
Computing relative abelian kernels of finite monoids

Edite Cordeiro and Manuel Delgado∗

Abstract

Let H be a pseudovariety of abelian groups corresponding to a recursive supernatural
number. In this note we explain how a concrete implementation of an algorithm to
compute the kernel of a finite monoid relative to H can be achieved. The case of
the pseudovariety Ab of all finite abelian groups was already treated by the second
author and plays an important role here, were we will be interested in the proper
subpseudovarieties of Ab. Our work relies on an algorithm obtained by Steinberg.

Introduction and motivation

The problem of computing kernels of finite monoids goes back to the early seventies and
became popular among semigroup theorists through the Rhodes Type II conjecture which
proposed an algorithm to compute the kernel of a finite monoid relative to the class G of
all finite groups. Proofs of the conjecture were given in independent and deep works by
Ash [1] and Ribes and Zalesskĭı [14]. For an excellent survey on the work done around this
conjecture, as well as connections with other topics such as the Mal’cev product, we refer
the reader to [12].

The work of Ribes and Zalesskĭı solves a problem on profinite groups (the product of
a finite number of finitely generated subgroups of a free group is closed for the profinite
topology of the free group) which in turn, using work of Pin and Reutenauer [13], solves the
Type II conjecture. Pin and Reutenauer essentially reduced the problem of determining the
kernel of a finite monoid to the problem of determining the closure of a finitely generated
subgroup of a free group endowed with the profinite topology. This idea was followed by
several authors to compute kernels relative to other classes of groups, considering in these
cases relatively free groups endowed with topologies given by the classes in cause. We can
refer Ribes and Zalesskĭı [15] for the class of all finite p-groups, the second author [3] for the
class Ab of all finite abelian groups, and Steinberg [17] for any class of finite abelian groups
closed under the formation of homomorphic images, subgroups and finite direct products.
A class of finite groups closed under the formation of homomorphic images, subgroups and
finite direct products is called a pseudovariety of groups.

∗The authors gratefully acknowledge support of Fundação para a Ciência e Tecnologia through the Centro
de Matemática da Universidade do Porto.

1

Steinberg’s paper [17] gives an algorithm, on which this work is based, to compute the
kernel of a finite monoid relative to any pseudovariety of abelian groups. Since the problem
of the existence of an algorithm for the case of locally finite pseudovarieties (which are pseu-
dovarieties containing the free object in the variety they generate) is trivial, and Steinberg’s
paper was mostly dedicated to theoretical results, it emphasizes the cases of non locally
finite pseudovarieties. We are aiming to obtain concrete implementations and therefore even
the locally finite case requires some work. Concrete implementations of this kind of algo-
rithms are useful, since calculations (unduable by hand due to the time required) often give
the necessary intuition to formulate conjectures and may help in the subsequent problem
solving. A step towards the concrete implementation in the GAP system [18] for the case of
the pseudovariety Ab was given in [4] by the second author who also implemented it using
the GAP programming language. This algorithm is presently part of a GAP package which
will probably also contain implementations of the algorithms described in this paper. The
usefulness of this software can be inferred from a number of papers whose original motivation
came from computations done: we can refer several joint works by Fernandes and the second
author [5, 6, 7, 8].

In the first section of the present paper we recall a few facts concerning the concept of
supernatural number and mention a bijective correspondence between the classes of super-
natural numbers and pseudovarieties of abelian groups.

In the second section we observe that computing the closure of a subgroup of Zn (relative
to certain topologies) is feasible without too much work using GAP. Notice that we are
aiming to use Steinberg’s algorithm to compute relative kernels which, as already observed,
uses computing relative closures as an essential ingredient.

The third section is dedicated to the computation of the closure of semilinear sets relative
to the profinite topology. It is relevant for Section 4.

In the fourth section we recall the definition of kernel of a finite monoid relative to a
pseudovariety of groups. Then we dedicate two subsections to the correction of the concrete
implementations we are proposing. The cases of pseudovarieties of abelian groups corre-
sponding to infinite supernatural numbers and those of pseudovarieties corresponding to
natural numbers are treated separately.

Applications will appear in forthcoming papers by the authors and V.H. Fernandes.

1 Supernatural numbers and pseudovarieties of abelian

groups

A finite abelian group G is, via the fundamental theorem of finitely generated abelian groups,
isomorphic to a product Z/m1Z × · · · × Z/mrZ of cyclic groups, where the mi (1 ≤ i ≤ r)
are positive integers such that mi | mi+1, 1 ≤ i ≤ r − 1. The mi’s are known as the torsion
coefficients of G.

A supernatural number is a formal product of the form Πpnp where p runs over all positive
prime numbers and 0 ≤ np ≤ +∞. We say that a supernatural number Πpnp has finite

2

support if all np, except possibly a finite number, are zero. A supernatural number of finite
support is said to be finite if all np are finite. We sometimes refer to the finite supernatural
numbers as natural numbers, since the correspondence is obvious. The set of natural numbers
is denoted by N. The other supernatural numbers are said to be infinite. There are evident
notions of greatest common divisor (gcd) and least common multiple (lcm) of supernatural
numbers generalizing the corresponding notions for natural numbers. For example, gcd(22×
3, 2+∞) = 22 = 4, and lcm(22 × 3, 2+∞) = 2+∞ × 3.

To a supernatural number π one can associate the pseudovariety Hπ of all finite abelian
groups whose torsion coefficients divide π, that is, the pseudovariety generated by the cyclic
groups {Z/nZ : n | π}. For example, to 2∞ one associates the pseudovariety of all 2-groups
which are abelian; to the natural number 2 one associates the pseudovariety generated by the
cyclic group Z/2Z and to the supernatural number Πp∞, where p runs over all positive prime
numbers, is associated the pseudovariety Ab of all finite abelian groups. Conversely, to a
pseudovariety H of abelian groups one can associate the supernatural number πH = lcm({n :
Z/nZ ∈ H}). We thus have a bijective correspondence between pseudovarieties of abelian
groups and supernatural numbers. This correspondence is in fact a lattice isomorphism [17].

A supernatural number is said to be recursive if the set of all natural numbers which
divide it is recursive. In particular, supernatural numbers of finite support are recursive.

2 Relative closures of subgroups of the free abelian

group

For a pseudovariety H of groups and a finite set A, we denote by FH(A) the relatively free
group on A in the variety of groups (in the Birkhoff sense) generated by H.

Proposition 2.1 [17] Let π be a supernatural number and let A be a set of cardinality n ∈ N.
Then if π ∈ N, FHπ(A) = (Z/πZ)n. Otherwise, i.e. when π is infinite, FHπ(A) = Zn, the
free abelian group on n generators.

It turns out that the pseudovarieties of abelian groups corresponding to natural numbers
are locally finite, while those corresponding to infinite supernatural numbers are not locally
finite. The relatively free groups appearing in the last proposition will be turned into topo-
logical spaces, the finite ones being discrete. In the remaining part of this section we will
be interested in computing the closure of subgroups of these relatively free groups, thus the
only non trivial case occurs when π is an infinite supernatural number. We assume that π is
infinite for the rest of this section. The relatively free group in cause is then the free abelian
group Zn itself, but it will be endowed with a topology that depends on π. The pro-Hπ

topology on Zn is the least topology rendering continuous all homomorphisms into groups of
Hπ. This topology may be described in other ways; for example, one can take as a basis of
neighborhoods of the neutral element all subgroups N such that Zn/N ∈ Hπ and then make
Zn a topological group in the standard way. The pro-Ab topology of an abelian group G is
in general called simply profinite topology of G.

3

The following result, when π is recursive, gives an algorithm to compute the pro-Hπ

closure of a subgroup of Zn. For a subset X of Zn, we denote by ClHπ(X) the pro-Hπ closure
of X.

Proposition 2.2 [17] Let {e1, . . . , en} be a basis of Zn and let π be an infinite supernatural
number. Let a1, . . . , ak be positive integers and consider the subgroup G = 〈a1e1, . . . , akek〉.
For each i, let bi = gcd(ai, π). Then ClHπ(G) = 〈b1e1, . . . , bkek〉.

We explain next how we can make use of Proposition 2.2 to compute in practice the
pro-Hπ closure of a given subgroup of Zn.

For some theory concerning the notions that follow, which involve, in particular, the use
of normal forms of matrices to represent abelian groups, see, for instance, [2, 16]. A subgroup
G of Zn can be specified by giving a n×n matrix B whose rows (some of which may consist
entirely of zeros) generate G. We then have: G = 〈B〉 = {uB : u ∈ Zn}. In particular, a
basis of Zn can be specified by an invertible n× n integer matrix, that is, an integer matrix
with determinant ±1. The set of such matrices is denoted by GL(n,Z).

Let G be a subgroup of Zn. There exists a basis {e1, . . . , en} of Zn such that the set
{a1e1, . . . , akek}, where a1 | a2 | · · · | ak, is a basis of G. This statement, which in general
appears as part of the proof of the fundamental theorem of finitely generated abelian groups,
could thus be written as follows: there exists a matrix C ∈ GL(n,Z) and a matrix S in Smith
Normal Form (the one whose non-zero entries are the ai’s) such that SC represents a basis
of G.

Suppose that G is given through a matrix B representing it. Next we explain how the
matrix C representing a basis of Zn as well as the matrix S referred above can be computed.
Using GAP [18] one can efficiently compute invertible integer matrices P and Q such that
PBQ = S where S is in Smith Normal Form. Then Q−1 is the matrix representing the basis
of Zn we are looking for. To verify this, it suffices to note that the rows of PB = SQ−1

generate G. The ai’s are the non-zero entries of S.
Let π be an infinite recursive supernatural number and let S and Q−1 be as in the

preceding paragraph. Denote by S the matrix obtained from S by replacing each ai by
bi = gcd(ai, π). Then, using Proposition 2.2, we get ClHπ(G) = 〈SQ−1〉 = {uSQ−1 : u ∈ Zn}.
Note that assuming that π is recursive, gcd(ai, π) is computable. Moreover, if we assume that
π is of finite support, the computation of gcd(ai, π) can be carried out without difficulties.

3 The profinite closure of a semilinear set

Let M be a finite monoid generated by n elements. There exists a finite ordered set A of
cardinality n and a surjective homomorphism ϕ : A∗ → M from the free monoid on A onto
M . From now on we consider ϕ fixed, which means that we fix the A-generated monoid M .
We fix also the canonical homomorphism γ : A∗ → Zn defined by γ(ai) = (0, . . . , 0, 1, 0, . . . , 0)
(1 is in the position i) where ai is the ith element of A. For w ∈ A∗, the ith component of
γ(w) is the number of occurrences of the ith letter of A in w. Given a set X ⊆ A∗ we refer
γ(X) as the commutative image of X.

4

As we will see in Section 4, to be able to compute ClAb(γ(ϕ
−1(x))) is essential for the

implementations of the algorithms to compute relative abelian kernels we are proposing.
Let x ∈ M . A natural way to compute (a regular expression for) ϕ−1(x) is to consider

the automaton Γ(M,x) obtained from the right Cayley graph of M by taking the neutral
element as the initial state and x as final state. Notice that the language of Γ(M,x) is
precisely ϕ−1(x). One could expect that the commutative image γ(ϕ−1(x)) would then be
easily computed, but in practice this is not the case, as we explain next. A regular expression
for the regular language ϕ−1(x) is obtained by handling an automaton whose number of states
is precisely the number of elements of M . It is known (see, for instance, [4]) that the size of
a regular expression for the language of an automaton grows exponentially with the number
of states of the automaton, thus we may obtain a huge expression for ϕ−1(x). We must recall
that γ has then to be applied, in some way, to this expression, and this may be impracticable.

An approach for the computation of an expression of relatively small size for the language
recognized by an automaton is discussed in [11]. The implementation in the GAP package
[10] of an algorithm to compute such an expression from a finite state automaton takes this
approach into account. But an expression for ClAb(γ(ϕ

−1(x))) can be obtained in a more
efficient way as will be explained below.

The set γ(ϕ−1(x)) is a semilinear subset of Zn, that is, a finite union of sets of the form
a+ b1N + · · ·+ bpN, with a, b1, . . . , bp ∈ Nn. Such an expression for a semilinear set is said to
be a semilinear expression. It was proved in [3] that the pro-Ab closure of a+b1N+ · · ·+bpN,
with a, b1, . . . , bp ∈ Nn is the coset a+ b1Z+ · · ·+ brZ of the subgroup of Zn generated by the
elements b1, . . . , br. Thus, to obtain the pro-Ab closure of a semilinear set given through a
semilinear expression, what we have to do is to replace the N’s by Z’s, getting this way a so-
called Z-semilinear expression for a finite union of cosets of subgroups of Zn. A finite union
of cosets of subgroups of Zn is called a Z-semilinear set. Note that the replacements done
when computing the pro-Ab closure of a semilinear set correspond to substitute “submonoid
generated by” by “subgroup generated by”.

In [4] there are presented algorithms to compute semilinear expressions (respectively
Z-semilinear expressions) for γ(ϕ−1(x)) (respectively ClAb(γ(ϕ

−1(x)))) without the need of
computing ϕ−1(x). Both consist on an adaptation of the state elimination algorithm which is
possibly the most commonly used algorithm to compute a regular expression for the language
recognized by a finite automaton. Recall that the state elimination algorithm basically
consists in, at each state removal (which implies the elimination of the adjacent edges too),
replace the labels of the edges remaining by regular expressions so that the generalized graph
obtained recognizes the same language than the original automaton. (A generalized graph
is similar to an automaton: the labels of its edges may be regular expressions instead of
letters; the notion of recognition is obvious.) In the algorithms referred above to compute
γ(ϕ−1(x)) and ClAb(γ(ϕ

−1(x))) what is basically done is, at each state removal, instead of
replacing the labels of the edges by regular expressions, one replaces them by expressions
for its commutative images, in the first case, or by expressions for the pro-Ab closures of
their commutative images, in the second case. The computation of these expressions for the
pro-Ab closures involves the computation of the Hermite Normal Form of several matrices

5

(depending on the adjacencies of the vertex to be removed), as a way to compute basis for
the subgroups involved. In the final, as the computed subgroups are given through matrices
in Hermite Normal Form they are, in particular, given by no more than n generators. Notice
that this can not be the case for submonoids of Zn, since we may need much more that
n elements to generate a submonoid of Zn, and this fact ultimately turns the computation
of γ(ϕ−1(x)) slower than the direct computation of ClAb(γ(ϕ

−1(x))), due to the memory
required.

The paper [4] contains some details on the complexity of the algorithm presented to
compute a Z-semilinear expression for ClAb(γ(ϕ

−1(x))). It is exponential, but can be suc-
cessfully used in practice to compute the abelian kernel of a finite monoid (see below for
a definition). On the other hand, the problem of computing the abelian kernel of a finite
monoid is polynomial: a polynomial time algorithm is given in [9], although that algorithm
is presently only of theoretical interest, since it does not produce results in reasonable time.

4 Relative kernels of a finite monoid

Let S and T be monoids. A relational morphism of monoids τ : S−→◦ T is a function from
S into P(T), the power set of T , such that:

(a) For all s ∈ S, τ(s) 6= ∅;

(b) For all s1, s2 ∈ S, τ(s1)τ(s2) ⊆ τ(s1s2);

(c) 1 ∈ τ(1).

A relational morphism τ : S−→◦ T is, in particular, a relation in S × T , and therefore we
have a natural way to compose relational morphisms. As examples of relational morphism
we have homomorphisms, seen as relations, and inverses of onto homomorphisms.

Given a pseudovariety H of groups, the H-kernel of a finite monoid S is the submonoid
KH(S) =

⋂
τ−1(1), with the intersection being taken over all groups G ∈ H and all relational

morphisms of monoids τ : S−→◦ G. When H is Ab, we use the terminology abelian kernel.
Let now M,ϕ and γ be as in Section 3. We adopt the usual notation for the neutral

element of an abelian group: (0, . . . , 0) ∈ Zn is denoted by 0. The following holds [3,
Proposition 5.3]:

Proposition 4.1 Let x ∈M . Then x ∈ KAb(M) if and only if 0 ∈ ClAb(γ(ϕ
−1(x))).

4.1 The case of an infinite supernatural number

The following, analogous to Proposition 4.1, was proved by Steinberg [17, Proposition 6.1]:

Proposition 4.2 Let π be an infinite supernatural number, Hπ the associated pseudovariety
of abelian groups and let x ∈M . Then x ∈ KHπ(M) if and only if 0 ∈ ClHπ(γ(ϕ−1(x))).

6

The following lemma is crucial to compute ClHπ(γ(ϕ−1(x))) in the way we propose it
next.

Lemma 4.3 Let H and H′ be pseudovarieties of groups such that H ⊆ H′ and let X ⊆ Zn.
Then ClH(X) = ClH(ClH′(X)).

Proof. Since H ⊆ H′, we have ClH′(X) ⊆ ClH(X). Thus X ⊆ ClH′(X) ⊆ ClH(X). But then
ClH(X) ⊆ ClH(ClH′(X)) ⊆ ClH(ClH(X)) = ClH(X). 2

As Hπ ⊆ Ab we immediately get the following result.

Corollary 4.4 ClHπ(γ(ϕ−1(x))) = ClHπ(ClAb(γ(ϕ
−1(x)))).

As we have already observed, a Z-semilinear expression for ClAb(γ(ϕ
−1(x))) can be effec-

tively computed. Having ClAb(γ(ϕ
−1(x))) expressed as a finite union of cosets of subgroups

of Zn one can use Corollary 4.4 to get ClHπ(γ(ϕ−1(x))) with very little extra computational
work: replace each of the subgroups appearing in the expression for ClAb(γ(ϕ

−1(x))) by its
pro-Hπ closure proceeding as described in Section 2. Using the fact that the closure of the
union is the union of the closures and using also the continuity of the group operation we
conclude that what we obtain this way is precisely ClHπ(γ(ϕ−1(x))). Our problem of testing
whether 0 ∈ ClHπ(γ(ϕ−1(x))) is then reduced to test whether a diophantine system of linear
equations has some solution, as also happened in the case of the abelian kernel. This can
easily be done using GAP.

We observe that by following the proofs in [4] (see also Section 3) one could see that
exactly the same way the state elimination algorithm is adapted to compute ClAb(γ(ϕ

−1(x)))
it could be adapted to compute ClHπ(γ(ϕ−1(x))) directly. What had to be done was to
consider expressions for the pro-Hπ closures of semilinear sets instead of expressions for their
pro-Ab closures. In practice, what we had to do was to replace the computations of Hermite
Normal Forms by computations of Smith Normal Forms followed by computations of some
greatest common divisors. As computing the Smith Normal Form of a matrix is slower than
computing its Hermite Normal Form we believe that strategy proposed above, which makes
use of the existing software, is not less efficient than a strategy that involves a more direct
computation of ClHπ(γ(ϕ−1(x))). Notice that if we start by computing ClAb(γ(ϕ

−1(x))),
the computation of Smith Normal Forms, as well as the computation of greatest common
divisors, to obtain ClHπ(γ(ϕ−1(x))), needs to be performed only for the subgroups whose
cosets appear in ClAb(γ(ϕ

−1(x))). In a direct computation of ClHπ(γ(ϕ−1(x))) we would need
to compute Smith Normal Forms (rather than Hermite Normal Forms) for all subgroups
whose cosets appear in intermediary expressions and this would turn the computation of
ClHπ(γ(ϕ−1(x))) slower.

4.2 The case of a natural number

In this section, k is a natural number. We consider the projection ck : Zn → (Z/kZ)n (defined
by: ck(r1, . . . , rn) = (r1 mod k, . . . , rn mod k)) and the homomorphism γk = ck ◦ γ : A∗ →

7

(Z/kZ)n. Note that for a word w ∈ A∗, the ith component of γk(w) is the number of
occurrences modulo k of the ith letter of A in w. Again, an analogous to Proposition 4.1 is
obtained:

Proposition 4.5 Let Hk be the pseudovariety of abelian groups associated to the natural
number k, and let x ∈M . Then x ∈ KHk

(M) if and only if 0 ∈ γk(ϕ
−1(x)).

Proof. Notice that (Z/kZ)n ∈ Hk and the relation τ = γk ◦ ϕ−1 : M−→◦ (Z/kZ)n is a
relational morphism. If x ∈ KHk

(M), we have that x ∈ τ−1(0), thus 0 ∈ γk(ϕ
−1(x)).

For the converse, let us consider a relational morphism µ : M−→◦ G, with G ∈ Hk. Using
the fact that (Z/kZ)n is free relatively to Hk, it suffices to follow the proof of [3, Proposition
5.3] to see that there exists a homomorphism ψ : (Z/kZ)n → G such that µ = ψ ◦ γk ◦ ϕ−1.
The conclusion follows then easily. 2

Given a word w ∈ A∗ and a letter a ∈ A, we denote by |w|a the number of occurrences
of the letter a in w. As an immediate consequence of the preceding proposition we have
the following extremely simple characterization of the KHk

-kernel of a finite monoid. We say
that w ∈ A∗ represents x ∈M if ϕ(w) = x.

Corollary 4.6 An element x ∈ M is such that x ∈ KHk
(M) if and only if x can be repre-

sented by a word w ∈ A∗ such that |w|a ≡ 0 mod k, for any letter a ∈ A.

From the fact that a submonoid of a finite group is in fact a subgroup we get the following:

Lemma 4.7 Let N be a submonoid of Zn and 〈N〉 the subgroup of Zn generated by N . Then
ck(N) = ck(〈N〉).

Now, using the fact that γ(ϕ−1(x)) is a semilinear set and that the pro-Ab closure of a
semilinear set is obtained replacing “submonoid generated by” by “subgroup generated by”
we get:

Corollary 4.8 Let x ∈M . Then ck(γ(ϕ
−1(x))) = ck(ClAb(γ(ϕ

−1(x)))).

As a consequence we have that we can use an expression of ClAb(γ(ϕ
−1(x))) as a finite

union of cosets of subgroups of Zn to compute γk(ϕ
−1(x)). Recall that our problem is to

test whether 0 belongs to γk(ϕ
−1(x)). This can now be reduced to test whether a system of

linear equations has some solution in (Z/kZ)n, which is not difficult to do using GAP.
One could expect that, due to its simplicity, the direct usage of Corollary 4.6 to test

whether x ∈ KHk
(M) would be very fast. But we must note that it would require to com-

pute an expression for γ(ϕ−1(x)) which, as referred in Section 4, is less efficient than com-
puting ClAb(γ(ϕ

−1(x))). So, again, we believe that the better strategy is to start computing
ClAb(γ(ϕ

−1(x))), which corresponds to make use of the existing software.

8

References

[1] C.J. Ash, Inevitable graphs: a proof of the type II conjecture and some related decision proce-
dures, Int. J. Algebra Comput. 1 (1991) 127–146.

[2] H. Cohen, “A Course in Computational Algebraic Number Theory”, GTM, Springer Verlag,
1993.

[3] M. Delgado, Abelian pointlikes of a monoid, Semigroup Forum 56 (1998) 339–361.

[4] M. Delgado, Commutative images of rational languages and the abelian kernel of a monoid,
Theor. Inform. Appl. 35 (2001) 419–435.

[5] M. Delgado and V.H. Fernandes, Abelian kernels of some monoids of injective partial trans-
formations and an application, Semigroup Forum 61 (2000) 435–452.

[6] M. Delgado and V.H. Fernandes, Solvable monoids with commuting idempotents, Int. J.
Algebra Comput. To appear.

[7] M. Delgado and V.H. Fernandes, Abelian kernels, solvable monoids and the abelian kernel length
of a finite monoid, in “Proceedings of the Workshop on Semigroups and Languages” (Lisbon
2002), I. Araújo, M. Branco, V. Fernandes, G. Gomes (eds.) World Scientific, (2004), 68-85.

[8] M. Delgado and V.H. Fernandes, Abelian kernels of monoids of order-preserving maps and of
some of its extensions, Semigroup Forum. 68 (2004) 435–456.

[9] M. Delgado and P.-C. Héam, A polynomial time algorithm to compute the Abelian kernel of a
finite monoid, Semigroup Forum, 67 (2003) 97–110.

[10] M. Delgado, S. Linton and J. Morais, Automata: a GAP [18] package on finite automata.
(http://www.gap-system.org/Packages/automata.html).

[11] M. Delgado and J. Morais, Approximation to the smallest regular expression for a given regular
language, in “Implementation and Applicationof Automata”,M Domaratzki, A. Okhotin, K.
Salomaa and S. Yu, (eds), volume 3317 LNCS. Springer-Verlag, Heidelberg, January 2005.

[12] K. Henckell, S. Margolis, J.-E. Pin and J. Rhodes, Ash’s type II theorem, profinite topology
and Malcev products. Part I, Int. J. Algebra Comput. 1 (1991) 411–436.

[13] J.-E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group, Bull.
London Math. Soc. 23 (1991) 356–362.

[14] L. Ribes and P.A. Zalesskĭı, On the profinite topology on a free group, Bull. London Math.
Soc. 25 (1993) 37–43.

[15] L. Ribes and P.A. Zalesskĭı, The pro-p topology of a free group and algorithmic problems in
semigroups Int. J. Algebra Comput. 4 (1994) 359–374.

[16] C. C. Sims, “Computation with Finitely Presented Groups”, Cambridge University Press,
1994.

9

[17] B. Steinberg, Monoid kernels and profinite topologies on the free Abelian group, Bull. Austral.
Math. Soc. 60 (1999) 391–402.

[18] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4, 2004.
(http://www.gap-system.org).

Edite Cordeiro
Instituto Politécnico de Bragança
Escola Superior de Tecnologia e Gestão
Campus de Santa Apolónia
5301-857 Bragança
Portugal
e-mail: emc@ipb.pt

Manuel Delgado
Centro de Matemática
Universidade do Porto
Rua do Campo Alegre, 687
4169-007 Porto
Portugal
e-mail: mdelgado@fc.up.pt

10

