FINITE DEPTH SUBALGEBRAS IN A
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ABSTRACT. Let k be an arbitrary field, H a finite-dimensional
Hopf k-algebra, K a left coideal subalgebra of H and V their right
generalized quotient. We show that finite depth of the subalgebra
K C H is equivalent to the H-module coalgebra V representing an
algebraic element in the Green ring of H. If K is a Hopf subalgebra,
we establish a previous claim that the problem of determining if
K has finite depth in H is equivalent to determining if H has
finite depth in its smash product V*# H. A necessary condition is
obtained for finite depth from stabilization of a descending chain of
annihilator ideals of tensor powers of V. For a subalgebra pair of
finite-dimensional algebras, a necessary condition for finite depth
is given in the form of a matrix inequality between products of the
matrix of induction and the matrix of restriction. As an application
of several of the topics above to a centerless finite group G, we
determine that the depth of its group C-algebra in the Drinfeld
double D(G) is an odd integer coming from the least tensor power
of the adjoint representation V that is a faithful C G-module.

1. INTRODUCTION AND PRELIMINARIES

Given a finite Hopf subalgebra pair R C H over a field k, it is
interesting to ask when their generalized quotient V' = H/R"H is an
algebraic module in the Green ring A(—) of either finite-dimensional
Hopf algebra: this is the case if it is a permutation module of a group
algebra [14, IX.3.2]. The minimum even depth of R C H is twice the
degree of the minimum polynomial of V' in A(R). In this paper we
carry the connections established in [23] between subalgebra depth of
R C H and module depth of V' further in several directions.

The topics and layout of the paper are as follows. After an introduc-
tion of terminology and previously established facts for a Hopf subalge-
bra R C H, we obtain in Section 2 a necessary condition for finite depth
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involving stabilization of a descending chain of annihilator ideals of ten-
sor powers of V' (Proposition 2.3). Given the right generalized quotient
V of a left coideal subalgebra K of a finite-dimensional Hopf algebra
H, we show that finite depth of the subalgebra K C H is equivalent
to the H-module coalgebra V' being algebraic in Section 6. If K = R
is a Hopf subalgebra, we establish previous claims that the problem of
determining if R has finite depth in H is equivalent to determining if
H has finite depth in its smash product V*#H (Theorem 4.2 and and
(23, Corollary 5.5]). We note that the minimum depth of a finite group
C-algebra in its Drinfeld double is an odd integer determined by the
least tensor power of V' that is faithful (Section 3 and Corollary 4.3).
For a subalgebra pair B C A of finite-dimensional k-algebras, a nec-
essary condition for finite depth is given in Section 5 in the form of
a matrix inequality between products of matrices of induction and of
restriction, which are related by the Cartan matrices of A and B if k
is algebraically closed. In a last Section 7, we establish in direct terms
that for the Hopf subalgebra R C H with quotient H-module coalge-
bra canonical surjection H — V', the subalgebra V* — H* is a left
R*-Galois extension with normal basis property.

1.1. Preliminaries on subalgebra depth. Let A be a unital asso-
ciative algebra over a field k. In this paper we assume all algebras
and modules to be finite-dimensional vector spaces (although several
facts below remain true without this assumption [22]). The category
of finite-dimensional modules over A will be denoted by M. Two
modules My and N4 are similar (or H-equivalent) if M &% = ¢- N :=
N@--- @& N (¢ times) and N & * = r - M for some r,q € N. This
is briefly denoted by M |qg- N and N|r - M for some ¢,r € N <
M ~ N. It is well-known that similar modules have Morita equivalent
endomorphism rings.

Let B be a subalgebra of A (always supposing 1 = 14). Consider
the natural bimodules A4, pAa, 4Ap and gAp where the last is a
restriction of the preceding, and so forth. Denote the tensor powers of
Ap by A®" = AQp---®p Aforn =1,2,..., which is also a natural
bimodule over B and A in any one of four ways; set A®2° = B which
is only a natural B-B-bimodule.

Definition 1.1. If A®3("+1) 45 similar to A®B" as X-Y -bimodules, one
says B C A has

o depth2n+1if X =B=Y;
o left depth2n if X = B andY = A;
e right depth 2n if X = A and Y = B;
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o h-depth2n —1if X =A=Y.
valid for even depth and h-depth if n > 1 and for odd depth if n > 0.

For example, B C A has depth 1 iff sAp and pBp are similar [5, 22].
In this case, it is easy to show that A is algebra isomorphic to B ® z(p)
AB where Z(B), AP denote the center of B and centralizer of B in A.
Another example, B C A has right depth 2 iff A and 4 A ®p Ap are
similar. If A = C(G is a group algebra of a finite group G and B = CH
is a group algebra of a subgroup H of GG, then B C A has right depth
2 iff H is a normal subgroup of G iff B C A has left depth 2 [20]; a
similar statement is true for a Hopf subalgebra R C H of finite index
and over any field [4].

Note that A%5™ | A®5(+1) for all n, > 2 and in any of the four natural
bimodule structures: one applies 1 and multiplication to obtain a split
monic, or split epi oppositely. For three of the bimodule structures, it
is true for n = 1; as A-A-bimodules, equivalently A| A ®p A as A°-
modules, this is the separable extension condition on B C A. But A®p
A|q-A as A-A-bimodules for some g € N is the H-separability condition
and implies A is a separable extension of B [19]. Somewhat similarly,
pAp|q-pBp implies gBg | pAp [22]. It follows that subalgebra depth
and h-depth may be equivalently defined by replacing the similarity
bimodule conditions for depth and h-depth in Definition 1.1 with the
corresponding bimodules on

(1) A®B(n+1) ’q . A®Bn

for some positive integer ¢ [3, 21, 22].

Note that if B C A has h-depth 2n — 1, the subalgebra has (left or
right) depth 2n by restriction of modules. Similarly, if B C A has depth
2n, it has depth 2n+1. If B C A has depth 2n+ 1, it has depth 2n +2
by tensoring either — @ A or A®p — to A®B(+1) ~ A®B" Similarly,
if B C A has left or right depth 2n, it has h-depth 2n 4+ 1. Denote
the minimum depth of B C A (if it exists) by d(B, A) [3]. Denote the
minimum h-depth of B C A by d,(B, A). Note that d(B, A) < oo if
and only if d,(B, A) < oo; in fact, |d(B, A) — dn(B, A)| < 2 if either is
finite.

For example, for the permutation groups >, < >, and their cor-
responding group algebras B C A over any commutative ring K, one
has depth d(B, A) = 2n — 1 [9, 3]. Depths of subgroups in PGL(2, q),
twisted group algebras and Young subgroups of ¥, are computed in
[16, 13, 17]. If B and A are semisimple complex algebras, the min-
imum odd depth is computed from powers of an order r symmetric
matrix with nonnegative entries S := M M" where M is the inclusion
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matrix Ko(B) — Ko(A) and r is the number of irreducible representa-
tions of B in a basic set of Ky(B); the depth is 2n + 1 if S® and S™*!
have an equal number of zero entries [9]. (For example, the matrix S
has Frobenius-Perron eigenvector, the dimension vector of B-simples
with eigenvalue |A : BJ, the rank of the free B-module A if A and B
are an algebra extension of finite groups or semisimple Hopf algebras.)
Similarly, the minimum h-depth of B C A is computed from powers of
an order s symmetric matrix 7' = M'M, where s is the rank of Ky(A),
and the power n at which the number of zero entries of T stabilizes
[22]. It follows that the subalgebra pair of semisimple complex algebras
B C A always has finite depth.

1.2. Depth of Hopf subalgebras and modules. Let R C H be
a Hopf subalgebra in a finite-dimensional algebra over an arbitrary
field k. It was shown in [23] that the tensor powers H®E" reduce to
tensor powers of the generalized quotient V' = H/RTH as follows:
H®rm =y H @ V=1 given by the formula in Eq. (21). This is
an H-H-bimodule mapping where the right H-module structure on
H®V®---®V is given by the diagonal action of H: (y @ v ® -+ ®
Up—1)-h = yha)y @vihpe) @ -+ @v,_1h(y). This shows quite clearly that
the following will be of interest to computing d(R, H). Let W be a
right H-module and T,,(W) :=W @ W®? & ... & W,

Definition 1.2. A module W over a Hopf algebra H has depth n if
To1i(W) | q- T, (W) and depth 0 if W is isomorphic to a direct sum of
copies of k., where € is the counit. Note that this entails that W also
has depthn+1, n+2, .... Let d(W, My) denote its minimum depth.
If W has a finite depth, it is said to be algebraic module.

Algebraic H-modules is a terminology consistent with algebraic mod-
ule over group algebras for the following reason. Since T,,,(W) | T},,41 (W),
the indecomposable summands of T, (W) occur again (up to isomor-
phism) in the Krull-Schmidt decomposition of T,,1(W). If W has
depth n, all T,,,(W) and their summands W®™ for m > n are express-
ible as sums of the indecomposable summands of 7,,(W). This should
be compared to [14, Chapter I1.5.1] to see that algebraic modules have
finite depth and conversely; the proof does not depend on the commu-
tativity of the Green ring of a group algebra. Recall that the Green
ring of H, denoted by A(H), is the free abelian group with basis con-
sisting of indecomposable H-module isoclasses, with addition given by
direct sum, and the multiplication in its ring structure given by the
tensor product. For example, Ky(H) is a finite rank ideal in A(H),
since P® X is projective if X is any module and P is projective (also a
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well-known fact for finite tensor categories). As shown in [14], a finite
depth H-module W satisfies a polynomial with integer coefficients in
A(H), and conversely.

Example 1.3. The paper [12] mentions that the principal block of the
simple group M;; contains 5-dimensional simple modules that are not
algebraic.

The main theorem in [23, 5.1] proves from the basic Eq. (21) that
Hopf subalgebra depth and depth of its generalized quotient V' are
closely related by

(2) 2d(V, Mp) + 1 < d(R, H) < 2d(V, Mg) + 2.

Note that one restricts V to an R-module in order to obtain the better
result on depth. In Section 6 we need to consider the depth of V' as an
H-module when R is replaced with a left coideal subalgebra K of H
(since K is not itself a Hopf algebra). For now we note that h-depth
satisfies d,(R, H) = 2d(V, My) + 1 [23, 5.1].

2. THE DESCENDING CHAIN OF ANNIHILATORS OF THE
TENSOR POWERS OF V

In this section H is a finite-dimensional Hopf algebra over a field k.
Let R be a Hopf subalgebra of H. Let H" denote the kernel of the
counit € : H — k; then R™ = kere|g is a coideal of R. Recall that two
right H-modules U and W have an H-module structure on U ®; W
from the diagonal action, (u ® w) - h = uhy ® why. In this section
we study the annihilator ideals of the tensor powers of the right H-
module coalgebra V' := H/RTH and its restriction to right R-module
coalgebra. The purpose for this is to obtain a necessary condition
for finite depth of the subalgebra R C H. Several of the arguments
below originate in the pioneering [29, Rieffel] and are illuminated by
the related articles by [28, Passman-Quinn|, [15, Feldvoss-Klingler] and
[11, Chen-Hiss|. A useful fact for finite-dimensional Hopf algebras that
we use below is that a bi-ideal I of H is automatically a Hopf ideal; i.e.,
if I is an (two-sided) ideal and coideal of H, then it may be established
that S(I) = I for the antipode S : H — H (e.g., see [28]).

Given the right R-module V' = H/RTH, its tensor powers V& =
V®:--®V (ntimes V) are also R-modules, with annihilator ideals
denoted by I, = AnngV®". Thinking of the zeroeth power of V' as the
trivial R-module k., denote Iy = R'. Now if modules have a monic
U — W, one verifies that AnnW C AnnU. Secondly, the R-module
coalgebra structure of V shows that for each n > 0, V& | @+ [23,
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Prop. 3.8]. It follows that we have a descending chain of ideals,
(3) 2L 212 21 :=AmgV®" O -

In a moment we show in the proof of Lemma 2.2 the (also known) fact
that I,, = I,,,1 implies I,, = I,,,, for all positive integers r; in this case,
if /(R) denotes the length of R as an R°-module, the chain of ideals of
R in (3) must satisty I, = I,,;1 at some n < {(R). Note that if ¢ is
the number of nonisomorphic R-simples, then ¢(R) > ¢, with equality
if and only if R is semisimple [15].

Example 2.1. Suppose Iy = I;. Then R™ C AnngV = {r € R* :
Hr C RYH}; ie., HRT C RTH, a condition that characterizes left
ad-stable Hopf subalgebra as well as right depth two Hopf subalgebra
[4]. Thus, Iy = [; if and only if R is a normal Hopf subalgebra in H iff
d(R,H) <2.

Let Iy := N9 1, an ideal in R; indeed Iy is the maximal Hopf ideal
contained in AnngV', by the next lemma based on venerable arguments
given in [29, 28] (and worth giving again in this context).

Lemma 2.2. Fach Hopf ideal in AnngV is contained in Iy, which is
itself a Hopf ideal. Moreover, Iy = I, for some n < {(R).

Proof. Suppose [ is a Hopf ideal in AnngV and x € I. Then x annihi-
lates V', so that (V@ V)-z = (V®@V)A(x) = 0 follows from the coideal
property A(I) C I®Q R+ R®I. Similarly x € I, for all n > 1, since the
n— 1’st power of (the coassociative) coproduct satisfies A"~ (z) € 1™,
a subspace in R®™ defined generally by

(4) Jm+1) Z R¥ ® [ @ R®(m=1)
i=0
(which visibly annihilates VV®(m+1)),

If I, = 1,41, we show I, = I,,» and a similar induction argument
shows that I, = I, for all » > 0. If z € I, = I,,1, then A(z)
annihilates V") = V& &V whence A(z) € I, ® R+ R® I;. Then
(A®idgp)A(z) e [, @ R® R+ R®1; ® R+ R® R ® I, which itself
annihilates V" @ V @ V = V®"+2) Then I, = I, ,».

From this it follows that Iy = N} ,I,, = I,, and that Iy is a coideal.
For suppose & € I, = I,. Then VO .2 = 0 = V¥ . 2 so writing
VeI — YOn @ VO shows that 21y ® 22) € I, ® R+ R® I, and thus
A(ly) € Iy ® R+ R® Iy. We conclude that Iy is a bi-ideal in R,
whence a Hopf ideal, and the maximal Hopf ideal contained in I;. Let
ly denote the least n for which I, = I,,, so that ¢, < ¢(R) follows from
the general remarks about composition series following (3). O
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Proposition 2.3. If a Hopf subalgebra R has depth 2n+ 2 in a finite-
dimensional Hopf algebra H, then AnngV®" C AnngVe"t") for all
mntegers r > 0.

Proof. From the inequality (2), it follows that the depth of V' is n or less.
Thus V@M +7) ~ V@ a5 R-modules, and these have equal annihilators.

That 1,4, C I, is always the case. ]
Note that
(5) AnngV®" = {r € RT | H®".r € (R*H)™}

from which it is possible to express the necessary condition for depth
2n+2 in the proposition in continuation of the condition HR* C RTH
for depth 2. For example, denote Rt := {r € R | Hr C R"H}; then
a necessary condition that R C H have depth 4 is

(6) (H® H).R"" C (RTH)®),
which expresses that AnngV C Anng(V @ V).

Example 2.4. Given a finite-dimensional Hopf algebra H over an ar-
bitrary field & with radical ideal J, the H-module W = H/J may
not be a coalgebra if J fails to be a coideal. Of course AnngW = J:
the annihilator ideals of W®" are shown in [11, Chen-Hiss] to satisfy
AnngW® = A" J (for the wedge product of subspaces of a coalge-
bra, see for example [26, Chapter 5]), which is also a descending series
of ideals. Therefore the lemma applies to W = H/J as well, so the
intersection Iy, of the annihilators of tensor powers of W is the max-
imal nilpotent Hopf ideal J, in the radical of H, studied in [11]. For
example, if H has a projective simple, then J, = {0} [11, 2.6(3)] with
a partial converse [11, 3.10] involving the condition ¢y < 2. On the
one hand, if H is a pointed Hopf algebra, then J, = J [26, Chapter 5];
equivalently, H has the Chevalley property [25] (i.e., tensor products
of simple modules are semisimple). On the other hand, if H = kG
a group algebra over a field k of characteristic p, with normal Hopf
subalgebra R = kO,(G), the group algebra of the core O,(G) of a Sy-
low p-subgroup, then using [28, 11] one notes that J,(H) is the Hopf
ideal RTH = HR™. It is verified in [11, 4.5] that for k algebraically
closed of characteristic p > 5, each of the nonabelian simple groups G
has a projective and simple kG-module (as suggested by the fact that

Op(G) = {1}).
Recall that an R-module U is faithful if AnngU = {0}.

Definition 2.5. Say that the quotient module V- = H/R*H is condi-
tionally faithful if Iy = {0}, i.e., the annihilator ideal AnngV contains
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no nonzero Hopf ideal in R. By Lemma 2.2 this implies that V®" is
faithful as an R-module for all n > {y .

It is well-known that an R-module W is faithful if and only if W
is a generator. For if W is a generator, then for some n € N, there
is Rp — W™, whence AnngW C AnngR = {0}. Conversely, if W
is faithful, define a monomorphism Rr < W™ by r +— (wyr, ..., w,r)
where wy, ..., w, is a k-basis of W. Since R is a (quasi-) Frobenius
algebra, Rp is an injective module, and the monomorphism just given
is a split monomorphism. The next lemma is classical and follows from
the Krull-Schmidt Theorem applied to Rg |n - Wk.

Lemma 2.6. If Wy is faithful, then each projective indecomposable
R-module P satisfies P|W.

Example 2.7. Let R be a Hopf algebra where dim R > 2. Then
the regular representation Rp is faithful and projective, as are the
tensor powers R®™ for integers n > 1. From the lemma it follows that
R ~ R®" as R-modules, so that /g = 1 and d(R, Mpg) = 1. Similarly,
a faithful projective R-module W has depth 1; a conditionally faithful
projective R-module V' has depth /¢y, .

Theorem 2.8. Suppose R C H is a Hopf subalgebra with quotient
module V' a projective, conditionally faithful R-module. Then R is
semisimple, by < t, where t is the number of irreducible representations
of R, and each R-simple S|V®%V . Furthermore, the depth satisfies
d(R,H) <20y + 2.

Proof. If V. = H/R'tH is a projective right R-module, then R is
semisimple [23, 3.5]. This may also be seen right away by noting
that kg| Vg, since the counit ey : V — k is split by the mapping
i 1p+ RTH. Then kg is projective, and R is semisimple.

Since R is semisimple, the length ¢(R) of Rge satisfies ((R) = t;
also, each projective indecomposable is a simple module and conversely.
Then ¢y < t follows from Lemma 2.2 , and each S| V® follows from
Definition 2.5 and Lemma 2.6.

The last statement of the theorem follows from the inequality for
depth Eq. (2). Since the V®v+7) are faithful, semisimple R-modules
for each integer r > 0, each contains every R-simple as noted before
(and recalling that V& | V®m+1) for each m > 0). Consequently, they
are similar as R-modules: V&V ~ V@& +7) for each r > 0. It follows
that the depth of V' satisfies d(V, Mg) < {y. O

Example 2.9. Suppose k£ = C and the Hopf subalgebra R is a group
algebra CG where G is a subgroup of grouplike elements in a Hopf
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algebra H. Suppose that V' = H/R" H is conditionally faithful, then
its character yy is faithful, i.e., its kernel ker xyy = {g € G|xv(9) =
xv(1)} = N is trivial, for if this normal subgroup were nontrivial,
then AnngV contains the nontrivial Hopf ideal I = RCN*t = CNTR.
Note that if xy(g) = xv (1), then g acts like the identity on V', whence
1 — g € AnngV. Conversely, if the character xy is faithful, the
Burnside-Brauer Theorem [18, p. 49] informs us that V' is condition-
ally faithful, for x; | x{? for each irreducible character, x1, ..., x: of G,
and m < |xv(G)|, where |X| denotes the cardinality of a finite set
X. It follows that ¢y < |xv(G)|. (Alternatively for general k, if Vz
is not conditionally faithful, then AnngV®" stabilizes as n — 0o on
a nonzero Hopf ideal I of the group algebra R necessarily of the form
I = RENT = ENTR [28, 11], where N is a normal subgroup of G in

ker xv.)

3. DEPTH OF A SEMISIMPLE GROUP ALGEBRA IN ITS
DRINFELD DOUBLE

As an application of Section 2 and the methods sketched in the last
subsection of Section 1, we compute the depth of a semisimple group
algebra in its Drinfeld double, a smash product of the group algebra
and its dual [26]. The computation is very must guided by the ideas in
(27, Passman]. A certain portion of this section can be carried further
to a general semisimple or cocommutative Hopf algebra in its Drinfeld
double; the interested reader should first consult [6].

Suppose G is a finite group, k a field of characteristic not dividing
the order of G, and consider the group algebra R = kG. Denote its
Drinfeld double as H = D(G) = D(R) [26] with multiplication given
by

(7) (P <1 g)(py DA h) = PaPyyg—1 > gh

for all g, h,x,y € G where p, denotes the one-point projection in R*.
Note that this is the semidirect product of the R-module (adjoint rep-
resentation) algebra R* with kG. Recall that 1y = > . p, > 1¢ and
the counit e(p, > g) = py(lg) = 0,1. Of course R is identifiable with
the subalgebra 1z ® R. A short computation with Eq. (7) shows that
the centers of D(G) and G satisfy

(8) kZ(G) = Z(D(G)) N kG,

We compute the generalized quotient V' = H/RTH as a right R-
module. Note that dimV = |G].

Lemma 3.1. The right G-module V' is isomorphic to kG.q.
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Proof. First compute Rt H from

(1 > (1= g))(py > h) = py > h — pgyg—1 > gh,

for each 1 # g,y,h € G. Thus in H/RTH the cosets have a unique
representative as follows:

Py AN = pgyg—1 X1 gh = pp-1y, X 1g

Define a G-module isomorphism V' = R* by py U = pp-iyp.
But £G*.q = kGaq via p; — g, where the right adjoint is given by
g-v=xtgr. O

It is well-known that in characteristic zero, D(R) is a semisimple
algebra, if R is semisimple.

Proposition 3.2 (Burciu [7]). The module V' = kGaq has depth n if
the kG-module V™ is faithful for some n € N. Our converse requires
k to be an algebraically closed field of char k = 0 and that G has trivial
center. If kG C D(G) has depth 2n + 1, then V™" is faithful.

Proof. (<) Since kG is a semisimple algebra, the kG-modules V' and
its tensor powers are semisimple modules. Thus if V®" is faithful,
it contains each simple kG-module by Lemma 2.6. It follows that
Ven Vet for each integer r > 0. Thus, V has depth n.

(=) Use the Rieffel relation X between simple kG-modules W, U de-
fined by W LUitwe r H and U ®r H have an isomorphic nonzero
summand in common ([9, p. 139] and [30]). (In terms of the bipartite

graph of the semisimple subalgebra pair R C H, the points represent-
ing W and U are connected by one irreducible representation of H.)

Extend & by transitive closure to an equivalence relation. Note that &
is already a transitive relation iff R C H has depth 3 [9, Corollary 3.7].
Also, the number of equivalence classes is equal to dim Z(H) N R ]9,
Corollary 3.3], so by the hypothesis and Eq. (8) there is one equivalence
class.

Let W be a left R-module (and note that the gM is isomorphic as
tensor categories to Mg via the inverse). We compute W 1P |  from

R RopW = R @, W

with G-action given by ¢ - p, ® w = pgze—1 ® gw. This implies that the
image of W under induction and restriction satisfies

(9) W AP | g G R@ W,
the right-hand side having the diagonal action by R.
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Let xy denote the character of a G-module U, y.q be the charac-
ter of module ,qR, and xi,...,x: € Irr(G). If R C H has depth 3,

then 2 has one equivalence class, so that the inner product of any ir-
reducible characters, i, xw of G, satisfies (xy 7@,y 1P > 0.
By Frobenius reciprocity and Eq. (9) this gives (xv, Xaaxw) > 0, so
letting xw = X, this shows that ,qR and R,q are generators, therefore
faithful modules.

If R in H has depth 5, then by [9, Proposition 5.4], any two R-
simples U, W may be reached by a shortest path of length at most two,

UL X ZW for some R-simple X, and that the entry (xu, x2xw) > 0
in S? (where S is the symmetric order ¢ matrix defined in Section 1 by
Si; = (xi TP x; 1PE)). Thus V*2 is faithful. The rest of the proof
is a similar induction argument using [9, Proposition 5.4]. U

Recall from Section 2 that V is conditionally faithful if AnnzV®v =
{0} for some ¢y > 1, while AnngV®™ % {0} for 0 < m < ly.

Corollary 3.3. Suppose k is an algebraically closed field of character-
istic zero and G is a finite, centerless group. Then adjoint module V
1s conditionally faithful and its depth as an kG-module is ly

Proof. From the hypotheses on k, it follows from [9] that kG C D(G)
has a finite depth. Suppose it has depth 2n+1; then by the proposition,
V@ ig a faithful kG-module. It follows that n > ¢y. Since V& is a

generator, also by Lemma 2.6, V&V ~ V@& +1) for all integers r > 0.
Then Vx has depth £y . O

As we will see in Corollary 4.3 the depth is in fact satisfying
d(CG,D(GQ)) =20y + 1.

Example 3.4. Let k be a field of characteristic zero. The paper [27,
Passman, Theorem 1.10] shows that for each n > 3 the symmetric
group S, has a faithful adjoint action on kS,. It follows from Corol-
lary 3.3 that 3 < d(kS,, D(S,)) < 4 (in fact d(kS,, D(S,)) = 3 follows
from Theorem 4.2 below).

Note that d(kS,, D(S,)) = 3 for specific n = 3,4,... also follows
from a computation that the symmetric matrix S > 0, i.e., has all
positive entries. In general the methods above are realized from the
r x r character table (x;(g;)) of a group G with values in C as follows.
The character xaq is given by row vector (|C(g;)|)j=1,.r, Where an
entry is the number of elements of the conjugacy class of g;. The inner
product (Xad, x;) is the sum > 77, x;(gi); e.g. (Xad, X1) = 7, the number
of orbits of the permutation module by Burnside’s Lemma [18]. That
no row of the character table sums to zero is then equivalent to the
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module C G4 being faithful. Also the center of G equals the kernel of
Xad, and is trivial if no g # 1 satisfies xada(9) = Xxaa(l) = |G|.

4. ON DEPTH OF A HOPF ALGEBRA IN A SMASH PRODUCT

In this section we show that a Hopf algebra H has finite depth in
its smash product algebra A#H if the left H-module algebra A is an
algebraic H-module.

Suppose H is a Hopf algebra and A is a left H-module algebra. Recall
that equations such as h.14 = ¢(h)14 and h.(ab) = (hu).a)(h).b) are
satisfied (a,b € A, h € H): briefly, A is an algebra in the tensor
category of left H-modules. Define the smash product by A#H =
A ® H as a linear space with multiplication given by

(10) (a#h) (b#k) = a(h(l).b)#h(g)k’
Notice how H identifies with the subalgebra 1,#H in A#H and if
a = 14, the action of h is the diagonal action.

Proposition 4.1. The n-fold tensor powers of A#H over H are iso-
morphic as H-H-bimodules to the following tensor products in the ten-
sor category yM:

(11) (A#H)®H" = A®" @ H
Proof. The case n = 1 follows from the mapping a#h — a ® h, which
is clearly right H-linear and also left H-linear by an application of
Eq. (10).

Suppose Eq. (11) holds for an H-H-bimodule isomorphism for 1 <
n <m. Since H @y A = A, it follows from induction that

(A#H)®m = (A#H)®nD @ AfH =
AP D @ Doy A® H = A" ® .
Note that the isomorphism becomes a#u Qg b#v Qp - - - Qg cHw
(12) = a®@Uua).b® - @ Un-1)VU(n—2) €@ Uy U(n-1) """ W
for u,v,w € H and a,b,c € A. O

Define the minimum odd depth of a subalgebra B C A as dyqa(B, A) =
2[%1 + 1, which is the least odd integer greater than or equal to
the minimum depth d(B, A).

Theorem 4.2. The minimum odd depth of a finite-dimensional Hopf
algebra in its smash product satisfies

(13) doaa(H, A#T) = 2d(A, yM) + 1
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Proof. Since A is a left H-module algebra, it follows from applying any
of the standard face and degeneracy mappings, which are H-module
maps, that A®™ | A®(m+D for each integer m > 0. Then the depth n
condition for the left H-module A given by T,,+1(A) | ¢-T,,(A) for some
q € N is equivalent to A%+ | ¢ . A®" for some ¢ € N. Tensoring this
by —® H yields A2 @ H | q- A®" ® H and thus by Proposition 4.1
(A#H)®u (D) | . (A#H)®#™ as H-H-bimodules. Thus the minimum
odd depth doqq(H, A#H) < 2d(A, yM) + 1 by Definition 1.1.
Conversely, if (A#H)®#+D | g (A#H)®4" as H-H-bimodules, we
apply Proposition 4.1 and write equivalently A*"*V @ H |q- A" @ H.
Next apply —® gk to this, and through the cancellation y H @ gk = gk
with the unit module in z M, we obtain A®™+1) |q. A®" which is the
depth n condition for an H-module algebra. Therefore 2d(A, yM) +
1 < doqa(H, A#H). The conclusion of the theorem follows from the
two inequalities established. O

Corollary 4.3. The subalgebra depth and the depth of V = kG.q are
related by doaa(kG, D(G)) = 2d(V, Myc)+1. If k is algebraically closed
and has characteristic 0 and the center of G is trivial, then V is con-

ditionally faithful and the depth satisfies d(kG, D(G)) = 20y + 1.

Proof. First note from Eq. (7) that D(G) = (kG)*#kG where the
action is the adjoint action, ,qkG*, which is isomorphic to V. Then
Eq. (13) implies that doqq(kG, D(G)) = 2d(V, Mq) + 1.
For the second statement, note that Corollary 3.3 shows that d(V, Myg) =

(. From the inequality (2) depth of the centerless group algebra in
its Drinfeld double satisfies d(kG,D(G)) = 20y + 1 or 20y + 2; if
d(kG, D(G)) = 20y + 2, then dogq(kG, D(G)) = 20y + 3. But The-
orem 4.2 then implies that d(V, Mye) = v + 1, a contradiction. [

Example 4.4. The minimal example suggested in [27, Lemma 1.3] for
a centerless group GG with adjoint action on CG that is not faithful,
is a semidirect product G of a rank 3 elementary 3-group with the
Klein 4-group, so that |G| = 108 [7]. A long computation by hand
of its order 15 character table and S-matrix (where S;; = (Xi, XadX;))
shows that S has zero entries, but S? > 0, whence there is ¢ € N such
that S? < ¢S3. It follows from Corollary 4.3 that the minimum depth
satisfies d(C G, D(G)) = 5.

Example 4.5. Let H be a Hopf algebra of dimension n > 2. Let H*
act on H by f — h = hqa)f(he@)). It is a standard check that H is a
left H*-module algebra. Their smash product H# H* is the Heisenberg
double of H [26, Ch. 9]. We compute the depth doqq(H*, H#H*) next
from d(H, g+M) and Theorem 4.2. Since H* is a Frobenius algebra,
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u+H = g+« H* is isomorphic to the regular representation of H*. It was
noted in Example 2.7 that d(H, g+ M) = 1. It follows that

(14) doaa(H*, H#H*) = 3.

This result on depth makes good sense, since H#H* = M, (k) via
the (Galois) algebra isomorphism A : H#H* =5 End,H given by
AMh#f)(x) = h(f — x). Thus H#H* is an Azumaya k-algebra;
then H* — H#H* is an H-separable extension if the extension is
split and projective (cf. [21]). In this case dn(H*, H#H*) = 1 and
d(H*, H#H*) = 2. If H* is a semisimple complex algebra, that 2 =
d(H*, H#H*) may also be seen from the bipartite graph of the inclu-
sion [9] pictured below (where n4,...,n; denote the dimensions of the
simples of H*).

o3

5. DEPTH OF SUBALGEBRAS PROJECTIVE IN A
FINITE-DIMENSIONAL ALGEBRA

Let A be a finite-dimensional algebra over a field k. Denote the
principal right A-modules, or projective indecomposables of A, by
Py, ..., P;. (We sometimes confuse objects and their isoclasses for the
sake of brevity.) Let J denote the radical ideal of A. Then each P;
is the projective cover of P;/P;J := S;, the simple A-modules where
1 =1,...,s. Recall that the Cartan matrix C of A is an s x s-matrix
of nonnegative entries whose rows give the multiplicity of each simple
S; in the composition factors of F;; one may view C' as the matrix of a
linear mapping Ky(A) — Go(A) corresponding to sending a projective
into a sum of its simple composition factors with multiplicity. Recall
that Ko(A) = Z° is a free abelian group on the basis P, ..., Ps, such
that a projective X in Ky(A) is a nonnegative sum of the P; correspond-
ing to its Krull-Schmidt decomposition; also recall that Go(A) = Z° is
the free abelian group on the basis Sy, ..., Ss (the Grothendieck group
of A) such that a module Y in Gy(A) is a nonnegative sum of the
S; corresponding to the multiplicity of its composition factors. If k is
an algebraically closed field, dimy Hom 4(P;, X) equals the multiplicity
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of (the isomorphism class of) S; as a composition factor in a finite-
dimensional module X [2, p. 45]: in this case, the Cartan matrix entry
¢;; = dim Homyu (P, Pj) for each 7,5 =1,...,s.

Suppose B C A is a subalgebra of A such that the natural mod-
ule Ap is projective. Denote the projective indecomposables of B
by Q1,...Q,, the Cartan matrix of B by D, which has entries d;; =
dim Homp(Q;, @;) in case k is algebraically closed.

Of interest to us are two r x s-matrices with nonnegative entries.
(For both matrices, we use the Krull-Schmidt Theorem for finite length
modules of Artin algebras.) First define the matriz of restriction M
with entries given by m;; defined by

(15) Py 1= ®i_ymy; - Q

since each projective A-module restricts to a projective B-module by
the hypothesis that Apg is projective. Secondly, define the matriz of
induction for the subalgebra B C A as the r X s-matrix N with row
entries n;; € N given by inducing each of the projective indecomposable
B-modules,

(16) Qi ®p A= ®_ny; - P

Lemma 5.1. Suppose k is algebraically closed. Then the matrices of
restriction M and induction N are related by

(17) DM = NC
where C'" and D denote the Cartan matrices of A and B, respectively.
Proof. From the Hom-Tensor adjoint relation it follows that
Hom,(Q; ®p A, P;) = Homp(Q;, P; |5)
[19]. Substitution of Eqs. (16) and (15) reduces to
O Nik - Homa( Py, Pj) = @;_ymy; - Homp(Qs, Q).

Taking the dimension of both sides yields 3 ;| nicr; = >0 my;diq.
foreacht=1,...,r, 7 =1,...,s, from which the lemma follows. [

Example 5.2. Suppose A and B are semisimple algebras with B a
subalgebra of A. Then P, = S; so that the Cartan matrix of A is
the identity matrix, C' = I,; similarly, the Cartan matrix of B satis-
fies D = I.. It follows from the lemma that if the ground field £ is
algebraically closed, M = N, which is then the induction-restriction
matrix studied in [9] for k& additionally of characteristic zero, or the
induction-restriction table studied in [1] for subgroup pairs of finite
complex group algebras. That M = N also follows from the proof of



16 A. HERNANDEZ, L. KADISON AND C.J. YOUNG

Lemma 5.1 by applying Schur’s Lemma for algebraically closed fields
to Hom4(S;, S;) = ké;; and similarly dim Hompg(Q;, Q;) = d;;.

Example 5.3. Let A =T, (k) be the upper triangular n x n-matrices
over an algebraically closed field k. Let B = Diag, (k) the diagonal
matrices of order n, a semisimple subalgebra of A. The Cartan matrix
D = I, is immediate. Let J denote the radical ideal of A, so that
the obvious algebra epimorphism A — B is equal to the canonical epi
A — A/J. Denote the simples of A by Sj,...,S, which are then also
the simples of B by restriction. Thus Q; = S; |p foreach i =1,... n.
The projective indecomposable right A-modules are given in terms of
matrix units by P, = e;1 A, ..., P, = ey, A, which are the projective
covers of Si,...,S,, respectively. Then the matrix of induction from B
to Ais N = I, since S;®p A = P, is immediate from writing S; = Be;.

The composition series of P; is given by P, D P,J D PJ?> D --- D
P, g1 = {0} with simple factors P;/P;J = S;, P,J/P;J? = S;, 1, and
so forth, obtaining the Cartan matrix C'= 3, e;; for A. Restriction
of the principal modules, P, |~ Q1 ® --- © Q,, is clear from writing
P = Z?Zl e1;k and the matrix unit equations e;jeq = 0jq€i,. Simi-
larly, P, | g= Q; ® - - - & Q,, whence the restriction matrix of B C A is
M =3, ey Indeed M = C as implied by Lemma 5.1.

The theorem below does not require that k is algebraically closed.
Set the zeroeth power of a square matrix equal to the identity matrix.

Theorem 5.4. Suppose B C A is a subalgebra pair of finite-dimensional
k-algebra with Ag assumed projective. If the subalgebra B C A has left
depth 2n (respectively, depth 2n + 1), then

(18)  (MNY"M <t(MNY"'M (resp. (MN")"*t < t(MN")")
for somet € N.

Proof. Suppose B C A has depth 1. Then for some B-B-bimodule W,
we have

(19) pAp ® pWp =1t pBp

for some positive ¢t € N. Tensoring Eq. (19) to the right B-projective
indecomposable @);, one obtains after a standard cancellation,

(20) Qi®pAlp® Qi@ Wp=t-Q;.

By the Krull-Schmidt Theorem, there is w; € N such that Q; ®p
Wg = w; - Q; for each i = 1,...,7; and using Egs. (16) and (15),
Q; ®p Ap = (ijl nimij) - Qi It follows from w; > 0 and Eq. (20)
that M Nt < tI.. The rest of the proof is a similar application of the
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matrices of restriction and induction to the characterization of depth
2n,2n + 1 subalgebra in Eq. (1). O

In [9, 2.1, 3.5] the matrix inequality (18) with M = N characterizes
a depth n semisimple complex algebra-subalgebra pair B C A.

Example 5.5. Example 5.3 provides a counterexample to the converse
for Theorem 5.4. Recall that A is the upper triangular matrix algebra
and B is the subalgebra of diagonal matrices. Then the minimum
depth d(B, A) is computed in [24] as the semisimple subalgebra of
quiver vertices within the path algebra for the quiver

1=-2—=--->n—-1-—>n.

The depth satisfies d(B, A) = 3 as a corollary of [24, Section 6, first
paragraph]. However, we computed the n x n restriction matrix M =
> _i<j€ij in terms of matrix units, and the induction matrix N = I,,.
It follows that M N® = M, all of whose powers satisfy M* < tM*~! for
integers s > 2 and some positive ¢t € N (depending on s), since the set
of upper triangular matrices with only positive entries is closed under
matrix multiplication. In particular, the subalgebra B does not have
depth two in A, although it satisfies the depth two matrix inequality
M?* < nM (taking t = n) in Theorem 5.4.

6. DEPTH OF A LEFT COIDEAL SUBALGEBRA IN A
FINITE-DIMENSIONAL HOPF ALGEBRA

Let K be a left coideal subalgebra of a finite-dimensional Hopf alge-
bra H. In this case we only know that A(K) C H® K, and K might
not be a Hopf algebra. However, we generalize the results in [23, 3,
3.6] and generalize the h-depth result in [23, 5.1]. Below we use ® to
denote the tensor in the finite tensor category Mpy.

Let K+ denote the kernel of the counit ¢ restricted to the subalgebra
K. Although not completely obvious, it is well-known that the right
H-module V := H/K™H is in fact a right H-module coalgebra: see for
example [31]. Denoting the canonical epi H — V by m(h) = h, note
that for any € K, h € H we have the useful identity in V', zh = £(z)h.
Lemma 6.1. Let A be an arbitrary k-algebra. For any A-H bimodule
M, there is an isomorphism of A-H-bimodules, M @x H = M Q V.

Proof. The mapping M ®x H — M ®V given by m®g h — mh) ®%
is well-defined, since for z € K, we compute

m @k th = mrha) @ T)he) = meha) © he
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noting that A(x) € H ® K. This map has an obvious inverse mapping
M®V — M@k H given by m@h — mS(hay) ®hey where S : H — H
denotes the antipode of H. The inverse mapping is well-defined since
forz e Kt

mS(zwha)) @K 2@)h@) = mS(hw)S(rw)r@) @k he = 0.
The rest of the proof is similarly straightforward. U

This lemma is noted for a Hopf subalgebra R C H by [32, Ulbrich],
who also shows that the category Mp is equivalent to a category MY,
of module-comodules over the H-module coalgebra V.

Proposition 6.2. The n-fold tensor powers of H over a left coideal
subalgebra K satisfies the H-H-bimodule isomorphism,

(21) HEx™ =, H @ yer-D),
x®y®®z — xy(l)Z(l)®y(2)..z(2)®..®%
for integers n > 2 and x,y,...,z € H.

Proof. The case n = 2 is done in Lemma 6.1 for M = H. Assume
Eq. (21) holds for 2 < n < m. Then

Hexm =~ gexm-D o g~ (o Vem2) g, H>~H g Vem1
where we apply the induction hypothesis and then Lemma 6.1. U

Theorem 6.3. The h-depth of the left coideal subalgebra K C H sat-
isfies dp(K, H) = 2d(V,Mpg) + 1.

Proof. Suppose depth d(V, M) = n. Then VE"+1) | ¢. V& Applying
the additive functor zH ® — to this yields H @ V" +) |¢. H @ V"
as H-H-bimodules, whence by Proposition 6.2 we obtain the h-depth
2n + 1 condition on H-H-bimodules, H®x(+2) | ¢ . H®xM+)  Then
dp(K,H) <2d(V,Mpy) + 1.

Suppose h-depth dn(K,H) = 2n + 1. Then as H-H-bimodules,
HOx0+2) | ¢ . oD equivalently, H @ V0D | ¢ - H @ V& by
Proposition 6.2. Tensoring this by £ ® g —, and applying the cancella-
tions k ®yg H = k. and £k ® V = V, we obtain the depth n condition
Ver+) | . Ve This shows that dj,(K, H) > 2d(V, My) + 1, which
finishes the proof. O

Let A(H) denote the Green ring of H, where multiplication and
addition are given by tensor and direct sum, and [IW] denotes the iso-
morphism class of a module W € My in A(H). An H-module W
is said to be an algebraic module if [IW] satisfies an integer coefficient
polynomial in A(H). This is equivalent to W having finite depth [14],
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where the minimum depth d(W, Mp), defined in Section 1, is equal
to one less the degree of a minimum polynomial of [W] in A(H). We
let Ac(H) = A(H) ®z C denote the Green algebra, which has basis
consisting of all isoclasses of indecomposable finitely-generated mod-
ules. The projective indecomposables span the finite-dimensional ideal
Ko(H) ®z C. Note that a module W is algebraic if [W] is contained
in a finite-dimensional ideal in Ac¢ (H).

Corollary 6.4. The subalgebra pair K C H defined above has finite
depth if and only if the generalized quotient V' is an algebraic H-module.

The proof follows directly from the equality in Theorem 6.3 and the
implications h-depth 2n 4+ 1 = depth 2n + 2, and depth 2n = h-depth
2n + 1 discussed in Section 1.

7. GALOIS THEORY FOR 7* : V* — H* OF A HOPF SUBALGEBRA

Let R C H be a Hopf subalgebra of a finite-dimensional Hopf al-
gebra. Let V. = H/R"H be the generalized quotient and right H-
module coalgebra [10]. The canonical coalgebra epi m: H — V| where
7(h) = h = h + R*H has an interesting dual algebra monomorphism
7 V* — H*; in [23] it is noted that H* is a Frobenius extension of
V*. The next lemma follows directly from freeness and that the Hopf
algebra H* is a Frobenius algebra.

Proposition 7.1. The algebra V* defined above is a Frobenius algebra.

Proof. The natural right V*-module H* (via 7*) is free since Schneider’s
result is that H = R ® V as left R-modules, and right V-comodules
(equivalently, left V*-modules) [26, Ch. 8]. Thus, as right V* ® R-
modules,

(22) >~V ® R,

by standard duality for finite-dimensional algebras and modules. Now
a Frobenius extension free on one side is necessarily free on the other
side: it follows that v+ H* is also free.

The proof now follows from Pareigis’s argument using Krull-Schmidt

(cf. [19, p. 68]). O

Note that H* is left R*-comodule algebra under the left R*-comodule
structure stemming from restriction of its dual coproduct: the left
coaction p: H* — R* ® H* is defined by p(h*) = h*1)|r ® h*(2).

Theorem 7.2. The algebra extension given by ©* : V* — H* is a left
R*-Galois extension with normal basis property.
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Proof. Note that 7 : H — V' may be viewed as coextension of left R-
module coalgebras [31]. At first we note that the associated canonical

mapping
(23) BIR@H—)HDVI'L r®hr—>rh(1)®h(2)
(well-defined as one easily checks) is injective, for HOy H C H® H and

there is a left inverse HQ H — H®H defined by h@h' — hS(h{;))®hiy,.
We compute the dual of 3,

(24) B H @y- H - R, f®g— [)lr ® fo)g
€ H*) by noting the following from standard pairin
(f.9g ) by g g pairing,
B (f@g),reh) =(f®grha ® ha)
= (f,rhw){g, he) = ((f = 1)g,h)

= (folr, 7){f29,h) = (f)|r ® fly9,7 @ I)
for each r € R, h € H. As the dual of a monic, 5* is epi.
Note that “f" H* = V* follows from the computation given in [31]:

CHH = {f € H'|f))lrn ® fo) = er @ [}
={feH'NreR, f—r=c(r)f}={f€ H|Vr e R, f — (r—e(r)ly)
=0} ={f € H'|f|lptu =0} = (H/R"H)".
Now by a Kreimer-Takeuchi theorem the epi £* is an isomorphism [26,
8.3.1].
The left normal basis property (cf. [26, 3.3]) follows from Eq. (22),

which is equivalently an isomorphism of right V*-modules and left R*-
comodules. O

Note that the proof shows that § in Eq. (23) is an isomorphism,
so that the epi m : H — V is a Galois coextension of left R-module
coalgebras [31]. The next corollary follows from the left version of |26,
8.2.5].

Corollary 7.3. Given a Hopf subalgebra R C H, the algebra H* is
1somorphic to a crossed product of V* and R*, i.e., H* = V*#,R* for
some cocycle o : R* ® R* — V* (cf. [26, Ch. 7]).

Let {h;}"_, be a left R-module basis of zkH. Then H — R®V
is determined from h = Y7  r;h; as follows: h — Y ! 7 ® hi,
which is a left R-module and right V-comodule isomorphism. Then
¢ V*® R —s H* is given by ¢(v* @ r*)(h) = 9 (ro)vr(hy).
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The mapping v : R* — H* given by 7 = ¢(ey ® —) is convolution-
invertible by [26, Theorem 8.2.4]. Then by an application of [26, Propo-
sition 7.2.3], the cocycle 0 : R* ® R* — V* is given by o(r* ® s*) =
’Y(Ta))7(5?1))7_10’?2)5?2))-

Example 7.4. Let H be the Taft Hopf algebra (generated by a grou-
plike g and (g, 1)-skew primitive and nilpotent element z) of dimen-
sion n? and R the cyclic group algebra in H of dimensiona n. Since
H = H* and R = R* as Hopf algebras, it follows from a computation
that V* = C[z], where 2™ = 0, a Frobenius algebra. Indeed it is easy
to compute from the standard basis {z'g’} and Taft’s anticommutation
relation gx = qrg that H = C [2]|#C [Z ] (expressing a strongly graded
7 n-algebra as a smash product of its group with its coinvariants).
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