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Abstract. In this article we study a construction, due to Pak and Stanley, with which
every region R of the Shi arrangement is (bijectively) labelled with a parking function
λ(R). In particular, we construct an algorithm that returns R out of λ(R). This is done
by relating λ to another bijection, that labels every region S of the braid arrangement
with r(S), the unique central parking function f such that λ−1(f) ⊆ S. We also prove
that λ maps the bounded regions of the Shi arrangement bijectively onto the prime
parking functions. Finally, we introduce a variant (that we call “s-parking”) of the
parking algorithm that is in the very origin of the term “parking function”. S-parking
may be efficiently used in the context of our new algorithm, but we show that in some
(well defined) cases it may even replace it.

1. Introduction

Let n be a natural number and [n] := {1, . . . , n}. A parking function (of n cars or of size
n) is a function f : [n]→ [n] such that |f−1([i])| ≥ i for every i ∈ [n].
Suppose that n cars, one after another, enter a one-way street, and the driver of car i

wants to park in position f(i). Suppose also that each driver goes directly to his preferred
position, and parks either there, if it is free, or in the first free position thereafter. Then
f is a parking function exactly when all cars are thus parked in the first n places. Note
that the parking functions are exactly the functions of form f = c ◦ π for some central
parking function c and some permutation π of [n]. In other words, f : [n] → [n] is a
parking function exactly when f � π for some π ∈ Sn, where as usual Sn stands for the
set of permutations of [n] and f � g means that f(i) ≤ g(i) for every i ∈ [n].
The prime parking functions are those for which |f−1([i])| > i for every i ∈ [n− 1] and

a parking function is central if f(i) ≤ i for every i ∈ [n].
Now, let A be an arrangement (i.e., a finite set) of hyperplanes of Rn and R(A) be the

set of regions of A, the connected components of the complement in Rn of the union of
the hyperplanes. The central parking functions may be used to label the regions of the
braid arrangement (on n strands), the Coxeter arrangement of hyperplanes in Rn given
by

Bn =
{

xi − xj = 0 | 1 ≤ i < j ≤ n
}

while the parking functions may be used to label the regions of the Shi arrangement (of
size n), given by

Sn = Bn ∪
{

xi − xj = 1 | 1 ≤ i < j ≤ n
}

.

The work of both authors was supported in part by the European Regional Development Fund through
the programme COMPETE and by the Portuguese government through FCT - Fundação para a Ciência
e a Tecnologia, under the projects PEst-C/MAT/ UI0144/2014 and PEst-OE/MAT/UI4106/2014.
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The main purpose of this paper is to further deepen the study of the relation between
the two (bijective) labellings, which we show to coincide after suitable transformations,
and, by doing that, to define an algorithm for the evaluation of the Pak-Stanley bijection
from parking functions to regions [9], namely Algorithm 4.9.
In fact, whereas the number of regions of Bn, n!, is equal to the number of central

parking functions, the number of regions of Sn, (n + 1)n−1, is equal to the number of
parking functions. Let CFn be the set of central parking functions of size n and PFn

be the set of all parking functions of the same size. Stanley [8] considers explicitly two
bijections, the labellings r : R(Bn)→ CFn and λ : R(Sn)→ PFn, the latter being due to
Pak and Stanley [9]. We now know proofs of the bijectivity of λ that are not difficult (see,
for example, the work of Rincón [6]). It is also easy to evaluate directly, from regions to
parking functions, but so far we did not know how to easily evaluate its inverse.
It is perhaps worth mentioning that we know two other bijections between the regions

of the Shi arrangement and parking functions, due to Athanasiadis and Linusson [2], for
which proving that they are bijections and for which evaluating in both directions is also
not difficult. But neither of them can replace the bijection of Pak and Stanley as to the
important properties that we indicate briefly now, and more precisely in Proposition 2.2
and Proposition 2.4. Let us fix two given regions, still following Stanley [8], T0 and R0

(T0 ⊇ R0), in Bn and Sn, respectively. Then, in the image of a different region we may
count, for example, the number of hyperplanes that separate the region from T0, or from
R0, respectively.
In Section 2, we recall, essentially from Stanley [8], these and other properties that

relate the bijections, and study r in more detail. We end this section by defining ex-
plicitly λ−1(f) for a central parking function f . This definition is an important tool in
Algorithm 4.9.
In Section 3, we introduce Algorithm 3.1, a new variant, called s-parking, of the parking

algorithm that is in the very origin of the term “parking function”. It provides an easy
algorithmic way of evaluating S ∈ R(Bn) out of r(S) ∈ PFn.
Section 4 is the main section of this paper. We continue the study of the relations

between the two bijections and show that, given a parking function f , we may consider
adequate “sections of f” where λ and r coincide (cf. Proposition 4.8 and the previous
lemmas). Then, we introduce Algorithm 4.9 for the evaluation of the Pak-Stanley bijec-
tion, from parking functions to regions, where, for efficiency sake, the use the s-parking
algorithm is recommended. This is one of the main results of this article.
The other main result is Proposition 4.11, where we prove that the Pak-Stanley bi-

jection shares a property with one of the bijections of Athanasiadis and Linusson (cf.
[2, Theorem 2.4]). Namely, we prove that λ maps bijectively the bounded regions of
the Shi arrangement onto the prime parking functions on [n]. We do not know if this
property was studied before, but it seems likely that it was at least considered, since the
Pak-Stanley bijection was known before the article of Athanasiadis and Linusson (which
it possibly inspired). We believe that it was the difficulty in handling this bijection,
which is mentioned by Athanasiadis and Linusson [2, p.29] and which we hope to lessen
significantly here, that prevented earlier proofs of this fact.
Finally, in Section 5, we show that, even if f is not central, in some cases the s-parking

algorithm still produces λ−1(f) when applied directly to a parking function f , and we
explain at the end of the section when does this happen (see Remark 5.4 and the final
note).
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2. Preliminaries

Recall that, for n ∈ N, [n] := {1, . . . , n} and let [0] := ∅. Given i, j ∈ N, set [i, j] :=
[j] \ [i− i], so that [i, j] = {i, i+ 1, . . . , j} if i ≤ j and [i, j] := ∅ if i > j. As usual, given
w : [n]→ N, we let wi denote w(i) and use the one-line notation, writing w = w1 · · ·wn,
which we may view as a word. But we may also view w as the element (w1, . . . , wn) ∈ Rn.
When f is defined in a subset of [n], we also use a variant of Cauchy’s two-line notation

where we write x over f(x), as in f =
1

3
2

4
4

1
6

1.

2.1. Braid arrangement. Every region in the braid arrangement is of form

Tw =
{

(x1, . . . , xn) ∈ Rn | xw1
< xw2

< · · · < xwn

}

,

for a given, clearly unique, permutation w ∈ Sn. Note that w−1 ∈ Tw as an element of
Rn. Let T0 = Tn···21.
The following definition is used by Stanley [8, p. 476] in the construction of a distance

enumerator for the braid arrangement. However, for reasons that will become clear later,
we add 1 to all coordinates and reverse w in the definition of Tw. Given w ∈ Sn, let

fwi
=

∣

∣

{

k ∈ [i] | wk ≤ wi

}∣

∣ , i = 1, . . . , n ,

t(w) = (f1, . . . , fn) ∈ Rn .

Example 2.1. Consider n = 9 and w = 843967125, so that T = Tw is the region of B9
defined by

x8 < x4 < x3 < x9 < x6 < x7 < x1 < x2 < x5 .

For example, 6 is the fifth element of w and, within the first five elements of w, three (4,
3 and 6) are less than or equal to 6. Thus, f6 = 3. Throughout, t(w) = 121153414.

We note that t(w) � Id and that t(w) � w−1, where Id = 12 · · ·n ∈ Sn. In fact, the
ith component of w−1 − t(w) is the number of integers greater than i to the left of i in
w. Hence, w−1 − t(w) is the inversion vector of w. Remember that CFn =

{

f ∈ [n]n |

f � Id
}

. We recall the following important theorem, where we define

r(Tw) := t(w) .

Proposition 2.2 ([8, Proposition 6.1.9, ad.]). The function r : R(Bn)→ CFn is charac-
terized by the following properties:

� r(T0) = 11 · · · 1;
� if the regions T and T ′ are separated by a unique hyperplane H of equation
xi − xj = 0 with i < j and T0 and T are in the same side of H, then r(T ′) =
r(T ) + ej, where ej is the jth unit coordinate vector of Rn.

Lemma 2.3. The function t : Sn → CFn is a bijection, and hence so is r : R(Bn)→ CFn.

Proof. Clearly, |CFn | = n!. Let us prove that t is injective. Consider distinct w, w̃ ∈ Sn,
let k be the least integer such that wk 6= w̃k and suppose without loss of generality that
wk > w̃k. Let a := wk, b := w̃k, f := t(w) and f̃ := t(w̃). Note that a = w̃ℓ for some

integer ℓ > k. Now, by definition, fa = |A| and f̃a = |Ã|, where

A :=
{

i ∈ [k] | wi ≤ wk = a
}

and

Ã :=
{

i ∈ [ℓ] | w̃i ≤ w̃ℓ = a
}

.

Since A ⊆ Ã and ℓ ∈ Ã \ A, fa < f̃a. �
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2.2. Shi arrangement and parking functions. Shi [7] introduced the arrangement of
hyperplanes that now has his name, and counted the number of regions it determines.
This number is (n + 1)n−1, which is, in particular, also the number of parking functions
of n cars introduced in literature by Konheim and Weiss [5]. Three different explicit
bijections are known between these two sets: two of them are due to Athanasiadis and
Linusson [2], and a third one, the first in time, is due to Pak and Stanley [9]. The latter
is a bijection λ : R(Sn)→ PFn characterized as follows (compare to Proposition 2.2):

Proposition 2.4 ([8, Proposition 6.1.9, ad.]). Let R0 be the region defined by

xn < xn−1 < · · · < x2 < x1 < xn + 1 ,

(in other words, x ∈ R0 if and only if 0 < xi − xj < 1 for all 1 ≤ i < j ≤ n). Then

� λ(R0) = 11 · · · 1;
� if the regions R and R′ are separated by a unique hyperplane H of equation xi = xj

with i < j and if R and R0 lie on the same side of H, then λ(R′) = λ(R) + ej;
� if the regions R and R′ are separated by a unique hyperplane H of equation
xi = xj + 1 with i < j and if R and R0 lie on the same side of H, then λ(R′) =
λ(R) + ei.

Before defining λ according to Stanley 1 [8], we need to introduce the concept of valid
pairs. Every region R ∈ R(Sn) corresponds bijectively to a pair (w, I), called a valid
pair, where

� w ∈ Sn;
� I is an anti-chain of proper intervals, meaning that I is a collection of intervals
[i, j] with 1 ≤ i < j ≤ n such that if I, I ′ ∈ I and I 6= I ′ then I * I ′ (and I ′ * I);
� for every I = [i, j] ∈ I, wi > wj.

In fact, given a valid pair (w, I), the elements x = (x1, . . . , xn) ∈ Rn of the correspond-
ing region R are characterized by both the set of signs of xj − xk, for 1 ≤ j < k ≤ n,
and by the set of signs of xj − xk − 1. The first set of signs characterize the points of the
region of the braid arrangement that contains R, given by

Tw =
{

(x1, . . . , xn) ∈ Rn | xw1
< xw2

< · · · < xwn

}

⊇ R ,

and the second set of signs can be codified as follows: for every i < ℓ such that wℓ < wi

(otherwise xwℓ
− xwi

< 0), if there exist I ∈ I such that i, ℓ ∈ I, then xwℓ
− xwi

< 1; if
they do not exist, then xwℓ

− xwi
> 1.

Still following Stanley, we represent the valid pair (w, I) where I = {[i1, ℓ1], . . . , [ik, ℓk]}
by decorating w with k arcs above the elements of w, starting in position ij and ending
in position ℓj, for j ∈ [k]. These are the dual diagrams of Athanasiadis and Linusson
[2]. We will call them arc diagrams. See Example 2.6, below. Note that by definition
ℓj ≥ ij + 1.
Now, in order to define the parking function f = λ(R) associated with R, we consider

d = d1 · · · dn, where

(2.1) dwi
=







0, if i /∈
⋃

I∈I

I ;
∣

∣

{

j < i | wj > wi and j, i ∈ I for some I ∈ I
}∣

∣ , otherwise.

Then, as a vector, λ(R) = w−1 − d.

1Although Stanley’s w and ours are again reversed from each other.
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Our definition of λ is equivalent to the definition of Pak and Stanley [8, Equation 56,
ad.], since i = λ(R)wi

+ dwi
, where

λ(R)wi
= 1+

∣

∣

{

j < i | wj < wi

}∣

∣

+
∣

∣

{

j < i | wj > wi, no I ∈ I satisfies j, i ∈ I
}
∣

∣ .

If R is the region associated with the valid pair (w, I) and f = λ(R), then we simply
write f = λ(w, I). We also denote the permutation w of the valid pair by w(f).
Note that we may subsume the definitions of t and λ as follows.

Definition 2.5. Let w ∈ Sn, and let j = wi for some i, j ∈ [n].

� Suppose that f = t(w) for a (central) parking function f . Then

fj = 1 + |w([1, i]) ∩ [j − 1]| .

� Suppose that (w, I) is a valid pair, f = λ(w, I) and k is either i, if i /∈ I for every
I ∈ I, or is the least element for which there exists ℓ ∈ [n] with i ∈ [k, ℓ] ∈ I

(in other words, wk is the leftmost left-endpoint of an arc that contains j in the
corresponding arc diagram). Then

fj = k + |w([k, i]) ∩ [j − 1]| .

We now consider two examples that will be used throughout the paper.

Example 2.6 ([8, example p. 484, ad.]). Let w = 843967125 and I =
{

[1, 6], [3, 8], [6, 9]
}

.
The arc diagram of the valid pair (w, I) is

8 4 3 9 6 7 1 2 5 ,

and is in bijection with the region R of R(S9) defined by

x8 < x4 < x3 < x9 < x6 < x7 < x1 < x2 < x5 ;

x8 + 1 > x7, x3 + 1 > x2, x7 + 1 > x5 ;

x4 + 1 < x1, x3 + 1 < x5, x6 + 1 < x5 .
2

Then

f = λ(R) = 341183414 .

For instance, f1 = 3 since, of the left-endpoints of the two arcs that “cover” 1, the
leftmost starts at position 3 (with a 3) and there are no elements less than 1 between 3
and 1 (among 3, 9, 6, 7, 1). Between 3 and 2, one element (1) is less than 2, and so f2 = 4.
There are no elements less than 3 between 8 and 3 (f3 = 1), etc.

Example 2.7. Let n = 4 and consider the arc diagram 4 2 3 1. The points (x, y, z, t) ∈ R4

that belong to the associated region R verify the inequalities 0 < x−y < 1, 0 < x−z < 1,
x− t > 1, y − z < 0, 0 < y − t < 1 and z − t > 1. Note that d = 2100 and λ(R) = 2131.

We have seen how to evaluate the Pak-Stanley bijection directly, from valid pairs to
parking functions. However, in general, the problem of finding λ−1(f) for a given parking
function f is considered to be difficult. Stanley [8] presented the draft of an algorithm
for this purpose, which is based on the very definition of λ; but the algorithm seems hard
to analyse. In the next section, we evaluate λ−1(f) when f is a central parking function,
and afterwards, based on this, we consider a new general algorithm for this purpose.

2Hence, also x8 + 1 > x6 and x8 + 1 < x1, for example.
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Two parking functions f and g such that w(f) = w(g) are braid equivalent. For
example, the parking functions of Example 2.1 and Example 2.6 are braid equivalent.
The equivalence classes for this relation obviously correspond to the regions of the braid
arrangement. In particular, it is not difficult to see that the union of the closure of the
regions associated with the dominant parking functions is indeed the closure of T0, being
the number of dominant parking functions the Catalan number of order n. The case n = 3
is depicted in Figure 1, where we can see, for each region R of S3, the corresponding arc
diagram below the parking function λ(R). Note that we added a line at infinity.

x−
y =

1

x− y = 0

x
−
z
=
1

x
−

z
=

0

y
−
z
=
1

y
−
z
=

0

∞

b

b

b

b

b

b

b

b

b b

b

312
2 3 1

111
3 2 1

121
3 1 2

132
1 3 2

112
2 3 1

211
3 2 1

113
2 1 3

221
3 2 1

213
2 1 3

321
3 2 1

123
1 2 3

231
3 1 2

122
1 3 2

131
3 1 2

212
2 3 1

311
3 2 1

Figure 1. Parking functions of 3 cars and the bijection of Pak and Stanley

Remark 2.8. Given f and w = w(f), and hence d, we may also obtain I by drawing from
right to left an arc over w, starting in j and encompassing exactly dj elements greater
than j, for each j ∈ [n], and then by deleting all arcs that are contained in other arcs (cf.
[2]). For example, if again f = 341183414 and w = w(f) = 843967125, d = 442142200
since w−1 = 783295614. Then, we may draw

(2.2) 8 4 3 9 6 7 1 2 5 that gives us 8 4 3 9 6 7 1 2 5 .

and so I(f) =
{

[1, 6], [3, 8], [6, 9]
}

.

2.3. Inclusion of Bn in Sn via parking functions. Since the elements of CFn are
parking functions, ι = λ−1 ◦ r : R(Bn)→ R(Sn) is well-defined. In fact, ι(T ) ⊆ T for any
region T of the braid arrangement since w(f) = t−1(f) for any central parking function
f (see below). Hence, by Propositions 2.2 and 2.4, the hyperplanes that separate ι(T )

and R0 are all of form xi = xj. Hence, ι(T ) is a (closed) region of Sn that contains the
line defined by x1 = · · · = xn as a face. This is why we call “central” to these parking
functions, which are underlined in Figure 1.
Let w = t−1(f). If w1 > wn, let I = {[1, n]}. Then clearly λ(w, I) = f (see Defini-

tion 2.5), which shows that w(f) = t−1(f).
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In general, consider the set of inversions of w,

inv(w) := {(i, j) | i < j, wi > wj}

and order this set as follows:

(i, j) ≤ (k, ℓ) if and only if [i, j] ⊆ [k, ℓ] .

Then clearly λ(w, I) = f if I is the set maxinv(w) of maximal elements of this poset.
For example, the arc diagram of f = 1132 is 2 4 1 3 : w(f) = 2413, inv(2413) =
{

{1, 3}, {2, 3}, {2, 4}
}

and I(f) = maxinv(2413) =
{

{1, 3}, {2, 4}
}

.

3. S-parking as the inverse of t

In this section we introduce an algorithm that produces a permutation w out of any
parking function f (in fact, it produces a permutation if and only if f : [n] → [n] is a
parking function — see Lemma 5.2, below). But, for now, we will only see that when f
is a central parking function then f = t(w).
Evaluating t−1(f), in itself, is not difficult, as we can see in the example that follows.

Consider again Example 2.1, where T = Tw is the region of B9 defined by

x8 < x4 < x3 < x9 < x6 < x7 < x1 < x2 < x5

and consider the lattice points of form (j, i), where i = 1, . . . , 9 and 1 ≤ j ≤ wi. Below,
in Table A, we mark these points. Note that v := w−1 = 783295614. In the row below
the table, in column j we count the number of “free” cells before i = vj, from bottom to
top. This is the number of pairs (wk, k) with wk ≤ wi and k ≤ i, added by 1, and so it
is fj. Hence, we have written the vector f = t(w) = 121153414, by Definition 2.5. But,
obviously, given the row below the table, the full table can be reconstructed, from right
to left, thus obtaining w = t−1(f) out of f .

Table A

• • • • 9
• 8
7
• • • • • • 6
• • • • • 5
• • • • • • • • 4
• • 3
• • • 2
• • • • • • • 1

1 2 1 1 5 3 4 1 4

Table B

5
2 65

1 62 65
61 62 65 7
61 62 65 6 67
61 62 66 67 9
61 62 3 66
61 62 63 4
61 63 64 8

1 2 1 1 5 3 4 1 4

Table C

5 ©
9 ©
7 ©

6 ©
2 ©

8 ©
4 ©
3 ©
1©

8 4 3 9 6 7 1 2 5

Figure 2. Three tables

Table B was built with s-parking.
Konheim and Weiss [5], in the very introduction of parking functions, considered a

setting that is now widely used and that explains the present name “parking functions”
and the use of the term “cars”. In short, given f : [n] → [n], view each i ∈ [n] as a
car and f(i) as its driver’s preferred place to park, in a one-way street with a sufficient
number of parking places. Suppose the drivers follow the rule that each one enters the
street after the previous car has parked, drives to its favourite place and parks if it is free,
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and if not free it parks in the first free place after that. Then we may see that f ∈ PFn

exactly if all cars can be parked in the first n places.
We introduce here different parking rules: in our case, any car, when entering the street

and finding his favourite place occupied, has the power (and the will) to shift the parked
cars to the next empty space and to park (temporarily!) where he wants. In other words,
it parks in the way we insert books in a non-empty shelf.

Algorithm 3.1 (s-parking). Let A = {a1, . . . , am} ⊆ [n] with a1 < · · · < am and
f : A→ [n] be an injective function. Set q = q(f) : A→ [n] recursively as follows:

� Define q(a1) = f(a1);
� Suppose that q(i) is defined for i ≤ j, and consider the least integer k ≥ f(aj+1)
such that k /∈ q([{a1, . . . , aj}]). If k > f(aj+1), redefine q(ai) as q(ai)+1 for every
i ≤ j such that f(aj+1) ≤ q(ai) < k. Finally, define q(aj+1) = f(aj+1).

The application of this algorithm to the example above (where n = 9 and A = [n]) is
shown in Table B of Figure 2. According to the parking function f , below the table, we
place (car) 1 in column 1, row 1, and 2 in column 2, row 2 (row 1 is “occupied”). Then,
we place 3 in row 1, thus displacing 1, to next row, 2; this displaces 2 to row 3. Now, 4
displaces 3, 1 and 2, and so on.
The obvious similarity between the tables A and B is not a coincidence, of course. In

fact, we have the following lemma.

Lemma 3.2. In the notation of Algorithm 3.1, if f(ai) ≤ i for every integer i between
1 and m, then, for any such integer i, the number of elements aj such that j > i and
q(j) < q(i) is q(i)− f(i). In particular, if A = [n] then q ◦ t(w) = w−1 for every w ∈ Sn.

Proof. It is easy to see that, under the conditions above, we may (and will) assume
without any loss of generality that A = [m]. The function q is defined by iterating m− 1
times the second clause of Algorithm 3.1; let q(1) : {1} → {1} and q(j) : [j]→ [m] be the
(j− 1)th iterate, for j > 1. Note that, by the condition imposed on f , q(j)([j]) ⊆ [j] (and
so q(j)([j]) = [j]) for every j ∈ [m]. In other words, q = q(m) and in this case, for j > i,

q(j)(i) =











q(j−1)(i), if i < j and q(j−1)(i) < f(j);

q(j−1)(i) + 1, if i < j and q(j−1)(i) ≥ f(j);

f(j), if i = j.

(3.3)

We prove the lemma by proving by induction on j = 1, . . . , n that

q(j)(i) = f(i) +
∣

∣

{

ℓ ≤ j | ℓ > i , q(j)(ℓ) < q(j)(i)
}∣

∣ , for every 1 ≤ i ≤ j .

But either
∣

∣

{

ℓ ≤ j − 1 | ℓ > i , q(j−1)(ℓ) < q(j−1)(i)
}
∣

∣ =
∣

∣

{

ℓ ≤ j | ℓ > i , q(j)(ℓ) < q(j)(i)
}
∣

∣ ,

which is the case when q(j)(i) = q(j−1)(i) < f(j), or the second set differs from the first
in that it contains j, otherwise. �

We will see in Lemma 5.2 that, again, f ∈ PFn exactly if all cars can be parked with
this algorithm in the first n places.

We now consider general parking functions, were we do not recommend the use of a
table such as Table B. Instead, we recall the representation proposed by Garsia and
Haiman [3], exemplified in Table C, that we adopt with minor changes. Counting from
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bottom to top and from left to right, column i is formed by the elements of f−1({i}) in
decreasing descending order. In the representation of Garsia and Haiman, the bottom
element of the first column is on the first line and the bottom element of any other
non-empty column is placed immediately above the top element of the last non-empty
column to the left. The fact that all elements are (weakly) above the main diagonal
proves that f ∈ PFn. For completeness sake, we have drawn over the table the least
Dyck path that covers the representation of f . Clearly, if f is decreasing, that is, if
f1 ≥ f2 ≥ · · · ≥ fn, then it is in one-to-one correspondence with its Dyck path. On the
other hand, by Definition 2.5, f is decreasing if and only if w(f) = n · · · 21, and hence
(w(f), I) is a valid pair if and only if the partition of [n] induced by I is nonnesting.
In other words, we obtain through Pak-Stanley bijection a proof of the well-known fact
that the number of nonnesting partitions of [n] is the nth Catalan number [1]. Later, we
obtain I explicitly in this case, as an example of the use of Algorithm 4.9.
We placed w below the table so as to note that t(w) � w−1, or, in other words, so as

to note that every integer j moves left from its position w−1
j in w to the position fj in

the table above. In fact, by definition (cf. (2.1)), it moves exactly dj positions.

8

4

3 9

1 2 6 7 5

1

8

4

3 9

1 2 6 7 5

1 2

8

4

3 9

1 2 6 7 5

61 62 2

3 1

8

4

3 9

1 2 6 7 5

61 62 62 2

63 61 1

4 3

8

4

3 9

1 2 6 7 5

61 62 62 2 5

63 61 1

4 3

8

4

3 9

1 2 6 7 5

61 62 62 62 65 5

63 61 61 1 2

4 3 6

8

4

3 9

1 2 6 7 5

61 62 62 62 65 65 5

63 61 61 61 62 2

4 3 6 7 1

8

4

3 9

1 2 6 7 5

61 62 62 62 65 65 65 5

63 61 61 61 62 62 2

64 63 66 67 61 1

8 4 3 6 7

8

4

3 9

1 2 6 7 5

61 62 62 62 65 65 65 65 5

63 61 61 61 62 62 62 2

64 63 66 67 61 61 1

8 4 3 66 67 7

9 6

Figure 3. S-parking

We end this section with a direct application of this algorithm for finding t−1(f) for
f = 121153414, as in Example 2.1 again, but in an easier form. We start by introducing
our representation of parking functions. Whereas we still write in column i, in decreasing
descending order, the elements of f−1({i}), for i = 1, . . . , n, the bottom elements of all
the columns are now horizontally aligned. This representation is the starting point. Then
we park directly car 1 and car 2 in their favourite places, directly below, hence. Car 3
finds its favourite place occupied and shifts right car 1, that shifts car 2. Now, when car
4 enters, all three previous cars are shifted right. Car 5 parks directly but car 6 shifts
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cars 1, 2 and 5; and so forth. Step by step, we obtain the tables of Figure 3. Note that
the last table encodes the full process, and remember that T = r(f) is the region of B9
defined by

x8 < x4 < x3 < x9 < x6 < x7 < x1 < x2 < x5 .

4. Decomposition

In this section we obtain the main results of the paper. What we have in mind, in the
first place, can be roughly described with the parking function of Example 2.6 through
the diagram

8 4 3 9 6 7 1 2 5 “ = ”

λ
7→ 341183414

8 9
4 6 7
3 1 2 5

8 4 3 9 6 7 “+”

“t”
7→

3

1
4

1
6

3
7

4
8

1
9

4

8
4 9
3 6 7

3 9 6 7 1 2 “+”

“t”
7→

1

1
2

2
3

1
6

2
7

3
9

2

9
3 6
1 2 7

7 1 2 5

“t”
7→

1

1
2

2
5

3
7

1

7
1 2 5

We have “decomposed” the arc diagram of the non-central parking function f =
341183414 in three components, each one associated with a central parking function.
We want to generalize this idea, that shows the bijection of Pak and Stanley not only
as a generalization of the bijection t of Proposition 2.2 but as an iteration of a similar
bijection. Our approach consists in the construction of the “parking functions” as repre-
sented below. Then, s-parking shows to be a very convenient way of recovering the arcs
above. But let us be more precise.

Definition 4.1. Let f : [n]→ [n] be a parking function.

� Given a subset X of [n] with m elements, let x = x1 · · · xm be the increasing
bijection x : [m]→ X (in other words, X = {x1, . . . , xm}, where xi < xj whenever
i < j); we write x = X<.
� We say that X is f -central if

f(xi) ≤ i , i = 1, . . . ,m .

The centre of f is the (unique) maximal f -central subset X(f) of [n].

� If (f ◦ x)([m]) ⊆ [m] and f̃ := f ◦ x : [m]→ [m] is also a parking function, define

(w̃, Ĩ) = (w̃(X), Ĩ(X)) by λ̃
(

x−1 ◦ w̃, Ĩ
)

= f̃ ,

where λ̃ : R(Sm)→ PFm is the Pak-Stanley bijection.

Remark 4.2. By definition, X is f -central for a subset X ⊆ [n] if and only if there are
at least f(x) elements in X less than or equal to x, for every x ∈ X. Hence, if for some
Y ⊆ [n], X and Y are f -central, then X ∪ Y is f -central. This shows that X(f) is well
defined above. Note that j ∈ X(f) if and only if fj ≤ 1 + |X ∩ [j − 1]|. Moreover, if
X is the centre of f , then (f ◦ x)([m]) ⊆ [m] and f ◦ x : [m] → [m] is a central parking

function, and so w̃(X) = x◦t
(

f̃
)

(cf. Definition 2.5). For example, if f = 341183414 then

X = {3, 4, 6, 7, 8, 9}, f̃ = 113414, λ̃−1(113414) =
(

521634, {[1, 6]}
)

and so Ĩ = {[1, 6]}
and w̃ = x ◦ 521634 = 843967.

We are now in a position where we can explain how the “decomposition” works. The
example we presented in the beginning of this section, for motivation, can be a little
misleading, in that the decomposition is not necessarily in arcs, but rather in central
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parking functions, and a central parking function may or may not correspond to a unique
arc, as we have seen before. The main lemma, presented below, explains the importance
of the detection of the centre of a parking function f . In particular, with it we know the
“beginning” of the valid pair associated with f , from left to right. Then, by removing
some specific points and by adapting f accordingly, we obtain a new parking function, g,
with a new centre. We repeat this procedure recursively, and at the end we put together
the various “beginnings” obtained in the lemma, which show to be the different sections
of the decomposition.

Lemma 4.3. Let f = λ(w, I) ∈ PFn for a valid pair (w, I), X = X(f) and m = |X| < n.
Then

w̃ = w1 · · ·wm and Ĩ =
{

[i, j] ∈ I | j ≤ m
}

.

Proof. Note that the second statement is an obvious consequence of the first one. Now,
suppose, contrary to the hypothesis, that w1 · · ·wm 6= w̃, and let k ≤ m be the least
element such that wk 6= w̃k, let a := wk and b := w̃k ∈ X, and note that b = wp for some
p > k.
Let B = {i ∈ [p] | wi ≤ wp = b} and B̃ = {i ∈ [k] | w̃i ≤ w̃k = b}, so that, in particular,

B̃ ⊆ B. Moreover, by definition of w̃ and by Definition 2.5, since X if f -central, fb = |B̃|.

|B̃| = fb = x+
∣

∣w([x, p]) ∩ [b− 1]
∣

∣ for some x ∈ [p]

≥ 1 +
∣

∣w([p]) ∩ [b− 1]
∣

∣ = |B| .

Hence, since w̃([k − 1]) = w([k − 1]),

|B̃| = 1 + |w([k − 1]) ∩ [b− 1]| = 1 + |w([p]) ∩ [b− 1]| = |B|

and, in particular, a > b.
Now, suppose that a ∈ X, so that a = w̃ℓ for some ℓ ≤ m. Then fa > fb, since
{b} ∪ B̃ ⊆ Ã := {i ∈ [ℓ] | w̃i ≤ w̃ℓ = a}. On the other hand, if a /∈ X then fa >
1 + |X ∩ [a− 1]|. In any case, given ka < k such that

fa = ka +
∣

∣w([ka, k]) ∩ [a− 1]
∣

∣ ,

there exists i < ka such that wi > a > b. This means than there exist I, I ′ ∈ I,
corresponding to an arc over a = wk and to an arc over b = wp, respectively, such that
I ( I ′, contradicting the fact that I is an anti-chain. �

The previous lemma shows that, starting with the centre of f , the inverse of t de-
termines the way in which the set I, and w, viewed as a word, start. From here a new
parking function, g, of smaller size, is constructed, and the same is recursively done. This
is the core of Algorithm 4.9. For the definition of g we must previously evaluate various
parameters, as defined below. In particular, a is the first element of the Garsia-Haiman
representation of f , from top to bottom and from left to right, that is not in the centre.
Then, b is the order of its column. See Figure 4.6 for examples.

Definition 4.4. Given a parking function f : [n] → [n], X := X(f), m := |X| and
w := x ◦ t(f ◦ x) (= w̃(X), see Remark 4.2),

� let b = b(f) := min f
(

[n] \X
)

and let a = a(f) := max
(

f−1({b}) \X
)

;
� if b > m, let c = c(f) := b;
if b ≤ m, let c = c(f) > 1 be the greatest element j ∈ [m] such that

j + |w([j,m]) ∩ [a− 1]| = b
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(see Remark 4.5);
� let Y = Y (f) := w([1, c− 1]) and let Z = Z(f) := [n] \ Y ;

� let g = g(f) : Z → [n− c+ 1]

i 7→

{

fi − |Y ∩ [i− 1]| , if i ∈ X \ Y ;

fi − c+ 1 , if i ∈ Z \X .

Remark 4.5. Let us show that c is well defined above and that c > 1. Suppose that
b ≤ m, let h : [m] → N be such that hi = i + |w([i,m]) ∩ [a − 1]| and note that hi+1

is either hi or hi + 1, depending on whether wi is less than a or greater than a. Since
hm = m if wm ≥ a, or else hm = m + 1, and so in any case hm is not less than b, all we
must prove is that h1 < b or, equivalently, that fa > |X ∩ [a− 1]|+ 1. But this happens
since a /∈ X (see Remark 4.2). If b > m then naturally c = b > 1.

Example 4.6 (Examples 2.6 and 2.7, continued). We consider again the parking function
of Example 2.6, f = 341183414, for which x = 346789, w = 843967, b = 3, a = 1,

Y = {4, 8} since c = 3, and g =
1

1
2

2
3

1
5

6
6

2
7

3
9

2. Starting with this “parking function” 3, we

obtain x = 123679, w = 396712, b = 6, a = 5, c = 4, Y = {3, 6, 9} and now g =
1

1
2

2
5

3
7

1.
For the parking function of Example 2.7, f = 2131, we obtain x = 24, w = 42, b = 2,
a = 1, c = 2, Y = {4}, and g = 112. See Figure 4, where the elements of X are in italic
type and a is in boldface type.

8 9
4 6 7
3 1 2 5

g
7→

9
3 6
1 2 7 5

g
7→ 7

1 2 5

4
2 1 3

g
7→ 2

1 3

Figure 4. From f to g(f): three examples

Lemma 4.7. Let, for a parking function f : [n]→ [n], f = λ(w, I) for a valid pair (w, I)

and let m, w̃ and Ĩ be defined as in Definition 4.1, b, c, Z and g as in Definition 4.4
and, finally, let U := X \ Y , z := Z< and n′ := |Z|.

(1) f ′ := g ◦ z : [n′]→ [n′] is a parking function.
(2) The following conditions are equivalent

� b > m;
� U = ∅;
� X = f−1([m])
� b = m+ 1;

(3) If none of the conditions of (2) holds, let u := U<. Then
� g ◦ u = t(u−1 ◦ wc · · ·wm);
� U ⊆ X(f ′) and a ∈ X(f ′) \X(f).

3The true parking function is g ◦ 1235679 =
1

1
2

2
3

1
4

6
5

2
6

3
7

2.
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Proof. By definition of Y ⊆ X, b > m if and only if X = Y . So, the first two conditions
are equivalent. Now, by definition of b, if b > m then f−1([m]) ⊆ X, and of course X ⊆
f−1([m]). Thus,m =

∣

∣f−1([m])
∣

∣, and since f is a parking function, |f−1([m+ 1])| ≥ m+1.
This implies that b = m+ 1 > m. Hence, the first condition implies the third condition,
which implies the last condition, which in its turn is obviously stronger than the first
one. Finally, note that, under these conditions, for i ≥ c, f−1([i]) = g−1([i− c+ 1]) ∪X,
which proves (1) in this case.
For proving (3), first note that, for every i ∈ U ,

(4.4) whereas gi = fi − |Y ∩ [i− 1]| , also ui = i− |Y ∩ [i− 1]|.

From here it follows that g ◦u = t(u−1 ◦ wc · · ·wm) and also that if
∣

∣g−1([i])
∣

∣ < i for some
i ∈ [n], then i > max g(X \ Y ) and thus g−1([i]) = f−1([i+ c− 1]) \ Y , which is at least
i since f is a parking function. This is absurd. We have proven (1) in this case too.
Finally, (4.4) implies that U ⊆ X(f ′). This means, in particular, that

w([c,m]) ∩ [a− 1] ⊆ X(f ′) ∩ [a− 1]

which implies, successively, that

b = c+
∣

∣w([c,m]) ∩ [a− 1]
∣

∣ ≤ (c− 1) +
(

1 +
∣

∣X(f ′) ∩ [a− 1]
∣

∣

)

,

ga ≤ 1 +
∣

∣X(f ′) ∩ [a− 1]
∣

∣ ,

and thus a ∈ X(f ′). �

Proposition 4.8. With the notation of Lemma 4.7, suppose that f ′ = λ′(w′, I′) for
a valid pair (w′, I′), where λ′ : R(Sn′) → PFn′ is the Pak-Stanley bijection, and let
I
∗ =

{

[i+ c− 1, ℓ+ c− 1] | [i, ℓ] ∈ I
}

. Then

w = w̃ ⊕ z ◦ w′

I = Ĩ ⊎ I
∗

where the operation considered in the first equality is (word) concatenation with possible
overlapping and the operation in the second one is union with deletion of possible intervals
contained in other intervals.

Proof. All we have to prove is that f = λ(w̃⊕ z ◦w′, Ĩ⊎ I∗). But this is immediate from
Lemma 4.3 and Lemma 4.7. �

The problem of finding, for a parking function f , the valid pair (w, I) such that f =
λ(w, I) now can be solved through Proposition 4.8, in the following algorithm.

Algorithm 4.9. Let f : [n] → [n] be a parking function, let w be the empty word and
let I = ∅.

1. Set k ← 0, z ← Id, F 0 ← f and N0 ← n.
2. Let X = X(f), m = |X| and w̃ and Ĩ be as in Definition 4.1 for f = F k and

n = Nk.
Set w ← w ⊕ z ◦ w̃

I← I ⊎ Ĩ

If m = Nk then stop.
3. Let Z and g be as in Definition 4.4 for f = F k and n = Nk, and let z := Z< and

n′ := |Z|. Set k ← k + 1, F k ← g ◦ z and Nk ← n′. Go to 2.
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Note that, according to the proof of Lemma 4.3, N i+1 < N i (and thus, in particular,
F i+1 6= F i). Hence, the algorithm always comes to to an end. Also note that, given a
parking function f : [n] → [n], X := X(f) and m := |X|, we may obtain w = w̃(X) =
x ◦ t(f ◦ x) through s-parking without explicitly composing with x. See the following
example.

Example 4.10 (Examples 2.6 and 2.7, continued). In Figure 5 we complete Example 4.6
by applying both Algorithm 4.9 and s-parking. Note that, in each step, we park only the
elements of the centre of f , in italic.

8 9

4 6 7

3 1 2 5

63 63 66 67 67 7

64 4 3 66 6

8 9

9

3 6

1 2 7 5

61 62 62 62 62 2

3 61 61 61 1

66 67 7

9 6

7

1 2 5

61 62 65 5

7 1 2

4

2 1 3

62 2

4

2

1 3

61 61 1

2 3

Figure 5. Algorithm 4.9 together with s-parking

For another example, consider again the dominant or decreasing parking functions, the
functions f : [n]→ [n] such that f1 ≥ f2 ≥ · · · ≥ fn; suppose, more precisely, that k0 = 1
and

f1 = · · · = fk1−1 > fk1 = · · · = fk2−1 > · · · > fkℓ = · · · = fn = 1 .

Then clearly λ−1(f) = (w, I), where w is the identity reversed, w = n · · · 21 (� f), and

I =
{

[fki , n+ 1− ki] | 0 ≤ i < ℓ , fki 6= n+ 1− ki
}

.

This can be directly checked, or it can be obtained through Algorithm 4.9. In fact, for
example, X(f) = [kℓ, n], a = kℓ − 1, c = fa, Z = [c, n] and gi = 1 if i ∈ [c, a − 1] and
gi = fi + 1− c if i ∈ [a, n].
The decomposition can also be used in relation with a question raised by Athanasiadis

and Linusson [2, p. 39]. Remember from the introduction that a prime parking function
is a function f : [n] → [n] such that

∣

∣f−1([i])
∣

∣ > i for every i ∈ [n − 1]. Paraphrasing
Athanasiadis and Linusson [2, Theorem 2.4] and the proof therein, we have

Proposition 4.11. The map λ is a bijection between the bounded regions of Sn and prime
parking functions on [n].

Proof. A region R of Sn is unbounded if and only if the following property is valid:

(P)
There is j ∈ [n− 1] such that no arc is directed from the first j integers
to the last n− j integers in its arc diagram.

Let us see that this means that the cardinality of f−1([j]) is exactly j.
If f is central, this is obvious, since necessarily [j] ⊆ f−1([j]) and so Property (P) holds

if and only if
∣

∣f−1([j])
∣

∣ = j.
Now, suppose that f is not central, and, with the notation introduced above, consider

the first k ≥ 0 such that j + 1 is central in F k.
We end the proof by noting that the number of elements x ∈ X(F k) such that F k(x) <

F k(j + 1) is exactly F k(j + 1)− 1, whereas the number of elements withdrawn from the
domain of F i to the domain of F i+1 is exactly the difference between F i(j + 1) and
F i+1(j + 1). �
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5. S-parking directly

Like the parking algorithm, the s-parking algorithm can be used for defining parking
functions, in the same sense as before. More precisely, consider the following definition:

Definition 5.1. Define, for 1 ≤ k ≤ ℓ ≤ n, the following cycle, which is the identity if
k = ℓ.

π[k ℓ] := (k k + 1 · · · ℓ− 1 ℓ).

Lemma 5.2. Consider a function f : [n]→ [n] and let p = p(f) and q = q(f). Then

q = π[f(n) p(n)] ◦ · · · ◦ π[f(1) p(1)] ◦ p ;

Furthermore, f is a parking function if and only if q([n]) ⊆ [n] or, equivalently, if q ∈ Sn.

Proof. Let p(i) = p|[i] be the restriction of p to [i] and q(i) be defined as in the proof of

Lemma 3.2 (although we do not require here that f(i) ≤ i and so (3.3) may not be valid),
for 1 ≤ i ≤ n. Then

q(1) = π[f(1) p(1)] ◦ p
(1) ,

since p(1) = f(1) = q(1). We end the proof of the first statement of the lemma by proving
by induction on j that

p([j]) = q([j]) ;

q
(j)

|[j−1]
= π[f(j) p(j)] ◦ q

(j−1) ;

q(j)(j) = π[f(j) p(j)] ◦ · · · ◦ π[f(1) p(1)](p(j)) .

Note that, by definition, p(j) is exactly the least integer k ≥ f(j) such that k /∈ p([j−1]),
which equals q([j − 1]), by induction. On the other hand, f([j]) ⊆ p([j]) by definition.
Hence, the identities we want to prove just rephrase the second clause of Algorithm 3.1.
The second statement is an obvious consequence of the first one. �

We end this section with an example of application of the last lemma, to f = 121153414
as before, in Figure 6. We apply in Figure 6 the s-parking algorithm for obtaining
w−1 = q(f). For the second part, remember that p(f) = 123456789.

8
4
3 9
1 2 6 7 5
61 62 62 62 65 65 65 65 5
63 61 61 61 62 62 62 2
64 63 66 67 61 61 1
8 4 3 66 67 7

9 6

π[4 9]π[1 8]π[4 7]π[3 6]π[1 4]π[1 3]

= (4 5 6 7 8 9) ◦ (1 2 3 4 5 6 7 8)
◦(4 5 6 7) ◦ (3 4 5 6)
◦(1 2 3 4) ◦ (1 2 3)

= 7 8 3 2 9 5 6 1 4

= (8 4 3 9 6 7 1 2 5)−1

Figure 6. Illustration of Lemma 5.2

Example 5.3 (Example2.6, conclusion — compare to [8, example p. 484]). Let us now use
s-parking with input f = 341183414 of Example 2.6, that is not central, in Figure 7. We
obtain at the end the sequence β = 843967125 = q−1(f).
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8 9
4 6 7
3 1 2 5
63 63 61 62 62 62 62 65 5
64 4 66 61 61 61 1 2
8 3 67 67 7

66 6
9

Figure 7. S-parking a non-central parking function

We note that f is not central and yet β = w(f). This is not always the case, as we
shall see. However, the result is always a permutation, by Lemma 5.2. Moreover, we note
the following:

Remark 5.4. Let f be a parking function, q be defined by the Algorithm 3.1 and suppose
that λ(w, I) = f for some valid pair (w, I). Then

q−1(f) = w(f)

if, while applying the construction of the arc diagram described in Remark 2.8, where
two nested arcs simplify to the outer arc, these arcs are of form either

a · · · b · · · c (a > b, c) or a · · · b · · · c · · · d (a > d, b > c) ,

where, in the second case, all elements between a and b, including a and excluding b, are
less than c. Note that this is what happened in the example of Remark 2.8. In fact, if
this is the case, at the end a valid pair (β, I) is formed for which f is the image by λ,
by definition, and since a situation cannot occur where, for α := β−1, fi = αi for some
j < i < k such that [j, k] ∈ I and such that βj > βi.

It is perhaps noteworthy that for all of the parking functions of three or less cars, and
for 124 out of the 125 parking functions of 4 cars, the s-parking defines directly λ−1. The
exception is f = 2131 of Example 2.7, for which w(f) = 4231, as we have seen. In fact,
we have

4
2 1 3
62 61 63 3
4 2 1

, 4213−1 = 3241 , 3241− 2131 = 1110 4 2 1 3 .

For n = 5, in 36 (out of the 1296) cases s-parking does not give the proper w, and for
n = 6 this happens in 1015 out of the 16807 cases.
Lemma 5.2 explains this situation. For example, if we consider the sequence of parking

functions starting with f = 2131 of Example 2.7 and ending with p(f)−1 = 2134,

2131 2132 2133 2134 ,

and the corresponding regions, it is not true that each region is separated from the
previous one by a hyperplane of form xi = xj . In fact, w(2131) = 4231 and w(2132) =
2413. More precisely, the arc diagrams of the regions are, respectively, 4 2 3 1 and 2 4 1 3
and the corresponding regions are separated by the hyperplanes of equations x2 = x4 and
x1 = x3 (and by those of equations x1 = x2 + 1, x1 = x4 + 1 and x3 = x4 + 1).



THE BRAID AND THE SHI ARRANGEMENTS AND THE PAK-STANLEY LABELLING 17

References

[1] C. Athanasiadis, On noncrossing and nonnesting partitions for classical reflection groups. Electron.
J. Combin. 5 (1998), Research Paper 42, 16 pp.

[2] C. Athanasiadis and S. Linusson, A simple bijection for the regions of the Shi arrangement of hyper-
planes. Discrete Math. 204 (1999) 27–39.

[3] A. M. Garsia and M. Haiman, A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion, J.
Algebr. Comb. 5 (1996) 191–244.

[4] A. Guedes de Oliveira and M. Las Vergnas, Parking functions and labeled trees. Sém. Lothar. Comb.

65 (2010/12), Article B65e, 10 pp.
[5] A.G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14

(1966), 1266–1274.
[6] F. Rincón, Aspectos combinatorios del arreglo de Shi, Senior thesis, Universidad de Los An-
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