L(G) = η
(
L(H)

)
and R(G) = η

(
R(H)

)
.

Moreover, also using equation (17), the hypothesis that ϕnG(a, b) ∈ ∆ for
some n ≥ 0 yields ϕnH(a−1, b−1) ∈ ∆ for the same n. Since we assume that
either a−1 ∈ L(H) or c−1 ∈ R(H), Proposition 11 guarantees the existence
of some m ≥ 0 such that ϕmH(a−1 · c−1, b−1) ∈ ∆. Hence, by (17), we also
have ϕmG (ca, b) ∈ ∆. �

We conclude with an application of Proposition 11 and its dual Propo-
sition 12. It is an improvement of Theorem 9 at the expense of replacing
nilpotent normal subgroups by Abelian normal subgroups.

Theorem 13. For an Abelian normal subgroup A of G, the intersection
A ∩R(G) ∩R(G)−1 is a (normal) subgroup of G.

Proof. Let b ∈ R(G) and c ∈ A ∩ R(G) ∩ R(G)−1. The statement of the
theorem is equivalent to showing that bc ∈ R(G).

Given any a ∈ G, there exists n ≥ 0 such that ϕn(a, b) ∈ ∆ and so also
such that

(18) ϕn(b−1ab, a) ∈ ∆.

We need to show that ϕm(a, bc) ∈ ∆ for some m ≥ 0, for which it suffices
to show that there exists some ` ≥ 0 such that

(19) ϕ`(c−1b−1abc, a) ∈ ∆.

Since c ∈ A ∩ R(G), from (18), using Proposition 11, it follows that there
exists some m ≥ 0 such that

(20) ϕm(b−1abc, a) ∈ ∆.

Similarly, since c−1 ∈ R(G), using Proposition 12, we deduce from (20) that
there exists ` ≥ 0 such that condition (19) holds. This completes the proof
of the theorem. �
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