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Abstract

This paper studies sufficient conditions for the existence of persistent het-
eroclinic cycles in symmetric problems. If Γ is a compact Lie group acting
linearly on Rn, we present conditions on the shape of the isotropy lattice and
the action of Γ on certain fixed-point spaces that guarantee the existence of
a Γ-equivariant vector field with a persistent heteroclinic cycle. We use and
establish properties of polar actions of Lie groups to construct the heteroclinic
cycle. Examples that illustrate the application of the main result are provided.

1 Introduction

The existence of heteroclinic or homoclinic cycles in systems with symmetry is no
longer a surprising feature. A good survey of the literature up until 1997 can be
found in Krupa [10]. There are however issues concerning such cycles which still
justify attention.
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One issue, which we shall not address, concerns the dynamics near such a cycle,
especially when the cycle is part of a more complicated object such as a heteroclinic
network. This has been done, for instance, by Aguiar et al. [1].

Another, that of the asymptotic stability of the cycle, has been addressed by
Krupa and Melbourne [12, 13]. These authors provide a systematic classification of
certain cycles forced by symmetry and necessary and/or sufficient conditions for the
asymptotic stability of an existing cycle, existence conditions not being their concern.
They deal both with discrete and continuous symmetry groups obtaining results which
are more complete in the discrete case. The necessary and sufficient conditions are
obtained for simple heteroclinic cycles in R4 — those with heteroclinic connections
contained in 2-dimensional fixed-point spaces.

A third issue concerns bifurcation from a cycle. This is considered by Chossat et
al. [3] for homoclinic cycles. Again the existence of such a cycle is assumed without
further comments.

It becomes apparent that the existence of the objects whose stability and bifur-
cation draw considerable attention should be addressed. The existence problem has
been studied in a systematic way in a series of articles by Sottocornola [15, 16, 17].
These articles provide a classification of homoclinic cycles in spaces of dimension less
than or equal to 5. The case of heteroclinic cycles is not addressed and the homoclinic
cycles classified are simple — all equilibria are on coordinate axes and the invariant
planes and hyperplanes are the coordinate ones. The classification is complete in di-
mension 4 but the techniques used do not extend to higher dimensions (see [17]). The
existence problem is extended to the case of continuous symmetry groups by Ashwin
and Montaldi [2] where group theoretic conditions are provided that guarantee the
existence of robust homoclinic cycles among relative equilibria.

Traditionally, the existence of heteroclinic (and homoclinic) cycles has been proved
in very much an ad-hoc basis. There are several examples of cycles arising in problems
equivariant under the action of specific symmetry groups. Similarities among some
of these constructions may be found a posteriori and the systematization of these
methods is the purpose of this paper. We provide general conditions for the existence
of such cycles.

Our main result shows the existence of equivariant vector fields possessing a per-
sistent heteroclinic cycle under some hypotheses on the action of the symmetry group.
These hypotheses concern

• the shape of the isotropy lattice (this was already mentioned by Melbourne et
al. [14] and is a recurring feature in many examples);

• the action on fixed-point spaces which we ask to be polar with regular orbits
of codimension two – this guarantees the existence of 2-dimensional Cartan
subspaces inside the fixed-point space;
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• the action on the Cartan subspaces of the group acting on the corresponding
fixed-point spaces.

These hypotheses are not very restrictive. The abundance of polar groups is
illustrated in Dadok [4]. The geometry of the isotropy lattice is a standard assumption
and the further hypotheses on the group action are satisfied by a wide variety of
examples, some of which are presented in section 6.

This paper is organized as follows: in the next section we introduce preliminary
concepts and results. Section 3 is devoted to the statement of the main result together
with an additional definition and some comments on the hypotheses. Sections 4 and 5
contain the proof of the main theorem, with all the technical results concerning polar
actions grouped in section 5. Section 4 is divided in two subsections: the first showing
that the dynamics inside a fixed-point space exhibits heteroclinic connections and the
second proving that this behaviour remains true when considering all relevant fixed-
point spaces simultaneously. In section 6 we illustrate the application of our main
result by proving the existence of cycles of various types in two examples, one of which
is well-known in the literature. The paper finishes with a discussion of the scope of
our results.

2 Definitions and preliminary results

Let f be a vector field on Rn. A compact set A, invariant for the flow of f , is called
here an invariant saddle if

A ⊂ W s(A)\A, W u(A)\A.

Note that A need not be an equilibrium of f , and in case it is, it does not have
to be a saddle in the usual sense. Let Ai, Aj ∈ Rn be two invariant saddles and
W u(Ai) ∩ W s(Aj) �= ∅. A trajectory in W u(Ai) ∩ W s(Aj) is called a heteroclinic
connection from Ai to Aj. We want to think of a heteroclinic cycle as a sequence of
heteroclinic connections, using the definition of Field [5]:

Definition 2.1 ([5], 6.7) Suppose that A = {Ai : i = 0, ..., n−1} is a finite ordered
set of mutually disjoint invariant saddles. We say that there is a heteroclinic cycle
associated to A if

W u(Ai) ∩ W s(Ai+1) �= ∅, i ≥ 0 (mod n).

We refer to the set C ⊂ Rn defined by

C = ∪n−1
i=0 Ai ∪ [W u(Ai) ∩ W s(Ai+1)],

as the (maximal) heteroclinic cycle determined by A.
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We shall be particularly interested in heteroclinic cycles arising in problems with
symmetry. Let Γ be a compact Lie group acting linearly on Rn, as a smooth represen-
tation of a subgroup of O(n) and suppose f : Rn → Rn satisfies f(γx) = γf(x) ∀γ ∈
Γ. In this case we say that f is Γ-equivariant or that f commutes with Γ. For Σ ⊂ Γ
a subgroup of Γ, we define the fixed-point subspace

Fix Σ = {x ∈ Rn : σ · x = x ∀σ ∈ Σ}.

This subspace is a vector subspace of Rn and is invariant by f and by the flow of f .
We say that a heteroclinic cycle is persistent if each connection is either a trans-

verse intersection or it takes place inside a fixed-point subspace, where it is transverse.
The isotropy subgroup of x ∈ Rn is the subgroup of Γ defined by

Γx = {γ ∈ Γ : γ · x = x}.

Suppose that C is a heteroclinic cycle and A is the associated set of invariant
saddles. Let ΓC denote the isotropy subgroup of C, that is

ΓC = {γ ∈ Γ : x ∈ C ⇒ γ · x ∈ C}.

The group ΓC acts on the set of invariant saddles A. If this action is transitive, i.e.,
for any given Ai, Aj ∈ A, there is γ ∈ ΓC such that γ(Ai) = (Aj), then C is called a
homoclinic cycle (Field [5]).

Given a vector subspace V ⊂ Rn, we will denote by NΓ(V ) the subgroup that
acts on V defined by

NΓ(V ) = {γ ∈ Γ : γ · x ∈ V for all x ∈ V }

and by ZΓ(V ) the subgroup of Γ whose elements fix the points in V , defined by

ZΓ(V ) = {γ ∈ Γ : γ · x = x for all x ∈ V }.

If V = Fix(Σ) for some isotropy subgroup Σ then NΓ(V ) = N(Σ), the normalizer in
Γ of Σ, and ZΓ(V ) = Σ. Thus, NΓ(V )/ZΓ(V ) represents the effective action of Γ on
V .

Let Γ be a compact Lie group, and ρ : Γ −→ O(n) a smooth representation on the
real vector space Rn with inner product 〈., .〉. For x ∈ Rn define the Γ-orbit of x as
Γ(x) = {γ ·x : γ ∈ Γ} and denote by TxΓ(x) the subspace of Rn of vectors tangent to
Γ(x); let Nx = (TxΓ(x))⊥ be its orthogonal complement, that we call a cross-section,
because it meets every Γ-orbit in Rn (Lemma 1 of Dadok [4]). To obtain a cross-
section of minimal dimension we choose x on an orbit of maximal dimension; such
points are called regular. If a point is not regular, we call it singular.
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We are interested in representations, called polar, for which the minimal dimen-
sional cross-sections are all Γ-conjugate. In this case, the minimal cross-sections are
called Cartan subspaces. Another characterization is that all orbits under polar ac-
tions intersect a Cartan subspace orthogonally (Dadok [4, Proposition 1]). Section 5
presents the statement and proof of new results on polar actions needed for our con-
struction.

3 Statement of the main result

In this section we describe some classes of symmetric systems where persistent hete-
roclinic networks are to be found.

Definition 3.1 A heteroclinic cycle of isotropy subgroups of a compact Lie group Γ
is a sequence of distinct conjugacy classes of isotropy subgroups Ti, with i = 1, ..., k,
k ≥ 2 and Σj, with j = 1, ..., k, where the Ti and the Σj are related as follows:

T1 T2 · · · Tk Tk+1

Σ1 Σ2 · · · Σk−1 Σk

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

with the classes Tk+1 and T1 equal.

We assume:
(H1) Fix(Γ) = {0} and on each Fix(Σj) the action of NΓ(Σj)/Σj = Gj is polar and
the regular orbits for this action have codimension two on Fix(Σj).

Suppose that Γ is a compact Lie group with a heteroclinic cycle of isotropy sub-
groups satisfying (H1). We may conclude that for each j there exists Vj ⊂ Fix(Σj)
such that Vj is a 2-dimensional vector subspace intersecting all Gj-orbits. It follows,
because the Gj action is effective that Vj intersects all Γ-orbits lying in Fix(Σj).

Let l1j = Fix(Tj) ∩ Vj and l2j = Fix(Tj+1) ∩ Vj. In order to construct heteroclinic
cycles we will need two additional hypotheses on the group action. They are:

(H2) dim lij = 1 for i = 1, 2, j = 1, . . . , k + 1.

(H3) For Gj = NΓ(Σj)/Σj, we have NGj
(Vj)/ZGj

(Vj) = Z2 ⊕ Z2 and each lij is the
fixed-point subspace of one of the two subgroups Z2.

Note that in (H2) we are only ruling out the possibility that dim Fix(Tj) = 2, with
Vj conjugate to Fix(Tj). As dim lij = 1, then NGj

(lij) can only act as Z2 or 1. That
the action of NGj

(lij) on lij is nontrivial is guaranteed by (H3).
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Theorem 3.2 Let Γ be a compact Lie group acting linearly on Rn with a heteroclinic
cycle of isotropy subgroups satisfying (H1–H3). Then there are smooth Γ-equivariant
vector fields on Rn with a persistent heteroclinic cycle.

In the next section we will prove theorem 3.2. The proof constructs a vector field
f and is based on the fact that the spaces Fix(Σj) are invariant by any Γ-equivariant
vector field. The proof takes the following steps:

1. We work on each subspace Fix(Σj) and use the normal form of degree three
of an arbitrary Z2 ⊕ Z2-equivariant vector field, on Vj ⊂ Fix(Σj), denoted by
fVj

. We establish conditions satisfied in an open set of normal forms so that the
equilibria of fVj

have the desired stability and we use Poincaré-Bendixson-like
arguments to show the existence of saddle-sink connections on Vj ⊂ Fix(Σj)
(section 4.1).

2. We show that the connections in Vj may be lifted to connections between relative
equilibria of f in Fix(Σj) (section 5).

3. We show how the connections in each Vj give rise to a cycle in Rn (section 4.2).

4 Proof of theorem 3.2

We start by studying the dynamics of Γ-equivariant vector fields in the invariant
spaces Fix(Σj).

4.1 Dynamics inside a fixed-point subspace

Let X = Fix(Σj), for arbitrary j = 1, . . . , k, where Γ has the effective action of
G = N(Σj)/Σj. For simplicity of notation in this subsection we denote by V ⊂ X
the Cartan subspace Vj and let l1 = l1j, l2 = l2j, and T1 = Tj, T2 = Tj+1. From (H1)
we know that V is 2-dimensional.

For a Cartan subspace V ⊂ X, let P : X −→ V , Q : X −→ V ⊥, Q = I − P
be orthogonal projections. Given a smooth G-equivariant vector field f on X (the
restriction of a Γ-equivariant vector field on Rn) define a vector field fV on V by the
projection fV = P (f |V ) and write fT (x) = Q (f |V (x)) so that for x ∈ V we have
f(x) = fV (x) + fT (x). Note that fV and fT are as differentiable as f is. It can be
shown that, since the action of G is polar, both fV and fT are G-equivariant and
that, at regular points, fT is tangent to G-orbits. We postpone this proof to section
5 (Theorem 5.1).

Since NG(V )/ZG(V ) acts on V as Z2⊕Z2 (cf. (H3)), the vector field fV is Z2⊕Z2-
equivariant (Theorem 5.1).
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Considering coordinates x1 ∈ l1 and x2 ∈ l2, the normal form of degree 3 for fV

on V is [6, Lemma X, 1.1]:{
ẋ1 = x1(a1λ + b1x

2
1 + d1x

2
2)

ẋ2 = x2(a2λ + c2x
2
1 + b2x

2
2)

(4.1)

and if the normal form is non-degenerate, then higher order terms are not important
for the problem [7, Theorem XIV, 4.2]. It is shown in [14, Proposition 2.6] that if

a1, a2 > 0 b1, b2 < 0 C ≡ d1a2

b2a1

+
c2a1

b1a2

> −2 (4.2)

then, for λ > 0, all trajectories starting within a circle of radius O(
√

λ) stay bounded
near the origin.

Note that, under the conditions (4.2) and for λ > 0, the origin is a source and
equations (4.1) have equilibria A±

1 = (±
√
−a1λ/b1, 0) and A±

2 = (0,±
√

−a2λ/b2) on
the axes. Forcing A±

1 to be saddles and A±
2 to be sinks is equivalent to choosing

a2 − c2
a1

b1

> 0 and a1 − d1
a2

b2

< 0. (4.3)

If we reverse both inequalities of (4.3), the equilibria A±
1 become sinks and A±

2

become saddles. A direct calculation using Cramer’s rule shows that for a vector
field of the form (4.1) satisfying (4.2) and (4.3) and for λ > 0 there are no equilibria
outside the axes. The same is true if all the inequalities in (4.3) are reversed.

Lemma 4.1 Consider a vector field of the form (4.1) satisfying (4.2) and (4.3).
Then for λ > 0 there is a saddle-sink connection from A+

1 to A+
2 .

Proof The ω-limit set of the unstable manifold of A+
1 , ω(W u(A+

1 )), cannot contain
the origin since this is a source. The y axis is a fixed-point subspace, therefore flow
invariant, so A+

2 cannot be an equilibrium surrounded by a periodic orbit.
There are no equilibria on the sector x > 0, y > 0, so we conclude that ω(W u(A+

1 ))
cannot contain any periodic orbit. The only alternative, since there are no invariant
lines in the sector, is that ω(W u(A+

1 )) contains A+
2 . We conclude that there exists a

saddle-sink connection from A+
1 to A+

2 .

A point x ∈ V in the fV -trajectory connecting A+
1 to A+

2 must be regular for
the NG(V )/ZG(V )-action — otherwise it would lie in a fixed-point subspace of V
and, since these are flow-invariant, there could be no connection. We will show
(Theorem 5.3) that the f -trajectory of the same point x connects points in G(A+

1 ) to
points in G(A+

2 ). This proof uses different techniques and appears in section 5 below.

7



4.2 Cycling the fixed-point subspaces

We return to the study of Γ-equivariant vector fields f in Rn. So far, we have obtained
conditions on the coefficients of each fVj

for the existence of trajectories connecting
two group orbits. It remains to see that these conditions may be satisfied consistently
in all the Cartan subspaces Vj, thus closing the cycle.

To do this, we want to identify the two lines l2j ⊂ Vj and l1(j+1) ⊂ Vj+1 (figure
1) and define a projected vector field in Vj ∪ Vj+1. This amounts to choosing a
representative of the equivalence class of Cartan subspaces under the Γ action and
identifying the lines where they meet each representative of Fix(Tj), dealing more
carefully with isotropy classes.

Lemma 4.2 Consider the following portion of the heteroclinic cycle of isotropy sub-
groups of Γ, satisfying (H1–H3)

T

Σ1 Σ2

�
��

�
��

and let Σ̂j, j = 1, 2 be representatives of Σj with 2-dimensional Cartan subspaces Vj

for the action of Gj on Fix(Σ̂j). Then there are two representatives T̂ and T̃ of T

with Σ̂1 < T̂ , Σ̂2 < T̃ and γT̂ γ−1 = T̃ for some γ ∈ Γ such that l = V1 ∩ Fix(T̂ ) is a

line satisfying γ · l = V2 ∩ Fix(T̃ ).
If f is a Γ-equivariant vector field then for any x ∈ l we have fV1(x) = fV2(γ · x)

in suitably chosen coordinates.

Proof Let Σ̂1 and Σ̂2 be representatives of Σ1 and Σ2 and let T , T be two repre-

sentatives of T with Σ̂1 < T and Σ̂2 < T , and γ1 ∈ Γ such that γ1Tγ−1
1 = T . Then

Fix(T ) ⊂ Fix(Σ̂1) and Fix(T ) ⊂ Fix(Σ̂2).

Let Vj be Cartan subspaces in Fix(Σ̂j), j = 1, 2, respectively. Then either Fix(T )∩
V1 is a line l (in which case T = T̂ ) or we may take another representative T̂ = γ−1

2 Tγ2

of T , with γ2 ∈ NΓ(Σ̂1) for which this is true, since V1 is a Cartan subspace and thus

meets every NΓ(Σ̂1)-orbit. It follows that Σ̂1 < T̂ and that δT̂ δ−1 = T for δ = γ1 · γ2.

If x ∈ Fix(T̂ ) ∩ V1 then δ · x ∈ Fix(T ) ⊂ Fix(Σ̂2). Again if δ · x �∈ V2 then for

some γ3 ∈ NΓ(Σ̂2) we have γ3 · δ ·x ∈ V2 and we may take T̃ = γ3Tγ−1
3 for the second

representative of T , with γ = γ3 · γ2 · γ1. Thus we have γ · x ∈ Fix(T̃ ) ∩ V2 and if

x ∈ l, x �= 0, it follows by linearity that γ · l = Fix(T̃ ) ∩ V2.
Each one of the lines l and γ · l is a fixed-point subspace for an isotropy subgroup

of NGj
(Vj)/ZGj

(Vj) = Z2 ⊕Z2, j = 1, 2. Thus fV1(x) ∈ l and fV2(γ · x) ∈ γ · l, for any
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x ∈ l, by equivariance of fVj
and invariance of fixed-point subspaces. It remains to

see that fV1(x) = fV2(γ · x).
Choose orthonormal bases (b1, b

j
2, u

j, vj) for Fix(Σj), j = 1, 2 (where uj and vj

each spans a subspace that may have dimension higher than one) as follows:

• (b1, b
1
2) is an orthonormal basis for V1

(γ · b1, b
2
2) is an orthonormal basis for V2

• (b1, u
1) is an orthonormal basis for Fix(T̂ )

(γ · b1, u
2) is an orthonormal basis for Fix(T̃ )

• v1 ∈ (V1 + Fix(T̂ ))⊥ ⊂ V ⊥
1

v2 ∈ (V2 + Fix(T̃ ))⊥ ⊂ V ⊥
2 .

For x ∈ l, we have f(x) ∈ Fix(T̂ ) with coordinates f(x) = (α, 0, β, 0) in the first

basis above and f(γ · x) = γ · f(x) = (α, 0, β, 0) ∈ Fix(T̃ ) in the second basis. Note
that Pj(f(x)) = fVj

(x) and so, for x ∈ l, P1(f(x)) = (α, 0) = P2(f(γ · x)).

It follows from this lemma that if V1∩V2 = l, i.e. if γ acts as the identity on l, then
fV1 and fV2 define a consistent vector field on V1 ∪ V2 (figure 1). It follows that the
projected vector fields fVj

define a vector field on the set (V1 ∪ . . .∪Vk)/(l2j = l1(j+1))
(mod k + 1). Theorem 5.1 shows that the projection does not depend on the choice
of Cartan subspace.

V1

V2

l 2

l 1

l 3

Figure 1: Connection between the equilibria of fVj
on V1 ∪ V2.

To guarantee the necessary stability for the existence of saddle-sink connections
we have chosen coefficients inside each Vj. To finish the proof we show that this choice
may be made globally for the vector field f .
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Choosing coordinates (xj, xj+1) on Vj, the degree 3 normal form (4.1) yields:
-on V1: {

ẋ1 = x1(a1λ + b1x
2
1 + d1x

2
2)

ẋ2 = x2(a2λ + c2x
2
1 + b2x

2
2)

- on V2: {
ẋ2 = x2(a2λ + b2x

2
2 + d2x

2
3)

ẋ3 = x3(a3λ + c3x
2
2 + b3x

2
3)

· · ·
- on Vn: {

ẋn = xn(anλ + bnx
2
n + dnx

2
1)

ẋ1 = x1(a1λ + cn+1x
2
n + b1x

2
1)

Suppose λ > 0 and aj > 0, bj < 0, j = 1, . . . , n. These inequalities imply the
existence of equilibria

A±
j = (0, . . . , 0,±

√
−ajλ/bj, 0, . . . , 0)

on the xj axis j = 1, . . . , n. On each Cartan subspace Vi the equilibria are a saddle
on xi axis and a sink on the xi+1 axis. This is achieved with the following conditions
on the coefficients:

ai+1 − ci+1
ai

bi

> 0 ai − di
ai+1

bi+1

< 0,

respectively, where an+1 = a1, bn+1 = b1.
These conditions are satisfied if in addition we choose cj+1 > 0 (j = 1, . . . , n) and

d1 <
a1b2

a2

< 0, d2 <
a2b3

a3

< 0, . . . , dn <
anb1

a1

< 0.

Looking now at the boundedness condition (4.2), using d1 <
a1b2

a2

< 0 we may

conclude that 0 <
d1a2

b2a1

< 1. Therefore
c2a1

b1a2

> −2 implies C > −2, so, by

choosing a1, b1, a2, c2 conveniently, these inequalities are satisfied. Similar inequal-
ities for the remaining Cartan subspaces (Vj, j = 2, . . . , n) are satisfied by choosing
aj, bj, aj+1, cj+1 conveniently.

Summarizing, sufficient conditions for the existence of the connections are:

λ > 0, aj > 0, bj < 0, cj+1 > 0, dj <
ajbj+1

aj+1

and
cj+1aj

bjaj+1

> −2,

which are all compatible in an open subset of the space of coefficients.
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We conclude that there is an open set in the space of coefficients for which on each
Vj we have exactly five equilibria (including the origin) with the stability type chosen
above. Moreover, there is a disc on each Vj containing the origin and attracting the
flow. We have already claimed that each connection for the fVj

-flow inside Vj may be
lifted inside Fix(Σj) to a connection of relative equilibria for the flow of f . By taking
Γ-orbits we obtain the desired persistent cycle (see remark 5.4 below) completing the
proof of Theorem 3.2.

5 Polar actions

In this section we prove the results on polar actions that have been used in the proof
of Theorem 3.2. For this, let G be a compact Lie group with a polar action on the
finite-dimensional space X and V ⊂ X a Cartan subspace for this action. Recall
that for x ∈ V we have defined fV (x) = P (f |V (x)) and fT (x) = Q (f |V (x)), with
f(x) = fV (x) + fT (x), where P : X −→ V , Q : X −→ V ⊥, P + Q = I are orthogonal
projections, so fV defines a vector field in V and fT is a section of the normal bundle
of V that is tangent to G-orbits at regular points.

Theorem 5.1 Let G be a compact Lie group with a polar action on the finite-
dimensional vector space X with a Cartan subspace V ⊂ X and let f be a smooth
G-equivariant vector field on X. Then fV and fT are G-equivariant on V and if x ∈ V
is regular for the effective action of G on V then fT (x) ∈ TxG(x). This decomposition
does not depend on the choice of Cartan subspace.

Proof If x ∈ V is regular then (TxG(x))⊥ = V and thus fT (x) = Qf(x) is tangent
to G(x). For a regular point x ∈ V and γ ∈ G such that γ · x ∈ V we have

f(γ · x) = γ · f(x) = γ · Pf(x) + γ · Qf(x).

Since Qf(x) ∈ TxG(x) then γ · Qf(x) ∈ Tγ·xG(γ · x) and, by orthogonality of γ, it
follows that γ · Pf(x) ∈ V . Therefore

γ · fV (x) = γ · Pf(x) = Pf(γ · x) = fV (γ · x)

and
γ · fT (x) = γ · Qf(x) = Qf(γ · x) = fT (γ · x)

showing that fT and fV are G-equivariant at regular points.
Since regular points form an open and dense subset of X they are also dense in V

and thus the result can be extended by continuity to singular points in V .
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If V1 and V2 are two Cartan subspaces of X, then there is an element γ ∈ G such
that V2 = γ · V1. The expression of fV1 in coordinates with respect to a basis {b1, b2}
of V1 is the same as that of fV2 with respect to the basis {γ · b1, γ · b2} of V2, i.e., the
decomposition f = fV + fT is independent of the choice of Cartan subspace.

The next step is to relate the limit behaviour of the flow ϕf (t, x) of f to the flow
ϕfV

(t, x) of fV . We apply the following result:

Theorem 5.2 (Krupa, [10], Theorems 2.1 and 2.2) Let G be a compact group
acting on the finite-dimensional vector space X and f a G-equivariant vector field on
X. For each x0 ∈ X there exist a G-invariant neighborhood U of the orbit G(x0) in
X, and smooth and G-equivariant vector fields fK and fN such that

f(u) = fK(u) + fN(u)

for all u in U , satisfying fK(u) ∈ TuG(u) for all u in U and with fN(x) ∈ Nx for
all x ∈ G(x0). Moreover, there exists a smooth curve of group elements γ(t) and a
trajectory y(t) of the restriction of fN to the space Nx0 such that γ(t)y(t) = u(t) for
all t ≥ 0 such that both y(t) and u(t) remain in the neighbourhood U .

Even though in general fN is not necessarily normal to group orbits other than
G(x0), this is true, however, at regular points x0 if the action of G is polar. Then,
on the Cartan subspace V = Nx0 the two decompositions coincide, with fN = fV

and fK = fT . Note that if x ∈ V is regular, so are all the points in the trajectories
ϕf (t, x) and ϕfV

(t, x), by the equivariance of the vector fields f and fV .
Let ωfV

(x) and ωf (x) denote the ω-limit sets of a point x under the flows of fV

and f , respectively. The next result shows how the two ω-limit sets are related.

Theorem 5.3 Let G be a compact Lie group with a polar action on the finite-
dimensional vector space X with a Cartan subspace V ⊂ X and let f be a smooth
G-equivariant vector field in X. Suppose there is a regular point x ∈ V such that
ωfV

(x) = {A} with A ∈ V , fV (A) = 0. Then G(A) is a relative equilibrium for the
flow of f , with ωf (x) not empty and contained in G(A).

Proof First note that if x ∈ V is regular and ϕfV
(t, x) is defined for all t > 0,

then the curve γ(t) of Theorem 5.2 is also defined for all t > 0, since the half-
trajectory {ϕfV

(t, x) t ≥ 0} may be covered by a countable and locally finite family
of neighbourhoods where the theorem holds.

If ωfV
(x) = {A} then there exists a sequence tn → +∞ such that ϕfV

(tn, x) → A
and by Theorem 5.2 there is a sequence γn ∈ G such that ϕf (tn, x) = γn · ϕfV

(tn, x).
Since G is compact, there is a converging subsequence γnj

→ γ∞ ∈ G. Thus
ϕf (tnj

, x) = γnj
· ϕfV

(tnj
, x) converges to γ∞ · A and ωf (x) is not empty.
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A point y lies in ωf (x) if and only if there is a sequence tn → +∞ such that
ϕf (tn, x) → y. If γ̃ is any accumulation point of the sequence (γn)−1 ∈ G such that
(γn)−1 · ϕf (tn, x) = ϕfV

(tn, x) then taking the limit it follows that γ̃ · y = A and
y ∈ G(A).

For any y ∈ ωf (x) we know that γ · y = A for some γ ∈ G and thus G(A) = G(y).
Since ω-limit sets are flow invariant, then for any time s we have ϕf (s, y) ∈ ωf (x) ⊂
G(A) = G(y). By the equivariance of f , this also holds for any y ∈ G(A), showing
that G(A) is a f -relative equilibrium.

Remark 5.4 Suppose that ωfV
(x) = {Aω} and αfV

(x) = {Aα} are, respectively, the
ω- and α-limit sets of a regular point x for the flow of fV . Then the ω- and α-limit sets
of x for the flow of f are not empty and contained in G(Aω) and G(Aα), respectively,
following the proof of the previous theorem. If Aα is a saddle and Aω is a sink for the
flow of fV then G(Aω) attracts all neighbouring f -trajectories and the connections
from G(Aα) to G(Aω) persist under small symmetry-preserving perturbations.

6 Examples

Example 1 The first example, studied by Melbourne et al [14], connects equilibria
to periodic orbits. Let O(2) × SO(2) act on R6 ≡ C3 by:

(φ, θ).(z0, z1, z2) = (eiφz0, e
i(θ+φ)z1, e

i(θ−φ)z2)

k.(z0, z1, z2) = (z0, z2, z1).

Using the notation: Z2(k) = {1, k}, Z2
c = {1, (π, π)}, Z2(k.(π, π)) = {1, k.(π, π)},

we find in the isotropy lattice the heteroclinic cycle of isotropy subgroups:

T1 T2 T3 ∼ T1

Z2(k) × SO(2) Z2(k) ⊕ Z2
c Z2

(
(π

2
, 0) · k · (−π

2
, 0)

)
× SO(2)

�
��

�
��

�
��

�
��

Σ1 Σ2

Z2(k) Z2(k · (π, π))

The data for the construction of the heteroclinic cycle is given in the tables below,
where z0, z1, z2 ∈ C and x, r ∈ R. For the subgroups Σj we give the type of regular
Gj-orbits inside Fix(Σj):
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Σj Fix(Σj) Gj = NΓ(Σj)/Σj regular Gj Vj

orbit type
Z2(k) (x, z1, z1) Z2(π, 0) × SO(2) circle (x, r, r)

Z2(k.(π, π)) (ix, z1, z1) Z2(π, 0) × SO(2) circle (ix, r, r)

To construct the table with the data for Tj we use T1 to compute Fix(T1)∩V1 and
its conjugate T3 to compute Fix(T1) ∩ V2.

Tj Fix(Tj) Fix(Tj) ∩ V1 Fix(Tj) ∩ V2

T1 = Z2(k) × SO(2) (x, 0, 0) (x, 0, 0) (ix, 0, 0)
T2 = Z2(k) ⊕ Zc

2 (0, z1, z1) (0, r, r) (0, r, r)

The action of Gj on Fix(Σj) is polar and Gj-regular orbits have codimension two
in Fix(Σj). The effective action on Vj is that of Z2×Z2. Theorem 3.2 then guarantees
the existence of a heteroclinic cycle connecting the orbit of a point in Fix(T1) to the
orbit of a circle contained in Fix(T2).

Example 2 We construct a new example with a cycle connecting points and closed
curves. Let Γ = O(2) × O(2) act on R6 = R3 × R3 with the diagonal action (each
O(2) acts on one R3 and fixes the other). The group O(2) acts on R3 by reflection
on the xy plane and rotation on the z axis. Thus the group O(2) is generated by θ
and k, where

θ · (x, y, z) = (x cos θ − y sin θ, x sin θ + y cos θ, z), θ ∈ [0, 2π[

k · (x, y, z) = (x, y,−z).

The isotropy lattice has four maximal and six submaximal isotropy subgroups. It
contains the following heteroclinic cycle of isotropy subgroups:

T1 T2 T3 T4 T5 = T1

O(2) × Z2 O(2) × SO(2) SO(2) × O(2) Z2 × O(2) O(2) × Z2

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Σ1 Σ2 Σ3 Σ4

O(2) × 1 SO(2) × SO(2) 1 × O(2) Z2 × Z2

Using coordinates (x1, y1, z1, x2, y2, z2) in R3 × R3, the data for Σj is:

14



Σj Fix(Σj) Gj = NΓ(Σj)/Σj regular Gj Vj

orbit type
O(2) × 1 {0} × R3 1 × O(2) circle {0} × {(0, y2, z2)}

SO(2) × SO(2) {(0, 0, z1, 0, 0, z2)} Z2 × Z2 four points {(0, 0, z1, 0, 0, z2)}
1 × O(2) R3 × {0} O(2) × 1 circle {(0, y1, z1)} × {0}
Z2 × Z2 {(x1, y1, 0, x2, y2, 0)} SO(2) × SO(2) torus {(0, y1, 0, 0, y2, 0)}

The data for Tj is:

Tj Fix(Tj) Fix(Tj) ∩ Vj−1 Fix(Tj) ∩ Vj

O(2) × Z2 {0} × {(x2, y2, 0)} {0} × {(0, y2, 0)} {0} × {(0, y2, 0)}
O(2) × SO(2) {0} × {(0, 0, z2)} {0} × {(0, 0, z2)} {0} × {(0, 0, z2)}
SO(2) × O(2) {(0, 0, z1)} × {0} {(0, 0, z1)} × {0} {(0, 0, z1)} × {0}

Z2 × O(2) {(x1, y1, 0)} × {0} {(0, y1, 0)} × {0} {(0, y1, 0)} × {0}

Note that the action of Gj on Fix(Σj) is polar, regular Gj-orbits in Fix(Σj) have
codimension two and the effective action on Vj is that of Z2 × Z2.

From Theorem 3.2 it follows that there is a persistent heteroclinic cycle connecting
a closed curve in Fix(T1) to a point in Fix(T2), then to a point in Fix(T3), then to a
closed curve in Fix(T4) and finally to the initial closed curve.

7 Discussion

Theorem 3.2 provides conditions for the existence of a persistent heteroclinic cycle
under polar actions on fixed-point spaces. An important particular case is the follow-
ing:

Corollary 7.1 Let Γ be a compact Lie group acting linearly on Rn with a heteroclinic
cycle of isotropy subgroups. Suppose that subgroups of the cycle satisfy:

dim Fix(Σj) = 2 dim Fix(Tj) = 1 and

N(Tj)/Tj
∼= Z2 N(Σj)/Σj

∼= Z2 ⊕ Z2.

Then there are smooth Γ-equivariant vector fields on Rn with a persistent heteroclinic
cycle.

The cycle found by Guckenheimer and Holmes in [8] is an example of application
of this corollary. In the corollary, the hypothesis concerning the action on fixed-point
spaces being polar is unnecessary as Fix(Σ) is a 2-dimensional space itself.

Polar actions allow us to deal with the problem of the existence of heteroclinic
cycles in higher dimensions. The polar action hypothesis is not very restrictive:
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many interesting examples occur for polar actions and there is a vast collection of
such actions.

Although we do not address the issue of existence of homoclinic cycles (cf. Sotto-
cornola [15, 16, 17] for recent results), homoclinic connections may be obtained using
the proof of theorem 3.2. These appear when the conjugacy class of the isotropy sub-
groups Tj is nontrivial and the cycle of isotropy subgroups contains only two isotropy
classes.

The next logical step after having proved the existence of an object is to study
its stability. This may be achieved using the results of Krupa and Melbourne [12,
13]. There is no reason for the heteroclinic cycles, whose existence is guaranteed
by theorem 3.2, to have an a priori well-defined stability. The stability depends
on characteristics of the vector field more particular than those needed to establish
existence.
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