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Abstract. We classify the foliations associated to semi-complete
vector fields at an isolated singularity of saddle-node type in Cn,
i.e., associated to semi-complete vector fields in Cn, whose lin-
ear part is diagonalizable and with an isolated singularity, where
the n − 1 non-vanishing eigenvalues of its linear part are non-
resonant and in the Poincaré Domain. We will also analyse the
semi-completude of a vector field with a diagonal linear part asso-
ciated to a saddle-node foliation, whose set of singularities is the
holomorphic invariant hypersurface transverse to the weak direc-
tion.

1. Introduction

The definition of a semi-complete vector field relatively to a (rela-
tively compact) open set U is introduced in [8]. The importance of
that definition is that:

Proposition. [8] Let X be a complete holomorphic vector field on a
complex manifold M . The restriction of X to any connected, (relatively
compact) open set U (U ⊆M) is a semi-complete vector field relatively
to U .

Therefore, if a holomorphic vector field in an open set U is not semi-
complete it cannot be extended to a compact manifold containing U .

In [9] Rebelo classifies the semi-complete singularities of saddle-node
type in C2, such that (0, 0) ∈ C2 is an isolated singularity. There, he
proves:

Theorem. [9] Let F be a saddle-node defined in a neighbouhood of
(0, 0) ∈ C2 and w a differential 1-form, with an isolated singularity at
the origin, defining F . The foliation F is associated to a semi-complete
vector field iff w admits

x(1 + λy)dy − y2dx

as normal form, with λ ∈ Z.

Here we classify the semi-complete vector fields of saddle-node type
in Cn, at an isolated singularity. By a saddle-node, with an isolated sin-
gularity at p, we mean a holomorphic vector field X such that X(p) = 0
and DX(p) is diagonalizable and has one and exactly one eigenvalue
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equal to zero, beeing the other eigenvalues non-resonant and in the
Poincaré Domain.

In both problems the vector fields are 1-resonant: we say that a
vector field is 1-resonant if dim{m ∈ Zn : (m, λ) = 0} = 1, where λ is
the vector constitued by the eigenvalues of the linear part of the vector
field.

The result obtained here is similar to the one obtained by Rebelo.
We prove:

Theorem. Let F be a foliation of a saddle-node, in a neighbourhood
of the origin, with an isolated singularity at the origin. Then F is
associated to a semi-complete vector field iff it admits the normal form



ẋ = x2
1

ẏ = x2(λ2 + α2x1)
...

ż = xn(λn + αnxn)

with (α2, . . . , αn) ∈ Zn−1.

At the end of the article we study the semi-completude of vector fields
with diagonal linear part associated to saddle-node foliations, whose set
of singularities coincides with the invariant manifold transverse to the
weak axis at the origin, whose existence is guaranteed in [1].

Let Yp(x) = (xp+1
1 , λ2x2 + x1a2(x), . . . , λnxn + x1an(x)), p ∈ N, be

a holomorphic vector field of saddle-node type such that ai(0) = 0,
∀i = 2, . . . , n. We obtain:

Proposition. Let X be a vector field of type fx−k
1 Yp, where f is a

holomorphic function such that f(0) �= 0, k ∈ Z and X defined in an
open neighbourhood U ⊆ Cn of the origin. Suppose that X is semi-
complete in a neighbourhood of the origin, then k ∈ {p− 1, p, p + 1}.

Consequently we conclude that:

Corollary. Let X be a holomorphic vector field of saddle-node type,
with an isolated singularity at the origin, and M the invariant hyper-
surface transverse to the weak direction of X. If F is a holomorphic
function such that F (x) = 0 ⇔ x ∈ M , then the holomorphic vector
field FX is not semi-complete in any neighbourhood of the origin.

I would like to thank my Ph. D. advisor, José Basto Gonçalves, for
his support. I also wish to thank Júlio Rebelo, who sugested me the
problem, and J. C. Canille Martins for their valuable conversations on
the subject.

2. Premilinaries - Definitions and Basic Results

In this section we introduce the definitions and the basic and most
important results related and necessary to solve the problem.
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Let X : U ⊆ Cn → C
n and Y : V ⊆ Cn → C

n be holomorphic vector
fields with a singularity at the origin. We say that X is analytically
(formally, C∞, Ck) conjugated to Y in a neighbourhood of the origin if
there exists a holomorphic (formal, C∞, Ck) diffeomorphism H : V1 →
U1, where 0 ∈ U1 ⊆ U , 0 ∈ V1 ⊆ V , such that H(0) = 0 and

Y = (DH)−1X ◦H.

We say that X and Y are analytically (formally, C∞, Ck) equivalent if
X is analytically (formally, C∞, Ck) conjugated to a multiple of Y .

Let λ = (λ1, . . . , λn) be the vector of the eigenvalues of DX(0).
We say that the eigenvalues are resonant if, for some i, there exists
I = (i1, . . . , in) ∈ Nn

0 with
∑n

j=1 ij ≥ 2 and such that

λi = I.λ = i1λ1 + . . . + inλn.

Finally, we say that λ is in the Poincaré Domain if the origin is not
in the convex hull of the points {λi : i = 1, . . . , n} (in the complex
plane). Otherwise we say that they are in the Siegel Domain.

Definition 1. Let X be a holomorphic vector field defined in a com-
plex manifold M . We say that X is complete if there is a holomorphic
application

Φ : C×M →M

such that

a) Φ(0, x) = x ∀x ∈M
b) Φ(T1 + T2, x) = Φ(T2, Φ(T1, x)) ∀x ∈M , ∀T1, T2 ∈ C
c) X(x) =

d

dT
|T=0Φ(T, x)

The orbits of a complete vector field are topologically the complex
plane C, the cylinder C/Z or the torus C/Λ. The orbits of a non-
complete vector field also define a singular foliation of M , where each
leaf is also a Riemann surface, but its topology can be much more
complex.

Definition 2. Let X be a holomorphic vector field defined in an open
set U , U ⊆ M , where M is a complex manifold. We say that X is
semi-complete relatively to U if there exists a holomorphic application

Φ : Ω ⊆ C× U → U

where Ω is an open set containing {0} × U such that

a) X(x) =
d

dT
|T=0Φ(T, x)

b) Φ(T1+T2, x) = Φ(T2, Φ(T1, x)), when the two members are defined
c) (Ti, x) ∈ Ω and (Ti, x)→ ∂Ω ⇒ Φ(Ti, x)→ ∂U

We call Φ the semi-complete flow associated to the vector field X.
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In [8] and [9], Rebelo presents sufficient and necessary conditions for
a vector field to be semi-complete in an open set U . The regular orbits
of a vector field X (X �≡ 0) are Riemann surfaces. To each one of its
orbits (leaves), L, we can associate a holomorphic differential 1-form,
dTL, such that dTL(X) = 1. In this way, we can define an application
D : L̃ → C, where L̃ is the universal covering of L, such that its
differential is the lift of dTL to L̃.

Proposition 1. [8] Let X be a semi-complete vector field relatively to
an open set U (U ⊆ M). If L is a non-singular orbit of X in U , then
the integral of dTL over any one-to-one embedded curve in L is non
zero.

Proposition 2. [9] Let X be a holomorphic vector field defined in a
neighbourhood U of the origin of Cn. Suppose that for all regular orbits
L of X and every c : [0, 1] → L such that c(0) �= c(1) the integral of
dTL over c is non zero. Then the vector field X is semi-complete in U .

Those propositions are essential in the classification of the semi-
complete singularities of saddle-node type in C2, as it will also be im-
portant in our case.

We also have a very easy to prove result, which enables us to obtain
semi-complete vector fields from other semi-complete vector fields:

Proposition 3. [3] Let X be a semi-complete vector field relatively to
an open set U and h a first integral of X. Then, the vector field hX is
also semi-complete relatively to U . In particular, if X is semi-complete,
then cX is semi-complete for any constant c.

As we said in the introduction, in the C2 case Rebelo shows:

Theorem 1. [9] Let F be a saddle-node defined in a neighbouhood of
(0, 0) ∈ C2 and w a differential 1-form, with an isolated singularity at
the origin, defining F . The foliation F is associated to a semi-complete
vector field iff w admits

x(1 + λy)dy − y2dx

as normal form, with λ ∈ Z.

In fact, by the Dulac’s Theorem, as w = 0 is a germ of a saddle-node
defined in a neighbourhood of (0, 0) ∈ C2, there exist p ≥ 1, λ ∈ C and
a systems of coordinates where w = 0 is written, in a neighbourhood
of the origin, as

[x(1 + λyp) + yR(x, y)]dy − yp+1dx = 0

where R has multiplicity greater or equal to p + 1 at (0, 0).
Let

X :

{
ẋ = x(1 + λyp) + yR(x, y)

ẏ = yp+1
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be (one of) the vector field(s) whose foliation coincides with F .

Let Ĝ0 represents the group of formal diffeomorphisms of the form
Ĥ = (x +

∑∞
k=1 hk(x)yn, y), with hn holomorphic in a neighbourhood

of the origin.
Each element X is equivalent, by a unique element of Ĝ0, to its

formal normal form {
ẋ = x(1 + λyp)

ẏ = yp+1

where p and λ are formal invariants.
In this context Theorem 1 means that there exists a holomorphic

function f , with f(0, 0) �= 0, such that fX is semi-complete if and only
if X is analytically conjugated to its formal normal form with λ ∈ Z
and p = 1.

Our main objective is to prove a similar result for saddle-nodes in
C

n.
In [8] is proved that a 1-dimensional holomorphic vector field X :

ẋ = f(x) such that f(0) = f (1)(0) = f (2)(0) = 0 is not semi-complete
in any neighbourhood of the origin. Here we also prove that if the
origin is a pole for X, and consequently an isolated singularity, then X
is not semi-complete in any neighbourhood of the origin.

Proposition 4. Consider the 1-dimensional vector field given by X :
ẋ = xkf(x), such that f is a holomorphic function verifying f(0) �= 0
and k ∈ Z. If k ≥ 3 or k ≤ −1 the vector field is interdict, i.e., is not
semi-complete relatively to any small neighbourhood of the origin.

Remark 1. If k ≤ −1, the vector field considered is not holomorphic in
C, but is holomorphic in C\{0}. In this case the origin is a singularity
in the sense that the vector field is not defined there.

The result of Rebelo is inclued in this proposition. To prove this
result we need the following lemma:

Lemma 1. Let f : U ⊆ C→ C be a function of the form

f(x) = axk + g(x, λ)

where g is a holomorphic function in U such that g(x, 0) = 0, k ∈ Z
and a ∈ C \ {0} (λ ∈ Cn, n ≥ 1, is a parameter). Let W be a simply
connected open set of U such that 0 /∈ W and f is never zero in W ,
∀λ : ‖λ‖ ≤ ε0. Consider the function

Iλ : W → C

p �→
∫

cp

dx

axk + g(x, λ)

where cp ⊆ W is a curve joining a fixed x0 ∈ W to p. Then, there exist
real and positive numbers θ and λ0 such that

∀λ : ‖λ‖ ≤ λ0, B(0, θ) ⊆ Iλ(W )
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Remark 2. As 0 /∈ W and f is non zero in W the integral does not
depend on the choosen curve.

Proof of the Lemma. The proof of this lemma is based in the following
theorem:

Theorem 2. [6] Let f : C → C be analytic and not constant on a
region A. Let z0 ∈ A and w0 = f(z0). Suppose that f(z) − w0 has a
zero of order k ≥ 1 at z0. Then there is an η > 0 such that for any
τ ∈]0, η] there is a δ > 0 such that, if |w − w0| < δ, then f(z)− w has
exactly k distinct roots in the disc |z − z0| < τ .

We have Iλ(x0) = 0, ∀λ ∈ C, in particular I0(x0) = 0. As g(x, 0) = 0,

I ′0(x0) =
1

xk
0

�= 0. Thus I0 has a zero of order 1 at x0. However, as Iλ

is a continuous function of λ, there exists 0 < λ0 ≤ ε0 such that

I ′λ(x0) ∈ B(
1

xk
0

,
1

2|xk
0|

) ∀λ : ‖λ‖ ≤ λ0.

In particular, I ′λ(x0) �= 0, ∀λ : ‖λ‖ ≤ λ0, and so Iλ as a zero of order 1
at x0, ∀λ : ‖λ‖ ≤ λ0.

Thus, by Theorem 2, for each λ ∈ B(0, λ0) ⊆ Cn there exists ηλ > 0
such that ∀τ ∈]0, ηλ] exists δτ

λ > 0 such that if |w − 0| < δτ
λ, then

Iλ(p) = w has exactily one solution in the disc |p− x0| < τ .
Consider the application

Tη : D(0, λ0)→ R

λ �→ ηλ

As 0 does not belong to the image of D(0, λ0) by Tη and D(0, λ0) is
compact, its image has a minimum µ. Then 0 < µ ≤ ηλ, ∀λ : ‖λ‖ ≤ λ0.

Consider now the application

Tδ : D(0, λ0)→ R

λ �→ δµ
λ

Denote by θ the minimum of Tδ(D(0, λ0)) (θ > 0).
Remark that

|w − 0| < δτ
λ ⇒ Dλ(p) = w has exactily one solution in |p− x0| < τ

In our case

|w − 0| < θ ⇒ |w − 0| < δµ
λ ∀λ : ‖λ‖ ≤ λ0

⇒ Dλ(p) = w has exactily one solution in |p− x0| < µ
∀λ : ‖λ‖ ≤ λ0

As µ is the minimum of Tη we can conclude that

B(0, θ) ⊆ Dλ(W ), ∀λ : ‖λ‖ ≤ λ0
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Proof of the Proposition. Suppose that k ≥ 3 or k ≤ −1 and that the
vector field X is semi-complete relatively to B(0, ε) ⊆ C. We can
assume ε so small that the origin is the only singularity in B(0, ε) (this
is possible because f(0) �= 0 and so is non zero in a small neighbourhood
of the origin).

Let f(0) = a0. Thus g(x) = xkf(x) = a0x
k + a1x

k+1 + a2x
k+2 + . . . .

Fixed λ ∈ C \ {0} the vector field X is semi-complete relatively to
B(0, ε) iff Yλ = λ−1X(λx) is semi-complete relatively to B(0, ε

|λ|). This

is so, because X and Yλ are analytically conjugated by the homothety
Hλ(x) = λx. If we take λ = ε it is sufficient to analyse if Yλ is semi-
complete in B(0, 1).

We have that the 1-form dTX such that dTX(X) = 1 is given by

dTX =
dx

xkf(x)

As the 1-form dT Yλ = H∗λ(dTX) we have that

dT Yλ =
d(λx)

(λx)kf(λx)
=

dx

λk−1xkf(λx)

As we are assuming k ≥ 3 or k ≤ −1, then k− 1 ≥ 2 or k− 1 ≤ −2,
i.e., |k − 1| ≥ 2. As λk−1 is a constant, Y λ is semi-complete in B(0, 1)

iff Zλ =
Y λ

λk−1
is semi-complete in the same ball.

We only need to verify the existence of an one-to-one embedded curve
c : [0, 1]→ B(0, 1) \ {0} such that∫

c

dx

xkf(λx)
= 0

to contradict the hypothesis.
Consider the curve c(t) = re2πit/(k−1), t ∈ [0, 1] and 0 < r < 1. Since
|k − 1| ≥ 2, this curve is an one-to-one embedded curve.

Let W ⊆ B(0, 1) be a simply connected neighbourhood of c(1) con-
taining neither the origin nor c(0). We choose, for example, W =

B(c(1), δ) ⊆ B(0, 1), where 0 < δ <
|c(1)− 0|

2
and 0 < δ < |c(1)−c(0)|.

Denote by

Iλ : W → C

p �→
∫

cp

dx

xkf(λx)

the application that associates to every point p ∈ W the integral of

the 1-form dT
Zλ

λk−1 through a curve cp joining c(1) to p, inside W . It is
obvious that the value of the integral does not depend on the choosen
curve.

As xkf(λx) = a0x
k + a1λxk+1 + a2λ

2xk+2 + . . . , we can write this
function as a0x

k + h(x, λ), where h(x, λ) is holomorphic in W and
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satisfies h(x, 0) = 0. By lemma 1 there exist real and positive numbers
θ and λ0 such that B(0, θ) ⊆ Iλ(W ), ∀λ : |λ| ≤ λ0.

As ∫
c

dx

xkf(λx)
=

∫
c

dx

a0xk + h(x, λ)

λ→0−→
∫

c

dx

a0xk
= 0

we can choose λ so small (in particular, λ smaller than λ0) such that∫
c

dx

xkf(λx)
= α

with |α| < θ. Let p ∈ W be such that∫
cp

dx

xkf(λx)
= −α

Obviously p �= c(0), because c(0) �∈ W . We can always choose cp in
such a manner that c does not intersect cp except when p = c(t) for
some t ∈ [0, 1]. In the first case the curve c̃ joining c(0) to p obtained
by concatenating c to cp is an one-to-one embedded curve such that∫

c̃

dx

xkf(λx)
= 0

If p = c(t), for some t ∈ [0, 1] we consider c̃ as the subset of c joining
c(0) to p.

Thus, the vector field X is not semi-complete relatively to any neigh-
bourhood of the origin.

Remark 3. The proof of the last proposition also implies that X is not
semi-complete in any sector with vertex at the origin and angle greater

than
2π

|k − 1| .

3. A necessary condition for the semi-completude of a
saddle-node in Cn

Consider the set of vector fields of saddle-node type defined in a
neighbourhood of the origin and with an isolated singularity there. We
are considering only vector fields whose linear part is diagonalizable. So
the vector field is analytically conjugated, by a linear transformation,
to another one where the linear part is diagonal. So, let

X = {X : (Cn, 0)→ (Cn, 0), holomorphic : DX(0) = diag(λ1, . . . , λn),
λ1 = 0, 0 �∈ H(λ2, . . . , λn), there are no resonance
relations between the non-vanishing eigenvalues}

Our objective is to classify the foliations associated to a semi-complete
vector field of saddle-node type in Cn. To do this classification we need
first to classify the foliations associated to semi-complete vector fields
in X. So, from now on we are going to consider vector fields in X.
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Proposition 5. [1] Let X ∈ X. Then X is analytically conjugated to
a vector field of the form



ẋ1 = xp+1
1 (a + u(x))

ẋ2 = λ2x2 + x1g2(x)
...

ẋn = λnxn + x1gn(x)

(1)

where a ∈ C \ {0} (a constant), x = (x1, . . . , xn) and u, g2, . . . ,gn are
holomorphic functions such that u(0) = g2(0) = . . . = gn(0) = 0.

Dividing the analytical normal form (1) by 1 + a−1u(x) and substi-
tuting x1 by bx1 where b is such that bpa = 1, we obtain that X is
analytically equivalent to

Yp :




ẋ1 = xp+1
1

ẋ2 = λ2x2 + x1a2(x)
...

ẋn = λnxn + x1an(x)

where ai are holomorphic functions such that ai(0) = 0, ∀i = 2, . . . , n.
This is the Dulac’s normal form for a saddle-node in Cn, under the
conditions described before [1].

Remark 4. Given a vector field X and denoting by F its foliation,
the holomorphic vector fields whose foliation coincides with F in a
neighbourhood of the origin are written as fX, where f is a non-
vanishing holomorphic function in that neighbourhood.

In this way, any holomorphic vector field in X, with an isolated
singularity at the origin, can always be written in the form fYp, for
some p and some holomorphic function f such that f(0) �= 0.

In the Cn case we have a result analogous to Theorem 1, which has
already been enunciated in the introduction:

Theorem 3. Let F be a foliation of a saddle-node, in a neighbourhood
of the origin, with an isolated singularity at the origin. Then F is
associated to a semi-complete vector field iff it admits the normal form



ẋ = x2
1

ẏ = x2(λ2 + α2x1)
...

ż = xn(λn + αnxn)

with (α2, . . . , αn) ∈ Zn−1.

Our objective is to prove Theorem 3. In this section we exibit a
necessary condition for a saddle-node to be semi-complete.
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Proposition 6. Let X be a semi-complete holomorphic vector field,
defined in a neighbourhood U of the origin, of the type fYp for some
holomorphic function f such that f(0) �= 0. Then p = 1.

Proof. Suppose that p ≥ 2.
Let Π1 be the projection of U on the first axis (Π1(x) = x1) and F

be the foliation associated to the vector field fYp. There is a neigh-
bourhood of the origin in which the fibres of Π1 are transverse to the
leaves of the foliation F , except to the invariant manifold {x1 = 0}:

DΠ1(x).X(x) = f(x)xp+1
1

because f(0) �= 0, and, consequently, non zero in a sufficiently small
neighbourhood of the origin.

Fix a disc B(0, ε) ⊆ Cn centered at 0 ∈ Cn with radius ε > 0 in
which X is semi-complete.

Remark 5. If X is semi-complete relatively to an open set U , then X is
semi-complete relatively to any relatively compact open set contained
in U ([8]). So, there is always ε > 0 such that U is semi-complete
relatively to B(0, ε) (it is enough to take ε as small as we want). In
reality it is semi-complete relatively to any open subset of U .

The proof for f ≡ k (k ∈ C) is very simple: consider the curve
c(t) = (re2πit/p, 0, . . . , 0) ⊆ B(0, ε), t ∈ [0, 1]. As p ≥ 2, c is an one-to-
one embedded curve.

As Π1(c(t)) �= 0, ∀t ∈ [0, 1], for each (r, x0
2, . . . , x0

n) sufficiently close
to 0 ∈ Cn, we can lift the curve c to a curve cL contained in L∩B(0, ε)
through (r, x0

2, . . . , x0
n).

We are assuming f ≡ k, so∫
cL

dTL =

∫
c

dx1

kxp+1
1

= 0

where dTL is the differential 1-form described before (i.e., such that
dTL(X) = 1). As c is an one-to-one embedded curve, so is cL. This
contradicts the fact that X is semi-complete.

We are going to treat now the case f �≡ const. In this case, we obtain
the differential 1-form

dTX
L =

dx1

xp+1
1 f(x)

with f(0) �= 0.
Consider S ⊆ C, an angular sector with vertex at the origin and

angle greater than 2π
p

and less than 2π. As, in a neighbourhood of the

origin, Π1 is transverse to the leaves, except to those contained in the
invariant manifold {x1 = 0}, for each leaf L in S \ {0} × (Cn−1, 0), we
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can write 


x2 = xL
2 (x)

...

xn = xL
n(x)

univocaly.
Let cL be an one-to-one embedded curve in L. We have that∫

cL

dTL =

∫
cL

dx1

xp+1
1 f(x)

=

∫
Π1(cL)

dx1

xp+1
1 f(x1, xL

2 (x1), . . . , xL
n(x1))

As cL is an one-to-one embedded curve, so is Π1(cL) (because we are in
a sector where xi is a function of x1 for all i = 2, . . . , n). So we reduced
the study of the semi-completude of a vector field in S × (Cn−1, 0) to
the study of the semi-completude of a vector field in S.

Remark that if fYp is not semi-complete in any neighbourhood of
the origin of the type (S × (Cn−1, 0)) ∩B(0, ε), then it canot be semi-
complete in any neighbourhood B(0, ε) of the origin (remark 5).

We know, by remark 3 and also from [8], that any holomorphic uni-
dimensional vector field of order k, k ≥ 3, (i.e., a vector field ẋ = f(x)
such that jlf = 0, ∀0 ≤ l < k and jkf �= 0) is not semi-complete

relatively to any sector of amplitude greater than
2π

k − 1
.

As f(0) �= 0, the vector field

X : ẋ1 = xp+1
1 f(x1, x

L
2 (x1), . . . , xL

n(x1))

has order equal to p + 1. As the sector S has amplitude greater than
2π

p
, X is not semi-complete relatively to any neighbourhood of the

origin of the type S∩B(0, ε). Thus fYp is not semi-complete relatively
to any neighbourhood of the origin.

We are going to study now the case p = 1.
Suppose p = 1. To simplify the study of the semi-complete vector

fields in X we can observe that:

Proposition 7. A vector field X of type Y1 is analytically equivalent
to the vector field

Y :




ẋ1 = x2
1

ẋ2 = x2 + x1f2(x)

ẋ3 = γ3x3 + x1f3(x)
...

ẋn = γnxn + x1fn(x)
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where γi =
λi

λ2

, i = 2, . . . , n and the coefficients of x1xi on the ith

equation of X and Y are equal.

Proof. Consider the vector field


ẋ1 = x2
1

ẋ2 = λ2x2 + α2x1x2 + x1h2(x)
...

ẋn = λnxn + αnx1xn + x1hn(x)

where
∂hi

∂xi

|0 = 0, ∀i = 2, . . . , n.

Dividing by λ2 we obtain




ẋ1 = 1
λ2

x2
1

ẋ2 = x2 + α2

λ2
x1x2 + 1

λ2
x1h2(x)

...

ẋn = λn

λ2
xn + αn

λ2
x1xn + 1

λ2
x1hn(x)

Substituting λ2x̃1 for x1 we have

˙̃x1 =
1

λ2

ẋ1 =
1

λ2
2

x2
1 =

1

λ2
2

λ2
2x̃1

2 = x̃1
2

So, we obtain




˙̃x1 = x̃1
2

ẋ2 = x2 + α2x̃1x2 + x̃1h̃2(x̃1, x2, . . . , xn)
...

ẋn = γnxn + αnx̃1xn + x̃1h̃n(x̃1, x2, . . . , xn)

where it is obvious that
∂h̃i

∂xi

|0 = 0, ∀i = 2, . . . , n.

Remark 6. From now on, when we refer to an element of type Y1 we
mean an element of type Y1 such that the eigenvalues are 0, 1 and γi

without resonances between the non-vanishing eigenvalues and in the
Poincaré domain. For example, in the C3 case we are speaking about
an element of type Y1 such that the eigenvalues are 0, 1 and γ �∈ R−0 ∪N.
From the proof of the last proposition and proposition 3 we can easily
conclude that X is semi-complete iff its equivalent element of the last
proposition is semi-complete.
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Notation 1. We denote by Y1,α a vector field of the type

Y1,α :




ẋ1 = x2
1

ẋ2 = x2(1 + α2x1) + x1h2(x)
...

ẋn = xn(γn + αnx1) + x1hn(x)

where α = (α2, . . . , αn) and hi are holomorphic functions such that
∂hi

∂xi

|0 = 0, ∀i = 2, . . . , n.

In [1], it is proved that a formal change of coordinates of the form

H(x) = (x1, x2 +
∞∑

k=1

f2k(x̄)xk
1, . . . , xn +

∞∑
k=1

fnk(x̄)xk
1)(2)

with x̄ = (x2, . . . , xn) and fik holomorphic in a neighbourhood of 0 ∈
C

n−1 such that fi1(0) = 0 for all i ∈ {2, . . . , n}, conjugates Y1,α with

Zα :




ẋ1 = x2
1

ẋ2 = x2(1 + α2x1)
...

ẋn = xn(γn + αnx1)

Let Ĝ0 = {H(x) = (x1, x2+
∑∞

k=1 f2k(x̄)xk
1, . . . , xn+

∑∞
k=1 fnk(x̄)xk

1) :
x̄ = (x2, . . . , xn), fik are holomorphic in a neighbourhood of the origin,
fi1(0) = 0,∀i ∈ {2, . . . , n}}

It is also implicit in the proof that αi is exactly the coefficient of x1xi

on the ith equation of Y1,α.
The vector fields Y1,α and Zα are not necessary analytically conju-

gated. However there are sectors U ⊆ C with radius r, of angle less
than 2π and with vertex at 0 ∈ C, such that Y1,α and Zα are analytically
conjugated in U × (Cn−1, 0). This is the Theorem of Malmquist.

Theorem of Malmquist. [4, 1] Let Ĥ be the unique formal tansfor-
mation of type (2) that conjugates Y1,α and Zα. Then there exists a
holomorphic transformation H defined in U × (Cn−1, 0), U a sector as
described before, such that

a) dH(Y1,α) = Zα(H), in U × (Cn−1, 0)

b) H→̃Ĥ in U , as x1 → 0

The vector fields are analytically conjugated if and only if Hi = Hj

in Ui ∩ Uj, ∀i �= j. Each holomorphic transformation Hi is called a
normalizing application.

Let f be a holomorphic function in U × T , where U ⊆ C is a sector
with vertex at the origin and T is a (compact) subset of Cn−1.
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Definition 3 ([2, 7]). We say that the function f is assymptotic to

f̂(x) =
∑∞

r=0 ar(x̄)xr
1, ar(x̄) holomorphic in T , as x1 → 0 and x1 ∈ U

if

∀x̄ ∈ T, m ∈ N,∃Am(x̄) > 0 : |f(x)−
m−1∑
r=0

ar(x̄)xr
1| ≤ Am(x̄)xm

1(3)

In this case we write f→̃f̂ in U , as x1 → 0.

Remark 7. Equation 3 is equivalent to

f(x) =
m∑

r=0

ar(x̄)xr
1 + xm

1 εm(x) , lim
x1→0
x1∈U

εm(x) = 0

On the other hand, given a sector U ⊆ C with vertex at the origin
and an open subset T ⊆ Cn−1, if f̂(x) =

∑∞
r=0 ar(x̄)xr

1 ∈ C{x̄}[[x1]]

there exists a holomorphic function f in U × T such that f→̃f̂ in U ,
as x1 → 0.

Before we describe the sectors U where the Theorem of Malmquist
is valid we are going to present some definitions and results that will
be necessary to describe those sectors.

4. Study of the Sectorial Isotropy of the formal normal
form

The solutions of the formal normal form

Zα :




ẋ1 = x2
1

ẋ2 = x2(1 + α2x1)
...

ẋn = xn(γn + αnx1)

out of {0} × (Cn−1, 0) are parametrized by


x2(x1) = c2x
α2
1 e−

1
x

...

xn(x1) = cnx
αn
1 e−

γn
x

with (c2, . . . , cn) ∈ Cn−1.
Our objective in this subsection is to relate the solutions of Zα with

the solutions of Y1,α, by sectors.
Denote by ϕi the argument of the eigenvalue γi ( in particular γ2 = 1

and so ϕ2 = 0), for i = 2, . . . , n.
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The behaviour of xj(x1) along the curve x1 = reiθ as r → 0, for a

fixed θ, is given by the term
|γj|
r

cos(ϕj − θ):


x2(re
iθ) = c2r

α2eiθα2e−
1
r
(cos(−θ)+i sin(−θ))

...

xn(reiθ) = cnr
αneiθαne−

|γn|
r

(cos(ϕn−θ)+i sin(ϕn−θ))

The sector such that (x2(x1), . . . , xn(x1)) → (0, . . . , 0) as r → 0 is
called attractor. This sector corresponds exactly to the points such that
cos(ϕj−θ) > 0, ∀j = 2, . . . , n. The sector where cos(ϕj−θ) < 0, ∀j =
2, . . . , n, is called saddle (in this case |xi(x1)| → ∞, ∀j = 2, . . . , n).

Contrary to the case of the saddle-node in C2, if γi

γj
�∈ R, i.e, if

ϕi �= ϕj for some i �= j we have sectors that are neither atractors nor
saddles. They are called mixed. The mixed sectors are those where
cos(ϕi − θ) cos(ϕj − θ) < 0, for some i �= j.

The directions for which there exists j such that cos(ϕj − θ) = 0 are

called singular directions of the solution. Those are given by θ = ϕi±
π

2
,

j = 2, . . . , n. In particular, as in our case ϕ2 = 0, θ = ±π
2

are always
singular directions of the solution.

Remark 8. For simplicity in the notation we sometimes say that θ ∈ U
in the sense that x = reiθ ∈ U .

The study of the Sectorial Isotropy of the formal normal form, for
any dimension, is done in [1] and will be important to prove Theorem
3 (there, all the theory is presented for vector fields whose linear part
is diagonal; thats why we are going to consider only vector fields with
a diagonal linear part). We will present the most important ideas and
results.

4.1. The sectors where the Theorem of Malmquist is valid.
Let U be a sector as described before. Denote by ΛZα(U) the group of
holomorphic transformations H : U × (Cn−1, 0) → U × (Cn−1, 0) such
that:

a) dH(Zα) = Zα(H)
b) H is assymptotic to the identity of {0}×Cn−1, as x1 → 0, x1 ∈ U

Remark 9. ΛZα(U) is a presheaf. We denote by ΛZα the sheaf associ-
ated to the presheaf.

An element H of ΛZα(U) is of the form ([1])

H(x) = (x1, x2 + a20(x1)+
∑
|Q|≥1

a2Q(x1)x̄
Q, . . . ,

xn + an0(x1) +
∑
|Q|≥1

anQ(x1)x̄
Q)

(4)
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where Q = (q2, . . . , qn), |Q| = q2 + . . . + qn and x̄Q = xq2

2 . . . xqn
n .

From a) it follows that ([1])

ajQ(x1) = ajQx
−((Q,α)−αj)
1 e

(Q,γ)−γj
x1(5)

where γ = (γ2, . . . , γn).
Condition b) says that H→̃Id|{0}×Cn−1 for x1 → 0, x1 ∈ U . This

is equivalent to ajQ(x1)→̃0, for x1 ∈ U , x1 → 0, ∀j ∈ {2, . . . , n},
∀Q ∈ Nn−1

0 .
Denote by ϕjQ the argument of the complex number (Q, γ)−γj. The

behaviour of ajQ(x1) along x1 = reiθ, as r → 0, is given by cos(ϕjQ−θ),
(5).

The directions θ for which cos(ϕjQ − θ) = 0 for some j and Q, are
called singular directions of the sheaf ΛZα . In our particular case the
singular directions of the sheaf are given by θ±jQ = ϕjQ± π

2
, i = 2, . . . , n.

We should remark that if ϕ2 = . . . = ϕn then the number of singular
directions of the sheaf are finite. More specifically, they coincide with
the singular directions of the solutions.

Remark 10. The singular directions of the solution are always singular
directions of the sheaf. They correspond to Q = 0 ∈ Cn−1.

To study the behaviour of the arguments of (Q, γ) − γj, Q ∈ Nn−1
0 ,

we represent all these points in the complex plane (figure 1).
Although all results are true in Cn, ∀n, in this section all figures

are represented for the C3 case. In figure 1 we are assuming that
γ(= γ3) �∈ R. At the end of the section we analyse the case γ ∈ R+ \N.

1

γ

1

γ

−γ
−1

Figure 1. In the left the set {q2 + q3γ : (q2, q3) ∈ N0 ×
N0}. In the right the set {q2 + q3γ − 1 : (q2, q3) ∈ N0 ×
N0} ∪ {q2 + q3γ − γ : (q2, q3) ∈ N0 × N0}.

As the singular directions of the sheaf are given by θ±jQ = ϕjQ ±
π
2
, we can easily observe that the singular directions of the sheaf are

dense in the mixed sectors, while they are discrete in the attractor and
saddle sectors. The singular directions of the solution are points of
accumulation (figures 1, 2).
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Attractor sector

Saddle sector

Mixed sector

Mixed sector

Figure 2. Singular directions of the sheaf ΛZα . Singular
directions are dense in the mixed sectors

We can describe now the sectors U where the Theorem of Malmquist
is valid. Let us consider a direction ϕ0 in the attractor sector that is not
a singular direction of the sheaf ΛZα : the sectors where the Theorem
of Malmquist is valid are the sectors obtained by extending the sectors
between the angles ϕ0 and ϕ0 ± π till reach a singular direction of the
sheaf ΛZα (figure 3). Remark that those sectors have amplitude greater
than π.

Denote each one of this sectors by U1 and U2. They are well defined
because, as we said before, the singular directions of the sheaf are
discret in the attractor and in the saddle sectors.

ϕ

ϕ

U

U

U

U

1

2

0
+

−

0
+−π

Figure 3. How to construct sectors where the Theorem
of Malmquist is valid

By the definition of U1 and U2 we have that U1 ∩ U2 is the union
of two open sets U+ and U−, cointained in the attractor sector and in
the saddle sector, respectively (and so U+ ∩ U− = ∅) (figure 3). The
saddle sector and the attractor sector are antipodes (this means that
S = A + π = {eπia : a ∈ A}, where S and A represent, respectively,
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the saddle and the attractor sectors of the solution) and so are U+ and
U−.

4.2. The importance of the pre-sheaves ΛZα(U+) and ΛZα(U−).

As we have already said, there exists only one element Ĥ ∈ C{x̄}[[x1]]
of type (2) conjugating Y1,α and Zα.

Proposition 8. [1] Let U1 and U2 be the sectors where the Theorem
of Malmquist is valid. Let H1 and H2 be the normalizing applications
defined in U1 and U2, respectively, i.e., Hi, i = 1, 2, are holomorphic
applications defined in Ui × (Cn−1, 0) and such that

a) dHi(X) = Zα(Hi)

b) Hi→̃Ĥ in Ui × (Cn−1, 0)

Then, Hj ◦H−1
i , i �= j belongs to ΛZα(U+) and ΛZα(U−).

Proof. We know that U1 ∩ U2 = U+ ∪ U−, where U+ and U− are open
sets contained in the attractor and saddle sectors, respectively.

The change of coordinates in U+ and U−, given by Hj ◦H−1
i , i �= j,

verifies

Hj ◦H−1
i →̃Ĥ ◦ Ĥ−1 = Id

and

d(Hj ◦H−1
i )(Zα)(Hj ◦H−1

i )−1

=dHj ◦ dH−1
i (Zα)Hi ◦H−1

j

=dHj(X)H−1
j

=Zα

Thus the result follows.

Remark 11. The holomorphic functions H2 ◦H−1
1 and H1 ◦H−1

2 define
the gluing of the leaves. As H1 ◦H−1

2 is the inverse of H2 ◦H−1
1 , it is

enought to analyse the behaviour of only one of them.

Let g+ = H2 ◦H−1
1 |U+ and g− = H2 ◦H−1

1 |U− . The functions g+ and
g− are both the identity iff H2 ◦H−1

1 is the identity in U+ and in U−.
This means that H1 = H2 in U1 ∩ U2 and so, there is a holomorphic
function defined in U1 ∪ U2 that coincide with H1 in U1 and with H2

in U2.
So, the vector field Y1,α is analytically conjugated to its formal nor-

mal form Zα iff g+ and g− are both the identity function.
We know that H2 ◦H−1

1 has the form (4).

H(x) = (x1, x2 + a20(x1)+
∑
|Q|≥1

a2Q(x1)x̄
Q, . . . ,

xn + an0(x1) +
∑
|Q|≥1

anQ(x1)x̄
Q)
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where

ajQ(x1) = ajQx
−((Q,α)−αj)
1 e

(Q,γ)−γj
x1

As we said before, the behaviour of ajQ(x1) along x1 = reiθ, as
r → 0, is given by cos(ϕjQ − θ). So, if U and V are two open sectors
contained in a sector not containing singular directions of the sheaf
then ΛZα(U) = ΛZα(V ) because cos(ϕjQ − θ) has the same sign for all
j = 2, . . . , n, Q ∈ Zn−1, |Q| ≥ 2 and θ ∈ U ∪ V .

4.3. Gluing of the leaves. To know how the gluing of the leaves is
done, is important to know the behaviour of the applications (4) in
ΛZα(U+) and ΛZα(U−).

Proposition 9. If ajQ �= 0 in U then cos(ϕjQ − θ) < 0, ∀θ : reiθ ∈ U .

Proof. We must have ajQ(x1)−̃→0 as x1 → 0. Studing x1 = reiθ, for θ
fixed and r → 0, the behaviour of ajQ(x1) is given by the real part of
(Q, γ)− γj

x1

:

Re(
(Q, γ)− γj

x1

) =
|(Q, γ)− γj|

r
cos(ϕjQ − θ)

Suppose that ajQ �= 0. If

∃θ ∈ U : cos(ϕjQ − θ) > 0⇒ |(Q, γ)− γj|
r

cos(ϕjQ − θ)
r→0−→ +∞

⇒ ajQ(x) ˜�−→0

Proposition 10. [1] There exists duality between ΛZα(U) and ΛZα(U+
π),where U + π = {eπiu : u ∈ U}, in the following sense: if ajQ �= 0 in
U then ajQ = 0 in U + π.

Remark 12. In particular there exists duality between ΛZα(U+) and
ΛZα(U−).

Proof. By proposition 9, if ajQ �= 0 in U then cos(ϕjQ−θ) < 0, ∀θ ∈ U .

cos(ϕjQ − θ) < 0,∀θ ∈ U ⇒ cos(ϕjQ − (θ + π)) > 0,∀θ ∈ U
⇒ cos(ϕjQ − η) > 0,∀η ∈ U + π (η = θ + π)

⇒ |(Q, γ)− γj|
r

cos(ϕjQ − η)
r→0−→ +∞

⇒ ajQ(eπix)→̃0⇔ ajQ = 0 in U + π

Thus ajQ = 0 in U + π.

We only have to know the behaviour of the applications in ΛZα(U+)
and ΛZα(U−), because g+ ∈ ΛZα(U+) and g− ∈ ΛZα(U−). By the
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duality property we only need to know the constants that can be non
zero in ΛZα(U+), i.e., we need to know for which (j, Q)

cos(ϕjQ − θ) < 0 , ∀θ : reiθ ∈ U+ (r ∈ R+)

The next result expresses how the gluing of the leaves is done.

Proposition 11. [1] Take an element of the sheaf ΛZα.

H(x) = (x1, x2 + a20(x1)+
∑
|Q|≥1

a2Q(x1)x̄
Q, . . . ,

xn + an0(x1) +
∑
|Q|≥1

anQ(x1)x̄
Q)

with ajQ(x1) given by (5). Thus H transforms the solution, of the
diferential equation associated to the formal normal form, given by


x2(x1) = c2x

α2
1 e
− 1

x1

...

xn(x1) = cnx
αn
1 e
− γn

x1

into the solution, of the same equation, given by


x2(x1) = (c2 + a20 +
∑
|Q|≥1 a2QcQ)xα2

1 e
− 1

x1

...

xn(x1) = (cn + an0 +
∑
|Q|≥1 anQcQ)xαn

1 e
− γn

x1

where cQ = cq2

2 . . . cqn
n .

Proof. Consider the solution




x2(x1) = c2x
α2
1 e
− 1

x1

...

xn(x1) = cnx
αn
1 e
− γn

x1

Thus

H(x1, x2(x1), . . . , xn(x1))

= (x1,c2x
α2
1 e
− 1

x1 + a20(x1) +
∑
|Q|≥1

a2Q(x1)x̄(x1)
Q, . . . ,

cnx
αn
1 e
− γn

x1 + an0(x1) +
∑
|Q|≥1

anQ(x1)x̄(x1)
Q)
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where x̄(x1)
Q = x2(x1)

q2 . . . xn(x1)
qn = cQx

(Q,α)
1 e

− (Q,γ)
x1 . Thus substi-

tuting the expression of ajQ(x1) in the last expression we obtain

= (x1,c2x
α2
1 e
− 1

x1 + a20x
α2
1 e
− 1

x1 +∑
|Q|≥1

a2Qx
−((Q,α)−α2)
1 e

(Q,γ)−γ2
x1 cQx

(Q,α)
1 e

− (Q,γ)
x1 , . . . , cnx

α2
1 e
− γn

x1 +

an0x
αn
1 e
− γn

x1 +
∑
|Q|≥1

anQx
−((Q,α)−αn)
1 e

(Q,γ)−γn
x1 cQx

(Q,α)
1 e

− (Q,γ)
x1 )

= (x1, (c2 + a20 +
∑
|Q|≥1

a2QcQ)xα2
1 e
− 1

x1 , . . . ,

(cn + an0 +
∑
|Q|≥1

anQcQ)xαn
1 e
− γn

x1 )

which represents the solution given by


x2(x1) = (c2 + a20 +
∑
|Q|≥1 a2QcQ)xα2

1 e
− 1

x1

...

xn(x1) = (cn + an0 +
∑
|Q|≥1 anQcQ)xαn

1 e
− γn

x1

In the sector U+, each c = (c2, . . . , cn) ∈ (Cn−1, 0) determines a leaf
of the foliation of the formal normal form in Zα|U+×(Cn−1,0), i.e., c works
like a parametrization of the leaves of Zα|U+×(Cn−1,0). So, as U+ is a
sector that does not contain singular directions of the sheaf we can
identify ΛZα(U+):

{x �→ (x1, x2 + a20(x1) +
∑
|Q|≥1

a2Q(x1)x̄
Q, ..., xn + an0(x1) +

∑
|Q|≥1

anQ(x1)x̄
Q)}

with the set of the transformations, in the space of the leaves, given by

{c �→ (c2 + a20 +
∑
|Q|≥1

a2QcQ, . . . , cn + an0 +
∑
|Q|≥1

anQcQ)}

and also denoted by ΛZα(U+).
More specificaly, the presheaf ΛZα(U+) expresses that the leaf of

Zα|U+×(Cn−1,0) parametrized by (c2, . . . , cn) is taken into the leaf parame-
trized by (c2 + a20 +

∑
|Q|≥1 a2QcQ, . . . , cn + an0 +

∑
|Q|≥1 anQcQ). The

same happens to the presheaf ΛZα(U−).
We should remark that the elements ΛZα(U−) are all tangent to the

identity, i.e, the terms ai0 are equal to 0 in U− for all i = 2, . . . , n.
This is so by the definition of the saddle sector: cos(ϕj − θ) < 0 for all
θ ∈ S; as ϕj0 = arg(−γj) = arg(γj) + π = ϕj + π then cos(ϕj0− θ) > 0
for all θ ∈ S and so aj0 = 0 in S from proposition 9.
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4.4. Determination of ΛZα(U+) for a given sector U+. In this
subsection we are going to present how to determine ΛZα(U+) for a
given sector U+.

We will explain here only the C3 case. In this case we can determine
explicitly ΛZα(U) for any sector U .

The Cn case, with n ≥ 4, will be explained only in the next section.

4.4.1. The γ �∈ R case. We are going to explain the case 0 < arg(γ) ≤
π
2

(γ = γ3). The other cases are similar, as we will see later, geomet-
rically (there exist differences only in the inequalities and in the signs
of π

2
).

The first step is to choose the sectors U1 and U2 or, equivalently, the
sectors U− and U+ we are going to work on.

Here, there is a difference between the case γ �∈ R and the case
γ ∈ R+ \ N, as we will see later.

The attractor and saddle sectors increase as ϕ3 (ϕ3 = argument of
λ3

λ2
) decreases.
We represent again the complex numbers q2+q3γ−1 and q2+q3γ−γ

in the complex plane (figure 4).

ϕ302 ϕ303 ϕ304 ϕ305ϕ301ϕ300

ϕ200

ϕ201

ϕ202

ϕ203

ϕ204

ϕ240 ϕ331=

ϕ242 ϕ333=

Figure 4. The set {j +kγ−1 : (j, k) ∈ N0×N0}∪{j +
kγ − γ : (j, k) ∈ N0 × N0}. The term ϕijk denotes the
argument of the corresponding point j + kγ − q, where
q = 1 if i = 2 and q = γ if i = 3.

Note that

ϕ201 −
π

2
= ϕ310 +

π

2
or equivalently θ−201 = θ+

310(6)

because

ϕ201 = arg(γ − 1) = arg(−(1− γ)) = arg(1− γ) + π = ϕ310 + π
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We also have that

arg(γ)− π

2
< ϕ20(j+1) −

π

2
<ϕ20j −

π

2
< ϕ201 −

π

2
= θ−201

= θ+
310 = ϕ310 +

π

2
< ϕ3j0 +

π

2
< ϕ3(j+1)0 +

π

2
<

π

2
, ∀j ≥ 2

(7)

Figure 5 expresses these inequalities geometrically

θ    =θ

θ
θ

θ
θ

θ 

203

202

201 310

310
320

−

−

− +

+
+

ijk

Figure 5. Singular directions of ΛZα

The value of a201 can be non zero, in the attractor sector, for all θ
such that

arg(γ)− π

2
< θ < θ−201 = ϕ201 −

π

2

because cos(ϕ201 − θ) < 0, or equivalently, because |ϕ201 − θ| > π
2

for
those values of θ. It is very easy to see this because θ−201 = ϕ201 − π

2
(figures 4, 5).

As θ−20k = ϕ20k − π
2
, a20k, for k ≥ 2, is non zero, in the attractor

sector, only for θ such that

arg(γ)− π

2
< θ < θ−20k

Denote by U+ the sector, with vertex at the origin and radius r,
whose elements have arguments between θ−202 and θ−201. In U+, a20k = 0,
∀k ≥ 2.

By (6) and (7) it is easy to see that

cos(ϕ3j0 − θ) > 0 , ∀θ : reiθ ∈ U+

So, a3j0 = 0 in U+.
Consider now (j, k) with j �= 0 and k �= 0. For each (j, k) we need to

determine the points in U+ whose argument θ satisfy cos(ϕijk−θ) < 0.
Geometrically it is easy to verify that

jk �= 0 ⇒ cos(ϕijk − θ) > 0
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Attractor sector

0

0+π/2
λ

λ −π/2

3

3

1

γ

Figure 6

i.e., aijk = 0 if j �= 0 and k �= 0 (figure 6).
Remark that K = {j + kγ − 1 : jk �= 0} ∪ {j + kγ − γ : jk �= 0}

is contained in the angular sector defined by the points 1 and γ and
with vertex at 0. The arguments of the extrema of K are 0 and ϕ3.
We are assuming 0 < ϕ3 < π

2
, then the arguments of the extrema of

the attractor sector are ϕ3 − π
2

and π
2
. So |ϕijk − θ| ≤ π

2
for all (j, k)

with jk �= 0 and θ ∈ [ϕ3 − π
2
, π

2
] ⊇ U+. Furthermore, |ϕijk − θ| can

only assume the value π
2

when θ coincides with the singular directions
of the solution: ϕ− π

2
and π

2
.

As

cos(ϕijk − θ) > 0 ⇔ |ϕijk − θ| < π

2

a2jk and a3jk are zero in any sector contained in the attractor sector,
for all (j, k) with jk �= 0. In particular they are zero in U+. The same
argument is valid for the cases π

2
< ϕ3 < π, −π < ϕ3 < −π

2
and

π
2

< ϕ3 < 0, as figure 9 ilustrates.
In this way we conclude that

ΛZα(U+) = {(x, y, z) �→ (x, y + a200 + a201z, z + a300}.
Contrary to the C2 case, there is no sector U , contained in the at-

tractor sector , limited by singular directions of the sheaf and with no
singular direction of the sheaf in its interior, such that the elements of
ΛZα(U) are constitued only by the sum of the identity with a transla-
tion.

Defined U+ we have that U− = U+ + π and so the sectors U1 and U2

are well defined up to a change between them (figure 7).
We have already said that there is duality between ΛZα(U+) and

ΛZα(U−). So

ΛZα(U−) = {(x, y, z) �→ (x, y +
∑

j+k≥1
(j,k) =(1,0)
(j,k) =(0,1)

a2jky
jzk, z +

∑
j+k≥1

(j,k) =(0,1)

a3jky
jzk}
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U

U

U

U

1

2

_

+

θ202
−

θ201
−

θ201
+

θ202
+

Figure 7. The sectors U1, U2, U− and U+

The constructions made before are valid in the other cases: π <
arg(γ) < π

2
, −π

2
< arg(γ) < 0 and −π < arg(γ) < −π

2
, because

ϕ201 = ϕ310 + π in all cases (figures 8 and 9).

4.4.2. The γ ∈ R+ \ N case. Suppose now that γ ∈ R+ \ N. Then
ϕ2 = ϕ3 = 0 and, consequently, the singular directions of the solution
are given by θ = ±π

2
.

The argument of the complex numbers j + kγ − 1 and j + kγ − γ
are equal to zero or π. So, the singular directions of the sheaf coincide
with the singular directions of the solution: θ = ±π

2
.

In this way the attractor sector is given by {x : |x| < r ∧ �(x) > 0}
and the saddle sector is given by {x : |x| < r ∧ �(x) < 0}. We can
choose

U1 = B(0, r) \ {x : �(x) = 0 ∧ �(x) > 0}

and

U2 = B(0, r) \ {x : �(x) = 0 ∧ �(x) < 0}

Then, U+ can be the attractor sector and U− the saddle sector.
We represent the points j + kγ − 1 and j + kγ − γ in figure 10. We

have to distinguish between the cases γ > 1 and 0 < γ < 1. If γ > 1
let l ∈ N be such that l < γ < l +1, and if 0 < γ < 1 let p ∈ N be such
that pγ < 1 < (p + 1)γ.

The coeficients aijk of ΛZα(U+) can be non zero if and only if ϕijk is
equal to π.

So, if γ > 1 we have

ΛZα(U+) = {(c, d) �→ (c + a200, d + a300 +
l∑

j=1

a3j0c
j)}
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Figure 8

and

ΛZα(U−) = {(c, d) �→ (c +
∑

j+k≥1

a2jkc
jdk, d +

∑
j+k≥1

(j,k) =(0,1)
(j,k) =(1,0),... ,(l,0)

a3jkc
jdk)}

If 0 < γ < 1 the presheaves are given by

ΛZα(U+) = {(c, d) �→ (c + a200 +

p∑
j=1

a20jd
j, d + a300)}

and

ΛZα(U−) = {(c, d) �→ (c +
∑

j+k≥1
(j,k) =(1,0)

(j,k) =(0,1),... ,(0,p)

a2jkc
jdk, d +

∑
j+k≥1

a3jkc
jdk)}
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1 γl l+1
0

-1−γ 1−γ 2−γ 3−γ 2 3

l−γ l+1−γ

γ−1

1γ kγ

0

-1 −γγ−1 2γ−1 3γ−1 2γ 3γ

pγ−1

1−γ (k+1)γ

(p+1)γ−1

Figure 10. The complex numbers j + kγ − 1 and j +
kγ − γ, for (j, k) ∈ N0 × N0.

5. Semi-complete saddle-node foliations in Cn

We return now to the study of the semi-complete saddle-node folia-
tions.

We are going to treat first the case f ≡ k ∈ C. By proposition 3 it
is sufficient to study the case f = 1.
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We can easily verify that the xi-axis (that corresponds to the mani-
fold {xj = 0, j �= i}) is an invariant manifold of the vector field for all
i = 2, . . . , n. We do not know if the x1-axis is an invariant manifold,
nor if there is a holomorphic invariant manifold tangent to the x1-axis.

However we have necessary and sufficient conditions for the existence
of that invariant manifold.

Proposition 12. A vector field belonging to the Ĝ0-orbit of Y1,α has
invariant central manifold if and only if the associated sheaf has no
translation, i.e, iff ai0...0 = 0 for all i = 2, . . . , n.

Proof. Suppose that ai0...0 = 0 for all i = 2, . . . , n.
Let L be the leaf containing H−1

1 (U1 \ {0} × {0, . . . , 0}), where H1

is the normalizing application.
Consider the curve c(t) = (re2πit, 0, . . . , 0) where r is such that

Π1(c(0)) = r ∈ U+ and let cL be its lift to L. As H1(L ∩ (U1 ×
(Cn−1, 0))) ⊆ {xi = 0, i = 2, . . . , n}, the leaf L is parametrized by
(0, . . . , 0).

As Π1(c(
1
2
)) ∈ U− and the application g− is tangent to the identity

(0, . . . , 0) is taken into (0, . . . , 0) by g−. The leaf L is also parametrized
by (0, . . . , 0) in U2; this means that H2(L ∩ (U2 × (Cn−1, 0))) ⊆ {xi =
0, i = 2, . . . , n}.

On the other hand, Π1(cL(1)) = Π1(cL(0)) belongs to U+. So g+

takes (0, . . . , 0) into (a20...0, . . . , an0...0). As, by hypothesis, ai0...0 = 0,
for all i = 2, . . . , n, we have that ΛY1,α(U+) and ΛY1,α(U−) restricted to
the leaf {xi = 0, i = 2, . . . , n} is given by

(x, 0, . . . , 0) �→ (x, 0, . . . , 0)

i.e., is the identity.
Thus, as {xi = 0, i = 2, . . . , n} is a holomorphic central manifold for

the formal normal form, the leaf L is a holomorphic central manifold
for Y1,α.

Suppose now that Y1,α has a holomorphic central invariant manifold.
Denote this leaf by L.

Consider the image of L by H1. The normalizing application H1 is
defined in U1 × (Cn−1, 0).

However the intersection of U1 with the saddle sector is not empty.
As in the formal normal form the only leaf in U1 × (Cn−1, 0) such that
xi(x1) → 0 as x1 → 0, for all i ∈ {2, . . . , n}, is the invariant manifold
{xi = 0, i = 2, . . . , n} we have that

H1(L ∩ (U1 × (Cn−1, 0))) = U1 × {xi = 0, i = 2, . . . , n}
In the same way we can deduce that

H2(L ∩ (U2 × (Cn−1, 0))) = U2 × {xi = 0, i = 2, . . . , n}
and so we can conclude that (a20...0, . . . , an0...0) = (0, . . . , 0).
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The next lemma enable us to guarantee that semi-completude implies
the existence of a holomorphic invariant manifold tangent to the x1-
axis.

Lemma 2. Let X be a field of type Y1,α and suppose that X is semi-
complete in a neighbourhood of its isolated singularity. Then there is
no translation in the sheaf, i.e., ai0...0 = 0, ∀i = 2, . . . , n.

Proof. We can write X as


ẋ1 = x2
1

ẋ2 = x2(1 + α2x1) + x1R2(x)
...

ẋn = xn(γn + αnx1) + x1Rn(x)

(8)

where
∂Ri

∂xi

|0 = 0 for all i = 2, . . . , n. Let F be the foliation associated

to (8).
We have that, in a neighbourhood of the origin, Π1 is transverse to

the leaves of F , except to those contained in the invariant manifold
{x1 = 0}.

Consider the curve c(t) = (re2πit, 0, . . . , 0),with t ∈ [0, 1] and r such
that r ∈ U+. Let L be the leaf containing H−1

1 (U1 \{0}×{(0, . . . , 0)}),
where H1 is the normalizing application, and cL be the lift of the curve
c to the leaf L.

Denoting by dTL the 1-form such that dTL(X) = 1 we have that∫
cL

dTL =

∫
c

dx1

x2
1

= 0

As the vector field is semi-complete we conclude that the curve cL is
closed.

As H−1
1 (U1 \ {0} × {(0, . . . , 0)}) ⊆ L, H1(L ∩ (U1 × (Cn−1, 0))) ⊆

U1 × (Cn−1, 0) is given by 


x2(x1) = 0
...

xn(x1) = 0

(9)

and so the leaf H1(L ∩ (U1 × (Cn−1, 0))) is parametrized by (0, . . . , 0)
(9).

As Π1(cL(0)) ∈ U+, and U− = U+ + π, Π1(cL(1
2
)) ∈ U−. The appli-

cation g− is tangent to the identity so, (0, . . . , 0) is transformed into
(0, . . . , 0), by g−. This means that H2(L ∩ (U2 × (Cn−1, 0))) ⊆ {xi =
0, i = 2, . . . , n}.

Then, by g+, (0, . . . , 0) is taken into (a20...0, . . . , an0...0). As cL is
closed there is no translation, i.e, (a20...0, an0...0) = (0, . . . , 0).
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In this result there is a great difference between the C2 and C3 cases.
In C2, g+ is the identity plus a translation. So, the semi-completude of
X implies that g+ is the identity. Here this is not possible. We do not
still know if the semi-completude of X implies that g+ is the identity:
for the set U+ choosen in the last section, lemma 2 allows only to say
that, if γ �∈ R, g+ is of type

(y, z) �→ (y + a201z, z).

Lemma 3. Let X be a semi-complete vector field as in lemma 2. Then
the holonomy relative to the invariant manifold tangent to the x1-axis
is the identity.

Proof. Consider the curve c(t) = (re2πit, 0, . . . , 0) such that r ∈ U−,
r sufficiently close to 0, and let c0 be the lift of c to the invariant
manifold tangent to the x1-axis (whose existence is guaranteed in the
last lemma).

Let Σ be the transversal section to the curve c0 at c0(0) given by
{c0(0) + (0, τ2, . . . , τn) : 0 ≤

∑n
i=2 |τi|2 < ε} and cL be the lift of c to

the leaf through the point c0(0) + (0, τ2, . . . , τn) ∈ Σ. Then∫
cL

dTL =

∫
c

dx1

x2
1

= 0

As X is semi-complete we conclude that cL is closed. But cL is closed for
all (τ2, . . . , τn) with norm less then ε. This means that the holonomy
is the identity.

The next proposition is valid for Cn, but is first represented for C3

because it is much easier.

Proposition 13. Let X be a vector field, in C3, of type Y1,α. Suppose
that X has a holomorphic invariant manifold tangent to the x1-axis and
the holonomy relative to that invariant manifold is the identity. Then
X is analytically conjugated to its formal normal form.

Proof. To prove that X is analytically conjugated to its formal normal
form we need to prove that g− and g+ are the identity or, equivalently,
that a2jk = a3jk = 0 for all (j, k) ∈ N0 × N0.

Denote (x1, x2, x3) by (x, y, z) and (α2, α3) by (α, β).
By hypothesis, X has an invariant manifold tangent to the x-axis

and the holonomy relative to this invariant manifold is the identity.
We are going to translate this in terms of the presheaves ΛZα,β

(U+)
and ΛZα,β

(U−).
We treat first the case γ(= γ3) �∈ R. In this case, by proposition 12,

we have that

ΛZα,β
(U+) : {(y, z) �→ (y + a201z, z)}
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and

ΛZα,β
(U−) : {(y, z) �→ (y +

∑
j+k≥1

(j,k) =(1,0)
(j,k) =(0,1)

a2jky
jzk, z +

∑
j+k≥1

(j,k) =(0,1)

a3jky
jzk)}

Consider the curve c(t) = (re2πit, 0, 0), t ∈ [0, 1], with r sufficiently
close to zero and such that r ∈ U−.

Let L be the invariant manifold tangent to the x-axis and cL the lift
of c to L. For each (τ, η) such that 0 ≤ |τ |2 + |η|2 < ε let Lτ,η be the
leaf through cL(0) + (0, τ, η) and cLτ,η the lift of c to Lτ,η.

The image of the leaf Lτ,η by H2 is given by{
y(x) = cxαe−

1
x

z(x) = dxβe−
γ
x

in U2 × C2 (where c = c(τ, η) and d = d(τ, η)), and so has coordinates
(c, d) ∈ C2. By proposition 12, c(0, 0) = 0 = d(0, 0). As Π1(c(0)) ∈ U−
then Π1(c(

1
2
)) ∈ U+. The change of the leaves in U+ is of the type

(c, d) �→ (c + a201d, d)

(as the translation is zero). So the image of Lτ,η by H1 corresponds to
the leaf of the formal normal form with coordinates (c + a201d, d), i.e.,
whose solution is given by{

y(x) = (c + a201d)xαe−
1
x

z(x) = dxβe−
γ
x

in U1 × C2.
As Π1(c(1)) = Π1(c(0)) ∈ U− and in U− the change of the leaves is

given by

(c, d) �→ (c +
∑

j+k≥1
(j,k) =(1,0)
(j,k) =(0,1)

a2jkc
jdk, d +

∑
j+k≥1

(j,k) =(0,1)

a3jkc
jdk)

the image by H2 of the leaf Lτ,η through cLτ,η(1) is the leaf with coor-
dinates

(c + a201d +
∑

j+k≥1
(j,k) =(1,0)
(j,k) =(0,1)

a2jk(c + a201d)jdk, d +
∑

j+k≥1
(j,k) =(0,1)

a3jk(c + a201d)jdk)

But the holonomy is the identity. This means that cL(0) = cL(1) and,
consequently,


c = c + a201d +

∑
j+k≥1

(j,k) =(1,0)
(j,k) =(0,1)

a2jk(c + a201d)jdk

d = d +
∑

j+k≥1
(j,k) =(0,1)

a3jk(c + a201d)jdk
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⇔




a201d +
∑

j+k≥1
(j,k) =(1,0)
(j,k) =(0,1)

a2jk(c + a201d)jdk = 0

∑
j+k≥1

(j,k) =(0,1)

a3jk(c + a201d)jdk = 0

∀(c, d) ∈ B(0, ε1), with ε1 sufficiently small (because c(0, 0) = 0 =
d(0, 0)).

A series is zero in a small ball centered at the origin iff the coeficients
of the powers of the variables are all zero. In the first equation, the
coefficient of the term d (d = c0d1) is a201, thus a201 = 0. In this way,
the system reduces to


∑

j+k≥1
(j,k) =(1,0)
(j,k) =(0,1)

a2jkc
jdk = 0

∑
j+k≥1

(j,k) =(0,1)

a3jkc
jdk = 0

Each equation of the system is a series in two variables. Those
series are independent, in the sense that coefficients of each series are
independent of the other. So, as the series are zero in a small ball
centered at the origin we conclude that a2jk = 0 and a3jk = 0, ∀(j, k) ∈
N0 × N0. So, in this case, g+ ≡ 0 and g− ≡ 0.

Suppose now that γ ∈ R+ \ N. We will only analize the case γ > 1.
The case 0 < γ < 1 is analogous.

If γ > 1 we know that, by g+

(c, d) �→ (c, d +
l∑

j=1

a3j0c
j)

When we return back to cL(1), by g−

(c, d +
l∑

j=1

a3j0c
j) �→ (c +

∑
j+k≥1

a2jkc
j(d +

l∑
p=1

a3p0c
p)k,

d +
l∑

p=1

a3p0c
p +

∑
j+k≥1

(j,k) =(0,1)
(j,k) =(1,0),... ,(l,0)

a3jkc
j(d +

l∑
p=1

a3p0c
p)k)

As the holonomy is the identity


∑
j+k≥1 a2jkc

j(d +
∑l

p=1 a3p0c
p)k = 0∑l

p=1 a3p0c
p +

∑
j+k≥1

(j,k) =(0,1)
(j,k) =(1,0),... ,(l,0)

a3jkc
j(d +

∑l
p=1 a3p0c

p)k = 0
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In the second equation the coeficient of c(= c1d0) is equal to a310.
Thus a310 = 0 and the equation is reduced to

l∑
p=2

a3p0c
p +

∑
j+k≥1

(j,k) =(0,1)
(j,k) =(1,0),... ,(l,0)

a3jkc
j(d +

l∑
p=2

a3p0c
p)k = 0

In the same way, because of the restrictions imposed on the second
sum, the coefficient of c2 is equal to a320. So a320 = 0. Proceeding
successively in the same manner, we can deduce that a3p0 = 0, ∀p =
1, . . . , l. Thus the system, is reduced to


∑

j+k≥1 a2jkc
jdk = 0∑

j+k≥1
(j,k) =(0,1)

(j,k) =(1,0),... ,(l,0)

a3jkc
jdk = 0

and, consequently, a2jk = a3jk = 0, ∀(j, k) ∈ N0 × N0, i.e., g+ ≡ 0 and
g− ≡ 0.

We are going to analyse now what happens in the Cn case, for n ≥ 4.
First of all I am going to explain, geometrically, how to determine

ΛZα(U+) for a given U+:
We represent the set of complex numbers {(Q, γ)−γi : i = 2, . . . , n,

Q ∈ Nn−1
0 }. We can assume that 0 = arg(γ2) ≤ . . . ≤ arg(γn) < π.

Denote by K the sector with vertex at the origin whose elements
have arguments between 0 = arg(γ2) and arg(γn).

Then we choose two straight lines, not contained in K, with argu-
ments equal to ϕjQ, for some j = 2, . . . , n and Q ∈ Nn−1

0 , and such
that the two sectors defined by those straight lines do not contain any
complex number of the type (Q, γ)− γi (figure 11).

Fix one of those sectors: U . Then, if U + π
2

is contained in the
attractor sector we take U+ = U + π

2
, otherwise we take U+ = U − π

2
.

The constants ajQ that can be non zero in ΛZα(U+) are those such
that (Q, γ)− γj is on the opposite side of U+ relativelly to the choosen
straight lines. If ϕjQ is over the boundary of U ∩ (U +π)∩{ half plane
defined by the bisectrix of U not containing U+} then ajQ can also be
non zero in U+. For example, if we look to figure 11, on the left case
ΛZα(U+) is given by

{(y, z) �→ (y + a200 + a201z, z + a300)}

while on the right one ΛZα(U+) is given by

{(y, z) �→ (y + a200 + a201z + a202z
2 + a203z

3, z + a300)}.
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Figure 11

In the general case we can write ΛZα(U+) as

{c �→ (c2 +

k2∑
j=1

a2Q2j
cQ2j , . . . , cn +

kn∑
j=1

anQnj
cQnj)}

where Qij, for j = 1, . . . , ki are all the (n − 1)-tuples in Nn−1
0 such

that (Qij, γ)− γi ∈ R where R is the sector { half plane defined by the
bisectrix of U not containing U+}.

This construction is valid for any dimension, except when 0 = arg(γ2)
= . . . = arg(γn). In this case we proceed as in the subsubsection 4.4.2:
the constants ajQ that can be non zero in ΛZα(U+) are those such that
arg((Q, γ)− γj) = π.

We first demonstrate a property of the elements ajQ.

Proposition 14. Suppose that (Q, γ)−γj ∈ R. Then (P, γ)−γj ∈ R,
∀P : pi ≤ qi.

Remark 13. As we are looking for complex numbers not in K, we
should remark that (Q, γ)− γj �∈ K implies that qj = 0.

Proof. We can easily prove this result geometrically. Suppose that
(Q, γ)− γj ∈ R.

(Q, γ)− γj = (P + (Q− P ), γ)− γj = (P, γ)− γj − (Q− P, γ)

Thus

(P, γ)− γj = (Q, γ)− γj − (Q− P, γ)

But (Q, γ) − γj ∈ R, by hypothesis, and Q − P ∈ Nn−1
0 because

pi ≤ qi. As to an element of R we are subtracting a linear positive



SEMI-COMPLETE VECTOR FIELDS OF SADDLE-NODE TYPE IN C
n 35

combination of the eigenvalues (i.e., an element of K), we still remain
in R (figure 12).

0 < arg(γ) < π/2 π/2 < arg(γ) < π 

Κ

R

Κ

R
ajQ

ajQ

Figure 12. The elements (P, γ) − γj belongs to the
lighter shaded region, ∀P : pi ≤ qi, ∀i = 2, . . . n.

Proposition 15. Let X be a vector field of type Y1,α. Suppose that X
has a holomorphic invariant manifold tangent to the x1-axis and the
holonomy relative to that invariant manifold is the identity. Then X
is analytically conjugated to its formal normal form.

Proof. The idea of the proof is to use induction over the degree of Q,
i.e., over |Q|.

More specifically by proposition 12 we know that ajQ = 0 for all
j = 2, . . . , n, with Q = 0. We will prove that if ∀Q : |Q| ≤ q we
have aiQ = 0, ∀i : aiQ ∈ ΛZα(U+), then ∀Q : |Q| = q + 1 we also have
aiQ = 0, ∀i : aiQ ∈ ΛZα(U+).

Abusing notation, we say that aiQ ∈ ΛZα(U+) if aiQ can be non zero
in U+, i.e., (Q, γ)− γi ∈ R.

Consider the curve c(t) = (re2πit, 0, . . . , 0), t ∈ [0, 1], with r suffi-
ciently close to zero and such that r ∈ U−.

For each τ = (τ2, . . . , τn) sufficiently close to 0 ∈ Cn−1, let Lτ be the
leaf through cL(0) + (0, τ) where cL is the lift of c to the invariant leaf
tangent to the x1-axis, L. Denote by cτ the lift of c to the leaf Lτ .

The image of the leaf Lτ by H2 has coordinates c = (c2, . . . , cn) ∈
C

n−1. In particular, by the proof of proposition 12, the leaf L = L0 is
parametrized by 0 ∈ Cn−1.

As Π1(cτ (0)) ∈ U− then Π1(cτ (
1
2
)) ∈ U+. The change of the leaves in

U+, g+, is polynomial. The image of the same leaf by H1 corresponds to
the leaf of the formal normal form with coordinates g+(c) in U1×Cn−1.



36 HELENA REIS

As Π1(cτ (1)) = Π1(cτ (0)) ∈ U− and in U− the change of the leaves is
given by g−, the image of the leaf through cτ (1) by H2 is the leaf with
coordinates g−(g+(c)).

But the holonomy is the identity. This means that cτ (0) = cτ (1)
and, consequently, g−(g+(c)) = id.

As X has a holomorphic invariant manifold tangent to the x1-axis,
by proposition 12, aj0 = 0 in U+. So the induction hypothesis is verified
for |Q| = 0.

Suppose that ∀Q : |Q| ≤ q we have aiQ = 0, ∀i : aiQ ∈ ΛZα(U+).
Then g+ is of the type

(c2, . . . , cn) �→ (c2 +

k2∑
j=1

a2Q2j
cQ2j , . . . , cn +

kn∑
j=1

anQnj
cQnj)

where |Qij| ≥ q + 1, ∀i = 2, . . . , n and 1 ≤ j ≤ kj.
With this supposition, the composition g− ◦ g+ is given by

c �→ (c2 +

k2∑
j=1

a2Q2j
cQ2j +

∑
Q=e1

Q:(Q,γ)−γ2 ∈R

a2Q

n∏
i=2

(ci +

ki∑
j=1

aiQij
cQij)qi ,

, . . . , cn +
kn∑
j=1

anQnj
cQnj +

∑
Q=en−1

Q:(Q,γ)−γn ∈R

anQ

n∏
i=2

(ci +

ki∑
j=1

aiQij
cQij)qi)

As it must be the identity we have:




∑k2

j=1 a2Q2j
cQ2j +

∑
Q=e1

Q:(Q,γ)−γ2 ∈R

a2Q

∏n
i=2(ci +

∑ki

j=1 aiQij
cQij)qi = 0

...∑kn

j=1 anQnj
cQnj +

∑
Q=en−1

Q:(Q,γ)−γn ∈R

anQ

∏n
i=2(ci +

∑ki

j=1 aiQij
cQij)qi = 0

(10)

Let Q0 be such that |Q0| = q + 1 and (Q0, γ) − γi ∈ R for some
i = 2, . . . , n. We look for the coefficient of cQ0 in the (i− 1)th equation
of the system (10).

The term cQ0 appears in
∏n

p=2(cp+
∑kp

j=1 apQpj
cQpj)qp if (q2, . . . , qn) =

ei−1 or (q2, . . . , qn) = Q0. However, as (Q0, γ)− γi ∈ R, both (n− 1)-
tuples are forbidden to take in the second sum.

We can ask if there are other hypothesis to obtain a constant times

cQ0 in
∏n

p=2(cp +
∑kp

j=1 apQpj
cQpj)qp . As the terms of

∑kp

j=1 apQpj
cQpj

involves only monomials of order greater or equal to q + 1, the only
chance is the existence of j �= i such that (Q0, γ)− γj ∈ R: in this case
we should take Q = ej−1.

Suppose that (Q0, γ)− γk = 0 only for k = i and k = j.
If we look to the (j − 1)th equation we can obtain cQ0 in Πn

p=2(cp +∑kp

j=1 apQpj
cQpj)qp if we take Q = ei−1.
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However (ej−1, γ)− γi = γj − γi and (ei−1, γ)− γj = γi− γj, i.e., one
is symmetrical of the other. As the complement of U ∪ (U + π) is the
union of two sectors of amplitude smaller than π and neither U nor
U + π contain singular directions, we have that one and exactly one of
the two numbers belongs to R.

Suppose that (ej−1, γ)− γi ∈ R. Then Q = ej−1 is forbidden in the
second sum of the (i − 1)th equation, and so the coefficient of cQ0 is
aiQ0 . Thus aiQ0 must be 0.

Suppose that (ei−1, γ)− γj ∈ R. By the argument described above,
the coefficient of cQ0 in the (j − 1)th equation is ajQ0 and consequently
ajQ0 is zero. In this way the term ajQ0c

Q0 does not appear in the second
sum of the (i− 1)th equation. So aiQ0 is also zero.

As C{(Q, γ)−γi : (Q, γ)−γi ∈ R for some i = 2, . . . , n} is finite, this
process stops in a finite number of steps. So we proved that g+ = id.

To prove that g− is also the identity function it is sufficient to see
that the last system reduces to



∑
Q=e1

Q:(Q,γ)−γ2 ∈R

a2Qcq2

2 . . . cqn
n = 0

...∑
Q=en−1

Q:(Q,γ)−γn ∈R

anQcq2

2 . . . cqn
n = 0

and consequently aiQ = 0, ∀i = 2, . . . , n and ∀Q ∈ N0.
We have supposed that C{i : (Q0, γ) − γi = 0} = 2, which is not

necessarily true, specialy for great dimensions. Let us see how to solve
the problem when C{i : (Q0, γ)− γi = 0} > 2.

Let us consider the sector U , defined before, as close to the real axis
as possible.

Suppose that {i : (Q0, γ) − γi = 0} = {i1, i2, . . . , ik} with i1 < i2 <
. . . < ik. We want to prove that aiQ0 = 0, ∀i = i1, . . . , ik.

The coefficient of cQ0 on the (ij − 1)th equation of the system (10) is
given by

aijQ0 +
∑
l =j

l:(eil−1,γ)−γij
∈R

aijeil−1
ailQ0

and is equal to zero. So we have a system of k equations in k unknowns:
aijQ0 , j = 1, . . . , k. Denote by B = (bij) the matrix associated to this
new system.

We can assume that

�(γi1) ≤ �(γi2) ≤ . . . ≤ �(γik)

and that if �(γij) = �(γij+1
) then �(γij) < �(γij+1

). If this is not true
we can reorder the variables and the lines of the system in order to
have the inequality given above.
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We have already seen that (eij−1, γ)−γil = γij−γil , (eil−1, γ)−γij =
γil − γij and only one of them belongs to R. As γij − γil ∈ R means

that eij−1 does not belong to the second sum of the (il − 1)th equation
of system (10), if γij − γil ∈ R then blj = 0.

By hypothesis

il > ij and �(γil) > �(γij) ⇒ �(γil − γij) > 0

As we can choose U so close to the real axis as possible and C{i :
(Q0, γ)− γi = 0} is finite, we can say that

il > ij ⇒ γil − γij �∈ R

i.e.,

il > ij ⇒ γij − γil ∈ R ⇒ blj = 0

If �(γil) = �(γij) for il > ij then �(γil − γij) = 0. However �(γil) >
�(γij). Thus �(γil − γij) > 0 and �(γij − γil) < 0, which means that
γij − γil ∈ R. So blj = 0.

We have just proved that the matrix B is of the form

B =




1 aiiei2−1
ai1ei3−1

. . . ai2eik−1

0 1 ai2ei3−1
. . . ai2eik−1

0 0 1 . . . ai3eik−1

...
...

...
. . .

...
0 0 0 . . . 1




and so we can conclude that aijQo = 0, ∀j = 1, . . . , k.
The induction over |Q| stops in a finite number of steps. So g+ = id.
We prove that g− is also the identity in the same way: we see that

system (10) reduces to


∑
Q=e1

Q:(Q,γ)−γ2 ∈R

a2Qcq2

2 . . . cqn
n = 0

...∑
Q=en−1

Q:(Q,γ)−γn ∈R

anQcq2

2 . . . cqn
n = 0

and consequently aiQ = 0, ∀i = 2, . . . , n and ∀Q ∈ N0.

Corollary 1. Let X be a vector field of type Y1,α. Then X is semi-
complete iff X is analytically conjugated to its formal normal form.

Proof. Suppose that X, of type Y1,α is semi-complete. By lemma 2
and proposition 12 there is an invariant manifold tangent to the x1-
axis. Lemma 3 guarantees that the holonomy relative to that invariant
manifold is the identity. So the result follow, by proposition 15.

The other implication results by the fact that semi-completude is
preserved by analytical conjugacy.
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It remains to analyse which formal normal form are semi-complete.
This is a much simpler problem.

Proposition 16. Let X be a vector field of type

X :




ẋ1 = x2
1

ẋ2 = x2(1 + α2x1)
...

ẋn = xn(γn + αnx1)

Then X is semi-complete iff αi ∈ Z, ∀i = 2, . . . , n.

Proof. Consider the vector field X given above and suppose that X
is semi-complete. Remark that the x1-axis is an invariant manifold of
the differential equation associated to the vector field X. Then, as we
proved before, the holonomy relative to the x1-axis is the identity.

Consider the ordinary differential equation


dx2

dx1

=
x2(1 + α2x1)

x2
1

...
dxn

dx1

=
xn(γn + αnx1)

x2
1

(11)

equivalent to the differential equation associated to the vector field X.
Let Σ be the transversal section to the first axis, through the point

(r, 0, . . . , 0), given by Σ = {(r, x2, . . . , xn) : 0 ≤
∑n

i=2 |xi|2 < ε < r}.
Taking x1 = re2πit, t ∈ [0, 1], and substituting in (11) we obtain



dx2

dt
=

dx2

dx1

dx1

dt
= 2πi(α2 + 1

r
e−2πit)x2

...
dxn

dt
=

dxn

dx1

dx1

dt
= 2πi(αn + 1

r
γne

−2πit)xn

Integrating for t between 0 and 1 we obtain

xi(1) = xi(0)e
∫ 1
0 2πi(αi+

1
r
γie
−2πit)dt = xi(0)e[2πiαit− 1

r
γie
−2πit]10

= xi(0)e2πiαi

for all i = 2, . . . , n.
So the holonomy is given by

h(x2, . . . , xn) = (x2e
2πiα2 , . . . , xne

2πiαn)

As the holonomy is the identity then αi ∈ Z for all i = 2, . . . , n


e2πiα2 = 1
...

e2πiαn = 1

⇔ (α2, . . . , αn) ∈ Zn−1
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The other implication is immediate. We can easily solve the differ-
encial equation associated to the vector field X:

dx1

dT
= x2

1 ⇔
dx1

x2
1

= dT ⇔ x1(T ) =
x1(0)

1− x1(0)T

Substituting
x1(0)

1− x1(0)T
for x(T ) in the other equations we obtain the

linear system 


dx2

dT
= x2(1 + α2

x1(0)

1− x1(0)T
)

...
dxn

dT
= xn(γn + αn

x1(0)

1− x1(0)T
)

whose solution is given by


x2(T ) = x2(0)
eT

(1− x1(0)T )α2

...

xn(T ) = xn(0)
eγnT

(1− x1(0)T )αn

(12)

As αi ∈ Z, ∀i = 2, . . . , n, (1 − x1(0)T )αi is well defined for all

T ∈ C \ { 1

x1(0)
}.

So, the application Φ : Ω = {(T, x1, . . . , xn) : T �= 1

x1

} ⊆ C× Cn →
C

n given by

(T, x1, x2, . . . , xn) �→ (
x1

1− x1T
, x2

eT

(1− x1T )α2
, . . . , xn

eγnT

(1− x1T )αn
)

is obviously a semi-complete flow associated to X: for each (x1, . . . , xn)

fixed, (Ti, x1, . . . , xn)→ ∂Ω iff Ti →
1

x1

. We have that

lim
T→ 1

x1

eγiT = e
γi
x1 �= 0 and lim

T→ 1
x1

(1− x1T )αi = 0

So, (Ti, x1, . . . , xn) → ∂Ω implies that ‖Φ(Ti, x1, . . . , xn)‖ → ∞,
i.e., Φ(Ti, x1, . . . , xn) tends to the boundary of Cn.

In particular X is semi-complete relatively to Cn.

Our objective is to prove theorem 3:
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A saddle-node foliation is associated to a semi-complete vector field
iff it admits



ẋ1 = x2
1

ẋ2 = x2(λ2 + α2x1)
...

ẋn = xn(λn + αnx1)

, (α2, . . . , αn) ∈ Zn−1

as normal form.
If F is the foliation associated to Y1,α, with α ∈ Zn−1 and Y1,α

is analytically conjugated to its formal normal form Zα, then F is
associated to a semi-complete vector field in a neighbourhood of the
origin, as we have just proved.

We are going to prove that there are no more foliations of saddle-node
type associated to semi-complete vector fields.

First we will prove the next result:

Proposition 17. Let f be a holomorphic function (f : Cn → C) such
that f(0) �= 0 and consider the vector field Y = fY1,α. Suppose that
Y is semi-complete in B(0, ε) with f non zero in this open set. Then
there is a holomorphic invariant manifold tangent to the x1-axis at the
origin, i.e., a holomorphic central manifold.

Proof. Suppose that Y does not have a holomorphic invariant manifold
tangent to the x1-axis at the origin. As Y and Y1,α have exactly the
same foliation in B(0, ε) then Y1,α does not also have a holomorphic
invariant manifold tangent to the x1-axis at the origin.

Consider the curve c(t) = (re2πit, 0, . . . , 0), for r sufficiently small
(in particular |r| < ε).

We know that in a neighbourhood of the origin Π1 is transverse to
the leaves of Y1,α not contained in {x1 = 0}. Let cL be the lift of c to
the leaf, L, containing H−1

1 (U1 \ {0} × {(0, . . . , 0)}). We have H1(L ∩
(U1 × (Cn−1, 0))) ⊆ {xi = 0, i = 2, . . . , n} and so L is parametrized by
(0, . . . , 0).

We choose r in such a manner that Π1(cL(0)) ∈ U+. As U− =
U+ + π, Π1(cL(1

2
)) ∈ U−. The application g− is tangent to the identity

so, (0, . . . , 0) is transformed into (0, . . . , 0) by g−. This means that
H2(L ∩ (U2 × (Cn−1, 0))) ⊆ {xi = 0, i = 2, . . . , n}. We also have that
Π1(cL(1)) ∈ U+, so

(0, . . . , 0) �→ (a20...0, . . . , an0...0)

As there is no holomorphic central manifold (a20...0, . . . , an0...0) �=
(0, . . . , 0), by proposition 12. This means that cL(0) �= cL(1), i.e., the
curve cL is not closed.

Consider the conjugacy

Yλ = (DHλ)
−1Y ◦Hλ
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where Hλ : Cn → C
n is the homothety Hλ(x) = λx. Thus Yλ and Y

are analytically conjugated.

If Y is semi-complete in B(0, ε), then Yλ is semi-complete in B(0,
ε

|λ|).
In the particular case that λ = ε, Yλ is semi-complete in B(0, 1). We
will allways take λ = ε.

As f(0) �= 0, Π1 is transverse to the leaves of Y except to the in-
variant mainifold {x1 = 0}, in a neighbourhood of the origin. We have
that

dT Y =
dx1

f(x)x2
1

so

dT Yλ = H∗λ(dT Y ) =
d(λx1)

f(λx)λ2x2
1

=
dx1

λf(λx)x2
1

However, for a given curve c∫
c

dx1

λf(λx)x2
1

= 0 ⇔
∫

c

dx1

f(λx)x2
1

= 0

Consider the curve

cλ(t) = (
λ

2
e2πit, 0, . . . , 0) , t ∈ [0, 1]

For each λ consider (xλ
2 , . . . , xλ

n) sufficiently close to (0, . . . , 0) ∈
C

n−1 in such a manner that (λ
2
, xλ

2 , . . . , xλ
n) belongs to L and that the

lift of c to L, denoted by cλ
L, is contained in B(0, ε).

Let

cλ = H−1
λ (cλ

L)

Remark 14. We can choose (xλ
2 , . . . , xλ

n) in such a manner that

λ �→ (xλ
2 , . . . , xλ

n)

is a continuous function of λ. Consequently λ �→ cλ
L is also a continuous

function of λ, and so is λ �→ cλ because Hλ is a holomorphic function
of λ.

As cλ
L ⊆ B(0, ε), then cλ ⊆ B(0, 1). But cλ has another important

property: as cλ
L is not closed and Hλ is a homothety, then cλ is also not

closed.
On the other hand

Π1(cλ) = Π1(H
−1
λ (cL)) = H−1

λ (Π1(cL)) = H−1
λ (

λ

2
e2πit) =

1

2
e2πit

for all λ, because Hλ is a homothety. In this way

lim
λ→0

∫
cλ

dx1

f(λx)x2
1

=

∫
1
2
e2πit

dx1

x2
1

= 0
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Remark 15. As λ �→ cλ is a continuous function of λ and cλ ⊆ D(0, 1),
which is a compact set, there exists limλ→0 cλ. We only know that
limλ→0 Π1(cL) = 1

2
e2πit, which is the only property necessary to the

proof.

Let W ⊆ Cx1 be a simply connected neighbourhood of Π1(cλ(1)) = 1
2
,

not containing the origin. In this neighbourhood we can write xi as
function of x1 for all i = 2, . . . , n (remember that Π1 is transverse to
all leaves except to those in the invariant manifold {x1 = 0} and we
are excluding x1 = 0 from W ).

Define

Iλ : W → C

p �→
∫

cp

dx1

f(λx)x2
1

where cp ⊆ W is a curve joining 1
2

to p.
The function f is non zero at the origin, so it can be written in the

form

f(x) = k + g(x)

where g(0) = 0 and k = f(0), i.e., g(x) = x1g1(x) + . . . + xngn(x).
In this way we can rewrite the application Iλ in the following way:

Iλ(p) =

∫
cp

dx1

(k + g(λx1, λx2(x1), . . . , λxn(x1))x2
1

=

∫
cp

dx1

kx2
1 + λh(λ, x1)

Let m(x1, λ) = λh(λ, x1). As m is holomorphic in W and m(x1, 0) =
0, lemma 1 guarantees the existence of real and positive numbers λ0

and θ such that

B(0, θ) ⊆ Iλ(W ) , ∀λ : |λ| ≤ λ0

As

lim
λ→0

∫
cλ

dx1

f(λx)x2
1

= 0

there exists λ1 such that |λ1| < λ0 and∫
cλ1

dx1

f(λx)x2
1

= α

with |α| < θ. However B(0, θ) ⊆ Iλ1(W ). Thus there exists p ∈ W
such that

Iλ1(p) = −α

If p �∈ cλ1([0, 1]) let c̃ be the curve joining cλ1(0) to p obtained by
concatenating cλ1 to cp. If p ∈ cλ1([0, 1]), i.e., p = cλ1(t0) for some
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0 < t0 < 1, let c̃ = c|[0,t0]. Thus∫
c̃

dx1

f(λx)x2
1

= 0

But, in both cases, c̃ is an one-to-one embedded curve. This result
contradicts the semi-completude of the vector field Yλ1 and, conse-
quently, the semi-completude of the vector field Y .

So, if Y is semi-complete then there exists a holomorphic invariant
manifold tangent to the x1-axis at the origin.

Next we will prove:

Proposition 18. Let f : Cn → C be a holomorphic function such that
f(0) �= 0 and consider the vector field Y = fY1,α. Suppose that Y is
semi-complete in B(0, ε) where ε is such that f is non zero in this open
set. Then the holonomy relative to the holomorphic invariant manifold
tangent to the x1-axis (whose existence is guaranteed in Proposition 17)
is the identity.

Proof. Suppose that Y is semi-complete in a neighbourhood of the
origin. Then there is a holomorphic invariant manifold tangent to the
x1-axis. By a holomorphic change of coordinates we can suppose that
this holomorphic invariant manifold is the x1-axis itself. Thus the
vector field can be written in the form



ẋ1 = x2
1h(x)

ẋ2 = λ2x2 + x1

∑n
j=2 xjf2j(x)

...

ẋn = λnxn + x1

∑n
j=2 xjfnj(x)

where h(0) �= 0.
As the vector field is semi-complete in a neighbourhood of the origin,

its restriction to the x1-axis is also semi-complete in a neighbourhood
of the origin. But this restriction is the vector field

X = x2h(x, 0, . . . , 0)
∂

∂x

which is equivalent to the 1-dimensional vector field

ẋ = x2h(x, 0, . . . , 0)

But we know that a 1-dimensional meromorphic semi-complete vec-
tor field in a neighbourhood of the origin (of C) is analytically con-

jugated to X(x) = (λx + . . . )
∂

∂x
, X(x) = x2 ∂

∂x
or X is constant,

[10]. Thus the vector field ẋ = x2h(x, 0, . . . , 0) must be analytically
conjugated to ẋ = x2.
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Consider the curve c(t) = (re2πit, 0, . . . , 0), t ∈ [0, 1], for r sufficiently
close to 0 and let c′ = (H(Π1(c)), 0, . . . , 0), where H is the diffeomor-

phism that conjugates the vector fields x2h(x, 0, . . . , 0)
∂

∂x
and x2 ∂

∂x
.

Then ∫
c

dT{xi=0,i=2,... ,n} =

∫
c′

dx1

x2
1

= 0

Suppose that the holonomy is not the identity: there exists a neigh-
bourhood of 0 ∈ Cn−1 such that, for every x̄0 = (x0

2, . . . , x0
n) sufficiently

close to (0, . . . , 0), the lift cL of c to the leaf L through (r, x0
2, . . . , x0

n)
is not closed. Thus cL(0) �= cL(1) although Π1(cL(0)) = Π1(cL(1)).

As h(0) �= 0, there exists a neighbourhood B(0, ε) of the origin such
that h(x) �= 0, ∀x ∈ B(0, ε). In particular, we choose r and x̄0, with
‖x̄0‖ ≤ ε1, such that cL ⊆ B(0, ε).

As before, the projection Π1 is transverse to all leaves, except to
those contained in the invariant manifold {x1 = 0} in a neighbourhood
of the origin. As Π1(cL(1)) = r �= 0 there is a simply connected
neighbourhood of r in Cx1 \ {0}, W , such that we can write xi as
function of x1 for all i = 2, . . . , n


x2 = x2(x1; x̄0)
...

xn = xn(x1; x̄0)

(13)

in each leaf of Y |W×Cn−1 .
Substituting (13) in the first equation of the differential system as-

socited to Y , we obtain the differential equation

ẋ1 = x2
1h(x1, x2(x1; x̄0), . . . , xn(x1; x̄0))

where x̄0 is considered as a pararameter.
Consider the application

Ix̄0 : W → C

p �→
∫

cp

dx1

x2
1h(x1, x2(x1; x̄0), . . . , xn(x1, x̄0))

where cp ⊆ W represents a curve joining r to p.
We have Ix̄0(r) = 0, ∀x̄0 : ‖x̄0‖ ≤ ε1. In particular I0(r) = 0. On the

other hand, as I ′0(r) = 1
r2h(r,0,... ,0)

�= 0 and I ′x̄0
is a continuous function

of x̄0 there exists 0 < ε2 < ε1 such that

I ′x̄0
(r) ∈ B(

1

r2h(r, 0, . . . , 0)
,

1

2|r2h(r, 0, . . . , 0)|), ∀x̄0 : ‖x̄0‖ ≤ ε2

By the same argument used in the proof of lemma 1, there exist real
and positive numbers θ and ε0 such that

∀x̄0 : ‖x̄0‖ ≤ ε0, B(0, θ) ⊆ Ix̄0(W ).
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However ∫
cL

dTL
x̄0→0−→ 0

Thus, there exists x̄0 with ‖x̄0‖ ≤ ε0 such that∫
cL

dTL = α

where |α| < θ. By lemma 1, there exists p ∈ W such that∫
cp

dx1

x2
1h(x1, x2(x1; x̄0), . . . , xn(x1, x̄0))

= −α

The curve cp can allways be choosen in such a manner that its lift to
L does not intersect cL except when P = (p, x2(p), . . . , xn(p)) belongs
to cL.

If P �∈ cL([0, 1]) we denote by c̃ the curve obtained by the concate-
nation of cL to the lift of cp to L. If P = cL(t0) for some 0 < t0 < 1,
we denote by c̃ the curve cL|[0,t0].

In both cases ∫
c̃

dTL = 0

and c̃ is an one-to-one embedded curve, contradicting the fact that Y
is semi-complete.

Thus the holonomy is the identity.

Finally we are going to prove Theorem 3.

Proof of Theorem 3. Let F be a foliation associated o a vector field
in x (with an isolated singularity at the origin). For each vector field
X, whose foliation coincides with F (in a small neighbourhood of the
origin), there exist p and a holomorphic function f : Cn → C, verifying
f(0) �= 0, such that X can be written in the form fYp.

We proved that if F is associated to a semi-complete vector field
then p = 1.

Consider now the vector field of the type Y = fY1,α, with f(0) �= 0,
and suppose that Y is semi-complete. Proposition 17 tells us that Y has
a holomorphic invariant manifold tangent to the x1-axis. Proposition
18 says that the holonomy relative to that invariant manifold is the
identity.

As Y and Y1,α have the same foliation (in a neighbourhood of the
origin), then Y1,α has a holomorphic invariant manifold tangent to the
x1-axis and the holonomy relative to that invariant manifold is the
identity.

By proposition 15, Y1,α is analytically conjugated to its formal nor-
mal form Zα.
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So, if Y1,α is not analytically conjugated to its formal normal form,
fY1,α is not semi-complete in any neighbourhood of the origin, for any
holomorphic function f such that f(0) �= 0.

On the other hand, the holonomy of the vector field Zα

Zα :




ẋ1 = x2
1

ẋ2 = x2(1 + α2x1)
...

ẋn = xn(γn + αnx2)

is the identity iff α ∈ Zn−1. So, even if Y1,α is analyticaly conjugated
to its formal normal form Zα, if α �∈ Zn−1 Y canot be semi-complete
in any neighbourhood of the origin, because the holonomy relative to
the x1-axis is not the identity.

It remains to analyse the foliations associated to vector fields X
whose linear part is not diagonal, but is diagonalizable. Suppose that
F is a foliation in that condition. We know that there exists a linear
change of coordinates, H, that linearizes its linear part.

Consider the vector field Y = (DH)−1.X ◦ H. Suppose that X
is semi-complete, then Y is also semi-complete and, consequently, of
the form fY1,α for some function f such that f(0) �= 0. Then Y1,α is
anayticaly conjugated to Zα with α ∈ Zn−1, as we have just proved.

However, to prove that F addmits Zα as normal form it remains
to prove that F has a representant analytically conjugated to Zα, or
equivalently, to Y1,α (as Zα and Y1,α are analytically conjugated).

Consider the vector field
1

(f ◦H−1)
X. Then

(DH)−1.((
1

f ◦H−1
)X) ◦H = (DH)−1.

1

f
(X ◦H)

=
1

f
(DH)−1.X ◦H =

1

f
fY1,α

= Y1,α

and
1

(f ◦H−1)
X is also a representant of F .

Suppose now that F addmits Zα, with α ∈ Zn−1 as normal form.
So there exists a vector field X, analytically conjugated to Zα, whose
foliation is given by F . Thus X is a semi-complete vector field. So F
is associated to a semi-complete vector field.

So, F is associated to a semi-complete vector field in a neighbour-
hood of the origin iff F addmits Zα as normal form, with α ∈ Zn−1.
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6. Saddle-node with a non isolated singularity

In this section we are going to classify the semi-complete vector
fields with diagonal linear part associated to a saddle-node foliation,
but whose set of singularities coincides with the holomorphic invariant
manifold transverse to the x1-axis, whose existence is guaranteed in [1].

Proposition 19. [1] Consider a vector field X ∈ X. The vector field
X has a holomorphic invariant manifold transverse to the x1-axis.

By proposition 5 we can assume that the holomorphic invariant man-
ifold transverse to the x1-axis is the hyperplane {x1 = 0}. In this way
it is sufficient to study the vector fields of type fx−k

1 Yp, where f(0) �= 0
and k ∈ Z\{0}. The case studied before (where the origin is an isolated
singularity) corresponds to k = 0.

We should remark that the foliation associated to Yp coincides with
the foliation associated to fx−k

1 Yp outside {x1 = 0}. The foliation
restricted to {x1 = 0} in the first case is of Poincaré type, while in the
second case is a set of singular points, if k < 0, or does not exists, if
k > 0. In this last case {x1 = 0} is a singular set in the sense that it
does not belong to the domain of the vector field.

As the foliation of fx−k
1 Yp coincides with the foliation of fYp, outside

the invariant hypersurface that is transformed to a set of singularities,
abusing notation we still call fx−k

1 Yp of saddle-node type, but remark-
ing that it has no more an isolated singularity.

Proposition 20. Let X be a vector field of type fx−k
1 Yp, where f is

a holomorphic function such that f(0) �= 0, k ∈ Z and X defined in
an open neighbourhood U ⊆ Cn of the origin. Suppose that X is semi-
complete in a neighbourhood of the origin, then k ∈ {p− 1, p, p + 1}.

Proof. Consider the vector field

X = fx−k
1 Yp :




ẋ1 = f(x)x−k+p+1
1

ẋ2 = f(x)x−k
1 (λ2x2 + x1a1(x))

...

ẋn = f(x)x−k
1 (λnxn + x1bn(x))

We are going to prove that if k /∈ {p − 1, p, p + 1}, then X is not
semi-complete in any neighbourhood of the origin.

Suppose that k /∈ {p− 1, p, p + 1}. If k ≤ p− 2 then −k + p + 1 ≥ 3
and if k ≥ p+2 then −k + p+1 ≤ −1. Those values will be important
in the sequence (remember proposition 4).

The proof of this proposition is totally identical to the proof of the
proposition 6 which says that if fYp is semi-complete, with f(0) �= 0,
then p = 1.
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We can easily verify that the fibres of Π1 are transverse to the leaves
of the foliation F associated to the vector field fx−k

1 Yp in a neighbour-
hood of the origin, except to those contained in the manifold {x1 = 0}:

DΠ1(x).X(x) = f(x)x−k+p+1
1

with f(0) �= 0, and, consequently, non zero in a sufficiently small neigh-
bourhood of the origin.

Fix a disc B(0, ε) ⊆ Cn of center at the origin of Cn and radius ε > 0
relatively to which X is semi-complete.

Suppose f ≡ k ∈ C. Consider the curve c(t) = (re2πit/(−k+p), 0, . . . , 0),
t ∈ [0, 1], which is an one-to-one embedded curve, because |−k+p| ≥ 2.

As Π1(c(t)) �= 0, ∀t ∈ [0, 1], for each (r, x2, . . . , xn) sufficiently close
to (0, . . . , 0), we can lift the curve c to a curve cL contained in L ∩
B(0, ε), where L is the leaf (of the foliation F) through (r, x2, . . . , xn).
As we are assuming f ≡ k we have∫

cL

dTL =

∫
c

dx1

kx−k+p+1
1

= 0

As c is an one-to-one embedded curve, so is cL. This contradicts the
fact that X is semi-complete.

We are going to treat now the case f �≡ k. In this case, we obtain
the differential 1-form

dTX
L =

dx1

x−k+p+1
1 f(x)

where x = (x1, . . . , xn) and f(0) �= 0.
Consider S ⊆ C, an angular sector with vertex at the origin and angle

greater than 2π
|−k+p| and less than 2π. As Π1 is transverse to the leaves,

except to the the manifold {x1 = 0}, for each leaf in S \{0}×(Cn−1, 0),
we can write 


x2 = xL

2 (x)
...

xn = xL
n(x)

univocaly.
Let cL be an one-to-one embedded curve in L. We have that∫

cL

dTL =

∫
cL

dx1

x−k+p+1
1 f(x)

=

∫
Π1(cL)

dx1

x−k+p+1
1 f(x1, xL

2 (x1), . . . , xL
n(x1))

By transversality, as cL is an one-to-one embedded curve, so is Π1(cL).
So we reduced the study of the semi-completude of a vector field in
S ×U , where U is a neighbourhood of the origin of Cn−1, to the study
of the semi-completude of a vector field in S.

Remark that if fx−k
1 Yp is not semi-complete in any neighbourhood of

the origin of the type (S×U)∩B(0, ε), then it canot be semi-complete
in any neighbourhood of the origin B(0, ε) (remark 5).
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We have already proved that any unidimensional vector field of type

ẋ = xkf(x)

with f(0) �= 0 and k ≥ 3 or k ≤ −1 is not semi-complete relatively

to any sector of amplitude greater than
2π

|k − 1| . In our case we are

analysing the vector field

Y : ẋ = x−k+p+1f(x, xL
2 (x), . . . , xL

n(x))

with f(0) �= 0 and −k + p + 1 ≥ 3 or −k + p + 1 ≤ −1. As the

sector S has amplitude greater than
2π

| − k + p| , Y is not semi-complete

relatively to any neighbourhood of the origin of the type S ∩ B(0, ε).
Thus X is not semi-complete relatively to any neighbourhood of the
origin.

Immediatly, we can conclude:

Corollary 2. There are no holomorphic semi-complete vector fields of
saddle-node type with a diagonal linear part such that the invariant
hypersurface transverse to the weak direction is contained in its set of
singularities.

We can also say that:

Corollary 3. Let X be a holomorphic vector field of saddle-node type,
with an isolated singularity at the origin, and M the invariant hyper-
surface transverse to the weak direction of X. If F is a holomorphic
function such that F (x) = 0 ⇔ x ∈ M , then the holomorphic vector
field FX is not semi-complete in any neighbourhood of the origin.

Proof. It is sufficient to prove for vector fields X whose linear part is
diagonalizable, but not diagonal. The diagonal case is expressed in the
last corollary.

Let H be the linear transformation that linearizes the linear part of
DX(0). Consider the vector field:

Y = (DH)−1(FX) ◦H = (F ◦H)(DH)−1X ◦H

Thus Y is of type (F ◦H)Yp for some p ≥ 1.
The hypersurface M is the invariant hypersurface transverse to the

weak direction of X. So, H−1(M) is the hypersurface transverse to the
weak direction of Yp. M is given by F = 0, so H−1(M) is given by
F ◦H = 0. So, the set of singularities of Y is given by H−1(M), i.e., is
given by the hypersurface transverse to the weak direction of Yp.

As Yp has a diagonal linear part, Y is a holomorphic vector field
of saddle-node type with a diagonal linear part whose hypersurface
transverse to the weak direction is contained in its set of singularities.
By Corollary 2, Y is not semi-complete.
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As X is analytically conjugated to Y , X is not semi-complete.
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